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Nowcasting Earthquakes With Stochastic Simulations:
Information Entropy of Earthquake Catalogs
John B. Rundle*?* ©, Tan Baughman', and Tianjian Zhang'

"Department of Physics and Astronomy, University of California, Davis, CA, USA, *Department of Earth and Planetary
Sciences, University of California, Davis, CA, USA, 3Santa Fe Institute, Santa Fe, NM, USA

Abstract Earthquake nowcasting has been proposed as a means of tracking the change in large earthquake
potential in a seismically active area. The method was developed using observable seismic data, in which
probabilities of future large earthquakes can be computed using Receiver Operating Characteristic methods.
Furthermore, analysis of the Shannon information content of the earthquake catalogs has been used to show that
there is information contained in the catalogs, and that it can vary in time. So an important question remains,
where does the information originate? In this paper, we examine this question using stochastic simulations of
earthquake catalogs. Our catalog simulations are computed using an Earthquake Rescaled Aftershock
Seismicity (“ERAS”) stochastic model. This model is similar in many ways to other stochastic seismicity
simulations, but has the advantage that the model has only 2 free parameters to be set, one for the aftershock
(Omori-Utsu) time decay, and one for the aftershock spatial migration away from the epicenter. Generating a
simulation catalog and fitting the two parameters to the observed catalog such as California takes only a few
minutes of wall clock time. While clustering can arise from random, Poisson statistics, we show that significant
information in the simulation catalogs arises from the ‘“non-Poisson” power-law aftershock clustering, implying
that the practice of de-clustering observed catalogs may remove information that would otherwise be useful in
forecasting and nowcasting. We also show that the nowcasting method provides similar results with the ERAS
model as it does with observed seismicity.

Plain Language Summary Earthquake nowcasting was proposed as a means of tracking the change
in the potential for large earthquakes in a seismically active area, using the record of small earthquakes. The
method was developed using observed seismic data, in which probabilities of future large earthquakes can be
computed using machine learning methods that were originally developed with the advent of radar in the 1940s.
These methods are now being used in the development of machine learning and artificial intelligence models in
a variety of applications. In recent times, methods to simulate earthquakes using the observed statistical laws of
earthquake seismicity have been developed. One of the advantages of these stochastic models is that it can be
used to analyze the various assumptions that are inherent in the analysis of seismic catalogs of earthquakes. In
this paper, we analyze the importance of the space-time clustering that is often observed in earthquake
seismicity. We find that the clustering is the origin of information that makes the earthquake nowcasting
methods possible. We also find that a common practice of “aftershock de-clustering”, often used in the analysis
of these catalogs, removes information about future large earthquakes.

1. Introduction

Earthquake nowcasting (Rundle et al., 2019, 2021a, 2021b, 2021c, 2022a, 2023; Rundle and Donnellan, 2020;
Pasari, 2019, 2020, 2022; Pasari and Mehta, 2018; Chouliaras et al., 2023) is a relatively new method that uses
elements of machine learning to track the current state of the potential for large earthquakes, as well as the recent
past and near future. Nowcasting is based on the Receiver Operating Characteristic (ROC) method that was
developed with the invention of radar in 1941 relating to the observation of “signals” associated with reflections,
or “events” (https://en.wikipedia.org/wiki/Receiver_operating_characteristic).

The fact that one can compute a probability for large earthquakes (Rundle et al., 2023) implies that there is in-
formation (Shannon, 1948) contained within seismic catalogs. An important question then is:

From where does this information arise? What property of the catalogs is associated with this
information content? This is the question that we seek to answer in the current paper.
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While random clustering can occur naturally as a result of Poisson statistics (Gross & Rundle, 1998), the hy-
pothesis that we consider here is that the information arises from the “non-Poisson”, scale-invariant power-law
clustering of aftershocks. This non-Poisson clustering typically arises following large earthquakes, or as swarms
or “bursts.” More specifically, we find that information is associated with the relative quiescence that follows
aftershock activity, meaning that removing aftershocks obscures the boundary between an “active” phase versus a
“quiescent” phase.

We are currently developing methods (Rundle, 2023) for earthquake nowcasting that make use of recent de-
velopments in science transformers, which are the basis for Large Language Models (LLMs) such as ChatGPT
(e.g., Chang et al., 2023; Fox et al., 2022; Yang et al., 2023). In these science transformers, models are trained on a
large corpus of data, allowing the transformer to build a predictive model based on the concept of query, key and
vector inputs to an encoder-decoder architecture combined with the concept of dot-product attention (i.e., Vas-
wani et al., 2017). LLMs are trained on large collections of facts, internet sites, documents, computer codes,
images, and other data. We adapt this science transformer architecture to analyze time series for predictive
purposes.

In the earthquake application, we do not generally have access to the volume of earthquake catalog data that we
require, since these catalogs only extend back a few decades in time with reliable data. As a result, we must turn to
other means of training the transformer models, specifically, by the use of extensive simulations of seismic
activity. For this reason, we turn initially to stochastic earthquake simulations which are physics-informed models
based on the observational laws of earthquake seismicity. Identifying the origin of the information contained in
the catalogs is important for the evaluation of the utility of the nowcasting methods.

2. Testing Nowcast Models With Stochastic Simulations

To test our hypothesis of information origin, we turn to stochastic earthquake simulations in which the temporal
clustering of seismicity can be easily varied to investigate its effects. Examples of these stochastic models include
the Epidemic Type Aftershock Sequences (ETAS) formalism. These ETAS models are based on using the
fundamental observational laws of earthquake seismicity to build the rate for non-homogeneous Poisson models
that can be used to generate space-time seismicity catalogs (Hardebeck, 2013; Helmstetter & Sornette, 2003;
Lombardi, 2015; Mancini et al., 2021; Mancini & Marzocchi, 2023; Seif et al., 2017; Veen & Schoenberg, 2008;
Zhuang, 2011; Zhuang et al., 2012).

The observational laws of interest are the Gutenberg-Richter (GR) magnitude-frequency relation; the Omori-Utsu
(OU) aftershock time decay law; an analogous Omori-Utsu law for spatial aftershock migration away from the
epicenter; and the Bath's law that governs the magnitude of the largest aftershock relative to the mainshock
magnitude.

By themselves, these observed laws involve the scaling exponents b (GR); p and a parameter c¢,, (OU-time); and g
together with a corresponding parameter c, (OU-space). In addition, there are additional parameters and relations
that are assumed, for example, an “earthquake productivity” relation having 2 parameters (K and «), and a
background seismicity rate 7(x.y).

The typical process of fitting all these parameters to a catalog is usually carried out by maximizing a log-
likelihood value involving the difference between the parameterized rate, and the rates determined from the
catalog. Because all these parameters are involved in the overall log-likelihood equation, they are necessarily
correlated, so that changing the value of one parameter necessarily involves changes in the values of other pa-
rameters. This makes the fitting process time-consuming and subject to correlation errors.

In this paper, we develop a different and simpler stochastic simulation model, an Earthquake Rescaled Aftershock
Seismicity (“ERAS”) model, which involves only 2 free, novel, independent, and uncorrelated parameters, one
for time, one for space. The first of these parameters, f, determines the Omori-Utsu aftershock time decay relation
with exponent p. The second parameter, g, governs the Omori-Utsu aftershock spatial migration scaling with
scaling exponent g. These two parameters are determined by fitting the (p, g) values observed from stacked
aftershock seismicity. The model is constructed using the standard statistical relations of magnitude-frequency
scaling, aftershock scaling in time and space, and Bath's law. This process is similar to the ETAS models, but
without the additional 4-5 parameters that are used in the ETAS models. We then apply the nowcast method to
these ERAS models.
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Illustration of the Scale-Invariant Geometric Cluster Algorithm
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Figure 1. Schematic illustration of the re-clustering method described in the text. Given two earthquake “mainshocks” of
some magnitude m,,,;,, the smaller magnitude events between those mainshocks are identified. Using Bath's law, the subset
of those smaller events that represent “aftershocks” are identified. Of the 3 smaller events shown, the first 2 were labeled as
“aftershocks” (““a”), and the last event is labeled as “background” (“b”). These 2 “aftershocks” then have their times of

occurrence altered to be earlier, and closer to the first mainshock. The time of the “background” event is unchanged. The
“aftershocks” are moved closer to the earlier mainshock in time, using a geometric rescaling factor f as shown in the figure.

3. Stochastic Earthquake Rescaled Aftershock Seismicity (ERAS) Model
3.1. General Approach

Although the ERAS model has been formulated for a full time-space simulation, we are concerned in this paper
only with the time dependence, so for the moment, we focus only on f'and defer detailed discussion of g to a future
paper, although we briefly summarize the process below.

We build the simulated catalog in 3 steps. We first generate simulated catalogs having random (Poisson) inter-
event earthquake times to find a candidate catalog that has a b value within the observed margin of fitting error.
Magnitudes of these events are drawn from a Gutenberg-Richter distribution. Next, since a (fractal) power law
implies a geometric scaling or recursion, for example, similar to the von Koch curve and other fractal curves (e.g.,
Turcotte, 1997), we apply a geometric clustering algorithm in time using the single parameter f. The basic method
is illustrated in Figure 1. We then search for a value of f that produces a match to the observed p value within the
margin of fitting error for an ensemble of stacked mainshocks.

For the spatial (fractal) power law scaling, we assume that aftershocks migrate away from the mainshock
epicenter by a random walk, which is known to have scaling (power law) distribution properties. We then analyze
the observational catalog to determine the ratio of random walk step sizes in latitude/longitude, and introduce a
multiplicative scaling parameter g. Finally we search for a value of g that produces a fit to the observed value of ¢
for the simulated random walk within the observational error.

An important point to note is that the three steps are done sequentially, and that the two novel parameters fand g
are independent and uncorrelated. The model is therefore characterized by only the 2 uncorrelated free parameters
that are determined from the observed scaling exponents.

As a practical matter, it typically takes only a few minutes of wall clock time to find acceptable models using a
Monte Carlo or grid search algorithm that simultaneously fits the b-value, the p-value and the g-value of the
observed California catalog within the observational error.
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3.2. Initial Model Set-Up and Event Classification

Given a USGS catalog with completeness magnitude y, we create a catalog with the same exact number of events,
having completeness magnitude y, and with events drawn from a Gutenberg-Richter magnitude-frequency dis-
tribution with the observed b-value that is determined from fitting the catalog.

We also use a value for Bath's law Amy = 1.1, a typical value for earthquake sequences determined from many
previous works, which a number of recent studies show in the range 1.0-1.2 (Guglielmi et al., 2022; Holliday
et al., 2008; Shcherbakov et al., 2004, 2005). We do not consider either the b-value or the Amj value to be “free
parameters”, since their definition and method of evaluation are well-known.

Initially, the time between these events At is set using a Poisson (exponential distribution) for inter-event
times At:

At =—Log(l = ¢) 1

where { is a random deviate drawn from a uniform distribution. Once the catalog has been defined, the times are
proportionately rescaled (expanded or compressed) to lie between an observed catalog start date (e.g., such as 1/1/
1990) and the catalog final date (e.g., such as the present 3/1/2024).

Next, the Bath's number Amyg, which is the typical difference between the mainshock magnitude and the largest
aftershock magnitude, is used to estimate the number of aftershocks from a mainshock. Given a mainshock
magnitude m, we label the next N, events in time as “aftershocks” (“a”), where N, is given by:

Na - 10h(m —u — Amp) (2)

Events not labeled as aftershocks are labeled as “background” events (“b”). Background events having after-
shocks are considered to be “mainshocks.”

An implication of the above classification is that only background events with magnitudes m > y + Amy can have
aftershocks.

3.3. Rescaling Time Intervals for Aftershock Power Law Scaling: Parameter f

We begin by noting that the existence of the Omori law implies, like other fractal power laws, a geometric scale
invariance. The next step is to identify cycles of “mainshock” events in order of descending magnitude. Finally, a
geometric rescaling of the time intervals between the “aftershocks” and the “mainshocks” is applied in each cycle
using a scale-invariant algorithm. The process is illustrated in Figure 1 and described in the following steps.

1. Assume that the largest magnitude event in the simulation is m,. Then the largest magnitude aftershock is
expected to have magnitude m, = m; — Amg. As described above, the smallest mainshock that can have
aftershocks is m,,;, = y + Amp.

2. We store the small magnitude background (“b”) events having magnitudes m < m,,;, in a “random back-
ground” file.

3. Beginning with m, = m; — Amg, and progressing down in magnitude at intervals of 0.1 magnitude unit to m,,,;,,,
we consider the intervals between these events as a set of m,,,;,- “mainshock” cycles.

4. The rescaling factor f < 1 is shown in Figure 1. It is applied to the N, aftershock-labeled (“a”) events that have
magnitudes m < m,,,,;, that occur between successive m,,,;, events.

5. The rescaling algorithm is then applied recursively. Beginning with earthquake magnitudes m,,,,;,, > m,, we
repeat this procedure at the level m,,,;,, = m,—0.1, in other words at a level 0.1 magnitude unit lower. This
recursive procedure continues to be applied down smallest mainshock magnitude m,,;, = u + Amg.

6. The adjusted time intervals are found to be proportionately smaller than the original time intervals as a result of
this geometric rescaling algorithm. Their time ordering remains unchanged. But as a result, the original time
interval 1/1/1990—present will have changed, and we again need to linearly expand all times to restore that
total time period for the entire catalog.

7. Following step 7, we remove all the small magnitude background events with m < u + Amy which cannot by
definition have aftershocks (events labeled with “b”’), and replace these with randomized (in time) events from
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the file of small events from step 2, with random times assigned between 1/1/1990 - present. This produces
random background events in the catalog.

8. The optimal geometric rescaling factor f is finally found by fitting the aftershock decay times to the p-value
from the observed catalog, by repeating the above process until a satisfactory value of f is obtained. An
example is shown in the following.

4. Examples: Application of the Rescaling Algorithm
4.1. Compression of Aftershock Delay Time Intervals

The algorithm described in 1-8 above compresses the random delay time intervals of labeled random aftershocks
to produce a scale-invariant set of aftershock delay times with an Omori power law p-value exponent.

Suppose there are 500 aftershocks of a large main shock, and further suppose that f = 0.999. The delay time, or
time interval between the first aftershock following the mainshock and the mainshock, is compressed to a value
0.9997500 = 0.60637 => 61% of the original delay time interval. Continuing on, the delay time between the
100th aftershock and the mainshock is compressed to a value 0.9997400 = 0.67019 => 67% of the original
random delay time.

The final aftershock has an adjusted time interval that is compressed to a value 0.99971 => 99.9% of the original,
or barely compressed at all. Note that the ordering of aftershock delay time intervals is unchanged by this
rescaling, so that the 100th aftershock remains the 100th aftershock after the rescaling algorithm is applied.

Since this time compression process is repeated recursively, a given delay time will be recursively compressed to
progressively smaller values. Fundamentally, this is a manifestation of the scale-invariant process that is asso-
ciated with the Omori p-value scaling.

4.2. Aftershocks Can Produce Daughter Aftershocks

Suppose there are 100 initially computed aftershocks of a mainshock, and aftershock number 10 is found to be
large enough to have 20 daughter aftershocks. In this case we assume that these daughter aftershocks do not
extend the aftershock number, which remains set at 100. On the other hand, suppose that aftershock number 90 is
large enough to have 20 daughter aftershocks. In this case, we assume that the final 10 of the initially computed
aftershocks represent the first 10 of the 20 daughter aftershocks. We then extend the total number of aftershocks
by 10 to include the final 10 of the daughter aftershocks. The total number of aftershocks of the mainshocks has

now increased to 110, rather than the original value of 100. These additional 10 aftershocks are then labeled “a” as
well.

With this mechanism, aftershocks can themselves produce daughter aftershocks. And with the recursive clus-
tering algorithm discussed above, delay time intervals of the daughter aftershocks with respect to the parent
aftershock are themselves rescaled in time to be scale invariant with respect to the parent aftershock.

5. Fitting the Model to the Observed Catalog

As described earlier, we construct long catalogs of stochastic earthquake simulations for use in training trans-
former models for earthquake nowcasting. As part of this program, we demonstrate now that the ERAS model
parameters can be selected so as to fit the statistical earthquake scaling laws within the observational error for the
much shorter, observed catalog. These scaling laws are, specifically, the Gutenberg-Richter b-value, the Omori-
Utsu (OU) aftershock time scaling law with scaling power p, and the analogous OU aftershock space scaling law
with scaling power g¢.

We proceed by the following steps:

e We start by generating a series of sample catalogs using random selection of earthquake magnitudes from a
Gutenberg-Richter magnitude-frequency distribution as discussed above, selecting the same number of events
in the observed catalog.

¢ We then use a Monte Carlo or grid search to select the value of fthat leads to an acceptable fit to observed the
OU p value, using stacked aftershock data.
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Aftershock Decay in Time

Magnitude vs. Time, 1995 - 2024 For 17 Stacked Los Angeles Mainshocks with m,,;,, > 5.75
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Figure 2. Data for California earthquakes (real + simulated) having magnitude m > 3.0 (left) magnitude versus time for
1995 - present (3/1/2024) (right) Omori-Utsu decay for mainshocks having magnitudes m > 5.75. Top: California data
centered on Los Angeles in a 10° X 10° latitude-longitude region. Middle: earthquake rescaled aftershock seismicity
(ERAS) clustered simulation data. Bottom: ERAS un-clustered simulation data.

¢ Although we have not discussed in detail the spatial parameter g, we proceed in a similar way, by using a
Monte Carlo or grid search to fit the OU ¢ value.

Figure 2 shows 3 catalogs (left) and the corresponding stacked OU aftershock data for decay times (right) using
1 Day time bins. Top shows the observed catalog data, middle shows data from shows data from a clustered model
(f< 1), and bottom shows data from an un-clustered model (f= 1). For the observed data and the clustered model,
it can be seen that the p ~ 1 from the 29 stacked mainshocks having m > 5.75.

Many studies for California and elsewhere have documented p values for individual earthquakes that vary
significantly, depending on the earthquake, the time interval over which the data are fit, the magnitude range, and
to some extent how the data are binned (e.g., Hardebeck et al., 2019; Kisslinger & Jones, 1991; Reasenberg &
Jones, 1989; Shcherbakov et al., 2005, 2006). Fits quoted in these papers for individual California earthquakes
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Information Content of Seismicity
Within 5.0° Latitude and 5.0° Longitude of Los Angeles
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Figure 3. (a) Optimized earthquake potential state state variable for the California data as a function of time, using the same
optimized filter parameters as in Rundle et al. (2022). Data were taken in the region of a 10° X 10° latitude-longitude box
centered on Los Angeles, with the nowcast curve shown for 1/1/1995-3/1/1/2024. (b) Positive Predictive Value, PPV or
Precision. Magenta curve is the PPV for the nowcast curve (state variable) shown in (a), where the vertical axis is the
threshold T,. The cyan lines represent the PPV for 50 random time series. Mean of the time series is the solid black line, and
1o confidence is shown as the dashed lines. (c). Magenta curve is the corresponding self information 7, Equation 6, on the
horizontal axis as a function of the threshold value T}, on the vertical axis. The cyan curves are the self-information for the
ensemble of 50 random time series, with mean (solid black line) and 1o confidence as the dashed lines.

range from p values of 0.7-1.8 (Kisslinger & Jones, 1991), with a sample mean of 1.11 £ 0.25. Reasenberg and
Jones (1989) find a value p = 1.08. Hardebeck et al. find a value p = 1.03, close to values in the SCSN and NCSN
regions that they use for a variety of ETAS simulations.

For the observed data in Figure 2, we find p = 1.06 £ 0.06 for 1 day bins, consistent with these other studies.
Fitting our simulation data to this value, we found /= 0.9987, yielding a value p = 1.01 %+ 0.03 using 1 Day bins,
compared to the observed p-value p = 1.06 = 0.06, the simulated data fitting clearly within the observational
error. From analysis of other catalogs that fit the observed p-value data, we have found that values for ftypically
cluster around f = 0.999.

Note that the ERAS catalog was generated using an “input” b-value of b = 0.95, the value for the observed
catalog. The “output” b-value found for the generated ERAS catalog was the same, b = 0.95 £ 0.01. Furthermore,
it can be seen that the p-value shown for the un-clustered catalog in Figure 5, p = —0.04 £ 0.04, is not signif-
icantly different from p = 0, indicating no power law aftershock clustering.

6. Nowcasting Methods

For nowcasting we proceeded by computing the current large earthquake potential state (EPS), which is defined as
the exponential moving average (EMA) of the inverted monthly rate of small earthquakes. We then defined a
“signal”, which is the current value of the EPS above or below a selected threshold, and an “event”, which is the
occurrence or non-occurrence of a large earthquake within a selected future time window T},. In (Rundle
et al., 2022a, 2023), the value of Ty, is typically 1-3 years.
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Figure 4. (a) Optimized state variable for the earthquake rescaled aftershock seismicity clustered simulation data as a
function of time, using the same optimized filter parameters as in Rundle et al. (2022), and with model parameters fit to the
California data. (b) Positive Predictive Value, PPV or Precision. Magenta curve is the PPV for the nowcast curve (state
variable) shown in (a), where the vertical axis is the threshold T},. The cyan lines represent the PPV for 50 random time series.
Mean of the time series is the solid black line, and 1o confidence is shown as the dashed lines. (c). Magenta curve is the
corresponding self information /, Equation 6, on the horizontal axis as a function of the threshold value 7}, on the vertical
axis. The cyan curves are the self-information for the ensemble of 50 random time series, with mean (solid black line) and 1o
confidence as the dashed lines.

To implement the ROC method, we establish an arbitrary threshold value for the EPS curve, and categorize the
“signals” and “events” into 4 categories. These are:

o If the “signal “is above the threshold, and a large earthquake does occur within the following Ty, years
(“event”), the “signal” is a True Positive (TP).

» If the “signal “is above the threshold, and a large earthquake does not occur within the following Ty, years
(“event”), the “signal” is a False Positive (FP).

o If the “signal “is below the threshold, and a large earthquake does occur within the following Ty, years
(“event”), the “signal” is a False Negative (FN).

o If the “signal “is below the threshold, and a large earthquake does not occur within the following Ty, years
(“event”), the “signal” is a True Negative (TN).

The initial threshold value is established at the lowest value of the EPS curve, all points on the timeseries curve are
evaluated, and the confusion matrix is built for that value of the threshold. The threshold is then incrementally
increased, and a new confusion matrix is built for that new threshold. This process continues until the maximum
value of the EPS curve is reached. Typically one chooses several hundred threshold values, each resulting in its
characteristic confusion matrix. From these confusion matrices, the ROC curve is then constructed by plotting the
TP Rate (TPR), against the FP Rate (FPR), where:

TP FP

TPR = ———,FPR = ——
TP+ FN FP+TN

3

From these quantities, we can also compute the Positive Predictive Value, or Precision (PPV), which is defined as:

RUNDLE ET AL.

8 of 12

85U017 SUOWIWOD) SA1TES1D Bcedldde ay) A peussnob afe saoile O ‘9sn JO'S3|nJ 0} Akeid 1T 3UlUO AB|1AA UO (SUDNIPUOI-PUR-SWBIW0D A8 | 1M AleIq 1 Bul [UO//SANY) SUONIPUOD pue Swie | U1 88S *[7202/90/20] Uo AeiqiTauluo 48] ‘Ueder aueiyood Ag 298800 V3EZ0Z/620T 0T/10p/iod A8 Arelq1jeutjuo sgndnBe;/sdiy wouy pspeojumoq ‘9 ‘v20Z ‘¥80SEEET



I ¥ell _
M\ Earth and Space Science 10.1029/2023EA003367

Information Content of Seismicity
Within 5.0° Latitude and 5.0° Longitude of Los Angeles

State Variable ©(t) vs. Time PPV Precision PPV Information Entropy
- 69 > M = 6.0 a)
----- M= 6.9
1.54 A1 1.54 A 1.54
__ 1.56 1 1.56 1.56
@
Qo
£
2
> 1.58 1 i i
£ 1.58 1.58
c
o
=
+
1.60 A
c 1.60 A 1.60 -
e
-~
Il
= 1.62 A1 b)
o} ' 1.62 4 1.62 A1
Miage = 675 g
1.64 4 |Tw 3.0Years 5
EMA Samples (N): 8 ! ! | o 1
Time Step: 1 Month E i E 1'64 w— NOWCast Precision 1.64 w— Nowcast Information
Rmn: 4.0 2 — Random Precision —— Random Information
Rmas Inf H HE H ii g i i + 10 Confidence w10 Confidence
1.66 o [Mnn: 3.0 MaxPG = 41.8% MaxiG = 0.504 Bits
1995 2000 2005 2010 2015 2020 2025 0 50 100 0 1 2 .|
Time (Year) Probability (%) Self Information (Bits)

Figure 5. (a) Optimized state variable for the unclustered earthquake rescaled aftershock seismicity simulation data as a function of time, with no filter applied.
(b) Positive Predictive Value, PPV or Precision. Magenta curve is the PPV for the nowcast curve (state variable) shown in (a), where the vertical axis is the threshold T,
The cyan lines represent the PPV for 50 random time series. Mean of the time series is the solid black line, and 1o confidence is shown as the dashed lines. (c). Magenta
curve is the corresponding self information /, Equation 6, on the horizontal axis as a function of the threshold value T, on the vertical axis. The cyan curves are the self-
information for the ensemble of 50 random time series, with mean (solid black line) and 1o confidence as the dashed lines.

TP

PPV = ——
TP+ FP

©)

The precision can be regarded as the probability of a future large earthquake occurring within the following
Ty years if the EPS curve is at, or above, a reference value on the EPS curve.

7. Nowcasting With California Earthquakes

In previous papers, we have described the nowcasting model, which tracks the current state of the complex
dynamical earthquake system in space and time (e.g., Rundle et al., 2022). Briefly, the method uses data in the
seismically active region around Los Angeles. It then applies an exponential moving average (EMA) to the
monthly rate of small earthquakes in the region, using a number of weights Ng,,, = 36 months, in this case.
Finally, a correction to optimize the ROC skill of the nowcast was applied, partially to account as well for
observational catalog incompleteness. In that paper, we used earthquakes having M > 3.3 since 1960.

After applying the EMA and small earthquake correction, the result is a smoothed version of the monthly rate of
small earthquakes, which resembles an “upside-down” version of the earthquake cycle of stress accumulation and
release, as has been pointed out in Rundle et al. (2022). Inverting this smoothed seismicity curve, we obtain the
nowcast timeseries curve, examples of which are shown in the figures, in which seismic activation is at the bottom
of the diagram (many earthquakes such as aftershocks), and quiescence is at the top. It can clearly be seen that
quiescence is the precursor to large earthquakes. Results for this process applied to both observed California and
simulated seismicity are shown in Figures 3-5 for the period 1/1/1995-3/1/2024.
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8. Shannon Information Entropy of Catalogs

To analyze the information content of the earthquake catalogs, we consider Shannon information entropy. As
discussed in Rundle et al. (2023), we use the Positive Predictive Value (PPV) of for large earthquakes (m > 6.75)
within a future time window of duration Ty, = 3 years as our probability value. The self-information /. is then
defined by:

Iself = _LOgZP(w) (5)

where p(w) = PPV, and w is the Earthquake Potential Score (w = EPS = value of the nowcast curve).

In Figures 3-5, the nowcast is shown in panel (a), the PPV in panel (b), and the Shannon self-information in panel
(c). Figure 3 is the observed California seismicity, Figure 4 is the clustered simulated seismicity, and Figure 5 is
the unclustered simulated seismicity.

Both the precision and the information of the data are represented by the solid line. The 50 cyan curves in each of
the panels (b) and (c) are computed by randomizing the nowcast curve using a bootstrap procedure (random
sampling with replacement), then computing the precision and self-information. Mean and standard deviation of
the cyan curves are indicated by the dashed and dotted lines.

Also shown in Figure 3 for the California seismicity in panels b) and c) is the maximum probability gain,
MaxPG = 175.5%, and the maximum information gain, MaxIG = 1.462 bits. We define probability gain as:

MaxPG = max( (PPV(0)/<PPV;(©®)>) — 1) (6)

where PPV (0) is precision, and <PPV(®)> is the mean precision of the random PPV curves.

We define information gain as:
MaxIG = max(<Iz(0)> — I(0)) @)

where I(®) is information entropy, and </x(®)> is mean information entropy. Both PPV and / are functions of the
Earthquake Potential State (EPS = 0).

For the clustered simulation in Figure 4, MaxPG = 117.2%, and the maximum information gain, MaxIG = 1.119
bits. For the unclustered simulation in Figure 5, MaxPG = 41.8%, and the maximum information gain,
MaxIG = 0.504 bits. For Figure 5, these values are essentially within the margin of error defined by the 50 cyan
randomized nowcast curves.

In summary, it is clear from Figure 3 that the “precursor” to large earthquakes is anomalous or relative quiescence,
which is the reason earthquakes are so hard to anticipate. Just as clearly, if one “de-clusters” the catalogs, as is
common practice in many papers analyzing seismicity (e.g., Rundle et al., 2021a), the chance of detecting this
anomalous quiescence will be reduced, thus implying that information has been removed by the de-clustering
process.

9. Discussion

We emphasize that in this paper, the main point of our modified ERAS model is not to present a method to
optimally fit California data, but rather to examine the effect of non-Poisson clustering in the catalog. In all
models, Poisson (random, non-scale-invariant, non-power law) clustering continues to exist. The precursor to the
large earthquakes in Figures 3 and 4 is clearly quiescence.

We note that many other authors have discussed the importance of seismic quiescence, which clearly can only be
identified in comparison to activation. These include Kanamori (1981); Wiemer and Wyss (1994); Wyss and
Habermann (1988); Chouliaras (2009); Katsumata (2011); Ben-Zion and Zaliapin (2020); Varotsos et al. (2011,
2014, 2020); Zaliapin and Ben-Zion (2022).

Comparing the results from the two ERAS catalogs (Figures 4 and 5), it can be seen that both precision and
information content increase as clustering increases. This implies that de-clustering earthquake catalogs, as is

RUNDLE ET AL.

10 of 12

3SUB0 | SUOWILLOD dAIIER1D) 3(qedl|dde ayy Ag pausenob afe Sapie YO ‘9N JO SanJ 1oy Arlq 1 8ulluQ A8|IAA UO (SUOIIIPUOD-pUR-SWIBY WO AB 1M AReIq 1 pUI|UO//SdNY) SUORIPUOD PpUe SWid | 8Y1 39S *[7202/90/20] o ArlgiTauljuQ A1 ‘ueder aueiyooD AQ /9££00VIEZ02/620T OT/10p/wod A 1m Afeiqipul|uosgndnBe//sdny wouy popeojumoq ‘9 ‘1202 ‘Y80SEEEZ



ADVANCING EARTH
AND SPACE SCIENCES

Earth and Space Science 10.1029/2023EA003367

Acknowledgments

Research by JBR and IB was supported in
part under DoE grant DE- SC0017324 to
the University of California, Davis. JBR
would also like to acknowledge generous
support from a gift to UC Davis by John
Labrecque. The authors would also like to
acknowledge a helpful review by an
anonymous referee.

often done today, removes information. The information clearly lies in the anomalous quiescence that follows the
clustered events, so that removing the clustered events obscures the quiescence “precursor.”

In conclusion, our results suggest that earthquake catalogs should not be de-clustered prior to analysis, so that
information is not removed. As noted in the introduction, we plan to use ERAS models together with Al-enhanced
models to explore the utility of Al and deep learning in the problem of anticipating earthquake hazard in future
publications.

Data Availability Statement

Python code that can be used to reproduce the simulation results of this paper can be found at Rundle (2024). Data
for this paper was downloaded from the USGS earthquake ComCat catalog for California, and are available there.
Python code at Rundle (2022) can be used to download and model these data for analysis using the methods of
Rundle et al. (2022). Data for this paper was downloaded from the USGS earthquake catalog for California, and
are freely available there. The Python code mentioned above can be used to download these data for analysis.
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