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ABSTRACT OF THE DISSERTATION

Data-Driven Approaches to Evaluating Traffic-Related Air Pollution Exposure and Health

Impacts in California, USA

by

Jonathan Liu

Doctor of Philosophy in Environmental Health Sciences

University of California, Los Angeles, 2023

Professor Michael Leo B. Jerrett, Co-Chair

Professor Yifang Zhu, Co-Chair

Automobile traffic has been a longstanding source of air pollution in human communities.

The target of major regulations in the past few decades, the transportation sector has gone

through significant changes, ranging from shifts in vehicle fleet composition to natural and

artificial disruptions to traffic patterns. Both an essential form of transportation as well

as a major source of air pollution, traffic, to this day, remains a human necessity and a

public health challenge. As such, measuring and modeling the temporal and spatial distri-

bution of traffic related air pollution (TRAP) is a critical necessity for exposure scientists,

epidemiologists, and other public health professionals.

In this dissertation, we investigate methods to measure TRAP in response to recent trends

and disruptions in traffic patterns and composition, with a particular focus on California

State. To this end, we employ novel combinations of big data, including regulatory air

quality data in addition to traffic, land-use, and internet-of-things network data. It is divide

into five chapters: an introduction (chapter 1), three chapters of original research (chapters
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2-4), and a discussion of the conclusions of the work (chapter 5).

Chapter 2 evaluates the near-road air quality impacts of traffic disruptions associated

with the COVID-19 pandemic. Following global activity stoppages associated with stay-at-

home measures, studies reported improved air quality in several cities and countries around

the world. While widely observed, many studies could not properly attribute the decline

of traffic in this chapter evaluates the relationship between traffic volume as reported by

the California Department of Transportation and near-road NO and NO2 emissions at seven

EPA monitoring sites in California state: four in Northern California and three in Southern

California.

Chapter 3 models the spatial distribution of non-tailpipe emissions-related PM2.5 chem-

ical species and oxidative potential in Southern California. Combining gold-standard filter

samples, land-use data, and a novel internet-of-things low-cost sensor network dataset in

a spatial regression (Co-Kriging with External Drift) model, we create a set of exposure

surfaces for exposures that serve as tracers of TRAP. Results indicate that compared to

typical modelling techniques, namely land-use regressions, the addition of low-cost sensor

data improves model accuracy and precision.

Chapter 4 evaluates the associations between exposures modeled in Chapter 3 and the

ischemic placental disease (IPD) in a prospectively-followed pregnancy cohort of 178 women.

Air quality regulation have resulted in declines in tailpipe emissions in recent years. As stated

earlier, TRAP is also generated from non-tailpipe sources, including brake and tire wear.

Concerned that brake and tire wear particles contain metals and other organic compounds

that could harm fetal health, this study uses a logistic regression model to estimate exposure

outcome associations. Compared to conventional exposures, namely PM2.5 and black carbon,

we find stronger associations between IPD and exposures more specific to brake and tire wear,

such as barium, as well as oxidative potential markers.

At the time of filing, Chapter 2 has been published in Environmental Science and Tech-

nology Letters, Chapter 3 has been published in Environment International, and Chapter 4
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is currently in preparation for submission to an academic journal.
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CHAPTER 1

Introduction

1.1 Background

The internal combustion engine is one the most consequential products of the Industrial

Revolution. One of the most visible applications of the internal combustion engine is the

existence of the automobile, the dominant form of personal transportation around the world.

Since its initial proliferation in the early 20th century, the automobile has had profound im-

pacts on human society. Modern day road networks, built to accommodate vast volumes

of automobile traffic, form the circulatory system of human society, transporting goods and

services across space. In the US, these networks expanded greatly expanded during amidst

the post-WWII boom. The era was characterized by the proliferation of the personal au-

tomobile, suburbanization, highway construction, and closure of some public transportation

systems. Consequently, during the mid-20th century, heavy air pollution plagued not only

the US, but much of the rest of the Western world, which led to increase awareness and

public action over air quality and gave rise to modern day clean air policy [1]. In the US,

the Clean Air Act of 1963 gave the Environmental Protection Agency (EPA) two functions

critical for addressing air pollution: setting automobile emission standards and establish-

ing ambient air monitoring infrastructure [2]. Armed with the proper authorities, the EPA

successfully reduced tailpipe emissions throughout the following decades [3].

Using the Clean Air Act, the EPA established a national ambient air monitoring net-

work, finalizing nationally consistent operations and quality assurance procedures in 1980
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[4]. In the decades following, exponential growth in the information technology sector led

to transformations in environmental monitoring. Notably, since the 2010s, air quality data

has been made available to laypersons using what are commonly known as low-cost sensors.

At the expense of data quality and consistency, low-cost sensors are cheaper than regulatory

equipment by multiple orders of magnitude. Recent devices are internet-connected and with

a critical mass of devices, can form their own air quality network. Prior studies have hailed

low-cost sensors as having changed the paradigm of air monitoring, complementing exist-

ing regulatory monitoring systems and scientific practices with a novel, often crowdsourced

dataset [5]. At the same time, advances in fields such as environmental health, epidemiology,

and physiology have deepened our understanding of the relationship between air pollution

and human health. Recent air quality studies have focused on source-specific individual and

groups of constituents of fine particulate matter (aerodynamic diameter < 2.5 µm, PM2.5),

such as traffic-related air pollution (TRAP). Amidst reductions in tailpipe emissions over

since the Clean Air Act, there is renewed focus on non-tailpipe emissions, which contain

metals and organics that are potentially more relevant to human health [6].

1.2 Traffic-Related Air Pollution Exposure and Health Effects

Despite improved access to transportation, widespread automobile use is also associated

with an decline in air quality and adverse public health consequences. Automobiles emit

particulates and gaseous pollutants via both tailpipe and non-tailpipe pathways. Tailpipe

emissions form as a result of incomplete combustion of fuel, and includes compounds such

as organic compounds and nitrous oxides (NO, NO2, and other NOx compounds), the latter

of which interacting with O3 and UV light to produce smog [7, 8]. NO2 is a commonly-used

tracer of tailpipe emissions [6]. As a source of free radicals, it has been shown to inflict

changes in the respiratory system via oxidative stress [9], with prolonged exposure having

been linked to adverse health outcomes [10].
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Non-tailpipe emissions include road dust resuspension and the emission of brake and tire

wear [6]. The latter are generated during automobile operations as brakes and tires wear

down over time. Braking action releases particulate matter in both the fine and ultrafine (di-

ameter < 0.1 µm) size fractions via friction and nucleation, respectively [6]. Laboratory and

field studies have identified several metals associated with non-tailpipe emissions, including

organics and metals such as Ti, Cu, Fe, and Ba, and Zn [6]. Some of these components, such

as Cu and Fe, induce oxidative stress in Fenton reactions [11].

1.2.1 Exposure Assessment

1.2.1.1 Traffic and Natural Experiments

Studies around air pollution, traffic-related or otherwise, often feature natural experiment

study designs, observational studies in which the researcher has little to no control over

experimental conditions. Early natural in the non-traffic air quality sector focused on point

sources, where researchers would evaluate pollution levels before and after the opening or

closure of factories or other industrial sites [12]. More recent studies focusing on traffic-

related pollution have studies traffic disruptions. Disruptions include large sporting events

such as the Olympics in Beijing in 2008 [13, 14] and Atlanta in 1996 [12, 15–17], as well

as more localized events including scheduled major highway closures in West Los Angeles

[18]. These observational studies have been able to measure large changes in traffic, but

additional downstream air quality improvements and reductions in adverse respiratory and

cardiovascular health outcomes [14].

1.2.1.2 Measuring Exposure

In the field, measuring TRAP specifically and separately from other air pollutants is tech-

nically infeasible. Therefore, assessing TRAP exposure typically involves the use of specific

tracers, which are chemicals or pollutants that have been found to be relatively specific to
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traffic, and whose measurements correlate with and are representative of the complex mix-

ture of TRAP. Common tracers include PM2.5 or its individual chemical components, black

carbon for diesel emissions, and gases such as NO2, NO, NOx, CO, and benzene among

others [19]. NO2 is the most common forms following the emissions of NO, a byproduct of

fuel combustion, react with oxygen and UV light in the atmosphere [20].

A potential issue with using NO2 and other tailpipe emissions-related gases as tracers is

the recent and significant decline in tailpipe emissions due to clean air regulations driving

improvements in fuel efficiency [21]. Clean air regulations, notably, currently do not address

brake and tire wear. Consequently, as vehicle fleets improve in efficiency and electrify, NO2

emissions from the transportation sector will continue to fall. Non-tailpipe emissions such as

brake and tire wear, under the absence of similar regulations, may experience changes corre-

sponding with trends in vehicle weight and regenerative braking that trend differently with

NO2 decreases [6]. Consequently, the continued use of tailpipe tracers of TRAP may even-

tually misrepresent the magnitude of TRAP from non-tailpipe sources, leading to exposure

misclassification in human health studies.

There are a number of ways to measure exposure to TRAP. A review by Khan et al.

(2018) identified several measurement and modeling approaches currently employed in the

field [22]. These techniques range from direct ground-level or satellite measurement, to de-

terministic and stochastic modeling techniques. Ground-level measurements, encompass a

wide range of instruments and techniques. In the US, the EPA and local air quality agen-

cies operate a nation-wide monitoring network using stationary, high-cost federal reference

measurements. Other exposure assessment techniques include the use of actively and pas-

sively filter samplers, which use pumps or diffusion, respectively, to collect particulates and

gases on physical media, which can be then analyzed in a laboratory to obtain information

such as chemical composition [23]. Recent developments in wireless networking and sensor

technology have led to the proliferation of low-cost sensors, a growing subject of interest in

the field of environmental health sciences [5]. These sensors use a combination of optical
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sensors and amperometric sensors to report real-time data on particulate and gas concentra-

tions, which encompass exposures relevant to TRAP such as PM2.5, NO2, and CO [24, 25].

Remote sensing techniques employ an array of Earth-orbiting satellites which measure the

aerosol optical depth of a given geographic area, which reflects the degree of electromagnetic

extinction at a given wavelength [26]. Many of the pollutants measured by these satellites

are relevant to TRAP emissions, such as NO2.

Each method of measuring exposure is accompanied with a set advantages and disadvan-

tages. For example, methods with robust accuracy, such as filter samples or federal reference

measurements at regulatory samples, are capital and labor intensive, requiring a combination

of adequate land, maintenance, and knowledge to properly operate. Low-cost sensors are

cheaper to produce and install, but numerous studies have raised concerns regarding data

accuracy, sensor degradation, and long-term sustainability of projects [27]. Similarly, remote

sensing data covers a wide geographic scope and relatively high resolutions, but require ex-

pensive equipment, do not necessarily reflect the ground truth of air quality, and are affected

by local meteorological factors such as cloud cover [22].

1.2.1.3 Exposure Modeling

When estimating exposures across a geographic domain, measurement techniques all face

limitations in spatial resolution; they only provide information on air pollution exposures at

the exact point of sample collection. To interpolate exposures in locations not directly mon-

itored, scientists employ exposure models. These models employ tools such as large datasets

and geographic information systems (GIS) to explain or serve as proxy for information from

both direct measurements using outside variables. More rudimentary forms of TRAP expo-

sure assessment include the use of simple use of GIS variables, such as intersection density or

distance to major roads. Other methods instead estimate TRAP concentrations in areas oth-

erwise difficult, impractical, or impossible to monitor with modeling. Models can be divided

into deterministic models – which estimate exposure concentrations using dispersion model-
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ing and a series of model validation steps – as well as stochastic models, which by contrast

uses the empirical statistical relationships between exposures of interest and other related

factors [22]. In the measurement of TRAP, stochastic models, which are featured in the

following dissertation, include but are not limited to regressions such as land use regressions

(LUR) and spatial regressions such as inverse distance weighting and kriging [22].

Approaches like LUR models, also known as regression mapping, use combinations of

GIS variables to explain air pollution monitoring data collected at a limited set of points

in a geographic domain [28]. Common variables used in LUR modelling include traffic

(distance to road, road length, traffic density), land use (urban, green space, commercial

use), and physical geography [28]. Specific independent variable candidates in LUR models

are generated by drawing areal buffers of variable radii (usually in between 50-1000 meters)

and calculating summary statistics of land use variables (mean, sum) within each areal

unit. After finalizing the list of variable candidates, models are trained and variables are

selected based on cross-validation accuracy. LUR models are most often multiple linear

regressions, but can also be non-parametric regressions, which include generalized additive

models [29] and decision trees such as random forest [30]. After proper training, the model

is then applied a study area where information on independent variables is known across

the entire geographic domain. In recent years, researchers have improved upon traditional

multiple linear regression LUR models, integrating information from deterministic models

[31] or accounting for spatially autocorrelation using geospatial regressions such as kriging

or co-kriging [32].

Different methods in pollution modeling come with their own set of advantages and lim-

itations, particularly as they relate to causality, exposure (mis)classification, and resolution

limits. Nonetheless, models remain an important toolkit in health studies, environmental

policy-making, and exposure research. The selection of appropriate measurement meth-

ods, external variables, and modeling techniques is critical to properly answering scientific

and public health problems of interest. As we continue to witness improvements in wireless
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connectivity, and environmental sensing technology, big data and the ability to better under-

stand environment-health relationships will grow. Similarly, the study of TRAP continues

to evolve alongside methods of data fusion in exposure sciences and public health.

Typically, geospatial models of air pollution are designed to be used in the interest of

public health and environmental epidemiology studies. After models have been built, they

typically are used in tandem with health data, including administrative records and cohorts,

to better understand associations between environmental exposure and human disease [33,

34]. These health data typically contain geographical information. Depending on study

design and data source, geographic information varies in precision. Some studies use highly

precise location ascertainment, such as individual addresses or GPS-tracked real-time loca-

tion. Others, due to data privacy concerns or limitations in data access, use more coarse

information, such as resident ZIP code. Using geography to bridge human health and en-

vironmental data, spatial epidemiologists determine and draw inference from associations

between environmental exposure and health outcomes.

1.2.2 Health Effects

Human health concerns drive the interest in regulating and reducing air pollution levels.

The primary hypothesized mechanisms through which air pollution affects human health

is by way of oxidative stress, autonomic function disregulation, and translocation into the

circulatory system [35]. Oxidative stress is a disruption to the redox (reduction-oxidation)

signaling reactions resulting from an elevated concentration of oxidants, such as free radicals,

over antioxidants [36]. Chemical constituents of TRAP PM are high in oxidative potential,

and include metals such as copper and iron from non-exhaust emissions [37]. After inhala-

tion, these particulates and the chemical constituents present on their surfaces may undergo

Fenton reactions to generate hydroxyl radicals, which lead induce lipid, protein, and DNA

damage [37].

Traffic is unique compared to other sources of air pollution in its periodicity, close proxim-
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ity to a large portion of the human population, and constituents which include both tailpipe

and non-tailpipe sources. The relationship between all-source PM2.5 and health effects is

well studied [38], and recent studies have shifted focus to source-specific health effects. An

extensive review found a number of adverse health outcomes associated with exposure to

TRAP, including circulatory mortality, all-cause mortality, ischemic heart disease events,

diabetes, childhood asthma onset, acute lower respiratory infections, term low birth weight,

and small for gestational age, among other outcomes [7].

1.3 Research Setting

Chapters 2, 3, and 4 report findings from research conducted in the State of California.

Chapter 2 focuses on seven EPA near-road monitoring sites in major population centers:

four in Northern California and three in Southern California. We collected data from heavily-

trafficked roadways, with Northern California sites experiencing a typical weekday daily av-

erage of 100,000 passenger vehicles per day and 5,000 heavy duty vehicles per day. Southern

California sites similarly report between a weekday daily average of 75,000-100,000 passenger

vehicles and 7,500 heavy duty vehicles. Chapters 3 and 4 focus specifically on Southern

California in an area consisting primarily of Los Angeles County, but also parts of Ventura,

Orange, Riverside, and San Bernardino counties. The area is home to an ethnically diverse

population of over 10 million.

1.4 Summary of Aims

In the context of the evolving profile of air pollution and increasingly available ”big data” in

exposure sciences, the goal of this dissertation to use novel data fusion techniques to model

the changes, distribution, and health effects of TRAP. The three following chapters each

detail a relevant research study. In Chapter 2, we combine three sources of government
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data: air quality data from the EPA AQS monitoring network, traffic data from the California

Department of Transportation Performance Measurement System (PeMS), and weather data

consolidated by the University of Utah’s MesoWest service. Using these three datasets,

Chapter 2 aims to quantify reductions in near-road NO and NO2 emissions attributable to

declines in traffic following stay-at-home orders in California. Chapter 3 aims to assess the

role of low-cost sensors in modeling the spatial distribution of metals and oxidative potential

associated with non-tailpipe emissions. Using a combination of fieldwork and laboratory

measurements, land-use and traffic data, and crowdsourced low-cost PM2.5 sensor network

data, we compare two modeling methods: LUR and co-kriging with external drift, which

consists of a LUR model combined with additional data from the low-cost sensor network.

Finally, Chapter 4 aims to quantify relationship between non-tailpipe emissions-related

exposures and adverse birth outcomes, we apply the exposure models generated in Chapter

3 to a pregnancy cohort. The results presented in Chapters 2-4 highlight the use of novel

data sources and combinations to deepen our understanding of TRAP and inform how clean

air policy can better address public health issues.
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CHAPTER 2

Decreases in near-road NO and NO2 concentrations

during the COVID-19 pandemic in California

2.1 Abstract

The COVID-19 pandemic and resulting shelter-in-place measures led to widespread adoption

of remote work policies and temporary business closures or operation curtailments, disrupting

typical commuting patterns. This chapter investigates how these sudden shifts in traffic

patterns affected near-road NO and NO2 concentrations in California. We used (1) near-road

air pollution data from the U.S. Environmental Protection Agency’s (EPA) AirNow database,

(2) passenger and heavy-duty traffic data from the Caltrans Performance Monitoring System

(PeMS), and (3) weather data from MesoWest between January 1st to April 30th during the

years 2017-2020 to model NO and NO2 concentrations as functions of highway traffic and

meteorology. We then simulated NO and NO2 under business-as-usual traffic conditions and

compared modeled data to observed values. Weekday passenger traffic significantly declined

in Northern and Southern California by 29% and 24%, respectively. As a result, Northern

and Southern California near-road locations experienced statistically significant declines in

NO by 35% and 32% and NO2 by 15 and 29%, respectively, compared to modeled estimates.

As a natural experiment, our findings demonstrate that reduced vehicle activity significantly

improved air quality, contributing to the body of evidence linking shelter-in-place and cleaner

air.

10



2.2 Introduction

In late 2019, the first outbreak of COVID-19, was detected in Wuhan, Hubei Province, China.

The Chinese response included a lockdown of several cities and widespread social distancing

measures. In California, the first confirmed cases were detected in late January 2020, with

confirmed community spread soon thereafter. In March, many workplaces instituted remote

work and government bodies issued regulations starting with a statewide emergency decla-

ration on March 4th, 2020. Local jurisdictions followed by banning public gatherings and

the state declared a shelter-in-place order on March 19, 2020 [39].

As the COVID-19 pandemic spread, human activity halted under shelter-in-place mea-

sures. Many studies in China [40–54], India [55–62], Europe [63–65], South America [66–68],

Central Asia [69], and the United States [58, 70–73] have used satellite and stationary mon-

itoring to demonstrate decreases in regional PM2.5 and NO2 levels during shelter-in-place

periods. While satellite data are widely available across the world, this approach has a few

limitations. The target of many of these studies, NO2, is a harmful secondary pollutant reg-

ulated by the Clean Air Act and common tracer of vehicle activity [74]. In California, only

62% of net NOx emissions, the sum of NO and NO2 emissions, come from mobile sources,

with the rest coming from cropland, fuel combustion, and miscellaneous sources [75]. Con-

sequently, without quantifying changes in traffic, regional studies can only implicitly link

shelter-in-place to cleaner air. On the other hand, NO has not been linked to adverse health

effects, but is a more specific tracer of vehicle activity, directly generated by fuel combustion

[20]. Once emitted, however, NO quickly oxidizes into NO2, making it very responsive to

sudden changes in highway traffic but difficult to measure outside of near-road monitoring

networks [18]. As a result, regional studies that do not measure traffic are limited in their

ability to form causal conclusions between shelter-in-place and air pollution. We attempt to

address this knowledge gap by focusing on traffic data and NO/NO2 data from the U.S. Envi-

ronmental Protection Agency’s (EPA) near-road network, which explicitly measures mobile
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source air pollutants.

In California, the COVID-19 pandemic prompted a decline in economic activity and an

unprecedented shift to remote work for many jobs, likely reducing the need for daily vehicle

commuting and truck cargo traffic. Because (1) mobile sources contribute to over half of

all NOx emissions in California [75], (2) about 70% of gasoline and 80% of diesel traffic

is on the highway system [76], and (3) NO is a tracer of vehicle traffic and precursor to

other air pollutants, changes in regional air pollution levels likely stem from changes in

highway traffic and subsequent reductions in near-road NO concentrations. This chapter

aims to relate pandemic-related traffic changes to near-road NO and NO2 concentrations,

accounting for potential seasonal and meteorological confounders as well as separate the

relative contributions of passenger versus truck traffic.

2.3 Materials and Methods

2.3.1 Data Source

This chapter draws data from January 1st to April 30th, matching previous COVID-19

studies [77–79], for the years 2017 through 2020:

1. Air quality data are sourced from AirNow, a database that reports hourly pollution

and includes EPA’s near-road network [80]. California has 13 EPA near-road pollution

monitoring sites, of which 7 had complete air pollution and traffic data available.

Northern California had four sites, while Southern California had three, each targeting

a different highway. Table 2.2 summarizes the name, county, and target road of each

site and Figures 2.1, 2.2, and 2.3 show the locations of each site. The most commonly

available pollutants are NO and NO2 concentrations (ppb), while other pollutants

such as black carbon, PM2.5, CO, and ozone are inconsistently reported. Fewer than

half of the sites report meteorology data, which we used to validate more thorough
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meteorology data obtained from MesoWest.

2. California traffic data are sourced from the Caltrans Performance Measurement Sys-

tem (PeMS), which reports traffic across all major metropolitan areas of the State of

California [81].

• In order to systematically retrieve data from PeMS, we created two web scrapers:

one to identify traffic loop detectors within a certain geographic distance of a pre-

specified location, and another to download hourly light- and heavy-duty traffic

traffic from a set of loop detectors in a pre-specified time range.

• Using the above tool, we first downloaded daily traffic data from all traffic mon-

itors within a 0.1-, 0.25-, and 1.0-mile radius of each near-road site. We then

found that the 0.25-mile is the closest distance that provide sufficient traffic data

to allow us to calculate average traffic per site. Each vehicle detection system

separately reports daily total passenger vehicles and trucks per day, defined by

vehicle height, and percent observed – an indicator of completeness – for both

measurements. For each traffic monitor, we downloaded the daily total number

of passenger vehicles and trucks during our study period, selecting data that were

50% or more observed over the entire day.

3. Weather data are sourced from MesoWest, a weather database run by the University

of Utah [82]. For each near-road site, we downloaded temporally aligned data from the

closest weather station, located between 2 and 11 miles away. Weather data included

temperature, air pressure, relative humidity, wind speed, and type of precipitation

reported at five-minute intervals.

We calculated daily statistics for AirNow data and MesoWest weather data to match

PeMS traffic data, which reports daily total flow. We calculated daily averages for NO and

NO2 concentrations, traffic data, wind speed, relative humidity, and atmospheric pressure.
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We calculated daily minimum for air temperature, based on findings from a previous study

[83]. We coded precipitation as a dichotomous variable (1 for any precipitation, 0 for none).

In our final dataset, our data points were identifiable by their date (month, day, year) and

location.

2.3.2 Data Analysis and Model Development

We began with exploratory data analysis, including univariate plots, summary statistics,

and correlation analysis. To account for non-linear relationships, we applied generalized

additive models (GAM), often used in air pollution research [54, 84, 85]. We generated our

models with a forward selection process, beginning with traffic variables and individually

adding meteorology covariates. We kept variables if they substantially improved model fit

and accuracy as determined by AIC and adjusted R2 . For each variable, we chose either a

linear or a smoothing component by calculating the estimated degrees of freedom (EDF) and

statistical significance of the GAM smoother as well as by plotting the variable in question

against dependent variables across each location. During this process, we considered a

variable with an EDF greater than or equal to 2 non-linear. Due to spatial and temporal

variations in vehicle fleet composition, we assumed emissions per vehicle differed at each

location-year combination [86]. Additionally, because Northern and Southern California

have different climates, we divided our sites accordingly and included a region variable which

interacts multiplicatively with our meteorology variables [87]. The dependent variables are

daily average NO (ppb) and NO2 (ppb). We selected the following independent variables:

year and location, region, passenger traffic and truck traffic by year and location (vehicles

per day), daily average wind speed (miles per hour) by region, precipitation by region (1 if

any precipitation, 0 if none), daily average relative humidity (%) by region, daily average

atmospheric pressure (pascals) by region, and daily minimum temperature (degrees Celsius)

by region.

Exploratory analysis revealed that traffic related linearly to NO and NO2 at all sites
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except Long Beach and Ontario Etiwanda (EDF > 1). For those two sites, we predicted NO

and NO2 concentrations with a model that treats traffic non-parametrically (Eq. 2.1), with

other sites using a linear term with traffic (Eq. 2.2). Our models are as follows:

E(Yd) = α + yrL +R + β(Z1,R) + s(Z2,R) + s(Tyr,L) (2.1)

E(Yd) = α + yrL +R + β(Z1,R) + s(Z2,R) + β(Tyr,L) (2.2)

where, Yd is NO or NO2 concentration on a given day d; α is a constant; β refers to

a regression coefficient; R is a dummy variable denoting region; yrL is a dummy variable

denoting yearly differences at each location L; Z1,R is a set of meteorology variables found

to have a linear relationship with the outcome at region R; Z2,R refers to the remaining

meteorology variables; Tyr,L refers to the effect of traffic variables at each location L during

a given year yr; and s is the smoothing nonparametric spline function.

2.3.3 Model Validation

We used the K-fold cross-validation method with 10 folds to assess our models. We randomly

assigned the data into 80% training, 20% testing and calculated the adjusted R2 , repeating

the procedure 10 times to derive a mean R2 of our CV results. Our mean adjusted R2 values

for NO were 0.66 with linear terms for traffic and 0.68 with a nonparametric smoother. For

NO2, our adjusted R2 values were 0.78 with linear terms for traffic and 0.81 with a nonpara-

metric smoother. This suggests a strong fit for both dependent variables that matches the

performance of prior studies [84], though we did find that our models slightly underestimated

mobile source emissions.
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2.3.4 Simulating Traffic and NO and NO2

We simulated a business-as-usual scenario by assuming that without the COVID-19 pan-

demic, passenger and truck traffic would experience identical weekly patterns as those in the

months of January and February 2020 and those in March and April from 2017-2019. Traf-

fic levels were similar between the two sets, but the inter-year variation between the same

months was greater than the inter-month variation within the same year at most sites (see

Table 2.3). This led us to simulate passenger and truck traffic using data from January and

February 2020, which represents a more accurate estimate, as a business-as-usual scenario.

Days between March 1st and April 30th, matching previous studies [77–79], were assigned a

passenger and truck flow a value equivalent to the weekday average of each day during the

first two months of the year. For example, Mondays were traffic measurements equivalent

to the average Monday traffic in January and February. We calculated the change in traffic

with the following equation:

∆T =
Ts − To

Ts

∗ 100 (2.3)

Where the percent change in traffic ∆T is the difference between simulated (Ts) and

observed (To), normalized over simulated traffic and multiplied by 100. Based on simulated

business-as-usual traffic values, we used our GAMs (Eq. 2.1 and 2.2) to predict NO and NO2

during the months of March and April under two scenarios. Scenario A predicts NO and

NO2 with business-as-usual simulated passenger and truck traffic. Scenario B predicts with

business-as-usual simulated passenger traffic and observed truck traffic data. The difference

between the two scenarios illustrates the relative contribution of the decline in passenger

vehicles to the overall reduction of NO and NO2. We then used Welch two-sample t-tests

to assess the statistical significance of the differences between the observed and predicted

traffic, NO, and NO2 measurements on weekdays and weekends. In Table 2.1, significant

differences as indicated by the Welch’s t-test, are marked with an asterisk. We used the
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following equation to calculate percent change in the gas G:

∆G =
Gs −Go

Gs

∗ 100 (2.4)

We used R version 3.6.3 [88] to conduct data retrieval, analysis, and visualization in this

chapter.

2.4 Results and Discussion

2.4.1 Changes in Vehicle Flow

Figure 2.4 depicts passenger vehicle and truck traffic in Northern and Southern California

between March 1st and April 30th. Figures 2.4a and 2.4b depict a substantial decline in pas-

senger traffic beginning in early March, reflecting the massive shift to remote work. Figures

2.4c and 2.4b show that truck flow, a possible indicator of commercial activity, decreased

in Northern, but not Southern California. Table 2.1 quantifies the above observations by

location and splits the data into weekday and weekend. We find percent declines in traffic

during both weekdays and weekends. The former likely indicates declines in commuting and

the latter likely indicates declines in non-commuting activity, such as recreational activities

and travelling. Passenger traffic in declined in Northern and Southern California, by 29%

and 24% on weekdays and 42% and 37% on weekends, respectively. Weekday truck flow

decreased by between 13% and 37% in Northern California locations and between 2% and

7% in Southern California locations with varying degrees of statistical significance, marked

by an asterisk, suggesting that during the weekdays, flow of goods did not change as much as

in the North. Similarly, on weekends, we noticed a 44% decline in truck traffic in Northern

California, compared to 21% in Southern California, which was not statistically significant.
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2.4.2 Changes in NO and NO2 concentrations

Figure 2.5 depicts 14-day rolling averages of NO and NO2 levels in Northern and South-

ern California. The black solid line represents observed data, while the yellow dashed line

depicts predicted NO and NO2 under Scenario A, which simulates business-as-usual truck

and passenger vehicle traffic. The blue dashed line represents predicted NO and NO2 con-

centrations under Scenario B, simulating business-as-usual passenger traffic only. We find

that a greater share of NO and NO2 reductions is attributable to passenger traffic decline in

Southern California, shown by a smaller gap between blue and yellow lines, due to smaller,

insignificant changes in the region’s truck flow.

As shown in Table 2.1, NO concentrations fell by 35% and 60% in weekdays and weekends,

respectively in Northern California, and 32% and 20% in weekdays and weekends, respec-

tively, in Southern California. Our results agree with previous COVID-19 related studies

that have reported NO2 emission reductions in California [78, 79, 89]. Outside of California,

studies around the world have also found a consistent decline in NO2. While traffic reduc-

tions of this scale are historically unprecedented, other smaller scale natural experiments

that disrupt automobile traffic, such as a major highway closure [18], major sporting events

[90–92], and odd-even license plate traffic policies [93] have found similar declines in direction

and magnitude in air pollution following declines in traffic. Our results confirm and reinforce

the relationship between traffic and mobile source pollution.

Our analysis has a few limitations. We ended our study period on April 30th to focus

on the most stringent shelter in place period and match previous studies. As a result, we

could not observe how scattered opening up of California localities affected traffic and air

quality which warrants further studies. Regarding our data sources and methodology, a

cutoff of 50% observed traffic may lead to an excess of algorithmically generated data which

ignore immediate pandemic-related traffic impacts. As a result, we may be overestimating

traffic flow and underestimating NO and NO2 reductions. Another limitation is related to
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uncertainty of traffic and pollution estimates. While we did not quantity these uncertainties,

we found that traffic changed very little during January and February 2020 (mean coefficient

of variation: 11%). Due to the low coefficient of variation, large effect size, and statistical

significance of the results, we do not expect such uncertainties would alter our conclusions.

Lastly, another source of bias may arise from weather data. Fewer than half of the EPA near-

road sites in California reported meteorology data, necessitating the use of a different data

source. Nevertheless, meteorology reported by near-road sites were very highly correlated

with MesoWest data, with correlation coefficients between sources of temperature, relative

humidity, and wind speed data at 0.97, 0.95, and 0.75, respectively. In addition, the data fit

well based on adjusted R2 values, suggesting a robust model.

In summary, we estimated the meteorology-adjusted decline in NO and NO2 concen-

trations attributable to quantified changes in near-road traffic following shelter-in-place in

California. We found that the contribution of passenger vs. truck traffic declines to changes

in NO and NO2 differs between Northern and Southern California. We report one of the first

studies that quantifies the effect of directly measured traffic on NO and NO2 reduction, the

former a significant precursor to the latter as well as other mobile source-derived pollutants

including ozone, PM2.5, and smog. This chapter shows a directly measured link between

reduced traffic and reduced NO and NO2 emissions, strengthening the evidence base between

COVID-19, shelter-in-place, and cleaner air.

2.5 Figures and Tables
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Figure 2.1: Map of near-road monitoring sites in California. Numbers refer to, from 1 to 7:
Berkeley Aquatic Park, Knox Avenue, Laney College, Owens Court, Anaheim Route 5 Near
Road, Long Beach Route 710 Near Road, and Ontario Etiwanda Near Road.
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Figure 2.2: Map of near-road monitoring sites in Northern California. Numbers refer to,
from 1 to 4: Berkeley Aquatic Park, Knox Avenue, Laney College, and Owens Court.
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Figure 2.3: Map of near-road monitoring sites in Southern California. Numbers refer to,
from 5 to 7: Anaheim Route 5 Near Road, Long Beach Route 710 Near Road, and Ontario
Etiwanda Near Road.
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Figure 2.4: Observed (black solid line) vs. Business-as-Usual (yellow dotted line) traffic
flow in California from March 1st to April 30th, 2020. (a) Northern California Passenger
Vehicle Traffic, (b) Southern California Passenger Vehicle Traffic, (c) Northern California
Truck Traffic, and (d) Southern California Truck Traffic. The three vertical lines represent,
from left to right (i) March 3rd, when California declares a state of emergency, (ii) March
7th, when the city of San Francisco banned large group gatherings, and (iii) when California
declares a statewide shelter-in-place order.
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Figure 2.5: Two-week rolling averages of observed near-roadway NO and NO2 concentrations
versus simulated scenarios in California: (a) Northern California NO, (b) Southern California
NO, (c) Northern California NO2, and (d) Southern California NO2. The black solid line is
observed data. The yellow dotted line depicts predicted NO and NO2 concentrations under
Scenario A, simulated business-as-usual passenger flow and truck flow. The blue dashed line
depicts predicted NO and NO2 concentrations under Scenario B, simulated business-as-usual
passenger and observed truck flow. The three vertical lines represent, from left to right (i)
March 3rd, when California declares a state of emergency, (ii) March 7th, when the city of
San Francisco banned large group gatherings, and (iii) when California declares a statewide
shelter-in-place order.
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Table 2.1: Percent reductions in vehicle flow and NO emissions between observed mea-
surements and simulated business-as-usual from March 1, 2020 to April 30, 2020. Data
are separated by site and overall region as well as into weekdays and weekends. Standard
deviations of percentage reductions are in parenthesis.

% Passenger
Flow Reduction (SD)

% Truck Flow
Reduction (SD)

% NO concentration
reduction (SD)

% NO2 concentration
reduction (SD)

Region/Site
Weekday
(N = 44)

Weekend
(N = 17)

Weekday
(N = 44)

Weekend
(N = 17)

Weekday
(N = 44)

Weekend
(N = 17)

Weekday
(N = 44)

Weekend
(N = 17)

Northern California 29 (17)* 42 (23)* 23 (14)* 44 (20)* 35 (5.1)* 60 (2)* 29 (7.3)* 44 (0.87)*
Berkeley Aquatic Park 23 (15)* 38 (23)* 13 (10)* 34 (21)* 26 (4.6)* 22 (13)* 19 (4.2)* 26 (0.96)*

Knox Avenue 31 (19)* 42 (23)* 37 (16)* 53 (20)* 44 (6.2)* 43 (20)* 39 (9.6)* 54 (1.4)*
Laney College 29 (14)* 40 (25)* 22 (5.4)* 43 (9.4)* 42 (8.5)* 33 (21)* 31 (6.8)* 45 (0.85)*
Owens Court 34 (19)* 47 (25)* 20 (12)* 48 (24)* 30 (10)* 25 (23)* 26 (9.4)* 49 (1.1)*

Southern California 24 (15)* 37 (20)* 4 (9.3) 21 (15) 32 (9.3)* 20 (6.8)* 15 (5.8)* 31 (3.6)*
Anaheim Route 5 Near Road 31 (18)* 41 (21)* 3 (13) 16 (14)* -11 (9.2)* -15 (20) 21 (5.3)* 45 (0.99)*

Long Beach Route 710 Near Road 22 (12)* 37 (19)* 7 (6.1)* 34 (12)* 47 (8.5)* 40 (16)* 15 (6.4)* 29 (1.5)*
Ontario Etiwanda Near Road 19 (11)* 34 (20)* 2 (6.7) 13 (11)* 28 (13)* 19 (17)* 10 (10)* 22 (9.2)*

Table 2.2: List of near-road monitoring sites in study, location (county), and target highway.
Unshaded sites are were classified as in Northern California, while sites shaded in green were
classified as in Southern California.

Local Site Name County Target Road
Berkeley Aquatic Park Alameda I-80
Knox Avenue Santa Clara US 101
Laney College Alameda I-880
Owens Court Alameda I-580
Anaheim Route 5 Near Road Orange I-5
Long Beach Route 710 Near Road Los Angeles I-710
Ontario Etiwanda Near Road San Bernardino I-10

Table 2.3: Mean standard deviation of passenger and truck flow for (a) within-month traffic
between 2017-2019 and (b) within-year traffic between January and April within the same
year for the years 2017-2019. Unshaded sites were classified as in Northern California, while
sites shaded in green were classified as in Southern California.

(a)
Mean SD Flow, Within Months

(b)
Mean SD Flow, Within Year

Local Site Name Passenger Truck Flow Passenger Truck Flow
Berkeley Aquatic Park 9433 1816 6973 1758
Knox Avenue 4923 423 7096 156
Laney College 8402 1328 8788 1380
Owens Court 10866 1250 10146 1220
Anaheim Route 5 Near Road 5726 396 5410 393
Long Beach Route 710 Near Road 14694 4586 13307 4517
Ontario Etiwanda Near Road 8431 2290 8265 1974
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CHAPTER 3

Co-kriging with a low-cost sensor network to estimate

spatial variation of brake and tire-wear metals and

oxidative stress potential in Southern California

3.1 Abstract

Due to regulations and technological advancements reducing tailpipe emissions, an increas-

ing proportion of emissions arise from brake and tire wear particulate matter (PM). PM

from these non-tailpipe sources contains heavy metals capable of generating oxidative stress

in the lung. Although important, these particles remain understudied because the high cost

of actively collecting filter samples. Improvements in electrical engineering, internet connec-

tivity, and an increased public concern over air pollution have led to a proliferation of dense

low-cost air sensor networks such as the PurpleAir monitors, which primarily measure unspe-

ciated PM2.5. In this study, we model the concentrations of Ba, Zn, black carbon, reactive

oxygen species concentration in the epithelial lining fluid, dithiothreitol (DTT) loss, and OH

formation. We use a co-kriging approach, incorporating data from the PurpleAir network

as a secondary predictor variable and a LUR model as an external drift. For most pollutant

species, co-kriging models produced more accurate predictions than an LUR model, which

did not incorporate data from the PurpleAir monitors. This finding suggests that low-cost

sensors can enhance predictions of pollutants that are costly to measure extensively in the

field.
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3.2 Introduction

Exposure to PM2.5 and PM2.5-10 has been associated with a wide array of adverse human

health effects [38]. The composition of PM, as a complex, multisource pollutant, varies

depending on factors such as season, geography, and time of day [94–96]. Traffic is an

important source of ambient PM2.5 and is a dominant contributor to metals found in PM

[8, 97]. Recent vehicle emissions regulations have decreased average tailpipe emissions, but

not those from brake and tire wear [3]. As a result, the relative importance of non-exhaust

vehicle emissions, namely those from brake and tire wear as well as road wear, has increased

in recent years [98, 99]. This trend is expected to continue particularly as the sale of electric

vehicles continues to grow [6].

Brake and tire wear particles are generated due to friction and abrasion caused by braking

and normal driving conditions. Studies have found that brake and tire wear particles exist

in both the fine and coarse ranges, with diameters rangng from 1-10 µm. Sharp spikes in

temperature associated with braking action also generate ultrafine particles, provided that

temperatures achieve a critical temperature (140◦C < T < 240◦C) [6]. Prior studies on

roadways and in the laboratory have identified specific metals that can serve as tracers with

varying specificity for identifying non-exhaust emissions, including Ba, Cu, and Sb for brake

wear particles and Zn for tire wear particles [100–104]. These metals, in addition to serving as

tracers for brake and tire wear, are themselves highly reactive. In surrogate lung fluid, heavy

metals such as Cu cause oxidative stress when reacting with H2O2 to form OH radicals in a

process known as the Fention reaction [105]. The presence of ultrafine particulates emitted by

brake wear that contain highly reactive heavy metals may have human health implications,

as ultrafine particles when inhaled travel deeper in the lung and can enter the bloodstream.

Knowledge concerning the spatial distribution of such elements, however, remains limited.

LUR is a well-established technique used for exposure assessment of intraurban air pol-

lution, where regression models include land use, traffic, physical geography, and business
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density as predictors of measured air pollution concentrations [28, 106, 107]. Model derived

coefficients can then be applied to generate an interpolated exposure surface for an entire

study area.

LUR has been used extensively to study of traffic-related pollutants including unspeci-

ated particulate matter and NO2 [28], but relatively few studies have applied such methods

to particulate matter constituents. In an early study, de Hoogh et al. (2013) [108] analyzed

spatial data from 400 sampling locations in 20 study areas across Europe and constructed

LUR models for each site and each metal. They found that traffic-related variables, includ-

ing traffic intensity and road length were often associated with metals identified as brake

and tire tracers, such as Cu and Zn. Zhang et al. (2015) [109] collected PM1 data at 54

samplinglocations (25 in the summer, 29 in winter) in Calgary, Alberta and found that auto-

and traffic-related variables contributed strongly to the predictions of monitored Ba, Zn, Cu,

and Sb. Ito et al. (2016) [110] sampled at 99 locations in New York City and used speciated

particle data to produce LUR models, identifying Cu, Fe, and Ti as markers of near-road

pollution. Weichenthal et al. (2018) [111] used LUR to model Cu, Fe, and generated a re-

active oxygen species (ROS) concentration in lung fluid based on these two metals using 67

sites at which they monitored in two seasons and found strong associations between road

and traffic-related variables such as distance to and length of highways, length of major

roads, and traffic counts and all three of their dependent variables, while also finding strong

correlations between Cu, Ba, and Fe.

Other studies expanded on the traditional LUR approach by altering either the statistical

methodology or including additional predictors in their LUR model. Brokamp et al. (2017)

[30] collected PM2.5 samples at 24 sites in Cincinnati, Ohio, and modeled metal concentra-

tions using both linear land use regression models and machine learning-based random forest

regression models. Their approach resulted in better fit compared to previous models. For

metals associated with brake and tire wear, including Cu and Zn, they found that traffic or

road variables such as length of road and truck traffic were significant predictors. Tripathy
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et al. (2019) [31] continued with a linear regression approach but integrated a Gaussian at-

mospheric dispersion model into their predictions, also finding improved model fit compared

to only using land-use variables.

A general barrier of measuring speciated PM2.5 elements is the time and labor involved in

the sample collection and analysis. Collection of air samples on filters followed by inductively

coupled mass spectrometry analysis is the current gold standard, offering precise information

on multiple metal constituents and isotopes. Collecting many samples simultaneously can

be very challenging due to equipment and labor demands. As a result, assimilating other

forms of data to assist with interpolation has clear advantages.

A potential solution to this problem involves using low-cost air sensor networks, such as

PurpleAir [112]. Low-cost air sensor networks have grown following improvements in wireless

connectivity technology and electrical engineering and have received increased attention from

government regulatory agencies, such as the U.S. Environmental Protection Agency and the

California Air Quality Management District [5, 113]. The PurpleAir device consists of two

Plantower PMS5003 laser particle (channels A and B), which use light scattering of a laser to

count suspended particulates in the air at various sizes and provides the mass concentration

of PM1.0, PM2.5, and PM10 [112]. Devices also include wireless internet connectivity, and with

the consent of the user, uploads time series data to the PurpleAir website, which provides

data free of charge. PurpleAir sensors are not reference grade, although they correlate well

with federal reference monitors [114]. In addition, these low-cost sensors do not measure

speciated PM2.5 constituents. The network, however, is far denser in major metropolitan

areas compared to regulatory monitors and monitors deployed in academic studies, and

information is collected and stored in real-time.

In this chapter we leverage the PurpleAir network to enhance the prediction of metal

species and indicators of oxidative stress. We implemented geostatistical modeling employing

the co-kriging method to predict a target, gold standard variable (i.e., filter-based particle

samples) based on auxiliary measures from more widely distributed PurpleAir sensors. While
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widely used in mining and petroleum engineering, co-krigi has previously seen limited, but

effective use in air pollution studies [115]. With a focus on brake and tire wear derived

particles, this chapter is the first to model speciated PM2.5 integrating information from a

low-cost air sensor network.

3.3 Methods

3.3.1 Site selection, PM2.5 speciation data

A related publication details the site selection and sampling methods of this chapter, and

thus are described only briefly here [103]. Our study targeted the greater Los Angeles

area, a geographically diverse and heavily populated region of 11.4 million people. The

region is characterized as a Mediterranean climate, and is mild to hot year-round, with

mean temperatures ranging from 15-17◦C in the winter to 21-23◦C in the summer. Average

rainfall varies seasonally, with average ranfall at between 29-92 mm in the winter and 0-2.3

mm in the summer. We conducted two sampling campaigns, one in summer 2019 and the

other in winter 2020. In each campaign, monitors simultaneously collected two-week samples

at 46 different locations in the Greater Los Angeles region, with four sites serving as repeat

locations. Our site selection methods, detailed in a prior report, involved a Multi-Criteria

Decision Analysis, combining variables hypothesized a priori to be associated with brake

and tire wear such as traffic intensity, road slope variance, and intersection density, as well

as expert understanding of local geographies and PurpleAir densities to improve co-kriging

[116]. The chapter analyzes data on ambient fine and coarse PM samples using Harvard

cascade impactors (CI) and personal environmental monitors (PEM).

In addition to chemical analyses described by Oroumiyeh et al. (2022) [103], PEM samples

were analyzed for black carbon and oxidative stress activity at UCLA with absorption at 880

and 370 nm, using an optical transmissometer (Magee Scientific). Oxidative stress potential

was measured with two assays: OH radical formation and dithiothreitol (DTT) loss. We
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measured OH formation by incubating samples in surrogate lung fluid containing an OH

probe disodium terephthalate, and monitoring formation the reaction product of OH and

terephthalate, which is highly fluorescent [117]. DTT loss was measured by incubating filters

in phosphate buffer containing DTT, as detailed in Cho et al., (2005) [118].

Prior to deployment, a preliminary list of metals hypothesized to serve as specific tracers

for different sources (brake wear, tire wear, tailpipe emissions, and dust and soil) based on

a prior literature search. To finalize a list of potential dependent outcomes, we calculated

Spearman correlations between hypothesized tracers and selected Ba (brake wear), Zn (tire

wear), DTT loss, OH formation, and black carbon, and a calculated ROS formation based on

the kinetic multilayer model for surface and bulk chemistry in the epithelial lining fluid (KM-

SUB-ELF ROS) [119], as well as unspeciated PM2.5. KM-SUB-ELF ROS uses concentrations

of Cu and Fe, metals both associated with brake and tire wear, to calculate the rate of

production of ROS in the epithelial lining fluid. Except for gravimetric PM2.5 and KM-SUB-

ELF ROS, we generated predictive surfaces for all metals and oxidative stress markers based

on both volume-normalized and mass-normalized concentrations.

3.3.2 Land-use data

We downloaded land-use data from the following sources: (i) raster data on impervious

surfaces, tree canopy, and green space data from the 2016 National Land Cover Database

(NLCD) [120]; (ii) 2018 annual average daily traffic data from the federal highway adminis-

tration [121]; (iii) road network and rail network information from the U.S. Census Bureau

[122]; and (iv) businesses likely to emit metals, such as auto repair shops and metal processing

units, from the ESRI business analyst [123] .

NLCD data came in three raster files, each at a resolution of 30 by 30 meters: impervious

percent, tree canopy percent, and a dataset which classified each pixel into type of land use

[120]. Following a previous study, we created green space by grouping the following variables

together: open water, ice/snow, developed/open space, developed/low intensity, decidu-
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ous forest, evergreen forest, mixed forest, dwarf scrub, shrub/scrub, grassland/herbaceous,

sedge/herbaceous, pasture/hay, and cultivated crops [124]. We classified the following as

non-green space: medium intensity land cover, high intensity land cover, and barren land

(rock/sand/clay) (Table 3.1)

Information on all businesses in the study area were downloaded from the ESRI business

analyst. We selected businesses that potentially emit heavy metals and those related to

brake and tire wear such as auto shops and brake and tire manufacturers based on North

American Industry Classification System code. Subsections for codes selected are available

in Table 3.2.

3.3.3 Buffering and zonal statistics

We assigned land-use data to our sampling sites using nested circular buffers [125, 126].

Around each monitoring site, we constructed circle-shaped areal units of 100-, 200-, 300-,

400-, 500-, 750-, and 1000-meter radii. For each circle, we calculate either the average value

for land use for NLCD and traffic data or the density for intersection and businesses data.

The complete list of potential variables as well as well as their sources are found in Table

3.3.

3.3.4 Land-use regression model building and validation

In line with other studies, we approach our data assuming a linear relationship between

independent and dependent variables [109]. We began by plotting histograms and univariate

plots to investigate the distribution of dependent and independent variables. If a histogram

revealed the distribution of a variable to be skewed, or if univariate plots showed a non-linear

relationship between independent and dependent variable, we log transformed our variables.

To reduce collinearity between variables of the same class but different buffer radii, for each

class of variable, we selected the buffer distance with the highest univariate correlation with

32



the outcome of interest. After generating variables for each point, we used a method previ-

ously used to predict PM2.5 concentrations in the United States, selecting variables using a

deletion-substitution-addition (DSA) algorithm [127]. The DSA algorithm selected variables

based on prediction accuracy with a L2 loss cross-validation function [128]. After the DSA

algorithm chose the optimal set of predictors of sizes 1-10 variables, we conducted another

round of K-fold cross-validation with five folds to select an optimal number of variables in

the final model based on the mean square predictor error.

To adjust for seasonality, we included a dummy variable indicating the sampling season

(0 = summer, 1 = winter). In our final prediction surfaces, we calculated the average of

the summer and winter surfaces by dividing the season coefficient by two and adding the

resultant term to the remainder of the model.

3.3.5 PurpleAir data

Within the study area, we downloaded hourly-averaged PurpleAir data temporally aligned

with both study periods from the PurpleAir website. PurpleAir sensors contain two sensors,

which separately report PM2.5 measurements through two channels, A and B. We restricted

our sample to outdoor sensors. Downloaded data contained date and time of measurement,

estimated particle matter mass concentration at 1, 2.5, and 10 microns reported by the two

sensors in each device labeled channels A and B, temperature in ◦F , and relative humidity.

Initial data quality assurance and quality control (QA/QC) steps included excluding sensors

if they:

• Had a missing data rate of 10% or higher

• Did not report temperature

Next, we verified that our sensors were outdoor by creating time series temperature plots.

If sensors reported a very low range of temperature, we assumed that they were mislabeled
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indoor sensors and subsequently deleted the sensor.

After obtaining a final list of PurpleAir sensors, we conducted further QA/QC per Plan-

tower’s factory standards [129]. Data points were removed if they did not meet the following

criteria:

• PM2.5 mass concentrations above 500 µg/m3

• For observations below 100 µg/m3, remove rows if the difference between PM2.5 mea-

surements reported in channels A and B exceeds 10 µg/m3

• For observations greater than 100 µg/m3, remove rows if the difference between PM2.5

measurements reported in channels A and B exceeds 10%

Finally, we also removed a limited number of rows with extreme temperature and relative

humidity values (RH% ≤ 0 or RH% ≥ 100; temperature ≤ -200◦F (-129◦C) or temperature

≥ 1000◦F (537 ◦C)). Once cleaned, for each sensor, we obtained a final measurement by

averaging measurements from the A and B sensors.

We selected PurpleAir estimated PM2.5 concentrations as our auxiliary variable in our

co-kriging model, as it exhibited the highest univariate correlations with our speciated PM2.5

data. Locations of both filter samplers and PurpleAir sensors are plotted on Figure 3.1. Our

final dataset used data from 50 filter samplers across two seasons and 294 PurpleAir sensors.

3.3.6 Co-kriging with external drift

Co-kriging [130, 131] refers to predicting the value of an outcome of interest at a spatial

location exploiting information from (i) direct measurements of the primary variable; and (ii)

measurements of other variables, sometimes referred to as auxiliary variables or co-variables,

with which the outcome is assumed to be statistically dependent. The key advantage of

co-kriging over ordinary kriging is that we incorporate the dependence between the primary

variable and the auxiliary variable as well as the spatial dependence exhibited by all the
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variables. The external drift refers to a set of linear predictors, in this case our LUR models.

By incorporating spatial dependencies between our measurements and PurpleAir estimates,

we can model using spatial relationships unaccounted for with standard LUR models.

Co-kriging with external drift (CED) uses a multivariate spatial regression model

yi(s) = x⊤
i (s)β + wi(s) + ϵi(s) , i = 1, 2, . . . , q , (3.1)

where yi(s) is the i-th outcome at location s, xi(s) is the external drift, a p × 1 vector of

land-use covariates or predictors corresponding to the i-th outcome at location s, wi(s) is a

zero-centered spatial process capturing spatial dependence and ϵi(s) is a white-noise process

independent of wi(s) capturing micro-scale variation arising from measurement errors or

other fine resolution dependencies.

To avoid singularity issues, for co-located points in both speciated metals and PurpleAir

data, we shifted longitude and latitude coordinates by a random distance between 0 and 5

meters. For each exposure (outcome variable), we estimated wi(s), the spatial process, as

a covariogram modeling the cross-covariance between the exposure and auxiliary variable

as a function of distance. After fitting initial theoretical covariograms, we evaluated the

performance by simultaneously conducting 1000 iterations of 10-fold cross-validation for

both the original LUR model as well as the CED model. We then used two-sample t-tests

to compare the mean and standard deviation of the 1000 subsequent mean square errors

generated and made manual adjustments to the cross co-variogram parameters. We repeated

this process with the goal of minimizing both the mean and standard deviation of the MSE

as much as possible.

We implemented co-kriging using the gstat library [132] in the R statistical comput-

ing environment to implement co-kriging. Locations of the filter samplers and PurpleAir

monitors used in the study are mapped in Figure 3.1.
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3.3.7 Generating exposure surfaces

After completing LUR model building, we created raster surfaces for predictor variables

using the focal statistics function in ArcMap 10.8 (ESRI, Redlands, CA). In our convex hull,

we used R 3.6.3 [88] to generate a 30-meter by 30-meter grid of our study area, extract

independent variable values at each point in the grid, and predict with both the LUR and

CED models. We avoided predicting exposures in the Angeles National Forest, a national

forest with a very few permanent inhabitants not represented in our study sample.

3.4 Results and Discussion

3.4.1 Summary statistics

We built land use regression and co-kriging models for six different components/measures in

the PM2.5 size fraction: Ba, Zn, OH formation, DTT loss, black carbon, and KM-SUB-ELF

ROS. Table 3.4 summarizes both the volume-normalized concentration and mass-normalized

(or equivalent) measurement for each model outcome, when available.

Our summary statistics are mostly in-line with findings from previous studies. Our mean

gravimetric PM2.5 concentration of 9.4 µg/m3 was slightly lower, but overall comparable to

the 2019 Los Angeles County average of 12.7 µg/m3, likely because our 2- week sampling

periods in two seasons only covered four of the 52 weeks. Zn measurements are similar

to the lower end of measurements reported by de Hoogh et al. (2013) [108], Brokamp et

al. (2017) [30], and Kuang et al. (2020) [133] but are much lower than those reported by

Tripathy et al. (2019) [31], despite all of these studies having taken place in either European

or American metropolitan areas, including some in Los Angeles. Zn is a product of some

industrial processes such as steel production, as well as being a component of tires, which

may cause the differences in measurements, both spatially and temporally. A reason might

be that Zn emissions, while a product with car tire wear, is a multisource pollutant also
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associated with the lubrication oil and steel production [30, 31, 133].

For black carbon, our average concentration of 0.41 µg/m3 was lower compared to a

different study that sampled in the same region, who reported an average concentration

of 0.59 µg/m3 [134]. The discrepancy in black carbon levels is likely due differences in

sampling strategy; Jones et al. (2020) [134] focused on clustering monitoring sites around

major freeways in the Los Angeles area, whereas we sampled in both high- and low-traffic

areas. Additionally, we collected a single 14-day sample which included sampling during

the day and night, with the latter having reduced levels of traffic. Jones et al. (2020) [134]

instead measured for shorter periods during the daytime, albeit outside of rush hour traffic.

Regarding DTT loss, our average loss rate of 61.9 pmol/min/µg is comparable, but on the

higher end of findings published by [135], who analyzed PM2.5 samples from the San Joaquin

Valley in California, US and found DTT loss rates between 17 and 70 pmol/min/µg [135].

DTT was also studied by Yang et al. (2015) [136]. Compared to our mean volume-normalized

mean DTT loss rate of 550 pmol/min/m3, they measured generally higher rates of DTT

loss, ranging from 700 to 2000 pmol/min/µg. Ba is less commonly reported, however, while

PM2.5, Zn and many other elements measured in our study are much lower than measured in

a multi-site air quality campaign in Los Angeles in 1987, Ba concentrations (in ng/m3) fall

in the same range (17 ng/m3 in our study vs. 13-32 ng/m3) as the measurements made in

1987. Two earlier studies have reported OH formation in simulated lung fluid from ambient

particles, for particles collected at one site during summer in Los Angeles and the other

in Beijing and Wangdu in Northern China respectively [137, 138]. Our mass-normalized

average value of 0.55 pM/min/µg is reasonably close to the earlier Los Angeles value (0.32

pM/min/µg, Kuang et al. 2017 [137]) and falls in the range of values observed in China (0.22

– 1.13 pM/min/µg). Finally, we found higher levels of ROS generation estimated by KM-

SUB-ELF ROS (100 nmol/L), compared to Weichenthal et al. (2018) [111], who sampled

during the summer and winter seasons in Toronto, Canada and reported an annual average

ROS concentration of 52 nmol/L, possibly due to generally lower particulate concentrations
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in Toronto.

We calculated univariate Spearman correlation coefficients between our six outcome vari-

ables, summarized in Figure 3.2. Observing changes in correlation coefficients between sum-

mer and winter we have divided our correlation matrix into summer (top/left) and winter

(bottom/right) and added a dummy variable indicating sampling period (0 for summer, 1

for winter) to our land use regression. We find Spearman correlations are very high (ρ:

0.8-0.98) for metal concentrations or measurements based on metal concentrations (Ba, Zn,

and ROS). Such high correlations between brake and tire-wear associated metal-based vari-

ables are consistent with a study of speciated PM1 by Zhang et al. (2015) [109]. For other

measurements, correlations are positive, but differ between summer and winter. DTT loss

is most highly correlated with other measures in the winter sample (ρ: 0.51-0.73) and only

moderately in the summer (ρ: 0.24-0.47), which are consistent with a prior study finding

Spearman correlations ranging from 0.24 to 0.52 [136]. In contrast, for OH formation corre-

lations with other measures were slightly higher during the summer (ρ: 0.53-0.71) compared

to the winter (0.46-0.60).

Figure 3.3 shows the cross-validation errors for models of each model size chosen by

the DSA search algorithm resulting from a 5-fold out-of-sample cross validation process.

For each exposure, we chose the model with the minimum error, regardless of model size.

Table 3.5 summarizes the results of variable selection while building of 11 different land use

regression models for six exposures, including predictors selected, regression coefficients, and

adjusted R2. The most common predictor, which appears in all LUR models except for

PM2.5, is the dummy variable for monitoring period, indicating seasonal difference among

most exposures. All models featured at least one traffic-related variable, either distance to

railway, heavy duty traffic, or both. Other common predictors included the land use variables

tree canopy cover percent, impervious surface percent, and number of businesses within the

buffer distance. The best performing models were for volumized concentrations of Ba, black

carbon, and DTT loss, with adjusted R2 statistics of 0.60, 0.64, and 0.68, respectively.
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Despite mainly relying on cross-validation error, our model R2 values are similar to those

obtained in prior literature [109, 136]. Our CV method has previously been shown to be

optimized for predictive accuracy, which allows us to minimize the risk of overfitting in our

modeling common among studies that choose models based on an R2 statistic [139].

Across our 12 LUR models, the direction of effect associated with each variable remained

consistent, which we interpret as a sign of internal consistency in our results. For example,

a positive period variable indicates that exposure concentrations were greater in the winter

compared to the summer. Negative distance to rail coefficients indicates that higher lev-

els of exposure closer to railways. Business count coefficients, regardless of buffer distance,

were uniformly positive, matching a prior study finding that auto-repair and related busi-

nesses are positively correlated with brake and tire wear metals or that they may also be

destinations correlated with heavier traffic in the surrounding area (Hasheminassab et al.,

2020). Similarly, the coefficient for heavy duty traffic, a variable very highly correlated with

passenger traffic, was uniformly positive across our 12 models. Unexpectedly, tree canopy

percentage coefficients were not only commonly selected as predictors into models, but were

also uniformly positive. Although tree canopy cover may serve as a marker for green space,

our study almost exclusively monitored in urban or residential areas, where it is common to

plant trees alongside sidewalks near roadways. In our data, we found that log distance to

road and tree canopy cover were positively correlated (Pearson ρ = 0.34-0.51), which may

suggest that in a large, highly developed urban setting, tree canopy serves as a proxy not

for density of green space, but instead proximity to the roads.

After completing LUR modeling, we assessed spatial autocorrelation by examining spa-

tial residual maps, constructing and visually inspecting Thiessen polygons, calculating the

Moran’s I statistic, and modeling the semivariogram of the residuals. All four methods did

not show evidence of significant spatial autocorrelation among LUR residuals.
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3.4.2 Changes in cross-validation accuracy between LUR and CED

Cross covariograms between LUR residuals and PurpleAir PM2.5 showed a degree of cross-

covariance (Figures 3.4 and 3.5). We find this reflected in the results of iterated 10-fold

cross validation, where after optimizing the cross covariogram parameters, a statistically

significant improvement in prediction accuracy among several of our exposures (Table 3.6).

After conducting 1000 iterations of 10-fold cross validation comparing CED and LUR,

we found statistically significant reductions in the mean and standard deviation of the MSE

for 8 out of the 12 the study’s exposures, as shown on Table 3.6. There were statistically

significant changes in neither mean or standard deviation of the MSE for mass-normalized

Zn concentrations and volumized DTT loss. While black carbon percentage had a small

but statistically significant increase in mean MSE, standard deviation of MSE decreased,

suggesting increased precision but slightly reduced accuracy. For other outcomes, we found

mean reductions in MSE ranging between 2.1% and 14.1%, and reductions in MSE stan-

dard deviation between 3.1% and 36%. These results suggest that for most brake and tire

wear-related outcomes, incorporating low-cost PM2.5 measurements via co-kriging leads to

improved predictive accuracy and precision. While co-kriging methods have been used in

the past to improve PM10 based on incorporating wind speed curves, to our knowledge this

chapter is the first to show that compared to conventional LUR methods, co-kriging with a

low-cost air sensor network improves predictions of PM2.5 species and markers of oxidative

stress.

Modeled surfaces for selected dependent variables comparing CED and LUR are illus-

trated in Figure 3.6. In addition to generally lower MSE and MSE standard deviation, visual

inspection reveals that CED appears to act as a smoother for the LUR model. This is partic-

ularly noticeable when mapping out the volumized exposure surfaces for of Zn, PM2.5, and

black carbon. LUR models for those pollutants shows noticeable hotspots along rail lines

and major roadways, which result from the distance to rail and traffic-related predictors.
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Potential explanations include the choice of modeling method and auxiliary variable. The

auxiliary variable in the co-kriging model is PM2.5, which as a multisource mixture, gener-

ally displays smoother spatial patterns than primary particles from brake and tire wear. Its

inclusion as a variable in our prediction model may consequently over-smooth our exposure

surfaces. Consequently, co-kriging may lead to a sacrifice in small-area signal, in exchange

for more accurate and precise predictions of overall concentrations. Notably, greater degrees

of smoothing occurred among among exposures that exhibited higher increases of predictive

accuracy and precision, such as PM2.5, Zn, and black carbon, compared to DTT loss, which

did not experience a significant change in predictive accuracy.

Environmental features may also be responsible for differences in spatial distribution

that may be captured by PurpleAir data but not in standalone LUR models. Although

we did observed systematic patterns in neither LUR spatial residuals nor clustering, factors

such as prevailing wind direction may have affected spatial patterns, leading to smoothing.

Other hyperlocal environmental features such as the presence of street canyons may have

affected local wind direction, leading to smoothing effects beyond wind direction alone.

Traffic activity may also lead to continued resuspension of settled particles, which when

entering the atmosphere, leading to more smoothing. Further study of these effects aimed

at better understanding the factors behind smoothing include potential simulation studies,

repeated campaigns with increased sample size, or alternative choices of auxiliary variables.

Our study has a few limitations. Although the number of sensors deployed matches that

of some prior studies, such as Zhang et al. (2015) [109], our study area is much larger than

that of prior studies, and the network of monitoring sites is not very dense, which may have

led to over-smoothing of the prediction surfaces due to sparse data support. We decided to

prioritize covering a larger study area over having many repeated monitoring sites, which

resulted in very low temporal resolution, with repeated measurements at only four sites.

Adding in the PurpleAir network improves cross-validation for most outcomes and improves

the spatial resolution of our data, there may be concerns about this network and its data.
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While low-cost, the PurpleAir sensor remains a relatively luxury item, and network density is

consequently biased towards high-income households [140]. As a low-cost sensor maintained

by consumers, despite attempts at laboratory and field calibration, PurpleAir sensors when

inadequately maintained are at risk of unaccountable sensor drift and distortion of results due

to environmental factors [129, 141]. Our results show significant improvements in predictive

accuracy and precision, though future similar studies using well-maintained sensor networks

may see greater improvements in predictive accuracy. With regards to speciated data, most

of our filter samplers were placed at residences of participants of an existing birth cohort

study, who were largely high SES homeowners. As a result, our model predictions in and

around disadvantaged communities, which historically have higher levels of air pollution and

lower levels of homeownership, likely have higher levels of uncertainty. Additionally, based

on the observed improvements in our predictive models when adding in PurpleAir data, our

study suggests that adding in temporally aligned data may help address a fundamental issue

among LUR studies.

3.5 Conclusion

Here we presented a novel method for integrating low-cost sensor data with reference grade

date to estimate surfaces of brake and tire wear across Southern California. We constructed

several exposure surfaces over a large area for use in population health studies with infor-

mation from filter samples, land-use data, and the PurpleAir low-cost sensor network. Our

study demonstrates that as sensor networks continue to expand, the ease of data collec-

tion and high spatial resolution associated with such networks may have the potential to

improve exposure modeling and subsequent air pollution epidemiology. Compared a con-

ventional LUR, CED addresses spatial relationships between filter samples and PurpleAir

sensors across the study area and may account for spatial distribution of brake and tire

wear-related particles more accurately than an LUR. Our results reflect normal conditions
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because the monitoring did not take place during major recent events affecting air quality,

such as the California wildfires and the COVID-19 pandemic.

Despite limitations noted above, our model has identified various land use variables, such

as traffic, business density, and impervious surfaces as important predictors of brake and tire

wear metals and oxidative potential measures in a large study area. We report the first study

to incorporate low-cost sensor data to model speciated PM2.5, as well as the largest-area

study covering the Los Angeles metropolitan area. Our study results suggest that such sensor

networks, particularly when further expanding, have potential for use in exposure modeling

research. When dense enough, such networks have the potential to complement existing

research-grade monitoring, particularly when studying pollutants or their markers that are

difficult or expensive to measure, such as the constituents of PM2.5 or oxidative stress

markers. Future research directions in the exposure field may include taking advantage of

the real-time nature of the PurpleAir network to scale speciated PM2.5 exposures at different

time periods. Beyond exposure modeling, we plan in the future to apply exposure surfaces to

health studies, including an existing pregnancy cohort and a study of adverse birth outcomes

based on state records.
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3.6 Figures and Tables

Figure 3.1: Locations of sampling locations (green and yellow) and PurpleAir sensors (pur-
ple). The study location within the state of California is illustrated on the top-left, with the
study location outlined in red. The area to be interpolated, defined by the convex hull of
the pump boxes is outlined in black. Primary roads in the study area’s bounding box are
shown in red.
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Figure 3.2: Spearman correlation matrix between volume-normalized study outcomes during
the summer (top/left) and winter (bottom/right) sampling campaigns
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Figure 3.3: Cross validation (CV) error plots for each outcome as a function of model size.
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Figure 3.4: Cross covariograms between volume-normalized concentrations and PurpleAir.
The theoretical (modeled) variogram is represented by the solid blue line, whereas the em-
pirically derived variogram is represented by individual dots.
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Figure 3.5: Cross covariograms between mass-normalized concentrations and PurpleAir. The
theoretical (modeled) variogram is represented by the solid blue line, whereas the empirically
derived variogram is represented by individual dots.
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Figure 3.6: Exposure surfaces generated by CED (left) and LUR (models) for (from top to
bottom) volumized estimates of PM2.5, Ba concentration, Zn concentration, and loss rates,
and black carbon, which represent brake wear, tire wear, oxidative stress potential, and
combustion, respectively. The Angeles National Forest, where we do not interpolate, is
shown in green.
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Table 3.1: NLCD classifications

NLCD Classification Spatial resolution Year

Green Space
11, 12, 21, 22, 41, 42, 43, 51, 52,

71, 72, 73, 74, 81, 82
30 x 30 meters 2016

Non-green space 23, 24, 31 30 x 30 meters 2016

50



Table 3.2: First three digits of NAICS codes used to identify businesses potentially associated
with tire-wear related metals

NAICS 3-digit code Classification
212 Mining (except Oil and Gas)
213 Support Activities for Mining
221 Utilities
325 Chemical Manufacturing
326 Plastics and Rubber Products Manufacturing
331 Primary Metal Manufacturing
332 Fabricated Metal Product Manufacturing
333 Machinery Manufacturing
335 Electrical Equipment, Appliance, and Component Manufacturing
336 Transportation Equipment Manufacturing
339 Miscellaneous Manufacturing
423 Merchant Wholesalers, Durable Goods
811 Repair and Maintenance

Table 3.3: List of independent variables in LUR model

Variable Category Covariates Data Sources
Land Use Tree canopy (%) 2016 National Land Use Consortium Database (MRLC 2016)

Impervious (%)
Green space (%)
Non-green space (%)

Traffic and/or Road Intersection density (#/m2) US Census Bureau (Bureau 2019)
Slope variance (%)
Road length (m)
Annual average daily traffic (Veh/day) Federal Highway Administration (Roff 2020)
Annual average daily heavy-duty traffic (Veh/day)

Distance Distance to rail (m) US Census Bureau
Distance to coast (m)
Distance to major road (m)

Commercial Brake and tire-related businesses (count) ESRI Business Analyst (ESRI, 2018)

Table 3.4: Summary statistics for dependent variables.

Outcome Volume-Normalized Mean (SD) Mass-Normalized Mean (SD)
PM2.5 9.4 (2.4) µg/m3

Ba 17 (9.9) ng/m3 1700 (750) ng/g
Zn 9.3 (4.6) ng/m3 930 (320) ng/g
KM-SUB-ELF ROS 100 (26) nmol/L
OH Formation 4.95 (2.1) pmol/min/m3 0.56 (0.14) pmol/min/µg
DTT Loss 550 (208) pmol/min/m3 61.9 (11.8) pmol/min/µg
Black Carbon 0.41 (0.17) µg/m3 4.6 (1.2) %
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Table 3.5: Model summaries for volume-normalized (left) and mass-normalized measure-
ments (right). Numbers contained in parentheses next to model parameters indicates the
buffer radius in the LUR model, if applicable. * indicates that the dependent variable was
log-transformed.

Volume-normalized measurement Mass-normalized measurement
Pollutant Adj. R2 Model Parameters Coef. Adj. R2 Model Parameters Coef.
PM2.5 0.41 Log annual average daily traffic (500) 0.32 - - -

Log distance to rail -0.75
Log distance to major road -0.38
Impervious % (1000) 0.05
Tree canopy % (400) 0.08

Ba 0.60 Period 9.146 0.56 Period 725.79
Tree canopy % (400) 0.763 Tree canopy % (750) 47.42
Log distance to rail -3.40 Log distance to rail -162.9
Impervious % (200) 0.259 Impervious % (200) 10.55
Business count (750) 0.313 Business count (750) 25.9

Log annual average daily heavy-duty traffic (400) 59.8
Zn 0.47 Period 3.69 0.42* Period 6.95

Log distance to rail 1.40 Tree canopy % (750) 0.026
Log annual average daily traffic (300) 0.64 Log distance to rail -0.12

Impervious % (100) 0.0056
KM-SUB-ELF ROS 0.58 Period 81.77 - - -

Tree canopy % (750) 1.57
Log distance to rail -5.49
Impervious % (200) 0.55
Business count (750) 0.87
Log annual average daily heavy-duty traffic (400) 2.42

OH Formation 0.56 Period 1.88 0.37 Period 0.38
Business count (750) 0.07 Business count (750) 0.01
Log annual average daily heavy-duty traffic (400) 0.28 Log annual average daily heavy-duty traffic (400) 0.02
Tree canopy % (1000) 0.07
Impervious % (200) 0.04

DTT Loss 0.60 Period 215.1 0.68 Period 17.49
Business count (300) 34.1 Business count (300) 2.02
Log annual average daily heavy-duty traffic (400) 22.1 Log annual average daily heavy-duty traffic (400) 1.04
Tree canopy % (1000) 10.16 Tree canopy % (1000) 0.34
Impervious % (1000) 4.26

Black Carbon 0.64 Period 0.15 0.56 Period 1.25
Impervious % (1000) 0.01 Impervious % (1000) 0.02
Tree canopy % (400) 0.01 Tree canopy % (400) 0.06
Log distance to rail -0.06 Log distance to rail -0.46

52



Table 3.6: Percent changes in mean and standard deviation of MSE after implementing CED
compared to LUR for volume-normalized (left) and mass-normalized (right) measurements.
Under each estimate are histograms illustrating the 10-fold cross-validation performance
differences between LUR (blue) and CED (pink) modelling approaches after 1000 iterations.
A darker area indicates overlap between LUR and CED results.

Volume-normalized measurement Mass-normalized measurement

Pollutant
Mean MSE
Change (95%

CI)

Mean MSE SD
Change (95%

CI)

Mean MSE
Change (95%

CI)

Mean MSE SD
Change (95%

CI)

PM2.5

Ba

Zn

KM-SUB-ELF ROS

OH Formation

DTT Loss

Black Carbon
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CHAPTER 4

Association of Ischemic Placental Disease in a

Southern California Birth Cohort and PM2.5 Chemical

Species and Oxidative Potential Markers

4.1 Abstract

Road traffic is a significant source of particulate matter pollution, whose exposure is a sig-

nificant risk factor in pregnancy-related health outcomes. The exact mechanisms behind

the relationship between traffic-related air pollution (TRAP) exposure and adverse preg-

nancy outcomes remain unclear, partly due to a lack of detailed exposure assessment of

fine PM2.5 constituents. We aim to assess the relationship between exposure to brake and

tire wear-associated metals and oxidative potential and ischemic placental disease (IPD).

Data from the Placental Assessment in Response to Environmental Pollution (PARENTs)

study, which was assembled from a population of women who sought specialized prenatal

care at UCLA between 2016 and 2019 in Los Angeles, CA. Modeled first trimester exposures

to chemical constituents and oxidative stress potential of PM2.5, black carbon, and PM2.5

mass concentration. Speciated measurements include tracers of brake wear (barium), tire

wear (zinc), and oxidative potential markers based on metal concentrations (KM-SUB-ELF

ROS) or laboratory assays (DTT loss, OH radical formation). Exposures were modeled by

integrating data from filter samples, a low-cost PM2.5 sensor network, and land-use data.

IPD was defined as the presence of one or more of the following: placental abruption, hyper-

tensive disease of pregnancy, fetal growth restriction, or small-for-gestational age. We used
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logistic regression to estimate the associations between air pollution exposures and IPD, ad-

justing for covariates assessed through medical records and interviews. We found a positive

relationship between IPD and speciated exposures. Scaled to the interquartile range, odds

ratios (95% CI) were as follows: barium OR: 1.7 (1.1, 2.7), zinc OR: 1.4 (.86, 2.4), and

oxidative potential markers, both modeled as well as measured through DTT loss and OH

formation assays (ORs ranging from 1.1-2.0). Effect sizes for PM2.5 and black carbon were

lower than most measurements (ORs: 1.3-1.4). We observe higher effect sizes with Ba and

oxidative potential markers compared to traditional measurements such as PM2.5 mass and

black carbon. Our findings suggest two key points: (i) metals associated with brake and tire

wear, currently unregulated, may play a role in the relationship between TRAP and adverse

pregnancy outcomes, and (ii) reducing tailpipe emissions may not be sufficient to protect

pregnant women from TRAP

4.2 Introduction

Exposure to high levels of TRAP is a major risk factor for various adverse health outcomes,

contributing substantially to premature mortality alongside a host of other diseases [19, 142].

TRAP itself is a multisource mixture whose PM emissions stem from both tailpipe emissions

as well as non-tailpipe sources, including brake and tire wear and road dust resuspension.

Southern California studies have found that TRAP contributes to 32% of all ambient PM2.5

[8]. In recent decades, government regulation and advancements in technology have substan-

tially reduced tailpipe emissions in California, altering the profile of particulates in TRAP

[21]. Current clean air regulation in the US does not regulate non-exhaust emissions, which

due to increased fleet efficiency and electrification is expected to contribute a greater share

of particulates to TRAP and overall PM emissions [6]. As TRAP composition evolves with

changes in vehicle trends, health studies assessing effects of air pollution will require up-to-

date, informative exposure assessment [143], such as the use of metals as tracers of brake
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and tire wear [103, 143, 144].

A recent review found a number of adverse pregnancy and birth outcomes associated

with exposure to TRAP, including term low birth weight and small for gestational age [19].

One potential pathway through which PM affects pregnancy and birth outcomes is through

oxidative stress. Oxidative stress plays an important role in the pathophysiology of the

human placenta, where a balance of antioxidants and reactive oxygen species (ROS) helps

regulate placental development [145]. The disruption to the balance of antioxidants and ROS

has been shown to induce inflammation and subsequent morphological changes [146]. These

degenerative changes in the placenta have been found associated with several pregnancy

complications, including preeclampsia, fetal growth restriction, placental abruption, and

gestational hypertension [145]. These disorders, while symptomatically different, have a

common underlying etiology in placental ischemia, and are commonly grouped under a single

term, ischemic placental disease (IPD) [147].

Prior studies have implicated oxidative stress as a primary mechanism through which PM

exposure impacts human health [148]. Heightened PM exposure increases levels of oxida-

tive stress, which have been found to correspond to inflammation leading to morphological

changes in the placenta [146]. This is reflected in prior cohort studies, which have found as-

sociations between ambient PM2.5 and outcomes including intrauterine inflammation [149],

preeclampsia [150], altered lipid metabolic gene expression [151], placental DNA methylation

[152], and IPD [153].

Most studies have focused on ambient PM2.5 or other proxy variables to assess exposure

to air pollution. PM is a non-specific, multisource mixture whose components vary widely

based on time of year and geography [154]. One study showed that within a single city and

time period, PM2.5 samples showed measurable differences in oxidative potential [155]. A

review found that chemical species may modify the association between PM2.5 exposure and

adverse health effects, and that the use of unspeciated PM2.5 may run the risk of exposure

classification [156]. This is especially salient when assessing TRAP, as brake and tire wear
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are rich in metals and organic compounds that are notably capable of generating oxidative

stress [6]. Consequently, there have been increasing concerns that despite reductions in

tailpipe emissions, increased exposure to TRAP may continue to disrupt placental function

leading to downstream adverse birth outcomes [157–160].

Here, we attempt to bridge the above mentioned knowledge gap concerning possible

adverse effects of brake and tire wear-related TRAP exposures and pregnancy. We em-

ploy conventional exposure metrics, namely PM2.5, black carbon, and novel set of exposure

measures, including tracers of brake and tire wear and markers of oxidative potential. We

relied on a well-documented birth cohort [161] with detailed clinical follow-up throughout

pregnancy to assess associations of IPD with different measures of ambient TRAP.

4.3 Methods

4.3.1 Study population

The study cohort was established as part of the Placental Assessment in Response to En-

vironmental Pollution (PARENTs) study. The PARENTs study enrolled a birth cohort of

pregnant women who sought prenatal care and planned to deliver at UCLA hospitals be-

tween 2016 and 2019. Details regarding the cohort are summarized elsewhere [161]. Briefly,

subjects were screened for eligibility early in the first trimester and subsequently followed

prospectively until birth. Patient information was ascertained with both medical records and

standardized questionnaires. Interviews were conducted during pregnancy, i.e. during the

first trimester, early to mid-second trimester, third trimester, as well as delivery and post-

partum to collect information on demographics, medical history, tobacco use, and various

maternal behaviors including diet and residential and occupational exposures.

The cohort was approved by the UCLA IRB, and details are listed by ClinicalTrials.gov

(NCT02786420) [162].
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4.3.2 Outcome assessment

We defined the main outcome, IPD, as the noted presence of one or more of the following

complications: placental abruption, hypertensive disease of pregnancy (preeclampsia or ges-

tational hypertension), fetal growth restriction, or a newborn considered small-for-gestational

age. These four diseases, while symptomatically different, are all related to a placental is-

chemia induced by excessive oxidative stress and are grouped under the composite outcome

IPD [147].

We defined preeclampsia as blood pressure (BP) of 140/90 mmHg or higher on two

occasions at least four hours apart after 20 weeks of gestation with previously normal BP,

and proteinuria of >300 mg/24 hours [163]. In the absence of proteinuria, preeclampsia was

defined as new-onset hypertension with new onset of thrombocytopenia, renal insufficiency,

impaired liver function, pulmonary edema, cerebral or visual symptoms [163].

Gestational hypertension refers to hypertension developing after 20 weeks of gestation not

associated with systemic features of preeclampsia. Chronic hypertension, on the other hand,

was defined as BP 140/90 mmHg or higher that either pre-dated pregnancy or developed

before 20 weeks of gestation [163].

We assessed information such as birth weight (grams), gestational age (days), and BP

from participants’ medical records. Small-for-gestational age was defined as a newborn birth

weight less than the 10th percentile per Fenton’s growth charts with a subclassification below

the 3rd percentile. Small-for-gestational age was further classified by assessing percentiles of

body length and head circumference [164].
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4.3.3 Exposure assessment

4.3.3.1 PM2.5 mass and elemental concentrations

We generated seven 30 by 30 meter exposure surfaces using three data sources: (i) air moni-

toring campaigns measurements from two campaigns we conducted in 2019-20, (ii) land-use

data from public and private sources, and (iii) the PurpleAir low-cost sensor network. We

previously described our data collection and modeling processes in a prior publication and in

Chapter 3 [103, 165]. In brief, we obtained PM2.5 chemical species and oxidative potential

marker data from a fieldwork campaign detailed in Oroumiyeh et al. (2022) [103]. Samplers

measuring PM2.5 during September 2019 and February 2020 were placed at government mon-

itoring locations and individual residences, including at 17 PARENTs participants’ homes.

Oroumiyeh et al. (2022) describe chemical speciation analyses in detail [103, 166, 167], and

Shen et al. (2023) discuss at length the assays used to measure black carbon and oxidative

potential in the filter samples [155].

After obtaining speciation and oxidative potential marker data, we modeled the following:

• Ba (representing brake wear) [6]

• Zn (representing tire wear) [6]

• DTT loss (biological reductant surrogate) [118, 135, 168, 169]

• OH formation (reactive species formed in lung lining when exposed to aerosol particles)

[105]

• KM-SUB-ELF ROS (an estimate of reactive oxygen species generation based on Cu

and Fe concentrations) [170]

• Black carbon (combustion byproduct and diesel tailpipe tracer) [171]

• PM2.5 mass concentration
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We have detailed our exposure modeling in a prior article [165]. Briefly, for each exposure,

we generated a model across the Southern California area employing universal co-kriging

with each exposure as the primary variable; a land-use regression model as an external drift;

and PurpleAir low-cost sensor network as an auxiliary, more spatially resolved variable.

PurpleAir data covering the period between March 2019 and February 2020 for sensors in

the study area were downloaded from the PurpleAir website for these purposes.

Monthly estimates of co-kriged PM2.5, Ba, Zn, and oxidative potential were scaled us-

ing monthly average PM2.5 measurements in the PurpleAir network. For each month, the

cross-covariance between the seven exposures and PurpleAir PM2.5 were modeled using the

gstat package, which was used to predict monthly exposure estimates. We generated each

subject’s first trimester exposure measure by subtracting the gestational age at birth from

the birth date, and adding 92 days (13 weeks). Within this date range, exposure estimates

were calculated as a weighted average of the monthly exposures that were included in each

woman’s first trimester. For subjects who moved residences during their first trimester, the

weighted average was calculated based on residence time at each address. We estimate first

trimester exposures occurring prior to the incidence of IPD, making our study prospective

in design.

Based on reported home addresses at enrollment and relocation dates (if applicable), we

geocoded subject home locations using the Esri ArcGIS Address Locator via the Countywide

Address Management System locator [172]. For addresses that failed to geocode properly,

we used Google Maps via the ggmap R package [173].

4.3.4 Covariates

Using questionnaires, we collected data on covariates and potential IPD risk factors, includ-

ing maternal age (years), maternal race (non-Hispanic White, Hispanic of any race, Black,

Asian/Pacific Islander, or other), parity (continuous), maternal body-mass index (BMI, cat-

egorical), maternal and partner income (nominal), maternal education (categorical), and
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maternal smoking status prior to and during pregnancy (never/former smoker). We as-

sessed pregnancy complications and other medical information, such as gestational diabetes

(yes/no) and fetal sex (male/female) from medical records [174]. Subjects reported maternal

and partner income as belonging to one of five annual salary ranges (under $20,000, $20,000

- $40,000, $40,000 - $60,000, $60,000 - $100,000, and over $100,000). Based on reported in-

comes, we classified each household into low, middle, upper-middle, and high-income when

applicable. Due the small sample size, we dichotomized race into non-Hispanic White and

other.

We encountered missing data for some covariates. Six out of 178 subjects lacked maternal

education data, five out of 178 lacked household income data, and 19 out of 178 lacked

maternal smoking data prior to pregnancy. We addressed missing data using multivariate

imputation using SAS [175]. Specifically, we created an imputation model based on exposure

variables and complete covariates. We used the Markov Chain Monte Carlo method to

assume a joint multivariate normal distributions for all variables included in the imputation

model. After imputing five datasets, we randomly selected one for use in our final dataset.

4.3.5 Statistical Analysis

4.3.5.1 Summary Statistics

After assigning exposure data, we calculated the mean and interquartile range (IQR) of

each exposure, stratified by IPD status. In an exploratory analysis, we calculated Pearson

correlation coefficients between each exposure and checked for statistical significance (p <

0.05).

Prior to model fitting, we normalized exposure values by the corresponding IQR of the

entire population, as has been done in previous studies that assessed air pollution and preg-

nancy outcomes [176–178].
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4.3.5.2 Model Fitting

To assess the impact of various exposures on the risk of developing IPD, we fitted uncondi-

tional logistic regression models for each of our exposures. We generated results based on

three different models: (i) a crude model, (ii) a minimally adjusted model adjusting for age,

fetal sex, and race, and (iii) a fully adjusted model additionally adjusting for parity, maternal

BMI, maternal smoking, gestational diabetes, maternal education, and household income.

We calculated log odds ratios and corresponding 95% confidence intervals representing the

change in odds of IPD per IQR increase of each exposure.

4.3.5.3 Sensitivity Analysis

Prior studies have demonstrated a relationship between diet and oxidative stress levels [179],

and place of residence may affect both air quality as well as access to healthy food. In

response we considered this potential effect of diet among a subset of 143 women who filed

out the Diet History Questionnaire II, a food frequency questionnaire [180]. For the women

who provided this information, we investigated whether adjustment for a healthy diet based

on the United States Department of Agriculture 2015 Healthy Eating Index changed effect

estimates.

Additional sensitivity analyses included assessing alternate methods of exposure assess-

ment i.e. weighing exposure estimates by each month of gestation. For a small subset of

subjects who moved residences during the first trimester, we investigated whether maintain-

ing their original address, i.e. assuming they did not move, affected effect estimates. Finally,

during exploratory analyses we found that four subjects lived less than two miles outside of

the boundaries of the exposure surface. Instead of excluding them, we assigned these four

subjects exposure surface measures closest to their addresses.
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4.4 Results

We screened 841 subjects for eligibility and willingness to participate in magnetic resonance

imaging (MRI) examinations during mid-pregnancy and 234 did not respond to further

inquiry (Figure 4.1). There were 233 subjects who declined to enroll for reasons including

time and/or travel (n = 56), lack of interest (n = 50), MRI safety concerns (n = 62) or

doctor refusal (n = 7). An additional 58 women did not to provide a reason for declining

participation. There were 166 women who were deemed ineligible due to late gestational

age at enrolment (n = 132), twin pregnancy (n = 5), abortion or miscarriage (n = 16),

discontinuation of care at UCLA (n = 12), or being too ill to continue (n = 2).

Thus, we initially enrolled 208 participants into the PARENTs study. After enrollment,

we additionally excluded 30 subjects due to pregnancy complications or other illnesses result-

ing in MRI complications post-enrollment (n = 7); miscarriage or abortion post-enrollment

(n = 5); patient withdrawal (n = 4); smoking during pregnancy (n = 1); exposure to Zika (n

= 1); relocation outside the study area (n = 1); missing medical records (n = 2); or residing

outside of the exposure surface boundaries (n = 9).

Baseline subject characteristics of the 47 cases and 131 non-cases are presented in Table

4.1. Compared to non-cases, cases had a slightly higher median age, BMI, and prevalence

of gestational diabetes while non-cases were more often multiparous. There are also more

former smokers and women missing information on smoking prior to pregnancy among cases.

Correlations between first trimester exposures are summarized in Figure 4.2. All expo-

sures were positively correlated with each other (Pearson ρ: 0.13-0.89). Overall, the esti-

mated average first trimester PM2.5 exposure was 9.75 µg/m3 with an IQR of 1.19 µg/m3,

with higher mean concentration among cases (9.85 µg/m3) compared to non-cases (9.71

µg/m3). We also observed higher mean exposures to Ba, Zn, and oxidative potential mark-

ers among cases than non-cases, as shown in Table 4.2.

Odds ratios and 95% confidence limits from logistic regression models shown in Figure
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4.3 suggest that higher levels of every exposure modeled were positively associated with

IPD, with magnitudes of the ORs ranging in size from 1.1 (DTT loss) to 2.0 (KM-SUB-ELF

ROS). Adjustment for covariates suggested some bias of crude estimated effects towards the

null for the brake wear and tire wear marker Ba and Zn and also for KM-SUB-ELF ROS.

The adjusted estimates for Ba and KM-SUB-ELF ROS the 95% confidence intervals exclude

the null value of 1. While not necessarily statistically significant, all other exposure-IPD

associations were positive and exhibited the same patterns.

Sensitivity analyses did not alter our main findings. Assigning alternate locations to

subjects just outside the exposure surface not change effect estimates but increased standard

errors. Alternate methods of exposure assessment resulted in increases in standard error,

but no qualitative changes in effect estimate.

4.5 Discussion

We believe that this is the first study to examine the contributions from brake and tire

wear-related PM2.5 components and oxidative potential of the pollutant mixtures to IPD.

Effect estimate directions were consistently positive whether adjusting for a minimal or

full set of risk factors and potential confounders. While we cannot rule out the possibility

of residual confounding, our results suggest that common risk factors known to adversely

affect pregnancy did not confound the observed exposure-outcome associations except for

strengthening the associations (Figure 4.3) [147].

The positive relationships between oxidative potential markers and tracers of brake and

tire wear and IPD, are consistent with physiological mechanisms that are thought to drive

placental disorders. The placenta plays a key role in fetal development and is essential for

the transport and provision of nutrients, water, and oxygen to the fetus [181]. An imbalance

of reactive oxygen species induced by metals and organic species may lead to disruptions in

placental trophoblast cell function, which has been hypothesized to play a key role in the
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physiologic mechanisms behind IPD [182].

We present results that further corroborate prior work investigating the relationship be-

tween TRAP and birth outcomes. Positive associations between increased maternal PM2.5

exposure and negative health outcomes in children have been discussed widely in the litera-

ture [183]. Many studies employed black carbon as a tailpipe exhaust marker and evidence

is mixed regarding associations with adverse birth outcomes [184–187]. Studies assessing ex-

posures specifically associated with brake and tire wear are very limited, with most studies

restricted to animal experiments [188–190].

As shown in Figure 4.2, Ba and Zn were highly correlated with Cu and Fe concentrations

used to calculate the KM-SUB-ELF ROS measurement. As tracers of brake and tire wear,

we interpret metals Ba and Zn as proxies for the mixture of brake and tire wear particle

exposures directly involved in the production of reactive oxygen species and not causal agents

for IPD [105, 191]. In other words, we do not believe that reducing or replacing Ba and Zn

emissions from brake and tire wear would necessarily lead to improved health outcomes.

We also report the effects of various oxidative potential-related measures, which reflect the

reactivity of water-soluble PM samples, and whose effect directions and magnitudes are

consistent with the brake and tire wear tracers. Oxidative potential markers are positively

correlated with source-specific measures in data and, thus, suggest that metals and related

measures of non-tailpipe source exposures may be more effective than PM2.5 or black carbon

alone in predicting PM-related oxidative stress and adverse birth outcomes.

We estimated the strongest effects in fully adjusted models for Ba, KM-SUB-ELF ROS,

and OH formation. Although both DTT loss and OH formation assays measure oxidative

potential, OH formation was more strongly correlated with the metals. This could be due to

the DTT assay’s relative insensitivity to Fe [135, 192]. Fe and Cu play an important role in

OH radical formation via Fenton reactions that occur in the human body [105, 117, 193]. Fe

is a major component of brake wear and catalyzes the production of ROS; it is a component

of the KM-SUB-ELF ROS model and highly correlates with Ba and Zn (Figure 4.2) [6, 170].
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Other research came to similar conclusions; a prior study assessing the relationship between

oxidative potential markers and census tract-level health outcomes suggested that compared

to PM2.5 mass, the OH formation assays may be better at predicting PM-related adverse

health consequences [155].

Prior studies have identified TRAP as a specific source of oxidative potential associated

with adverse health effects [171, 194]. In our study, we found that Ba and Zn both are

strongly correlated with OH radical formation and are more strongly associated with IPD

compared to PM2.5 and black carbon. Increases in fuel efficiency and automobile electrifica-

tion will likely increase the total share of PM from brake and tire wear components [6, 195].

Consequently, health studies targeting TRAP with conventional metrics may underestimate

exposure-outcome associations. Similarly, our findings suggest that future changes in fleet

composition and reduction in tailpipe exhaust alone may not improve pregnancy outcomes.

4.6 Strengths and Limitations

Strengths include novel and robust exposure and outcome assessments. The relationship

between air pollution and IPD is understudied, with only one previous study assessing IPD

and distance to roads, which may have resulted in misclassification [153]. Our exposures

include measurements which are more source-specific than conventional metrics compared to

solely using PM2.5 mass concentration. Furthermore, around one-third of filter samples used

in our exposure model were sampled at PARENTs subjects’ homes, likely reducing exposure

misclassification. Our close clinical follow-up enabled a detailed IPD outcome assessment,

including criteria previously used by Wesselink et al. [153] plus gestational hypertension, and

fetal growth restriction. Consequently, we believe that the risk of outcome misclassification

is very low.

This study has limitations regarding sample size and temporal alignment. With a small

sample size of 178, our effect estimates exhibit consistent directions but have high uncer-
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tainty. As stated elsewhere [161], we designed the PARENTs cohort to study placenta-related

adverse outcomes in pregnancy, i.e. a high-risk population of pregnant women with a high

prevalence of IPD. This likely allowed us to detect strong exposure-outcome associations de-

spite limitations. Notably, our cohort does not represent the general population of pregnant

women: they were older, more educated and of higher socio-economic status and sought

specialized care at UCLA hospitals. Thus, on one hand, our subjects were at higher risk

of pregnancy complications, on the other, higher SES, education, and levels of medical care

may have protected them from some pregnancy complications [196]. Finally, our exposure

models were based on data collected 2-3 years after pregnancy. The main sources of our

exposures, traffic and heavy industry, remained consistent during the time between recruit-

ment and the air monitoring and sampling campaigns. Additionally, our sampling campaigns

were not affected by the COVID-19 pandemic or wildfires in Southern California, such that

spatial trends in pollution likely remained similar to those during time of the pregnancies,

minimizing the impact of temporal misalignment.

4.7 Conclusion

For this Los Angeles birth cohort, we found consistent associations between IPD and oxida-

tive potential markers for PM2.5 and metals associated with brake and tire wear emissions.

Compared to black carbon, and PM2.5, Ba, KM-SUB-ELF ROS, and OH formation gen-

erated stronger effect estimates sizes that were stable or even increased after adjusting for

important variables widely considered to be risk factors for IPD.

Our results indicate that the association between TRAP and these adverse pregnancy

outcomes is at least partially attributable to brake and tire wear-related particulate matter

and the toxicity of fine particulate matter. Clean air policy has successfully reduced tailpipe

emissions but currently does not target brake and tire wear. Our results suggest that pro-

tecting public health may necessitate an expansion of vehicle emissions regulations that also
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address brake and tire wear PM exposures.
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4.8 Figures and Tables

Figure 4.1: Recruitment flowchart in study population
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Figure 4.2: Pearson correlations between estimated exposures in the PARENTs cohort.
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Figure 4.3: Associations between exposure to PM2.5, speciated components, and oxidative
potential during the first trimester and ischemic placental disease, forest plot (top) and table
(bottom)
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Table 4.1: Selected characteristics of study population, Los Angeles, California

Cases
(N=47)

Non-cases
(N=131)

Overall
(N=178)

Maternal Age
Mean (SD) 34 (4.4) 33 (3.9) 33 (4.0)

Race
Asian 14 (29.8%) 34 (26.0%) 48 (27.0%)
Black or African American 3 (6.4%) 7 (5.3%) 10 (5.6%)
Hispanic 7 (14.9%) 27 (20.6%) 34 (19.1%)
White, non-Hispanic 23 (48.9%) 62 (47.3%) 85 (47.8%)
American Indian or Alaskan Native 0 (0%) 1 (0.8%) 1 (0.6%)

Maternal Education
High School Graduate or GED 0 (0%) 1 (0.8%) 1 (0.6%)
Vocational, Technical, Associates, or other 2 year degree 0 (0%) 8 (6.1%) 8 (4.5%)
Some College 2 (4.3%) 6 (4.6%) 8 (4.5%)
Bachelors Degree (4 Years) 14 (29.8%) 44 (33.6%) 58 (32.6%)
Masters Degree 19 (40.4%) 34 (26.0%) 53 (29.8%)
Professional Degree (MD, JD, etc) 5 (10.6%) 20 (15.3%) 25 (14.0%)
Doctoral Degree 7 (14.9%) 12 (9.2%) 19 (10.7%)
Missing 0 (0%) 6 (4.6%) 6 (3.4%)

Household Income
Low 1 (2.1%) 8 (6.1%) 9 (5.1%)
Middle 4 (8.5%) 10 (7.6%) 14 (7.9%)
Upper-middle 10 (21.3%) 20 (15.3%) 30 (16.9%)
High 30 (63.8%) 87 (66.4%) 117 (65.7%)
Don’t know 1 (2.1%) 1 (0.8%) 2 (1.1%)
Refused to answer 1 (2.1%) 0 (0%) 1 (0.6%)
Missing 0 (0%) 5 (3.8%) 5 (2.8%)

Fetal Sex
Female 22 (46.8%) 60 (45.8%) 82 (46.1%)
Male 25 (53.2%) 71 (54.2%) 96 (53.9%)

Parity
0 26 (55.3%) 60 (45.8%) 86 (48.3%)
1 19 (40.4%) 55 (42.0%) 74 (41.6%)
2 1 (2.1%) 13 (9.9%) 14 (7.9%)
3 0 (0%) 2 (1.5%) 2 (1.1%)
4 0 (0%) 1 (0.8%) 1 (0.6%)
6 1 (2.1%) 0 (0%) 1 (0.6%)

Maternal BMI
Mean (SD) 25 (5.6) 24 (4.4) 25 (4.7)

Gestational Diabetes
No 38 (80.9%) 117 (89.3%) 155 (87.1%)
Yes 9 (19.1%) 14 (10.7%) 23 (12.9%)

Smoking
I don’t smoke and I never have 28 (59.6%) 96 (73.3%) 124 (69.7%)
I don’t smoke anymore but I have in the past 12 (25.5%) 23 (17.6%) 35 (19.7%)
Missing 7 (14.9%) 12 (9.2%) 19 (10.7%)
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Table 4.2: Mean (IQR) values of first trimester exposure estimates among cases and non-
cases

Exposure Unit
Cases

(N = 47)
Non-Cases
(N = 131)

Overall
(N = 178)

PM2.5 µg/m3 9.83 (1) 9.68 (1) 9.72 (1)
Black Carbon % % 4.85 (0) 4.74 (1) 4.77 (1)
Ba ng/m3 18.9 (6) 17.7 (4) 18.1 (4)
Zn ng/m3 9.91 (2) 9.76 (2) 9.8 (2)
KM-SUB-ELF ROS nmol/L 119 (13.5) 116 (15.5) 117 (16)
DTT Loss pmol/min/m3 635 (108) 627 (119) 629 (119)
OH Formation pmol/min/m3 5.79 (1.5) 5.55 (1) 5.61 (1)
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CHAPTER 5

Summary of Dissertation Findings

The research highlighted in this dissertation aimed to use novel combinations of data to

model TRAP in light of recent acute and long-term changes. Automobile traffic and related

pollution is a mainstay in urban areas worldwide. By studying large-scale disruptions in

traffic as natural experiments in Chapter 2, we develop a stronger understanding of the

relationships between traffic, human activity, and air quality at varying spatial and temporal

scales. This study addresses one such disruption, namely the stay-at-home orders following

the onset of the COVID-19 pandemic in California by fusing publicly available air quality,

traffic, and meteorology data. Since the publication of the research featured in Chapter

2 in Environmental Science and Technology [197], other researchers have explored further

the nuances of traffic and air pollution decreases in the Southern California area, integrating

social variables such as envrionmental justice [198].

Long-term changes include the increasing efficiency and electrification of automobile

fleets. Recent regulations have altered the composition of TRAP, lowering tailpipe emis-

sions but failing to regulate brake and tire emissions. Pollution trends reflect the decline

in tailpipe emissions, with NO2 levels in the US declining substantially in recent decades.

Among other trends, ongoing reductions in tailpipe emissions has implications for TRAP

exposure assessment. As tailpipe emissions continue to decline and the proportion of non-

tailpipe emissions within TRAP consequently increases, studies that continue to on tracers

such as NO2 may lead to exposure misclassification of overall TRAP.

Briefly, the three studies in this dissertation address a short-term and long-term changes
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in traffic with lasting implications for air quality. In Chapter 2, we report on changes

in near-road air quality during stay-at-home orders following the COVID-19 pandemic in

California. The earliest studies addressing the effect of stay-at-home orders on air quality

operated on large spatial scales using remote sensing or other similar data. We corroborated

these earlier studies on a near-road level, finding significantly reduced light and heavy duty

traffic, which resulted in lower NO and NO2 levels in both Northern and Southern California.

This is the first study to our knowledge to integrate air quality data and real-time traffic data

from the California Department of Transportation, and one of the first studies to evaluate

the near-road air quality impacts of COVID-19 stay-at home order using both traffic data

and ground-level measurements.

The research presented in Chapter 3 was conducted in the context of two long-term

trends: the expansion of connected low-cost sensors and the decline in tailpipe emissions.

We integrated three main datasets in a co-kriging model: PM2.5 chemical species and ox-

idative potential data from a fieldwork campaign; unspeciated PM2.5 data from a spatially

dense, crowdsourced low-cost sensor network; and land-use, traffic, and business data from a

set of public and private databases. In modeling PM2.5 species previously found associated

with non-tailpipe emissions across the Los Angeles metropolitan area, we find substantial

improvements in model precision and accuracy when adding in crowdsourced low-cost sensor

network data. This is the first study to integrate low-cost sensor data and laboratory mea-

surements to model speciated PM2.5. We show that crowdsourced low-cost sensor networks –

despite limitations surrounding reliability, sensor placement, and data quality – can provide

spatially rich information in exposure models when combined with gold standard research

tools. The research featured in Chapter 3 has been published in Environment International

[32]. At the time of writing, there are several to-be-published environmental epidemiology

studies that derive exposure data from the surfaces presented in Chapter 3. Manuscripts in

preparation address the effects of these exposures and outcomes such as term low birth weight

in an Los Angeles-wide administrative birth cohort; the relationship between racial/ethnic
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disparities and social and physical environments in the same administrative birth cohort;

metabolomics outcomes in the PARENTs cohort; and the development of autism spectrum

disorder in Los Angeles county.

In Chapter 4, we then assessed the relationship between exposures generated in the

previous chapter and their associations with IPD in a prospectively-followed cohort of 178

then-pregnant women. In contrast to environmental epidemiology studies that rely on large

administrative datasets, the PARENTs cohort collected clinically validated data on patient

outcomes and detailed information on a large set of confounders. We evaluated our exposure-

outcome associations under multiple conditions, including univariate, minimally-adjusted,

and fully adjusted regression models. Temporally scaling exposure estimates originally cal-

culated in Chapter 3 to each subject’s first trimester based on low-cost sensor network

data, we find that in our prospectively followed cohort, air pollution exposures were consis-

tently positively associated with IPD. Additionally, we found the strongest exposure-outcome

associations for PM2.5 chemical species and oxidative potential markers, underscoring the im-

portance of specific exposure assessment in human health studies.

In summary, this dissertation explored the use of novel data combinations to investigate

short- and long-term events in traffic and TRAP. From changes in fleet composition, to novel

methods of measurement and modeling, the study of TRAP continues to evolve. Simulta-

neously, technology and the data landscape are constantly evolving. Growing interest in

environment and health from the technology sector has led to the development and prolif-

eration of low-cost sensors, for example. Further advancements in fields such as urban and

environmental sensing may continue to change how scientists and lay audiences see, study,

and interpret our built environments. Developing methods to combine different sources of

data ranging from point pattern to medical records to satellite imagery, as this dissertation

has done, will serve to guide researchers and policymakers as they continue to understand

and shape the environment in service of public health.
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