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Abstract 

By now symplectic integration has been applied to many problems 
in classical mechanics. It is my conviction that the field of parti
cle simulation in circular rings is ideally suited for the application of 
symplectic integration. In this paper, I present a short description 
symplectic tools in circular storage rings. 

In the field of circular ring dynamics, we distinguish two different but related 
topics: \ 

1. Symplectic Integration or Symplectic Modelling 

2. "Symplectification" of Maps 

There is an important implication: Perturbation theory should be based on 
the maps produced by the integrator rather than the original Hamiltonian. 
But this is the topic of an other talk. 

1 



1 Symplectic Integration 

In symplectic integration we write down a local Hamiltonian for each magnet 
or piece of magnet which is connected with the rest of the ring through various 
canonical transformations. The map for the entire ring has the following 
'form: 

N 

M II Mi-i+l 
n = 1 

£i:FiSJ=·i+t£i+l· (1) 

The maps £i and :Fi are elements of the Euclidian groups and fringe effects 
respectively. Each magnet is represented by a Hamiltonian which is separa
ble: 

Qi 

Hi= L Hf. (2) 
n = 1 

Nd 

si = exp ( -Li :Hi :) --+ IT exp ( -LiCn(k) : H~(k) :) . (3) 
k=l 

For example second order decomposition: 

Li. Q. Li. ~- 1 . Li. Q-1 . Li. Q. - 2 .H, . - 2 .H, . L··HL - 2 .H, . - 2 .H, . 
Si = exp (-Li: Hi:)--+ e e ... e- •· •· ... e e (4) 

In the case of the ideal shifted quadrupole magnet, the ultrarelativistic 
Hamiltonian is for the body is given by 

H 
qB x2- y2 

-y(1+8)2 -p~-p~+p;;x + k 2 
where [x,px] = 1 [y,py] = 1 [6,£] = 1, (5) 

and it can be decomposed into two pieces for the purpose of symplectic 
integration: 

-J (i + 6)2 
- p~ - p~ 

qB x2- y2 
-x + k-~'-
Po 2 

2 

(6) 



ALS Dipole 
Shifted Quadrupole 

Figure 1: 
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In general, one can still write a Hamiltonian for the full system using a 
pseudo-time like variable. 

Htotaz(z; u) = (7) 
Magnets 

Coordina.te patches 

This Hamiltonian is highly localized in the variable u. Therefore, it prob
ably does not have any non trivial constant of the motion. 

Given the fact that: 

1. The Hamiltonian is highly localized (not smooth) 

2. We don't know the real Hamiltonian anyway because of construction 
errors 

3. We are interested in stability issues and the general structure of phase 
space 

4. ·We are not interested in the precise time depedent position of a given 
particle 

then we conclude that the approximate solution provided by the symplectic 
integrator contains all the physical information we will ever hope to know. 

In most applications, we replace the "real system" by the symplectic 
integrator. Therefore, it is appropriate to say that we are doing "Symplectic 
Modelling." 

Finally, in electron machines, we can include radiative effects in the 
Hamiltonian. These effects are added to the symplectic integrator. Since 
they are tiny numerically, but qualitatively important, it is imperative that 
the integrator be Hamiltonian in the absence of radiation. 

Important Comment: Simulation codes are equipped with an au
tomatic differentiation algorithm. Taylor series maps around any orbit can 
be computed exactly and manipulated into any Lie representation routinely. 

4 
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2 Symplectification of Maps 

In accelerators, we are often tempted to produce an approximation of the 
one turn map provided by the integrator. The reasons are two-fold: 

1. Hamiltonian perturbation theory is easier on the one turn map because 
of the complexity of the "s" or time dependence. 

2. Tracking with the integrator is too slow. 

There are at this point two categories of approximations used in our field. 

<---+I. Taylor Series around the central fixed point. 

<---+II. Fitted maps in action-angle variables (Warnock's work). 

<---+III. A combination of the above. 

2.1 Taylor Series 

First, it is important to state that Taylor series maps can be extracted from 
a symplectic integrator routinely using automatic differentiation. Secondly, 
all the manipulations, mentioned or hinted below, are all implemented or 
implementable as sub-libraries of an automatic differentiation package. 

2.1.1 Factored Maps and Generating Functions 

The nonlinear part of the map can be integrated using various methods. Here 
is one method using generating functions. · 

M- exp (: h2 :) exp (: hk>a :) £. 
(8) 

The total map is made of a linear map and n identical nonlinear maps: 

-->1/n -->1/n -->1 
( · o · · · o ( o( 
-8 -'"-8 -8 

n times 
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-+1 
where ( 

-s 
exp (: h2 :) f 

-+1/n 
and ( 

-S 
exp (: h~?.3 :) f. (9) 

The nonlinear map "t1
n can be approximated by a generating function. 

-s 

2.1.2 Jolt Tracking 

The first type of "Lie algebraic" tracking ever implemented is due originally 
to Irwin (1, 4]. In its original form it was formulated in terms of "kicks" and 
rotations. 

MNonlinear exp (: R1X1 
:) exp (: R2X2 :) exp (= RfJXfJ :) 

where ni . ..... q~ + p~ 
exp (: -if· J :) and Ji = ' 

2 
' 

""j3i m1 mN L....i m ql ···QN 
m. "-...--' 

Position only 

(10) 

q= (xi,xa, .. ) 

The minimal value of the integer N is a function of the degree of the power 
series and of the phase space dimension. It is also a function of the choice of 
linear maps ni, which are rotations in the original treatment of Irwin. 

For each individual functional map of Equation (10), one can find the 
image of the identity function: 

(11) 

The series terminates exacly. Therefore, the one-turn map ( is approximated 
..:!.8 . 

symplectically as 
_... .=.N ~~ ( ~=- o .. ·o=.. o 
-s 

... 1 

{s (12) 
Nonlinear part 

...._,.., 
Linear part 

The good points of the Irwin factorization are 

• Exactly symplectic and defined all over phase space. 
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• Obvious exact inverse. 

• Can be put on an integer grid without ambiguity. 

Unfortunately there remain a lot of unanswered questions with this rep
resentation. 

• What should be the group chosen for the maps 'Ri? Irwin picked the 
group of linear phase advances. One can show that the drifts would 
suffice. 

• Secondly, given a group, how to choose the elements for a given num
ber N. How do they foliate the polynomials into different equivalence 
classes? 

• What is the normal form in each equivalence class leaf? 

• Do all the above while minizing the difference between the maps; i.e. 

~~~8 (x)- ( ?fJ o ... o S1 o {~) (x)ll must remain small within the aper
ture. 

Strangely and unexpectedly, these questions are mathematically very 
hard to answer. Dragt and Abell have looked into these questions (2] and 
have found that the goodness of the approximation is very sensitive to the 
set chosen. In other words, the set of angles {<:?I i = 1, .N} is critical in 
determining the goodness of the approximation. 

In conclusion, the topic of factorization in terms of jolts or any other 
exactly solvable functions is certainly wide open. But, as in symplectic inte
gration, it is bound to a view of the ring based on maps and on the use of 
Lie methods. However, unlike symplectic integration, it remains to be seen 
how useful it is. 

2.1.3 Monomial Tracking 

Besides the jolt factorization, there is another way to do symplectic "Lie" 
tracking with Taylor series maps. It is based on the realization that monomial 
maps are exactly solvable (3]. Consider the map 

K.m. exp(: Pm. :)f 
where Pm.(i/,p) (13) 
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It can be shown that the monomial map "Km. involves finite Taylor series map 
(kick), exponential functions as well as roots and ratios of polynomials. So, 
the map M ( can be expressed as follows: -· 

Fi 
Me = IT exp(: Pm.. :) 

-• n = 1 
or equivalently 

(
-+ -+ -+ 

= K,- O···OK,-
_8 m;:; m1 

(14) 

It is easy to check that the various monomial maps have poles and there
fore this technique suffers probably from the combined diseases of the gen
erating functions and the jolts. Nevertheless, it can be very useful for short 
term tracking and to represent complex elements symplectically. Again, with 
the help of automatic differentiation, it has been implemented [4]. 

2.1.4 Combining Symplectic Integration and Symplectification 

It has been verified (numerical experiments) that the Dragt-Finn factoriza
tion for a map leads to a good approximation if the underlying Taylor series 
is good. 

{ 
II!Dragt-Finn (~- ~od (X~~~ < 6 «I 

~~~Taylor Series (x) -(exact (x)ll < 8 << 1 

(15) 

Here A is the "aperture" or region of phase space under study. Therefore 
it seems that it would be desireable to approximate the Dragt-Finn map by 
a symplectic map without introducing higher order spurious terms. These 
spurious terms have been disastrous when using other methods (in particular 
the jolt factorization). . · 

Recently, Yan and Shi at SSC, have combined kicks and monomials in 
trying to decompose a homogenous polynomial of degree n into a minimum 
number of exactly solvable terms. 

Dragt - Finn map exp (: /3 :) · · · exp (:!No:) 

Q, 

l:J;. (16) 
n=l 

8 
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We then integrate fi using symplectic integration, i.e. fractal decomposition. 

exp (: /i :) = exp (= f 1: =) 
n=l 

(17) 

The integrator of Equation (3) is used to approximate the Dragt-Finn map. 

2.2 The Concept of a Fitted Map 

Let us assume for a moment that we are interested in a special region of 
phase space defined in terms of some preconditioned action-angle variables1 

(~,J): 

U = { ~' J I 0 < Ja;i < Ji < Jb;i, <I>i E [0,27!"] , i = 1, ... ,N} (18) 

The set U is a product of annuli in phase space. Let us assume that we 
are interested in the motion within the set U and that we will consider a 
particle to be lost if it leaves the said set. Then our goal is to represent 
the map within that set as accurately as possible (see [5]). To do this we 
simply take tracking data normalized by a canonical transformation W8 • It is 
important to note that in many applications the transformation Ws need not 
be accurate. The action-angle variables are defined in a natural way: 

-1 ( -*) 
Ws;2i-1 X 

-1 (-*) Ws·2i X 
' 

J2J: cos ( <I>i) 
- J2J: sin (<Pi) 

x --+ tracking data 

The map itself can be expressed as follows: 

$I=c$+8($,J) 
]

1 =i+ii(<P,l) 
(20a) 

(20b) 

(19) 

(20) 

1Defined through some power series transformation w8 as shown in Equation (19). 
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The fitted map is obtained by expressing the functions e and R as a Fourier 
series in the angles and using a spline representation for the actions. However, 
in long term tracking applications, we are interested in a symplectic map to 
computer accuracy. In the case of fitted maps, this can be achieved with 
generating functions. We now describe this process. 

2.2.1 Fitting a Generating Function Map 

The map is defined to be a transformation from the "old" variables ( $, f) 
to the "new" variables ($1, J"1) as shown in Equation (20). The generating 
function in this case will be in terms of old action and new angle variables: 

G ($I' Jj = L 9m(f) eim·~~ 
m. 

The resulting transformation is then just: 

($,1) ~ ($I,JI) 
$ = $1 + f) J-(J ($I, l) 
11 = J + 8~1 G ($I' J) 

(22a) 

(22b) 

(21) 

(22) 

We start with a "source map," which gives the final variables as an explicit 
function of the initial variables as given symbolically by Equation (20). This 
map will usually be defined as the result of tracking over one turn and pre
conditioning the data as explained in Equation (19). The Fourier coefficients 
are obtained from (22b) and (20b) as: 

/ (23) 

Since one does not know R as a function of$~ one performs a change of 
variables in the integral to get an integral over <I>: 

10 
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The integral is then discretized to obtain 

det ( 1 +8.$8($;, f)) 

(25) 
where Nn is the number of cl>n mesh points in the n dimension, and the 
summation is over the integer vectors J such that Jn E {0, ... ,Nn- 1}. The 
m = 0 mode must be handled differently. We instead must use G values. 
The resulting summation is 

(26) 

To increase the speed of evaluation of the map, Fourier modes that are 
smaller than the expected or desired accuracy of the map can be removed 
from the generating function. 

3 Conclusion 

Symplectic integration and the symplectification of maps are essential tools 
in a modern treatment of circular rings. Our field is perversely lucky to 
have a localized Hamiltonian in the time-like variable. Therefore numerically 
induced chaos as well as other types of problems produced by symplectic 
integration are probably of no concern to accelerator physicists. 

Acknowledgements: This work was supported by the U.S. Department of 
Energy under Contract No. DE-AC03-76SF00098. 
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