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On Constitutive Relations for a Rod-Based Model of a Pneu-Net1

Bending Actuator2

Kristin M. de Payrebrune3

Department of Mechanical Engineering, University of California at Berkeley, Berkeley CA 94720, USA4

Oliver M. O’Reilly5

Department of Mechanical Engineering, University of California at Berkeley, Berkeley CA 94720, USA6

Abstract7

The recent surge of interest in soft robotics has led to interesting designs and fabrication of flexible
actuators composed of soft matter. Modeling these actuators to obtain quantitative estimates of
their dynamics is challenging. In the present paper, a rod-based model for a popular pneumatically
activated soft robot arm is developed. The model is based on Euler’s theory of the elastica and
is arguably the simplest possible model. Through a synthesis of experiment and theory, we find
that the constitutive relations needed to accurately capture the deformation of the arm differ
considerably from the simple classical relation that the bending moment is linearly proportional to
a change in curvature. The present paper also provides a framework to evaluate whether future
soft robot actuator designs can be captured using simple models.

Keywords: Soft robots, Euler’s elastica, Rod theories, Pneumatic actuation, Pneu-Net actuator8

1. Introduction9

The design of pneumatically actuated flexible arms have been championed by several research10

groups for the past two decades. The most notable proponents are Koichi Suzumori and his col-11

leagues at Okayama University [1, 2, 3, 4] and, more recently, George Whitesides and his colleagues12

at Harvard University [5, 6]. The latter group merged pneumatic artificial muscle technologies with13

emerging paradigms in soft lithography and microfluidics to produce new classes of soft biologically-14

inspired robots. Of particular relevance to the present paper is the so-called pneu-net architecture15

in which soft silicone elastomer is embedded with an array of connected air pockets that can cause16

each limb to bend when inflated. Modeling these flexible devices is challenging and, apart from a17

handful of works including [7, 8, 9], is dominated by finite element models that capture the coupling18

between the state of pressure in the air chambers of the arm and the resulting overall deformation.19
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While the results produced by finite element models are interesting and compelling, they are dif-20

ficult to use to generate tractable dynamic models for the arms. Developing models of the latter21

type are desirable for the development of control algorithms and improved understanding of the22

design parameters for soft robots.
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Figure 1: The pneumatically actuated soft robot limb. (a) Schematic of the actuator with the labeling of its dimen-
sions; (b) the actuator which is clamped at one end and free at the other subject to an air pressure of 31 kPa; (c) the
elastica model for the deformed arm. The dimensions of the arm featured in (a) and (b) and throughout this paper
are w = 15 mm, H = 12 mm, t = 3 mm , t1 = 2 mm, t2 = 8 mm, and ℓ = 112 mm.

23

The present paper seeks to examine the efficacy of using a simple rod-based model to predict24

the dynamics of a pneumatically actuated flexible arm shown in Figure 1. The design of the25

actuator can be found on the popular online resource [10] and the arm also features in several26

recent articles [5, 6]. We seek to develop a rod-based model for this actuator. The development27

has two experimental stages. In the first series of experiments, one end of the arm is clamped and28

the curvature of the rod as a function of pressure is measured. This data is then used to determine29

the constitutive relations for a rod-based model of the arm which is terminally loaded at the free30

end. The complexity of the resulting constitutive relations is surprising (see Eqn. (10) below). The31

series of tests that we perform to determine the constitutive relations are simple and can be used32

to examine future designs of soft robot arms with a goal of producing designs that are easier to33

model using a rod theory. Our work is closely related to the modeling work of Majidi et al. [7]34
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however our model and the particular soft robot arm design considered are different and, partially35

as a result, we find constitutive equations that are dramatically different from those presented by36

these authors.37

2. Methods38

We use the popular design of a pneu-net actuated soft robot limb shown in Figure 1. Details39

on the fabrication of this device can be found at [10]. In our case, the limb is composed of silicone40

rubber ADDV M 4601 (2-part silicone rubber, parts A & B) purchased from Wacker Chemie AG41

and manufactured using a 3D printer at the Institute for Machine Elements, Engineering Design and42

Manufacturing at the Technische Universität Bergakademie Freiberg in Germany. The chambers43

on the upper surface of the actuator can be filled with air and, by controlling the pressure, the arm44

can be deformed. Examples of this situation are presented in Figure 2(b).45

(a) (b) (c)

(d) (e) (f)

Figure 2: Deformed states of the soft robot arm for various values of the pressurization p. a) Pressure p = 0, b)
Pressure p = 5 kPa, c) Pressure p = 17.2 kPa, d) Pressure p = 30.8 kPa, e) Pressure p = 45.3 kPa, and f) Pressure
p = 57.4 kPa.

As shown in Figure 2, one measure of the characterization of the deformation of the arm is to46

measure the deformed shape of a material line embedded on the bottom surface of the arm. Clearly,47

as the pressure increases, the curvature of the material line increases.48

It is possible to estimate the curvature using standard numerical techniques from the shape of49

the material line. To this end, a series of white dots (optical targets) with a distance of 5 mm50

are painted along the lower part of the soft robot arm. Then the arm is clamped on one side and51

horizontally positioned. Due to the large flexibility of the soft actuator, an out-of-plane deformation52

is inevitable. However, because this deformation is small compared to the bending deformation,53

we neglected it for the subsequent analysis. During experiments, air was pressured into the arm54

and its deformed shape was digitally recorded. The amount of air was gradually increased by 255

milliliters and the corresponding pressure was measured with a pressure gauge PCE-P50.56
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(a) (b) (c)

(d) (e) (f)

Figure 3: Deformed states of the terminally loaded soft robot arm for various values of the pressurization p. (a)
Pressure p = 0 kPa, (b) Pressure p = 5 kPa, (c) Pressure p = 17.2 kPa, (d) Pressure p = 31 kPa, (e) Pressure
p = 44.9 kPa, and (f) Pressure p = 58.2 kPa.

For analyzing the digitized images of the deformed arm, we first performed a correction of the57

lens distortion and then loaded the images in Matlab. The image processing toolbox provides a58

convert-function from RGB to gray scale, which is used to specify a color spectrum to detect the59

white targets. By converting the image to black and white, only areas in the defined color spectrum60

remained white, while the surroundings were black. Before locating the white areas, small holes are61

closed and objects smaller then a defined threshold are deleted in the digital image. We then used62

the Matlab image processing toolbox to export the position of the center points of the optical63

targets, and size of each area, the length of the smallest and largest axis, and its orientation. These64

values are saved and used to prescribe a corresponding set of points on the soft robot arm and to65

delete other objects with a similar color spectrum. This process is executed for each image.66

For dimensionless values, the length ℓ of the arm is extracted using the end points of the initial67

position (pressure 0 kPa) and used as a scaling factor. Because the painted dots on the robot arm68

are not perfectly aligned along the axis of the actuator, a Gaussian process regression is used to69

smooth the measured center points [11]. Additionally, the coordinates of the first target point are70

shifted to the origin.71

The curvature κ̂ of the space curve defined by the targets is determined from the smoothed72

deformation by the general description for a plane curve defined in Cartesian coordinates, r =73

xE1 + yE2,74

κ̂ =
x′y′′ − x′′y′

(x′2 + y′2)3/2
, (1)

here the prime denotes derivative with respect to the arc-length parameter s. As shall be discussed75

later in more detail, at the conclusion of the first set of experiments, the intrinsic curvature, κ076

as a function of the pressure p and arc-length parameter s can be found and, in the second set of77

experiments, the curvature κ in the deformed configuration can be determined for loads superposed78
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on the pressurized state.79

To determine the constitutive relations for the bending moment as a function of the change in80

curvature, we next adapted the first experiments by loading the actuator at its end (see Figure 3).81

To achieve this, a pair of strings were fixed on the end and connected to two spring dynamometers82

to measure the applied forces in E1 and E2 direction. In the initial state (pressure 0 kPa) only a83

pre-load FA = 0.25 N was applied along the E1 direction. As the forces on the strings were changed,84

the deformation of the end of the arm prevented the strings from aligning with the respective E185

and E2 directions. Consequently, the angles subtended by the strings were also recorded so that86

the resultant force acting on the arm could be computed.87

3. A Model Based on Rod Theory88

While it is possible to use some nonlinear rod theories, such as those developed by Green,89

Naghdi and their coworkers [12, 13, 14, 15], which accommodate cross-sectional deformation and90

extension, here we seek the simplest possible nonlinear rod theory due to Euler in 1744 [16, 17]. In91

this theory, a material curve of the arm is identified with the centerline of the rod and the position92

of a material point of the arm is identified with the position vector r of a material point, labelled93

ξ, of the centerline of the rod. Referring to Figures 1 and 4, the material curve of the arm is the94

set of points colored in white on the lower half of the arm. The length ℓ of the material curve of95

the elastica is identified with the undeformed length of the material curve of the arm.96

(a) (b)

E1

E2

F1E1

F2E2

FA

FB

elastic rod

50.8 mm

Figure 4: The actuator which is clamped at one end and loaded with a force F = 0.175E1 + 0.07E2 Newtons at the
other subject to an air pressure of 31 kPa. In (a) the deformed actuator is shown and in (b) an elastica model for
this actuator is presented.

We assume that the centerline of the elastica is inextensible. In this instance, the coordinate ξ97

can be identified with the arc-length parameter s of the centerline. The unit tangent vector to the98

centerline can be parameterized by an angle θ,99

∂r

∂s
= cos(θ)E1 + sin(θ)E2, (2)

and the signed curvature of the centerline can then be defined using θ:100

κ =
∂θ

∂s
. (3)
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We shall assume that the centerline of the elastica has an intrinsic curvature κ0 for the unloaded101

but pressurized actuator. This curvature will be identified as a function of the pressure p in the102

sequel. The bending moment M in the elastica is assumed to be a function of the difference in the103

current (loaded actuator) and intrinsic curvature: M = M (κ− κ0). In the vast majority of works,104

the function M is assumed to be linear: M = EI (κ− κ0) where EI is known as the bending105

stiffness or flexural rigidity.106

We shall assume that the end of the elastica at s = 0 is fixed at the origin while the other107

end is loaded by a terminal force F. The deformed static shape, r = xE1 + yE2, of the elastica is108

determined by a set of boundary conditions, constitutive equations for M , and a pair of balance109

laws:110

x(s) =

∫ s

0

cos (θ(u)) du,

y(s) =

∫ s

0

sin (θ(u)) du,

n(s = ℓ) = F,

M = M

(

∂θ

∂s
− κ0

)

,

∂n

∂s
+ ρf = 0,

∂M

∂s
= − (cos(θ)E2 − sin(θ)E1) · n. (4)

Here, n = n1E1 + n2E2 is known as the contact force and ρf is the assigned body force. For111

the applications in the sequel, we assume the deformation of the rod is planar. Consequently, we112

set ρf = 0 and conclude that n is constant throughout the rod and can be determined from the113

boundary conditions. The function M remains to be prescribed. In the sequel, we use the weight114

of the arm mg to non-dimensionalize the forces, the quantity mgℓ to non-dimensionalize moments,115

and the length ℓ to non-dimensionalize s, x, and y.116

4. Modeling the Pressurized Arm117

In the first set of experiments, the arm is clamped at one end and the pressure is increased from118

0 through a discrete set of values (see Figures 2 and 5). The deformed shape (x(s), y(s)) of the119

material curve on the arm is digitized and recorded. As shown in Figure 5(a), the deformed shape120

of the curve can then be produced and the curvature κ = κp0 computed using (1). The resulting121

curvature depends on the pressure p, is non-uniformly distributed along the curve, and can be used122

to define the function κp0 :123

κp0 = κp0(p, s). (5)

By way of illustration, 10 distinct examples of the function κp0(·, s) are shown in Figure 5(b).124

We shall see later that, for a given s, κp0 can sometimes be approximated by a linear function of125

pressure.126
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Figure 5: Measured (a) deformed shapes of the rod and (b) curvature κ0 = κp0
(p, s) for increasing values of the

pressure. The pressure p in these figures takes the values 0, 5, 10.9, 17.2, 23.8, 30.8, 38.3, 45.3, 51, and 55 kPa and
the arrows indicate the direction of increasing p.

To model the first set of experiments, we assume the elastica is clamped at s = 0 and is unloaded127

at s = ℓ: n = F = 0. We prescribe the intrinsic curvature κ0 of the arm using the function κp0:128

κ0 = κp0(p, s). (6)

Assuming a constitutive relation129

M = M1 (κ− κp0) where M1(0) = 0 (7)

and M1 is otherwise an arbitrary differentiable function, we find that the bending moment in the130

elastica is zero provided κ = κp0. Consequently, the balance laws (4)5,6 are trivially satisfied.131

5. Modeling the Terminally Loaded Arm132

We now consider an extension to the previous experiment where terminal forces are applied to133

the end s = ℓ of the rod. An example of this situation is shown in Figure 4. As the pressure p is134

varied, the arm deforms and, as recorded in Table 1, the terminal loads FA and FB also change.135

Discretizing the material curve on the arm, the deformation of this curve can be recorded and136

the curvature κ computed (see Figures 3 and 6). In addition, the angles needed to relate the137

measured forces FA and FB to the components F1 and F2 of the resultant force F = F1E1 + F2E2138

are determined.139

We can use the results of the earlier experiment to compute κ0 = κp0(p, s) induced by the140

pressure p. Thus for each given p, κ−κ0 for the configurations shown in Figure 6 can be computed.141

Simply assuming that M = EI (κ− κ0) where EI is determined from the geometry of the arm and142

the elastic modulus of the silicon leads to results that are inadequate. Consequently, an alternative143

approach was used to prescribe the constitutive relations. Using Eqns. (4)1,2,5,6, we note that the144

7



(a) (b)

0

0
0
0 11

0.15

−2.0

x/ℓ s/ℓ

y/ℓ

κ
(p
,s
)ℓ

Figure 6: Measured (a) deformed shapes of the rod and (b) curvature κ for increasing values of the pressure and
various terminal loadings. The pressure p in these figures takes the values 0, 5, 10.9, 17.2, 23.8, 30.8, 38.3, 45.3, 51,
and 55 kPa and the arrows indicate the direction of increasing p.

bending moment M(s) in the elastica can be expressed as a function of the terminal load:145

M (s)−M (ℓ) =

∫ ℓ

s

F · (cos(θ(u))E2 − sin(θ(u))E1) du

= (x(ℓ)− x(s))F2 − (y(ℓ)− y(s))F1. (8)

Motivated by the above identity, we define an estimate Mest (s) for M(s) based on measurements146

of the terminal load F and the deformed shape r of the material curve:147

Mest (s) = (x(ℓ)− x(s))F2 − (y(ℓ)− y(s))F1 +M (ℓ) . (9)

We can then examine how Mest (s) varies along the length of the rod and in particular how it varies148

with κ− κ0 = κ− κp0(p, s). These results are shown in Figure 7. Clearly, the moment is no longer149

a simple, classic, linear function of the curvature difference: M 6= EI (κ− κ0).150

We henceforth assume that Mest (κ− κ0) can be approximated by a pair of linear functions:151

Mest (κ− κ0) =

{

MO1
+mgℓ2α1 (κ− κ0) s ∈ [0, ℓ1),

MO2
+mgℓ2α2 (κ− κ0) s ∈ [ℓ1, ℓ],

(10)

where MO1,2
and the dimensionless flexural rigidities α1,2 = α1,2(p) are piecewise constants which152

are pressure dependent. A representative example of such a prescription can be seen in Figure 8(a)153

where α1 = −0.029 and MO2
= −0.012 mgℓ. For a given p, we can use our knowledge of κp0(p, s)154

to determine κ0. Then. using knowledge of F, the deformed shape of the rod can be determined155

using Eqn. (4) with M given by Eqn. (10) to derive the flexural rigidity as a function of p (see156

Figure 8(b)).157

6. Results158

With known of the pressure-dependent parameters ℓ1 = ℓ1(p), α1 = α1(p), α2 = α2(p), and159

κ0 = κp0(p, s), we are able to capture the deformation of the soft actuator for varying pressure and160
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11

1 6.0
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mgℓ

s/ℓ

Mest

mgℓ

(κ− κ0)ℓ

Figure 7: Measured (a) dimensionless bending moment Mest(s)
mgℓ

of the rod computed using Eqn. (9) and (b) the bending

moment Mest(κ−κ0)
mgℓ

as a function of κ− κ0 for increasing values of the pressure and various terminal loadings. The
pressure p and terminal load F for these figures takes the values shown in Table 1 and with increasing values of p
indicated by the arrows.

boundary conditions using the rod model. For a fixed end and a defined position of the other end,161

the deformation and resultant forces were calculated for various pressures. As can be seen from162

Figure 9(a,b), the predicted values of κ and r are very good. However, the calculated end-loads163

only agree for F2E2 and are overestimated otherwise. The decreasing forces along the axis of the164

soft actuator during experiments may be a result of the extensibility of the actuator (which we165

have not modeled).166

We note that of all the parameters we varied, such as the axial force component F1, the length167

ℓ1 of section s ∈ [0, ℓ1), and the flexural rigidities α1 and α2, the results for the deformed centerline168

are most sensitive to changes in ℓ1 (see Figure 10). In this figure, the deformed shape r depends169

on the end loads, and the constitutive parameters. What is clearly visible from Figure 10(a,c) is170

that the overall shape of the actuator does not change its characteristic features with variations of171

F1 and α1,2. A variation of ℓ1, by way of contrast, results in a dramatic change to the slope at the172

fixed end. Later on, we shall observe that the value of ℓ1 increases with p.173

Based on the results present, we can state that the elastic rod model is capable of predicting174

the deformed state of a pressurized soft actuator. However, the fidelity of the predictions depends175

on an accurate value of the parameter ℓ1.176

7. Concluding Remarks177

In this paper we have measured the intrinsic curvature κ0 = κp0(p, s) produced by an air pressure178

in a soft actuator. Despite the simplicity of the boundary conditions, the resulting curvature field179

κp0(p, s) is non-uniform and depends on the pressure p in a non-trivial manner. With the help of180

these results, we showed that the bending moment in a rod-based model for the actuator can be181

approximated by a pair of piecewise linear functions. The resulting model can then be used to182

predict the deformed shape of the arm subject to terminal loading of the type that would feature183

in applications.184
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Figure 8: Measured (a) bending moment Mest (s) of the rod as a function of (κ− κ0)ℓ for p = 53.8 kPa using Eqn.
(9), where e denotes the measured value, and (b) the dimensionless flexural rigidities α1 and α2 (cf. Eqn. (10)) as
functions of the pressure p. Here, the dashed lines correspond to the linear regression of α1,2.

It is clearly of interest to compare our findings to the modeling predictions of Majidi et al. [7]185

who found that the flexural rigidity is an affine function of pressure and κ0 is a linear function of186

p in the limiting case where p is small. Referring to dimensions given in Figure 1, and Eqns. (5)187

and (10), we recall, from [7, Eqns. (4) & (9)], that188

κ(p, s) =

(

H2t1w

2D (t1 + t2)

)

p, M =

(

D +

(

H3t1w

4 (t1 + t2)

)

p

)

(κ− κ(p, s)) , (11)

where the flexural rigidity D = Et3w
12

. While the design considered in the present paper is different189

from the one considered in [7], we find that several of its characteristics are similar. For example,190

referring to Figure 11(a,b) for a given location s along the arm, the curvature κ0 and κ − κ0191

can be closely approximated as a linear function of p. Even for the rigidities α1,2 we deduce192

from our experiments, a linear relation of p can be approximated for high values (see Figure 8(b)).193

However, the most significant novel feature of our constitutive relations Eqn. (10) is the non-uniform194

characteristics of the intrinsic curvature in s (i.e., κp0(p, s)). This in turn leads to the non-classical195

constitutive relation EI(s) with sections with different flexural rigidities. These two features are196

unique to our results and to the best of our knowledge have not been described previously in the197

literature on soft robot arms.198

Modeling the actuator as simple inextensible uniform, albeit, nonlinear rod which exhibits planar199

deformations is clearly a very coarse model. Such a model cannot capture subtle features of the200

actuator such as its extensibility or the warping of the cross sections. We could consider the elastica201

as a low-order member of a hierarchy of rod theories. Then, in principal, by modeling the actuator202

using a directed rod theory that captures warping and extensibility, we should be able to develop203
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Figure 9: Measured and predicted (a) shapes of the centerline of the rod (using Eqn. (4) and (b) values of the
according curvature i) for ℓ1 = 0.1, p = 5 and 31 kPa, and ii) for ℓ1 = 0.15, p = 44.9 and 63.6 kPa, and (c)
measured and predicted force components F1,2 where p takes the values shown in Table 1. Measured values are
displayed in blue and labeled with e.

a more faithful model. However, this more faithful model comes at a price of added computational204

and analytical complexity. Surely, one of the advantages of soft robotics is the freedom to produce205

a wider variety of designs? If so, perhaps one of the design criteria could be the ease of development206

of a faithful model for the actuator? We hope the methods presented in this paper provide readily207

accessible tools that can be used to assess such a design criterion.208
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[11] M. Aissiou, D. Périé, J. Gervais, F. Trochu, Development of a progressive dual Kriging tech-253

nique for 2D and 3D multi-parametric MRI data interpolation, Computer Methods in Biome-254

chanics and Biomedical Engineering: Imaging & Visualization 1 (2) (2013) 69–78.255

URL http://dx.doi.org/10.1080/21681163.2013.765712256

13

http://dx.doi.org/10.1002/adfm.201303288
http://dx.doi.org/10.1177/0278364913498432
http://dx.doi.org/10.1089/soro.2014.0020
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.03.001
http://dx.doi.org/10.1089/soro.2014.0010
http://dx.doi.org/10.1080/21681163.2013.765712


[12] A. E. Green, P. M. Naghdi, M. L. Wenner, On the theory of rods. I Derivations from three-257

dimensional equations, Proceedings of the Royal Society. London. Series A. Mathematical,258

Physical and Engineering Sciences 337 (1611) (1974) 451–483.259

URL http://dx.doi.org/10.1098/rspa.1974.0061260

[13] A. E. Green, P. M. Naghdi, M. L. Wenner, On the theory of rods. II Developments by direct261

approach, Proceedings of the Royal Society. London. Series A. Mathematical, Physical and262

Engineering Sciences 337 (1611) (1974) 485–507.263

URL http://dx.doi.org/10.1098/rspa.1974.0062264

[14] A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable265

media. II. Generalized continua, Proceedings of the Royal Society. London. Series A. Mathe-266

matical, Physical and Engineering Sciences 448 (1934) (1995) 357–377.267

URL http://dx.doi.org/10.1098/rspa.1995.0021268

[15] P. M. Naghdi, Finite deformation of elastic rods and shells, in: D. E. Carlson, R. T. Shield269

(Eds.), Proceedings of the IUTAM Symposium on Finite Elasticity, Bethlehem PA 1980, Mar-270

tinus Nijhoff, The Hague, 1982, pp. 47–104.271

[16] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th Edition, Cambridge272

University Press, Cambridge, 1927.273

[17] W. A. Oldfather, C. A. Ellis, D. M. Brown, Leonhard Euler’s elastic curves, Isis 20 (1) (1933)274

72–160.275

URL http://www.jstor.org/stable/224885276

14

http://dx.doi.org/10.1098/rspa.1974.0061
http://dx.doi.org/10.1098/rspa.1974.0062
http://dx.doi.org/10.1098/rspa.1995.0021
http://www.jstor.org/stable/224885


Appendix277

No. Pressure (kPa) FA Newtons FB Newtons

1 0 0.25 0
2 5 0.25 0
3 10.5 0.225 0
4 17.2 0.2 0.025
5 24.2 0.2 0.05
6 31 0.175 0.07
7 37.1 0.16 0.1
8 44.9 0.15 0.125
9 51.5 0.15 0.175
10 53.8 0.15 0.2
11 56.6 0.15 0.2
12 58.2 0.15 0.225
13 61.3 0.15 0.25
14 63.6 0.15 0.26
15 66 0.15 0.275

Table 1: Table of values of pressure p and terminal loadings in Figure 7 and Figure 9.
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