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ABSTRACT OF THE THESIS

Adaptive Entity Normalization for Biomedical Text Mining

by

Raghav Mehta

Masters of Science in Computer Science and Engineering

University of California San Diego, 2019

Professor Rob Knight, Chair

Entity normalization is an essential but challenging task for knowledge base con-

struction by text mining the scientific literature. Related to entity linking and word

sense disambiguation, models for entity normalization usually depend either on the sur-

face text phrases of the entities or their coherence in the context. In this paper, we

show that NormCo, a deep neural network normalization model, can switch between

phrase and coherence models. Specifically, we tested this model on the tasks of nor-

malizing bacteria and disease entities extracted from the scientific literature. These two

entity types are important to construct a knowledge base of associations between dis-

eases and human microbiome, an emerging development in biotechnology. We show

that NormCo switched to either phrase or coherence model to accomplish the best per-

formance for different entity types. We revised NormCo with a dynamic document-level

switch and tested it with novel embedding techniques and obtained encouraging results.

We organized and consolidated available lexical resources and annotated corpora for

bacteria entity tagging and normalization, revealing a high level of discrepancy among

these resources. Our results with these resources suggest that the skewed distribution of
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biomedical entity mentions may require different normalization approaches for highly

mentioned entities from long-tail ones.
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Chapter 1

Introduction

Variation in the human microbiome has been shown to be associated with a wide

variety of diseases and health conditions unexpected previously [LSG+12, VBCD+18,

YRM+12] including Parkinson’s Disease [GM18, SAP+15, MB15, MC19]and can-

cer [NSC+91]. The rapid increase in the number of publications in this area [CDBN19,

LLCN16] has made it hard for researchers to keep up, and promoted efforts to de-

velop knowledge bases by text mining of the microbiome literature [MZZ+16, SYY+18,

NMJ+18, JNB+18].

Knowledge bases of human microbiome-disease associations must at least contain

two key entity types: bacteria and diseases. It is essential to extract these entities from

the text and normalize them into a standard vocabulary, the tasks known as named en-

tity tagging and entity normalization. The focus of this paper is on entity normaliza-

tion, wherein extracted entity mentions are mapped to standard identifiers (e.g., “E.

Coli” is mapped to “Escherichia coli”). The task is closely related to entity linking and

word sense disambiguation in the general domain of NLP (see e.g.,[HLL+13, SWH15,

LSRP15, RTV18, GH17, SG18, SLT+15, LT18]).

While traditionally, such approaches have been shallow techniques, we show how

deep learning can outperform these baselines given a decent sized dataset. We present

evidence that shows that the deep learning based approach we proposed earlier this year

is able to adapt to different domains and outperform the baselines, all the while being

much more efficient than the state of the art biomedical normalization techniques. We

also show that our models are able to generalize well by evaluating them on a new expert
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Figure 1.1: NormCo architecture which utilizes coherence and semantic features for
disease normalization.

curated database.

NormCo [WKMH19] is a deep neural network entity normalization model which

considers the surface text phrase and semantics of an entity mention, as well as the

topical coherence of the mention within a single document. It achieves this using two

sub-models: a phrase model and a coherence model, each exploiting different aspects

of the mentions. The phrase model leverages the morphological and semantic pattern of

a mention, while the coherence model exploits the context made up by the other entity

mentions in the same document. The final model combines these two sub-models and is

trained jointly. Figure 1.1 shows the general architecture of this model.

NormCo achieved the best performance for disease entities with its phrase-based

model, which is consistent with state-of-the-art performance in previous extensive dis-

ease entity normalization attempts(see e.g., [LIDL13, LL16, LCT+17, CCL17]). How-

ever, attempts at bacterial entity normalization are limited. In this paper, we show that

NormCo switches to a coherence-based model when trained to normalize bacteria enti-

ties and we discuss how the choice of loss functions may impact its choice of sub-models

in different tasks.

To extract and normalize bacteria entities, we organized and consolidated available

lexical resources and annotated text corpora to test NormCo and baseline approaches.
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The mapping table of ∼ 15K bacteria entities and the annotated text corpora created

here will all be released to the public domain to share with the research community.

The resulting datasets reveal a highly skewed distribution between bacteria entities that

impacted normalization performance – intensively studied ones were frequently men-

tioned in the literature with high variability in their surface forms, while most of the

other entities rarely appeared, but could be normalized with a direct dictionary lookup.

We also describe our attempts to improve NormCo’s performance for disease nor-

malization by introducing various novel embedding models, including sub-word and

contextual-based embeddings, and report experimental results.
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Chapter 2

Datasets

2.1 Bacteria Naming

The current hierarchical system of biological classification is based on the system

established by the founder of taxonomy Carl Linnaeus [Lin99, L+58]. To uniquely

identify an organism, a “binomial nomenclature” of two names is used: the first refers

to the genus and is capitalized, and the second, in lowercase, refers to the species. Con-

vention for abbreviation of this name is to shorten only the genus name to a single char-

acter, (e.g., Pseudomonas aeruginosa to (P. aeurignosa). Some very commonly known

species such as E. coli (Escherichia coli) may appear abbreviated without explanation,

although technically this is not allowed. Names are only guaranteed to be unique within

a Kingdom, so that a plant and an animal can have the same name (for example, the

genus Morus is used both for the mulberry plant and for the gannet, a type of bird).

Contrary to popular belief, the naming and classification of an organism and its status

as a species is often the result of expert opinion and debate which is subject to revision

and reassignment especially as new DNA sequence data are obtained. This results in

different names in use in the literature for the same organism. A notorious example is

the pathogen Salmonella typhi, the causative agent of typhoid fever, which was reclas-

sified as a serovar of the species Salmonella enterica. Its currently accepted name is

Salmonella enterica serovar Typhi [BVA+00], but several different abbreviations (e.g.

S. typhi, S. enterica sv Typhi, and S. Typhi) are widespread in the literature.
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Table 2.1: Entries in LPSN and NCBI. ∗: NCBI also has 20 species subgroups and 66
species groups.

LPSN NCBI
Subspecies 570 700
(unique) (564) (666)
Species 17609 21260∗

(unique) (17449) (20745)
Genus 3132 3758
(unique) (3109) (3746)
Higher or 819 288
not ranked (816) (284)
Multiplicity → NCBI → LPSN
One to one 12959 13322
One to many 3493 4333
One to none 2164 6114

2.2 Bacteria Nomenclatures

The List of Prokaryotic Names with Standing in Nomenclature (LPSN) was estab-

lished by Jean Euzéby in 1997 as an online bacterial and archaeal resource, and is cur-

rently maintained by parte2018lpsn. The availability of a definitive taxonomic resource

is important, as it maintains and updates the changing and growing prokaryotic nomen-

clature, including tracking replacement of one name by another.

Another frequently-used repository for nomenclature and classification is the NCBI

taxonomy database. LPSN is considered definitive by the taxonomic community, while

the NCBI Taxonomy is widely used because it is available in machine-readable form

and popular search tools. The availability of two widely-used but inconsistent nomen-

clatures complicates the task of entity normalization, and establishing taxonomic iden-

tities between the two sets so that users can use their preferred nomenclature, or use

results already annotated based on the other nomenclature, is desirable. Table 2.1 shows

the number of entries at different levels of taxonomy in LPSN and NCBI.

Taxon names can be mapped using either textual matching of names or DNA se-

quence accession number, when available. In order to establish correspondence between

LPSN and NCBI tables, we performed an outer join based on exact lexical matching be-

tween organism names conformant with the Linnaeus methodology. Those LPSN names
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which did not match with any NCBI names were candidates for sequence accession-

based matching.

However, species, subspecies and strains in the two systems may have the same

sequence accession number, giving rise to multiplicity. Table 2.1 therefore also shows

the mapping results between LPSN and NCBI.

2.3 Annotated Text Corpora for Bacteria

2.3.1 PubTator

PubTator [WKL13] is a publicly available text mining tool from NCBI. Its database

contains machine-generated and human-curated annotations for chemicals, diseases,

genes, mutations and species normalized to the NCBI Taxonomy [Fed11]. We mined

this dataset and considered only the human-curated annotations in articles that had at

least one bacterial species mention found in NCBI’s Genbank [BKML+00].

While large in size, PubTator only accounts for 483 unique bacteria species with

a very skewed distribution where the top 10% of the most frequent unique bacterial

entities make up for 83% of all mentions. Figure 2.1 shows the general distribution of

the number of mentions for the top frequently mentioned bacteria entities.

2.3.2 Disbiome

janssens2018disbiome published the database Disbiome, which links diseases asso-

ciated with microbes. Disbiome represents the largest and most comprehensive knowl-

edge base to-date, covering nearly 200 diseases and 800 microbes, based on manually

assembled full-text publications associated with more than 500 abstracts. However, it

does not provide span-level annotations for the bacteria entities of interest, making its

data unsuitable as a ground-truth dataset in its raw form.

2.3.3 MbA Annotation Tool and In-house Curated Dataset

To enable span-level annotations for Disbiome and other datasets lacking this infor-

mation we custom-made a web-based text annotation tool called MbA. This tool facil-
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Figure 2.1: Distribution of the 50 most frequently mentioned bacteria in PubTator.

itates correct annotation and normalization tags of bacteria and disease entities, though

it may be extended to other concepts in the future. The tool can be configured to use a

taxonomy or similar dictionary as the standard vocabulary. While annotating, users are

prompted to select from a list of standardized entities from the respective taxonomy for

each entity type.

Using this annotation tool, we created an in-house expert curated dataset by anno-

tating and normalizing bacteria entities in 187 abstracts from the Disbiome dataset. It

contains 1367 tagged spans, 988 of which are normalized and account for 118 unique

genera and 105 unique species. 53 of these species never appear in the PubTator set.

However, it is more representative of interest in the contemporary microbiome litera-

ture.

2.3.4 BioASQ 2018

The BioASQ 2018 Challenge Task 6a [KPK18] aimed at large-scale semantic in-

dexing of the biomedical literature by automatically assigning the MeSH terms to an

input abstract of a paper in PubMed. The MeSH terms are the standardized keywords
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of the topics of the paper assigned by human indexers at NCBI. We used the training set

provided for the task but filtered out any MeSH terms that are not under the bacterial

subtree by querying NCBI’s server.

Then, in order to create a mapping from a MeSH name to an NCBI taxon ID we used

string matching and the UMLS Metathesaurus [Aro01] to map NCBI bacteria names

with MeSH names that share UMLS CUI ids and resolved 641 links between them.

Table 2.2 outlines the statistics of the annotated corpora that we used in this research.

Again, the numbers of unique species in these corpora are smaller than the number of

known bacteria species given in Table 2.1 by two orders of magnitude.

Table 2.2: Statistics of the annotated corpora for bacteria entity tagging and normaliza-
tion. ∗: Numbers are for total genera mentions and unique genera.

Dataset PubTator Disbiome BioASQ
Abstracts 487K 187 411K
Normalized

1.3M
334

625K
mentions (988)∗

Unique
483

105
329

species (118)∗

Expert
Yes Yes No

curated

We did not use the BioNLP shared task 2016 dataset [DBC+16] because it contains

species annotations related to plants and archaea and does not focus on human micro-

biota.
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Chapter 3

NormCo

3.1 Review of NormCo

Let D be a set of documents, each consisting of a set of entity mentions M =

{m0, . . . ,mK}, as well as an ontology C = {c0, . . . , cT} of T concepts, where each

concept cj is associated with one or more known names Sj . Entity normalization is the

problem of determining how to map each mention mi ∈ M within a document to a

single concept cj ∈ C in the ontology, i.e., how to determine the mapping M → C, for

each document di ∈ D.

3.1.1 Phrase Model

Consider a mention mi → cj consisting of tokens {w0, . . . , wl}. The entity phrase

model first embeds the tokens appearing inm into dense vector representations {e0, . . . , el}, ei ∈
Rd. The phrase representation is the summation of the word embeddings of the individ-

ual tokens, inspired by the sentence representation work from [HCK16].

e
(m)
i =

l∑
k=0

ek (3.1)

This intermediate representation is then passed through a linear layer to get the the

entity phrase representation given in Equation 3.2.

Φ(mi) = Ae
(m)
i + b (3.2)

where A ∈ Rd×d and b ∈ Rd.
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3.1.2 Coherence Model

The output of the entity phrase model is then passed through a bidirectional gated

recurrent unit (GRU) to obtain a forward representation ~Ψ(mi), and a backward repre-

sentation ~Ψ(mi), where

~Ψ(mi) = ~GRU(Φ(mi)|Φ(mi−1), ...,Φ(m0)) (3.3)

and
~Ψ(mi) = ~GRU(Φ(mi)|Φ(mi+1), ...,Φ(mK)) (3.4)

These are then concatenated to get a combined bidirectional coherence representa-

tion

Ψ(mi) = [Ψf (mi)�Ψb(mi)] (3.5)

where � is the concat operator.

3.2 Regular and Tweaked Losses

NormCo maps a mention mi to a concept cj that minimizes the similarity distance

between cj and the vectors Φ(mi) and Ψ(mi). Let δ(x, y) = ‖x− y‖2 be the Euclidean

distance between two vectors x and y. One way to measure the similarity is by combin-

ing δ(Φ(mi), cj) and δ(Ψ(mi), cj) weighted by a learned parameter β:

d̂(mi, cj) = β · δ(Φ(mi), cj)

+ (1− β) · δ(Ψ(mi), cj). (3.6)

The purpose of β is to weigh how to combine the score from each model.

To train NormCo, we minimize a regular max-margin ranking loss with negative

sampling:
1

|N |
∑
k∈N

max{0, P + d̂(mi, cj)− d̂(mi, ck)}, (3.7)

where ck is a negative example of a concept, P is the margin, andN is the set of negative

examples.
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In [WKMH19], instead, a tweaked max-margin ranking loss was used which first

passes Φ(mi) and Ψ(mi) through the logistic sigmoid function before calculating the

distance and setting the margin P to
√
d, yielding the following1:

1

|N |
∑
k∈N

max{0,
√
d+ d̂s(mi, cj)− d̂s(mi, ck)}, (3.8)

where d̂s is defined as

d̂s(mi, cj) = β · δ(σ(Φ(mi)), σ(cj))

+ (1− β) · δ(σ(Ψ(mi)), σ(cj)). (3.9)

At inference time, the selected concept ĉi for mention mi is then determined by

ĉi = arg min
cj∈C

{d(mi, cj)}, (3.10)

where the distance metrics d can be chosen from either the regular one as defined

in (3.6), or the tweaked one in (3.9), which was used in [WKMH19] for disease en-

tity normalization.

1https://towardsdatascience.com/lossless-triplet-loss-7e932f990b24
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Chapter 4

Modifications to NormCo

4.1 Dynamic β

We introduced the ability for the network to calculate a different β for each input

document using a bidirectional attention mechanism. Such a technique has been shown

to be successful for generating compositional representations over sequences and docu-

ments [YYD+16].

The revised model applies a GRU to the phrase inputs to obtain a hidden represen-

tation, then passes it through a non-linear layer and applies softmax to get attention

weights. Using these attention weights, we get a sentence level representation for each

document. We finally use this sentence level representation to obtain a document level

β by passing it through a non-linear layer.

4.2 Handling Spelling Variants

NormCo uses word embeddings in its phrase model to leverage the semantic mean-

ing of disease mention entities. However, since word embeddings are jointly trained, we

found that the model made many errors when mapping inflectional variants–differently

and incorrectly spelled mentions for the same disease entity to an incorrect ontological

concept (e.g. “necrotizing” and “necrotising”, “leukopenia” and “leucopenic”, “Post-

zosteric” and “zoster”, etc.). Sub-word embeddings have shown to be successful to

12



learn the representations of words not seen in training. We applied BPemb [HS18], a

collection of pre-trained sub-word unit embeddings trained on the Wikipedia corpus, to

the NormCo model.

We also tried to handle the inflectional variants using dual embedding spaces. The

idea is that in addition to the word embedding for all words appearing in an initial

vocabulary, another embedding space is created to contain vectorized representation

of a standardized version of these words. We tried three standardization methods: 1)

Stemming; 2) Remapping: using the Specialist Lexicon dictionary [MSB] that maps

biomedical terms of different spellings to a standard form; 3) Both: an input token is

standardized by remapping first then stemmed.

4.3 Use of BERT

We attempted to extend the model by introducing contextual embeddings as the word

representation as opposed to static word embeddings. We used the recently introduced

BERT model [DCLT18]. In particular, we leveraged the pre-trained SciBERT network

[BCL19] which is BERT pre-trained on a large corpus of scientific literature from Se-

mantic Scholar1. To perform inference with the model, we passed an entire sentence

containing a mention through SciBERT and segmented off the output embeddings for

the tokens coming from a mention. We then summed these vectors and passed them

through the rest of the NormCo model as described in [WKMH19]. Training was per-

formed as described in [WKMH19].

1https://www.semanticscholar.org
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Chapter 5

Baselines

As a baseline approach, we implemented several variants of knowledge-driven meth-

ods for bacteria entity extraction and normalization. These baselines included the use

of authoritative dictionaries of terms as well as a set of domain specific rules. The rules

employed include the following: 1) A regular expression matching abbreviated bacteria

names (e.g., “E. coli”). 2) Alternate name matching when a term appears in parentheses

immediately following a term found by the dictionary or other rule. 3) Several strain

level pattern regular expressions matching e.g., “strain X,” “sp. Y,” etc.

The primary sources of knowledge used were the NCBI Taxonomy and LPSN. From

NCBI, we obtained a list of 24,863 unique names. We extracted all of the names con-

tained in LPSN and combined the dictionaries, yielding an additional 6,221 unique

names. Finally, we include the names from the bacteria training data in our dictionary

(4,614 additional unique names), giving a total of 35,698 unique names.

To perform normalization, our system queries the NCBI Taxonomy and picks the

closest string match to the mention text based on Levenshtein distance which is the min-

imum number of single-character edits (insertions, deletions or substitutions) required

to change one word into the other.

TaggerOne [LL16] compares favorably with state-of-the-art methods and is consid-

ered a strong baseline for the disease recognition and normalization task. However, so

far we were unable to train TaggerOne with the PubTator dataset for bacteria entity ex-

traction and normalization with the most powerful computer that we have access to with

64 CPU cores and 818GB main memory because the program runs out of memory.
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Chapter 6

Results

6.1 Bacteria Entity Tagging

Entity normalization depends on entity extraction and tagging results as the input;

therefore we also report the results of bacteria entity tagging for the datasets used. The

results also characterize these datasets, allowing for better interpretation of the normal-

ization results.

BiLSTM CRFs have been shown to be incredibly powerful models for NER in recent

years [HXY15], achieving state of the art performance on many entity recognition tasks,

both within the biomedical domain [GBVM18] as well as outside it [MH16]. We use an

open source implementation of a neural architecture similar to [LBS+16] and [MH16]

that concatenates final states of a bi-LSTM on character embeddings to get a character-

based representation of each word and decodes with a linear chain CRF. In addition,

we use a regular conditional random field with hand-engineered features. We compare

these methods to the knowledge-driven methods described above.

Table 6.1(a) shows the bacteria tagging results on the PubTator test set. There is a

significant overlap between the training and test set of the PubTator dataset as tagging

results using just the training data as the dictionary results in very high recall. Adding

more rules and dictionary terms only increases the number of false positives, further

degrading precision and overall performance. The machine learning based approaches,

while not having as high a recall, outperform the knowledge-driven methods in terms of

overall performance. The PubTator training set provides enough data for a bi-LSTM to
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fit its parameter as it clearly outperforms all other methods in our testing in terms of F1

score.

We also evaluate the tagging models trained using the PubTator training data on the

dataset that we created from BioASQ. This dataset can be considered a “silver standard.”

Table 6.1(b) shows the evaluation results. Since its spans are not human annotated,

missed true bacteria entity mentions can lead to many more false positives and lower

precision universally across all models. Interestingly, the CRF performs nearly as well

as the bi-LSTM in terms of F1 while being much less complex.

Table 6.1(c) shows bacteria tagging results on Disbiome. The trend is similar to

that of the other two datasets. The more complex, machine learning based approaches

outperform the knowledge driven approaches, albeit by a smaller margin. The recall for

the machine learning approaches is much lower than precision as this dataset consists

of 105 unique species, 53 of which never appear in PubTator. The knowledge-driven

approaches have the advantage of using dictionaries and are able to get better recall.

However, they still suffer from low precision as they did for PubTator and BioASQ.

6.2 Bacteria Normalization

6.2.1 Bacteria Normalization against PubTator and BioASQ

NormCo has been shown to achieve state of the art performance for disease when β

goes to 1, i.e., it entirely falls back on its phrase model by the end of training. We also

have the same finding with NormCo for bacteria when using the tweaked loss function

presented by the original authors. However, when training NormCo using the regular

max-margin loss, β goes to 0, i.e., the model switches entirely to the coherence based

model by the end of training. Table 6.2 shows the normalization accuracy on the PubTa-

tor and BioASQ datasets. This switch in β gives NormCo a performance improvement

over its phrase based counterpart on both datasets. We also individually trained and

obtained results on the two sub-models used in NormCo i.e., phrase-based and coher-

ence. Even when tested in isolation, the coherence model performs slightly better than

the phrase based model on both datasets, showing that NormCo can adapt to different

types of entities by switching between its two sub-models. To ensure that the switch in
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Table 6.1: Bacteria tagging on PubTator, BioASQ, and Disbiome.

(a) PubTator P R F
BiLSTM CRF w/ char embeddings 0.920 0.930 0.928
CRF 0.874 0.888 0.881
PubTator training data 0.751 0.991 0.854
NCBI + LPSN + PubTator training data 0.551 0.992 0.708
Rules + LPSN + NCBI + PubTator training data 0.500 0.991 0.664

(b) BioASQ P R F
BiLSTM CRF w/ char embeddings 0.540 0.930 0.680
CRF 0.523 0.935 0.671
PubTator training data 0.325 0.040 0.071
NCBI + LPSN + PubTator training data 0.256 0.987 0.407
Rules + LPSN + NCBI + PubTator training data 0.223 0.996 0.364

(c) Disbiome P R F
BiLSTM CRF w/ char embeddings 0.822 0.405 0.543
CRF 0.865 0.383 0.531
PubTator training data 0.413 0.590 0.489
NCBI + LPSN + PubTator training data 0.296 0.781 0.430
Rules + LPSN + NCBI + PubTator training data 0.310 0.930 0.470

β does not simply happen as a result of change in the loss function and is in fact domain

dependent, we trained NormCo on the BioCreative V Disease dataset using the regular

max-margin loss and β goes to 1.

Coherence based models exploit information associated with the context around en-

tities of interest. However, over 74% of the BioASQ dataset are documents that contain

just one mention. Since NormCo depends on global context, i.e., other entities around

the entity of interest, much of the training data in the distantly supervised setting has

zero-context samples. We suspect this is why we see a drop in performance in the dis-

tantly supervised setting on the PubTator test set. We omit evaluation on the BioASQ

dataset because it is part of the training data for the model.

The motivation behind the attentive β model was that allowing the model to interpo-

late smoothly between the phrase based and the coherence based model on a document

level would help with robustness and generalization. However, in practice, our model
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learns to output β = 1 for each document and essentially performs no better than just

the phrase based model by itself.

Table 6.2: Bacteria normalization accuracy on PubTator and BioASQ, given perfect
taggings.

Training
Model PubTator BioASQ time
Knowledge driven 0.4567 1.0000 0s
Phrase based + tweaked loss 0.9286 0.9748 12m
Coherence based + regular loss 0.9354 0.9769 2h
NormCo + tweaked loss (β → 1) 0.9410 0.9807 2h
NormCo + regular loss (β → 0) 0.9458 0.9829 2h
NormCo + Distant supervision 0.9227 - 4h
NormCo Attentive beta 0.9162 0.9806 6h

6.2.2 Bacteria Normalization on Disbiome

Our annotated-subset of Disbiome consists of 998 spans normalized against the

NCBI taxonomy. However, only 334 of these link to entities on the species level which

is the case with all the annotations in the PubTator dataset. In order to perform a fair

evaluation for models trained exclusively on species data while using all the 998 an-

notations, we counted any predictions under the correct genus as a true positive (e.g.,

a “Escherichia Coli” would be counted as a true positive when the true label is Es-

cherichia). We report normalization accuracy for all annotations as well as just species

level annotations in Table 6.4.

The knowledge-driven methods achieved the highest performance on the Disbiome

dataset due in part to the lack of variability in the dataset; most mentions use the pre-

ferred name of the concept they are normalized against. This is supported by the fact that

there is an average of 1.29 surface forms and a standard deviation of 0.65 per concept.

In comparison, PubTator is mostly comprised of just a few predominant species as

shown in Section 2.3.1, with notable variability in the naming for these species. In Pub-

Tator, there are 10.97 surface forms per concept on average with a standard deviation of
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13.04. Table 6.3 shows a comparison of the number of surface forms for some common

bacteria entities in PubTator and Disbiome:

Table 6.3: A comparison of the number of surface forms for some common bacteria
entities in PubTator and Disbiome.

Bacteria PubTator Disbiome
Escherichia coli 112 2
Helicobacter pylori 88 2
Staphylococcus aureus 58 2
Pseudomonas aeruginosa 57 1
Mycobacterium tuberculosis 64 3

Unable to account for such high variability, the knowledge-driven method there-

fore achieves a much lower accuracy. The machine learning models use word embed-

dings which have been shown to correlate with the semantics of the words in the lan-

guage [MSC+13]. This allows the models to make a reasonable prediction even when

there is not a very close string match. The mentions in the BioASQ dataset are extracted

using the preferred names and synonyms from the NCBI taxonomy, which is why the

knowledge-driven method achieves a perfect score.

A majority of the species concepts and all of the genus concepts from this dataset

never appear in the training set of the machine learning based models. They are essen-

tially performing zero-shot predictions on these data points. Thus, the machine learning

based models perform poorly. The coherence model, NormCo with β → 0 and NormCo

with attentive β performs especially poorly on the overall set. An intuitive explana-

tion for this phenomenon is that these models rely heavily on some RNN cell, making

them highly sensitive to context. The fact that a lot of the mentions are never seen adds

uncertainty and this uncertainty is exacerbated by unseen mentions within the context.

6.3 Handling Spelling Variants for Disease Normaliza-

tion

Table 6.6 shows the results of our use of sub-word and dual embeddings to deal with

spelling variants in disease normalization. We tested our approaches with the BioCre-
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Table 6.4: Bacteria normalization accuracy on Disbiome.

Model All normalized Species only
out of 988 out of 334

Knowledge driven 829 0.8390 176 0.5269
Phrase based + tweaked loss 522 0.5283 164 0.4910
Coherence based + regular loss 247 0.2500 162 0.4850
NormCo + tweaked loss (β → 1) 529 0.5354 160 0.4790
NormCo + regular loss (β → 0) 241 0.2439 158 0.4731
NormCo + Distant supervision 503 0.5091 157 0.4701
NormCo Attentive beta 215 0.2176 163 0.4880

ative V Corpus (BC5CDR) [LSJ+16] and measured the performance of disease normal-

ization as described in [WKMH19]. Experiments denoted by “+ distant” are those using

distantly supervised training examples as described in [WKMH19]. “AwA” refers to the

accuracy with abbreviation resolution disabled, while “Acc@1” denotes the top 1 nor-

malization accuracy with perfect taggings, “dLCA” is the normalized lowest common

ancestor distance. TaggerOne results were from [WKMH19].

The results show that the dual embedding with both stemming and remapping out-

performed all other approaches in terms of AwA and dLCA and close to the best per-

formers in F1 and Acc@1. Sub-word embedding results suggest that replacing the pre-

trained model using Wikipedia with one that uses the biomedical literature may boost

their performance.

6.4 SciBERT for Disease Normalization

Table 6.6 also shows in the last row the results of our attempt to use SciBERT em-

beddings to initialize the concept embedding space. The scores are lower than other

methods and we speculate that for contextual embeddings to be useful for a normaliza-

tion model that matches a mention embedding to a concept one, additional changes to

NormCo’s architecture may be necessary.
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Table 6.5: Experiment results on BC5CDR disease normalization.

Experiment F1 AwA Acc@1 dLCA
TaggerOne [LL16] 0.837 0.852 0.889 0.450
Phrase + distant [WKMH19] 0.830 0.851 0.875 0.449
NormCo + distant [WKMH19] 0.834 0.857 0.880 0.434
Subword + Phrase Model 0.815 0.818 0.858 0.526
Subword + NormCo 0.825 0.831 0.869 0.500
Subword + NormCo + distant 0.718 0.684 0.743 1.109
Stemming + distance 0.826 0.847 0.869 0.462
Remapping + distance 0.829 0.850 0.873 0.438
Stemming + Remapping + distance 0.833 0.858 0.880 0.415
NormCo + distant + SciBERT 0.729 0.773 0.750 1.220

Table 6.6: Experiment results on BC5CDR disease normalization.

Experiment F1 AwA Acc@1 dLCA
TaggerOne [LL16] 0.837 0.852 0.889 0.450
Phrase + distant [WKMH19] 0.830 0.851 0.875 0.449
NormCo + distant [WKMH19] 0.834 0.857 0.880 0.434
Subword + Phrase Model 0.815 0.818 0.858 0.526
Subword + NormCo 0.825 0.831 0.869 0.500
Subword + NormCo + distant 0.718 0.684 0.743 1.109
Stemming + distance 0.826 0.847 0.869 0.462
Remapping + distance 0.829 0.850 0.873 0.438
Stemming + Remapping + distance 0.833 0.858 0.880 0.415
NormCo + distant + SciBERT 0.729 0.773 0.750 1.220
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Chapter 7

Discussions

One of the well-known biases of the published literature is an emphasis toward topics

that are well funded; therefore, bacteria and diseases that are intensively studied will be

mentioned more often than those otherwise, resulting in a skewed distribution of entity

mentions.

Our results show that deep learning taggers and NormCo performed well for highly

mentioned entities with high variability but still hardly generalized to rarer entities in

the long tail of the distribution. Novel embedding models are encouraging but have yet

to provide a solution to this issue. In addition to continuing the annotation efforts for a

balanced ground truth corpus, our results suggest that a hybrid approach to tagging and

normalization that deals with highly frequently mentioned entities differently from the

long tail entities and considers context and coherence to boost the performance when an

accurate phrase model is in place may be promising to eventually achieve useful normal-

ization performance over the whole spectrum of entities. Only then will an automatic

knowledge base construction be feasible.
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