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ABSTRACT OF THE DISSERTATION 

 

Statistical Challenges in Incidence Estimation using Cross-Sectional Data and Multi-

Biomarker Assay Algorithms 

 

by 

 

Douglas Ezra Morrison 

Doctor of Philosophy in Biostatistics 

University of California, Los Angeles, 2021 

Professor Ron Brookmeyer, Chair 

 

Accurate estimates of incidence rates of infectious diseases are important for monitoring 

trends and for designing and evaluating disease prevention and control programs. 

Traditionally, incidence has been estimated using cohort studies, which are costly, slow, and 

vulnerable to selection biases in both recruitment and attrition. Cross-sectional incidence 

estimation is an alternative approach that can avoid some of these problems. This approach 

involves collecting blood samples from a single representative cross-sectional survey of a 

target population, and analyzing the samples using multi-biomarker assay algorithms 

(MAAs) to detect recent infections. Under some assumptions about the dynamics of the 

epidemic, incidence is estimated from the prevalence of MAA-positive individuals, where 

MAA positive refers to a state defined by levels of biomarkers that is associated with recent 

acquisition of infection. A training data set is required to define and evaluate characteristics 
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of the MAA positive state. In order to achieve accurate estimates, cross-sectional incidence 

estimation analyses should be tailored to the population of scientific interest and to the data-

generating process. This dissertation develops approaches for three challenges encountered 

in cross-sectional incidence estimation: analyzing incomplete or missing biomarker data; 

calibrating the cross-sectional estimation procedure for a specific target population; and 

accounting for interval-censored infection dates in longitudinal biomarker data. 

The training data sets are used to operationally define the MAA positive state and to 

estimate the probabilities of being in the MAA positive state as a function of duration of time 

since acquisition of infection. The training data sets include longitudinal biomarker 

measurements on a sample of individuals. We first consider the challenge of missing 

biomarker data in the training data sets. We examine two naïve approaches, one using all 

samples that can be classified by the MAA and another using all samples with complete 

biomarker data, and we show that each of these approaches can lead to biased estimators of 

the mean window period. We propose a conditional approach for handling the missing data. 

We show that this method performs well in simulation studies. We then consider missing 

data in the context of cross-sectional surveys of biomarker prevalence. Again, we show that 

naïve approaches produce biased estimates, and we propose a conditional approach that 

performs well in simulation studies. We apply these methods to a training data set of 

biomarkers in HIV Subtype C infections collected from over two thousand individuals from 

multiple countries. 

The target population refers to the population in which we wish to estimate incidence of 

infection. In order for a training data set to be useful for model calibration, any systematic 
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differences between the training data set and the target population must be addressed. We 

consider a scenario in which there is one covariate whose distribution differs between the 

training data set and the target population, and we propose a range of methods for correcting 

such a difference. Using simulation studies, we examine the performance characteristics of 

these methods under a range of analysis conditions and determine their sensitivity to model 

misspecifications. 

Since infection status is usually only tested periodically in longitudinal studies, infection 

dates and durations of infection are typically interval-censored in MAA calibration data sets. 

We present a joint model of infection dates and subsequent biomarker values and an 

estimation procedure for this model, and we compare this approach with naïve methods 

assuming a uniform or symmetric distribution over the censoring intervals for the infection 

dates. We show that the joint modelling approach performs well in many situations 

compared to midpoint imputation and uniform imputation.  

The methods presented in this dissertation were developed for the purpose of calibrating 

and performing HIV incidence estimation using cross-sectional surveys of biomarker 

prevalence. However, the cross-sectional survey-based approach to incidence estimation has 

applicability to infectious diseases other than HIV. This approach may be especially useful 

when it is crucial to rapidly detect changes in infection incidence to inform public health 

policies including epidemic control programs. We hope that the methods presented in this 

dissertation will encourage the use of the cross-sectional approach to incidence estimation 

in a variety of contexts and will help address the inevitable real-world complications in the 

data collection process.  
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CHAPTER 1 
Introduction 

1.1 Background 

Disease and epidemic surveillance provides important information to help reduce the spread 

of infectious diseases. (Gordis 2014) Accurate measures of disease incidence rates are 

crucial to this objective: incidence estimates help public health workers to efficiently allocate 

resources to populations experiencing high rates of transmission and to measure the effects 

of interventions. (Mastro 2013) 

Traditionally, incidence has been estimated using cohort studies, in which a sample is 

recruited from the disease-free, at-risk portion of a population of interest; members of the 

cohort are then monitored periodically for signs of infection, and the incidence rate is 

estimated as the ratio of the number of participants who became infected to the amount of 

time the participants spent at-risk and under observation. 

Cohort studies have several limitations. They are expensive to conduct, because of the 

need to follow large numbers of subjects for an extended time, and follow-up rates may be 

low especially in marginalized populations. They can take years to complete, and thus may 

not provide timely information for assessing the current growth rate of an epidemic. They 

are also vulnerable to selection biases in both recruitment and attrition. Selective attrition 

would arise, for example, if participants who are more likely to become infected over the 

course of follow-up are also more likely to be lost to follow-up. 

Cross-sectional estimation is an alternative approach that can avoid some of the 

problems of cohort studies. This approach is based on a single representative cross-sectional 
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survey of the target population whose incidence rate we aim to measure. (Busch et al. 2010) 

Incidence is inferred from the prevalence of biomarker values associated with recent 

infection. This inference is based on assumptions about the dynamics of the epidemic under 

study, as described in Section 2.1. Cross-sectional studies require only a single in-person 

interaction with study staff per participant, which makes these studies faster to complete, 

avoids drop-out bias completely, and can reduce recruitment disparities, especially in 

marginalized subpopulations whose members might not want to be tracked longitudinally. 

Cross-sectional incidence estimation has been applied successfully in numerous settings, 

especially for measuring HIV incidence. (Brookmeyer and Quinn 1995; Brookmeyer, 

Laeyendecker, et al. 2013; Brookmeyer, Konikoff, et al. 2013; Laeyendecker et al. 2012; 

Konikoff et al. 2013; Laeyendecker et al. 2018) 

In order to achieve accurate estimates, cross-sectional incidence estimation must be 

implemented carefully. Several common statistical challenges should be considered, 

including model specification, calibration to specific populations and time periods, and 

adjustments for nonuniform sampling, non-ignorable missingness, censoring, and 

measurement error. In short, cross-sectional incidence estimation analyses should be 

tailored to the population of scientific interest and to the data-generating process. 

1.2 Overview of Dissertation 

This dissertation examines three statistical complications that have arisen in a recent series 

of cross-sectional studies and presents methods to address these issues. Chapter 2 reviews 

the established cross-sectional estimation framework. Chapter 3 presents methods for 

handling incomplete data. (D. Morrison et al. 2018) Chapter 4 presents methods for 
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transporting results from training data sets to target populations. (D. Morrison et al. 2019) 

Chapter 5 presents methods for handling interval-censored event times. (D. Morrison et al. 

2021) Chapter 6 summarizes the results and discusses themes connecting the work 

throughout this dissertation as well as future extensions. A consolidated list of notation is 

included before the references. 
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CHAPTER 2 
The Cross-Sectional Incidence Estimation Framework 

The cross-sectional incidence estimation framework, in simplest form, has the following 

structure. First, a “target” population is identified for which disease incidence will be 

estimated. A single representative cross-sectional survey of 𝑁𝑁 participants is recruited from 

this target population. The survey participants provide biological specimens which are 

tested for infection status; specimens that test positive for infection are additionally assayed 

for a prespecified series of biomarkers that have some ability to help distinguish persons 

who were recently infected from those who have been infected for a long time. The cross-

sectional incidence rate estimator is: 

𝜄𝜄 ̂ ≝
𝑉𝑉

𝜇𝜇 ⋅ 𝑁𝑁𝑢𝑢
(2. 1) 

where 𝑉𝑉 is the number of infected individuals in the survey whose biomarker measurements 

indicate the infection occurred recently, 𝑁𝑁𝑢𝑢 is the number of individuals in the survey who 

are uninfected, and 𝜇𝜇, the “mean window period,” denotes the expected duration of time 

during which an infected person’s biomarkers would indicate a recent infection. 

(Brookmeyer and Quinn 1995) The mean window period 𝜇𝜇 depends on the specific set of 

biomarkers assayed, as well as the operational definition for classifying an individual as a 

“recent infection” based on the biomarker values. 

2.1 Approximate consistency of the cross-sectional incidence estimator 

In this section, we show that 𝜄𝜄 ̂ is an approximately consistent estimator of the target 

population’s incidence rate, given some assumptions about the underlying data-generating 

distributions.  
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For an individual in the cross-sectional survey, let 𝑆𝑆 denote the calendar time of infection. 

We define the incidence rate as the hazard function of 𝑆𝑆: 

ℎ(𝑠𝑠) ≝ 𝑝𝑝(𝑆𝑆 = 𝑠𝑠|𝑆𝑆 ≥ 𝑠𝑠) =
𝑝𝑝(𝑆𝑆 = 𝑠𝑠)
𝑃𝑃(𝑆𝑆 ≥ 𝑠𝑠)

(2. 2) 

Here, we use lowercase 𝑝𝑝(⋅) to denote probability density functions, and uppercase 𝑃𝑃(⋅) to 

denote probability mass functions. Let 𝑡𝑡0 denote the calendar time of the cross-sectional 

survey; then ℎ(𝑡𝑡0), the hazard rate in the target population at the time of the cross-sectional 

survey, is the estimand of primary interest. We assume that 𝑆𝑆 has a continuous distribution; 

therefore, 𝑃𝑃(𝑆𝑆 ≥ 𝑠𝑠) = 𝑃𝑃(𝑆𝑆 > 𝑠𝑠) and thus: 

ℎ(𝑠𝑠) =
𝑝𝑝(𝑆𝑆 = 𝑠𝑠)
𝑃𝑃(𝑆𝑆 > 𝑠𝑠)

(2. 3) 

Now, let 𝑇𝑇 ≝ 𝑡𝑡0 − 𝑆𝑆; i.e., 𝑇𝑇 = 𝑡𝑡 means that the individual was infected 𝑡𝑡 time units prior 

to the cross-sectional survey. Note that 𝑇𝑇 is positive if the individual was infected before the 

survey, and 𝑇𝑇 is negative if the individual was not infected until after the survey. Let 𝑔𝑔(𝑡𝑡) 

denote the probability density of 𝑇𝑇; i.e., 𝑔𝑔(𝑡𝑡) ≝ 𝑝𝑝(𝑇𝑇 = 𝑡𝑡). Note that 𝑝𝑝(𝑆𝑆 = 𝑠𝑠) = 𝑝𝑝(𝑇𝑇 = 𝑡𝑡0 −

𝑠𝑠) = 𝑔𝑔(𝑡𝑡0 − 𝑠𝑠); we can thus rewrite Eq. 2.3 as: 

ℎ(𝑠𝑠) =
𝑔𝑔(𝑡𝑡0 − 𝑠𝑠)
𝑃𝑃(𝑆𝑆 > 𝑠𝑠)

(2. 4) 

Specifically, for 𝑠𝑠 = 𝑡𝑡0, we have: 

ℎ(𝑡𝑡0) =
𝑔𝑔(0)

𝑃𝑃(𝑆𝑆 > 𝑡𝑡0)
(2. 5) 

Next, let 𝑌𝑌 denote a binary classification of the individual’s biomarker assay values at the 

time of the cross-sectional survey, where 𝑌𝑌 = 1 denotes a “positive” classification, associated 
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with recent infection, and 𝑌𝑌 = 0 denotes a “negative” classification, indicating a longstanding 

infection. The specifics of these classifications will be discussed in Section 2.2.2. Let 𝜙𝜙(𝑡𝑡) ≝

𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) be the conditional probability of a positive classification, given infection 𝑡𝑡 

units prior to 𝑡𝑡0. Then by the law of total probability, 𝑃𝑃(𝑌𝑌 = 1) = ∫ 𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡)𝑝𝑝(𝑇𝑇 =∞
𝑡𝑡=0

𝑡𝑡)𝑑𝑑𝑡𝑡 = ∫ 𝜙𝜙(𝑡𝑡)𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡∞
𝑡𝑡=0 . We assume that there is some point 𝑡𝑡max beyond which 𝜙𝜙(𝑡𝑡) = 0; 

then 𝑃𝑃(𝑌𝑌 = 1) = ∫ 𝜙𝜙(𝑡𝑡)𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡max
𝑡𝑡=0 . 

2.1.1 Scenario 1: 𝒈𝒈(𝒕𝒕) approximately constant 

We might further assume that 𝑔𝑔(𝑡𝑡) is approximately a constant 𝑔𝑔 for 𝑡𝑡 ∈ [0, 𝑡𝑡max]; this 

assumption could be reasonable if the biomarker classification, 𝑌𝑌, is defined such that 𝑡𝑡max 

is short. Then we have: 

𝑃𝑃(𝑌𝑌 = 1) ≈ � 𝜙𝜙(𝑡𝑡)𝑔𝑔𝑑𝑑𝑡𝑡
𝑡𝑡max

𝑡𝑡=0
= 𝑔𝑔� 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡max

𝑡𝑡=0
(2. 6) 

The quantity ∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡∞
𝑡𝑡=0 = ∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡max

𝑡𝑡=0  is the mean duration of time during which a person 

has a positive biomarker classification. We call this duration the “mean window period” and 

denote it by 𝜇𝜇; i.e.,  

𝜇𝜇 ≝ � 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

𝑡𝑡=0
= � 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡max

𝑡𝑡=0
(2. 7) 

Thus from Eq. 2.6, we have 𝑃𝑃(𝑌𝑌 = 1) ≈ 𝑔𝑔 ⋅ 𝜇𝜇, and therefore: 

𝑔𝑔(0) ≈ 𝑔𝑔 ≈ 𝑃𝑃(𝑌𝑌 = 1) ⋅ 𝜇𝜇−1 (2. 8) 

Substituting 2.8 into 2.5, we find that: 

ℎ(𝑡𝑡0) ≈
𝑃𝑃(𝑌𝑌 = 1)
𝑃𝑃(𝑆𝑆 > 𝑡𝑡0) ⋅ 𝜇𝜇

−1 (2. 9) 
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In other words, if 𝑔𝑔(𝑡𝑡) is approximately constant for 𝑡𝑡 ∈ [0, 𝑡𝑡max], then the incidence rate at 

the time of the cross-sectional study is approximately equal to the probability of having a 

positive biomarker classification divided by the probability of being uninfected at the time 

of the survey, divided by the mean window period. We will denote this population-level 

quantity by 𝜄𝜄: 

𝜄𝜄 ≝
𝑃𝑃(𝑌𝑌 = 1)
𝑃𝑃(𝑆𝑆 > 𝑡𝑡0) ⋅ 𝜇𝜇

−1 (2. 10) 

By the law of large numbers and the continuous mapping theorem, we can consistently 

estimate 𝜄𝜄 by plugging in the sample analog estimates 𝑃𝑃�(𝑌𝑌 = 1) = 𝑉𝑉 𝑁𝑁⁄  and 𝑃𝑃�(𝑆𝑆 > 𝑡𝑡0) =

𝑁𝑁𝑢𝑢/𝑁𝑁, where 𝑁𝑁 is the number of survey participants, 𝑁𝑁𝑢𝑢 is the number of uninfected survey 

participants, and 𝑉𝑉 = ∑ 𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖=1  is the number of biomarker-positive survey participants. Then 

we have: 

𝜄𝜄 ̂ ≝
𝑃𝑃�(𝑌𝑌 = 1)
𝑃𝑃�(𝑆𝑆 > 𝑡𝑡0)

⋅ 𝜇𝜇−1 =
𝑉𝑉 𝑁𝑁⁄
𝑁𝑁𝑢𝑢 𝑁𝑁⁄

⋅ 𝜇𝜇−1 =
𝑉𝑉
𝜇𝜇𝑁𝑁𝑢𝑢

 

which is Eq. 2.1. Thus, if 𝑔𝑔(𝑡𝑡) is approximately constant over 𝑡𝑡 ∈ [0, 𝑡𝑡max], then 𝜄𝜄 ̂ is an 

approximately consistent estimator for ℎ(𝑡𝑡0), the incidence rate at the time of the cross-

sectional survey; i.e., 𝜄𝜄 ̂ →𝑃𝑃 𝜄𝜄 ≈ ℎ(𝑡𝑡0), where “→𝑃𝑃” denotes convergence in probability. 

2.1.2 Scenario 2: 𝒈𝒈(𝒕𝒕) approximately linear 

Now suppose that 𝑔𝑔(𝑡𝑡) is not constant over 𝑡𝑡 ∈ [0, 𝑡𝑡max] but is approximately linear in 𝑡𝑡; i.e., 

𝑔𝑔(𝑡𝑡) ≈ 𝑔𝑔(0) + 𝛽𝛽𝑡𝑡 for some 𝛽𝛽. Since 𝑔𝑔(𝑡𝑡) = 𝑝𝑝(𝑇𝑇 = 𝑡𝑡) = 𝑝𝑝(𝑆𝑆 = 𝑡𝑡0 − 𝑡𝑡) = ℎ(𝑡𝑡0 − 𝑡𝑡) ⋅ 𝑃𝑃(𝑆𝑆 ≥

𝑡𝑡0 − 𝑡𝑡), this assumption is valid if the hazard function ℎ(𝑠𝑠) is approximately linear in 𝑠𝑠 for 

𝑠𝑠 ∈ (𝑡𝑡0 − 𝑡𝑡max, 𝑡𝑡0) and 𝑃𝑃(𝑆𝑆 ≥ 𝑠𝑠) = exp�− ∫ ℎ(𝑢𝑢)𝑑𝑑𝑢𝑢𝑠𝑠
𝑢𝑢=−∞ � is approximately constant in 𝑠𝑠 for 

𝑠𝑠 ∈ (𝑡𝑡0 − 𝑡𝑡max, 𝑡𝑡0). Under this assumption, (2.6), (2.8), and (2.9) no longer hold; instead, we 
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have: 

𝑃𝑃(𝑌𝑌 = 1) = � 𝜙𝜙(𝑡𝑡)𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡max

𝑡𝑡=0
 

≈ � 𝜙𝜙(𝑡𝑡)[𝑔𝑔(0) + 𝛽𝛽𝑡𝑡]𝑑𝑑𝑡𝑡
𝑡𝑡max

𝑡𝑡=0
 

= 𝑔𝑔(0)� 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡max

𝑡𝑡=0
+ 𝛽𝛽� 𝑡𝑡 ⋅ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡=0
 

= 𝑔𝑔(0)𝜇𝜇 + 𝛽𝛽� 𝑡𝑡 ⋅ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡max

𝑡𝑡=0
 

Let 𝜓𝜓 ≝ 𝜇𝜇−1 ∫ 𝑡𝑡 ⋅ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡max
𝑡𝑡=0 , so that 𝜇𝜇𝜓𝜓 = ∫ 𝑡𝑡 ⋅ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡max

𝑡𝑡=0 . Then: 

𝑃𝑃(𝑌𝑌 = 1) ≈ 𝑔𝑔(0)𝜇𝜇 + 𝛽𝛽𝜇𝜇𝜓𝜓 

= [𝑔𝑔(0) + 𝛽𝛽𝜓𝜓] ⋅ 𝜇𝜇 

= 𝑔𝑔(𝜓𝜓) ⋅ 𝜇𝜇 (2. 11) 

Dividing both sides of Eq. 2.11 by 𝜇𝜇, we have: 

𝑔𝑔(𝜓𝜓) ≈ 𝑃𝑃(𝑌𝑌 = 1) ⋅ 𝜇𝜇−1 (2. 12) 

Further, suppose that the hazard rate ℎ(𝑡𝑡) is not very large, such that 𝑃𝑃(𝑆𝑆 > 𝑡𝑡0 − 𝜓𝜓) ≈

𝑃𝑃(𝑆𝑆 > 𝑡𝑡0); then by evaluating Eq. 2.4 at 𝑠𝑠 = 𝑡𝑡0 − 𝜓𝜓 and applying Eq. 2.12, we have: 

ℎ(𝑡𝑡0 − 𝜓𝜓) =
𝑔𝑔(𝜓𝜓)

𝑃𝑃(𝑆𝑆 > 𝑡𝑡0 − 𝜓𝜓) ≈
𝑃𝑃(𝑌𝑌 = 1)
𝑃𝑃(𝑆𝑆 > 𝑡𝑡0) ⋅ 𝜇𝜇

−1 = 𝜄𝜄 (2. 13) 

Thus, if 𝑔𝑔(𝑡𝑡) is approximately linear in 𝑡𝑡 over 𝑡𝑡 ∈ [0, 𝑡𝑡max], then 𝜄𝜄 ̂ is an approximately 

consistent estimator for ℎ(𝑡𝑡0 − 𝜓𝜓), the incidence rate 𝜓𝜓 time units prior to the date of the 

cross-sectional survey; i.e., 

𝜄𝜄 ̂ →𝑃𝑃 𝜄𝜄 ≈ ℎ(𝑡𝑡0 − 𝜓𝜓) (2. 14) 
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We refer to 𝜓𝜓 as the “shadow” of 𝜄𝜄.̂ If 𝜓𝜓 is not too large and ℎ(𝑠𝑠) does not change too quickly, 

then ℎ(𝑡𝑡0 − 𝜓𝜓) ≈ ℎ(𝑡𝑡0), and 𝜄𝜄 ̂is still approximately consistent for ℎ(𝑡𝑡0), as in the case where 

𝑔𝑔(𝑡𝑡) was approximately constant. Note that 𝜓𝜓, like 𝜇𝜇, is a function of 𝜙𝜙(𝑡𝑡) and thus depends 

on the biomarker classification rules used to define 𝑌𝑌. 

More generally, if 𝑔𝑔(𝑡𝑡) is a nonlinear function of 𝑡𝑡, then by a Taylor series approximation 

it can be shown that: 

𝜄𝜄 − ℎ(𝑡𝑡0 − 𝜓𝜓) ≈
1

𝑃𝑃(𝑆𝑆 > 𝑡𝑡0) ⋅
𝑔𝑔″(𝜓𝜓)

2
⋅ 𝜎𝜎2 (2. 15) 

where 𝜎𝜎2 = 𝜇𝜇−1 ∫ (𝑡𝑡 − 𝜓𝜓)2𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡max
𝑡𝑡=0 . (E. H. Kaplan and Brookmeyer 1999; Konikoff 2015) 

Note that if 𝑔𝑔(𝑡𝑡) is approximately linear in 𝑡𝑡, i.e., if 𝑔𝑔″(𝜓𝜓) ≈ 0, then Eq. 2.15 entails that 𝜄𝜄 ≈

ℎ(𝑡𝑡0 − 𝜓𝜓) as in Eq. 2.13. Alternatively, if 𝜎𝜎2 is sufficiently small relative to 𝑔𝑔″(𝜓𝜓), we again 

have 𝜄𝜄 ≈ ℎ(𝑡𝑡0 − 𝜓𝜓). 

Additionally, consider the special case when the epidemic is not advanced, and 

specifically we mean the case when most individuals in the population are uninfected; i.e., 

𝑃𝑃(𝑆𝑆 > 𝑡𝑡0) ≈ 1. Then: 

ℎ(𝑡𝑡0 − 𝜓𝜓) ≈ 𝜄𝜄 =
𝑃𝑃(𝑌𝑌 = 1)
𝑃𝑃(𝑆𝑆 > 𝑡𝑡0) ⋅ 𝜇𝜇

−1 ≈ 𝑃𝑃(𝑌𝑌 = 1) ⋅ 𝜇𝜇−1 (2. 16) 

This expression can be recognized as an algebraic rearrangement of the relationship 

“Prevalence = Incidence × Mean Duration of Disease", where the disease in this case is the 

condition of a positive biomarker classification; i.e., 𝑌𝑌 = 1. This relationship has been 

previously derived in the epidemiological literature under steady state conditions. (Freeman 

and Hutchison 1980) 
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2.1.3 Effects of migration and mortality on cross-sectional incidence estimation 

The participants in the cross-sectional survey may not have always been in the target 

population for which we are trying to estimate inference; this possibility affects the 

interpretation of cross-sectional incidence estimates. For example, consider the first time 

when someone with coronavirus disease 2019 (COVID-19) entered the United States; at that 

moment, the prevalence of COVID-19 in the United States was a consequence of past 

incidence in the population where that person contracted COVID-19; the past incidence of 

COVID-19 in the U.S. population was precisely 0. Similarly, if the target population is defined 

partly based on age, some of the individuals who were in the target population at the time of 

the cross-sectional survey might not yet have been in the target population when they 

became infected. Thus, if the shadow parameter is substantially larger than 0, then 𝜄𝜄 ̂may be 

estimating a hazard function representing a mixture distribution across multiple 

populations. 

To model this possibility, let us assume that every participant in the cross-sectional 

survey has been a member of a particular population at each calendar time 𝑠𝑠 prior to 𝑡𝑡0. Let 

𝑊𝑊(𝑠𝑠) be a categorical stochastic process representing a given participant’s population 

affiliation status at calendar time 𝑠𝑠. Let 𝒲𝒲 denote the support of 𝑊𝑊(𝑠𝑠); i.e., the set of 

populations of which the survey participants could have been members. 𝒲𝒲 can include 

populations in other geographic areas, younger age groups or other subpopulations in the 

same geographic area from which individuals can enter the target population, and a default 

category representing individuals who were not alive yet at time 𝑠𝑠. Let 𝜏𝜏 be the element of 

𝒲𝒲 denoting the target population, in which the cross-sectional survey is performed.  
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At the start of this chapter, we defined the variables 𝑆𝑆, 𝑇𝑇, and 𝑌𝑌 as characteristics of 

participants in the cross-sectional survey of the target population at calendar time 𝑡𝑡0. Thus, 

all of the preceding probability expressions have been implicitly conditional on 𝑊𝑊(𝑡𝑡0) = 𝜏𝜏; 

for example, letting ℎ(𝑠𝑠|𝐴𝐴) = 𝑝𝑝(𝑆𝑆 = 𝑠𝑠|𝑆𝑆 ≥ 𝑠𝑠,𝐴𝐴) where 𝐴𝐴 is any stochastic event, we could 

have more explicitly written ℎ(𝑠𝑠) ≝ 𝑝𝑝(𝑆𝑆 = 𝑠𝑠|𝑆𝑆 ≥ 𝑠𝑠) as ℎ�𝑠𝑠│𝑊𝑊(𝑡𝑡0) = 𝜏𝜏� ≝

𝑝𝑝(𝑆𝑆 = 𝑠𝑠|𝑆𝑆 ≥ 𝑠𝑠,𝑊𝑊(𝑡𝑡0) = 𝜏𝜏). In the rest of this chapter, we will continue to use the less-explicit 

notation, in order to make the expressions more concise and readable, but the condition 

𝑊𝑊(𝑡𝑡0) = 𝜏𝜏 should always be understood to be present. 

In the consistency result 𝜄𝜄 ̂ →𝑃𝑃 𝜄𝜄 ≈ ℎ(𝑡𝑡0 − 𝜓𝜓) derived in the previous subsection (Eq. 2.14), 

ℎ(𝑡𝑡0 − 𝜓𝜓) is not necessarily equal to the hazard experienced at 𝑡𝑡0 − 𝜓𝜓 by the individuals who 

were in 𝜏𝜏 at both 𝑡𝑡0 and 𝑡𝑡0 − 𝜓𝜓; i.e., it is not necessarily true that ℎ(𝑡𝑡0 − 𝜓𝜓) =

ℎ(𝑡𝑡0 − 𝜓𝜓|𝑊𝑊(𝑡𝑡0 − 𝜓𝜓) = 𝜏𝜏). Instead, for calendar time 𝑠𝑠 < 𝑡𝑡0, ℎ(𝑠𝑠) is a mixture of the incidence 

rates that the target population’s eventual members experienced at 𝑠𝑠, in the populations 

which they were members of at time 𝑠𝑠: 

ℎ(𝑠𝑠) = 𝑝𝑝(𝑆𝑆 = 𝑠𝑠|𝑆𝑆 ≥ 𝑠𝑠) 

= � 𝑝𝑝(𝑆𝑆 = 𝑠𝑠|𝑆𝑆 ≥ 𝑠𝑠,𝑊𝑊(𝑠𝑠) = 𝑤𝑤)𝑃𝑃(𝑊𝑊(𝑠𝑠) = 𝑤𝑤|𝑆𝑆 ≥ 𝑠𝑠)
𝑤𝑤∈𝒲𝒲

 

= � ℎ(𝑠𝑠|𝑊𝑊(𝑠𝑠) = 𝑤𝑤)𝑃𝑃(𝑊𝑊(𝑠𝑠) = 𝑤𝑤|𝑆𝑆 ≥ 𝑠𝑠)
𝑤𝑤∈𝒲𝒲

(2. 17) 

If we assume that nearly all of the members of the target population at 𝑡𝑡0 who had not yet 

been infected at 𝑡𝑡0 − 𝜓𝜓 were already in the target population at 𝑡𝑡0 − 𝜓𝜓, i.e., if we assume that 

𝑃𝑃(𝑊𝑊(𝑡𝑡0 − 𝜓𝜓) = 𝜏𝜏|𝑆𝑆 ≥ 𝑡𝑡0 − 𝜓𝜓) ≈ 1, then from Eq. 2.17, we have: 

ℎ(𝑡𝑡0 − 𝜓𝜓) ≈ ℎ(𝑡𝑡0 − 𝜓𝜓|𝑊𝑊(𝑡𝑡0 − 𝜓𝜓) = 𝜏𝜏) 
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Then from Eq. 2.14 we have: 

𝜄𝜄 ̂ →𝑃𝑃 𝜄𝜄 ≈ ℎ(𝑡𝑡0 − 𝜓𝜓|𝑊𝑊(𝑡𝑡0 − 𝜓𝜓) = 𝜏𝜏) 

The assumption that 𝑃𝑃(𝑊𝑊(𝑡𝑡0 − 𝜓𝜓) = 𝜏𝜏|𝑆𝑆 ≥ 𝑡𝑡0 − 𝜓𝜓) ≈ 1 is most plausible if 𝜓𝜓 is short, 

limiting the plausibility that a substantial portion of the target population immigrated or 

aged into the target population during the interval (𝑡𝑡0 − 𝜓𝜓, 𝑡𝑡0).  

Likewise, recall that the estimand of primary interest is the current incidence rate in the 

target population, ℎ(𝑡𝑡0), rather than the past incidence rate ℎ(𝑡𝑡0 − 𝜓𝜓|𝑊𝑊(𝑡𝑡0 − 𝜓𝜓) = 𝜏𝜏). It is 

more plausible that these rates are similar if 𝜓𝜓 is short. Additionally, in order to derive the 

approximation 𝜄𝜄 ≈ ℎ(𝑡𝑡0 − 𝜓𝜓) in Eq. 2.14, we assumed that 𝑔𝑔(𝑡𝑡) = ℎ(𝑡𝑡0 − 𝑡𝑡) ⋅ 𝑃𝑃(𝑆𝑆 ≥ 𝑡𝑡0 − 𝑡𝑡) is 

approximately linear for 𝑡𝑡 ∈ (0, 𝑡𝑡max). Eq. 2.17 shows that for 𝑠𝑠 < 𝑡𝑡0,ℎ(𝑠𝑠) is a mixture of 

hazards in different populations with mixing weights 𝑃𝑃(𝑊𝑊(𝑠𝑠) = 𝑤𝑤|𝑆𝑆 ≥ 𝑠𝑠) that can vary with 

𝑠𝑠. Even if the component hazard functions ℎ(𝑠𝑠|𝑊𝑊(𝑠𝑠) = 𝑤𝑤) are changing linearly and 

𝑃𝑃(𝑆𝑆 ≥ 𝑠𝑠) is approximately constant, nonlinearity in the mixing weights 𝑃𝑃(𝑊𝑊(𝑠𝑠) = 𝑤𝑤|𝑆𝑆 ≥ 𝑠𝑠) 

could induce nonlinearity in ℎ(𝑠𝑠). Thus, it is highly desirable that the biomarker classification 

𝑌𝑌 be defined so as to minimize 𝜓𝜓. 

Note that death, emigration, and other forms of exit from the target population prior to 

the cross-sectional survey have not played a role in these calculations, because all of the 

expressions are conditional on being alive and in the target population at the time of the 

cross-sectional survey. 

2.1.4 Summary of preceding results 

In summary, the chain of approximations underlying the cross-sectional incidence 

estimation approach is: 
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𝜄𝜄 ̂ →𝑃𝑃 𝜄𝜄 ≈ ℎ(𝑡𝑡0 − 𝜓𝜓) ≈ ℎ(𝑡𝑡0 − 𝜓𝜓|𝑊𝑊(𝑡𝑡0 − 𝜓𝜓) = 𝜏𝜏) ≈ ℎ(𝑡𝑡0) 

We have justified these approximations using the following four assumptions: 

1. The probability of a positive biomarker classification is approximately 0 for infections 

lasting longer than 𝑡𝑡max time units: 𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) ≈ 0, 𝑡𝑡 > 𝑡𝑡max. 

2. The density of infection duration for individuals in the target population at the time 

of the cross-sectional survey is approximately linear for 𝑡𝑡max units prior to the survey: 

𝑔𝑔(𝑡𝑡) ≈ 𝛼𝛼 + 𝛽𝛽𝑡𝑡, 𝑡𝑡 ∈ [0, 𝑡𝑡]. 

3. Nearly all of the current members of the target population who had not yet been 

infected 𝜓𝜓 time units prior to the survey were living in the target population at that 

time: 𝑃𝑃(𝑊𝑊(𝑡𝑡0 − 𝜓𝜓) = 𝜏𝜏|𝑆𝑆 ≥ 𝑡𝑡0 − 𝜓𝜓) ≈ 1. 

4. The current incidence rate in the target population is approximately equal to the 

incidence rate for individuals who were in the target population both currently and 

𝜓𝜓 time units ago: ℎ(𝑡𝑡0) ≈ ℎ(𝑡𝑡0 − 𝜓𝜓|𝑊𝑊(𝑡𝑡0 − 𝜓𝜓) = 𝜏𝜏). 

2.2 Calibration of cross-sectional incidence estimators 

A requirement of the cross-sectional method before it can be applied in practice is: (1) a set 

of biomarkers to assay has been identified; (2) it has been established how to combine those 

biomarkers to create an operational definition of “recent infection”; and (3) an estimate of 𝜇𝜇 

based on that biomarker definition of a recent infection is available. These three critical 

pieces of information are typically determined from an initial “calibration” data set of 

infected individuals. This data set must include biomarker measurements on biological 

specimens from the participants and, in contrast with the cross-sectional survey, must 
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include the duration of infection for each specimen, at least in interval-censored form. 

Information on infection duration is typically available when the data come from 

longitudinal studies of initially-uninfected participants who are tested for infection 

periodically. Between study visits, some of the participants will become infected; these 

participants then contribute additional blood samples at various time points after infection, 

which can be used to model the evolution of biomarker distributions as a function of 

infection duration. 

The dates of the last negative and first positive diagnostic tests can be interpreted as 

endpoints of a censoring interval [𝐿𝐿,𝑅𝑅], referred to as the “seroconversion window”, and the 

exact seroconversion date (i.e., the moment at which the individual would first be infection-

positive if tested) can be imputed within this interval (details in Section 2.2.3 and Chapter 

5). Given an imputed seroconversion date, the imputed duration of infection for each of the 

participant’s subsequent biomarker measurements is calculated as the difference between 

the imputed seroconversion date and the biomarker measurement date. We define duration 

of infection starting from the seroconversion date, rather than the date of exposure, because 

without detailed contact tracing of each participant’s points of possible exposure, it can be 

difficult to identify a lower bound for the exact date of exposure; for some infections, 

including HIV, there can be a substantial delay between exposure and the development of 

detectable levels of infection biomarkers such as antigens or antibodies. A participant may 

have been infected even before the last visit in which they appeared to be uninfected. 

The need for a longitudinally collected calibration data set does not invalidate the use of 

cross-sectional incidence estimation approach to avoid the problems of cohort-based 
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incidence estimation. A single longitudinal data set can be used to calibrate multiple 

subsequent cross-sectional studies, thus providing efficiency gains compared to conducting 

multiple cohort studies. Furthermore, the requirements for validity of the calibration data 

set are less stringent than the requirements for a cohort study for incidence estimation; since 

only the data of infected participants will be used, selective attrition may be less of a concern, 

if attrition depends on factors that affect infection probability but not subsequent biomarker 

distributions. 

If a calibration data set is assumed to have been sampled from a population with the same 

biomarker distributions (conditional on time since infection) as the target population, then 

the calibration procedure can proceed as follows.  

2.2.1 Direction of biomarker association 

First, the direction of association between each biomarker and time must be determined. 

This can be done based on domain knowledge about the underlying biological processes or 

by graphing or regressing each biomarker against infection duration, as imputed (for 

example) by the midpoint of the censoring interval (Figure 2.1). Biomarkers useful for cross-

sectional incidence estimation will have a monotonic relationship (in expectation) with 

infection duration, either increasing or decreasing.  

2.2.2 Construction of multi-assay algorithms for recency classification 

For biomarkers that appear to have such a relationship, a grid of possible dichotomization 

cutoff values is selected. Multi-assay algorithms (MAAs) for classifying samples as “recent” 

(MAA-positive) or “non-recent” are then defined by selecting one dichotomization value for 

each biomarker. (Brookmeyer, Konikoff, et al. 2013) For example, suppose there are two 
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continuous-valued biomarkers, 𝐵𝐵1 and 𝐵𝐵2, with cutoff options {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} and {𝑑𝑑, 𝑒𝑒} respectively; 

further suppose that 𝐸𝐸[𝐵𝐵1|𝑇𝑇 = 𝑡𝑡] increases with infection duration 𝑇𝑇 = 𝑡𝑡, whereas 𝐸𝐸[𝐵𝐵2|𝑇𝑇 =

𝑡𝑡] decreases with 𝑡𝑡. Then a possible MAA would be 𝑌𝑌 = 1{𝐵𝐵1<𝑎𝑎 & 𝐵𝐵2>𝑑𝑑}, where 𝐁𝐁 = (𝐵𝐵1,𝐵𝐵2)′ is 

the vector of biomarker values; that is, classify a serum sample as MAA-positive (𝑌𝑌 = 1) if 

𝐵𝐵1 < 𝑎𝑎 and 𝐵𝐵2 > 𝑑𝑑, and MAA-negative (𝑌𝑌 = 0) otherwise. Another MAA would be 𝑌𝑌 =

1{𝐵𝐵1<𝑐𝑐 & 𝐵𝐵2>𝑒𝑒}. A biomarker increasing with time can be effectively ignored by setting its cutoff 

to +∞, and a biomarker decreasing with time can be ignored by setting its cutoff to −∞. Note 

that MAAs are defined by intersections of acceptance regions, and thus can be evaluated 

sequentially for efficiency; the more expensive, labor-intensive, or time-consuming 

biomarkers only need to be assayed for a particular specimen if the other biomarkers allow 

the possibility of a “recent” classification. 

Figure 2.1: Measured values of the LAg Avidity, BioRad Avidity, CD4 cell count, and viral load biomarkers versus midpoint-
imputed infection duration, in a data set of Clade B HIV infections. (Brookmeyer, Konikoff, et al. 2013) 

 

2.2.3 Estimation of the mean window period 

For each MAA, we can estimate the mean window period 𝜇𝜇, using the fact that 𝜇𝜇 =

∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡max
0  where 𝜙𝜙(𝑡𝑡) ≝ 𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) (Eq. 2.7). We can estimate 𝜙𝜙(𝑡𝑡) from the 

calibration data set by regression modeling. (Brookmeyer, Laeyendecker, et al. 2013) Then 
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�̂�𝜇 = ∫ 𝜙𝜙�(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡max
𝑡𝑡=0 . To account for uncertainty in the imputation of 𝑡𝑡, multiple imputation can 

be performed by repeated random draws from the uniform distribution on the censoring 

interval [𝐿𝐿,𝑅𝑅]. (Alternative procedures will be considered in Chapter 5). For each randomly 

imputed data set, a regression model for 𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) can be estimated, and the 

coefficients of this model can be averaged across the imputed data sets to generate a 

consensus model 𝜙𝜙�(𝑡𝑡). (Brookmeyer, Konikoff, et al. 2013) 

The regression model used is typically logistic regression; that is, a generalized linear 

model with a Bernoulli distribution and logit (log-odds) link function. (Dobson and Barnett 

2008) The linear predictor’s functional form is determined based on regression diagnostics, 

and can include flexible forms such as polynomial splines. (Konikoff 2015) 

Bootstrapping can be used to quantify the uncertainty in the estimate �̂�𝜇. (Efron 1979) 

Considering the observed sample distribution as a nonparametric estimate of the population 

distribution, the calibration data set can be resampled to create bootstrapped data sets, and 

the entire 𝜇𝜇 estimation procedure is repeated for each bootstrapped data set. The 𝛼𝛼/2 and 

1 − 𝛼𝛼/2 quantiles of the resulting distribution of �̂�𝜇 values are then used as the limits of a 

(1 − 𝛼𝛼) × 100% confidence interval. 

2.2.4 Optimal MAA selection 

Next, an optimal MAA (i.e., an optimal set of cutoff values) is selected to be used for cross-

sectional estimation. As discussed in Section 2.1, it is helpful for 𝜓𝜓 to be small in order to 

make the approximation 𝜄𝜄 ≈ ℎ(𝑡𝑡0) more plausible. Then since 𝚤𝚤̂ is consistent for 𝜄𝜄, it follows 

that E[𝜄𝜄]̂ → 𝜄𝜄 ≈ ℎ(𝑡𝑡0); that is, 𝜄𝜄 ̂is asymptotically approximately unbiased for ℎ(𝑡𝑡0), as long as 

𝜓𝜓 is sufficiently small. Hence, our main objectives in selecting an optimal MAA are to 



18 

minimize Var(𝜄𝜄)̂ and 𝜓𝜓. 

By the Conditionality Principle (Birnbaum 1962; Royall 1986) we consider the 

conditional variance:  

Var(𝜄𝜄|̂𝑁𝑁𝑢𝑢) = Var � 𝑉𝑉
𝜇𝜇𝑁𝑁𝑢𝑢

�𝑁𝑁𝑢𝑢� =
1

(𝑁𝑁𝑢𝑢𝜇𝜇)2 Var(𝑉𝑉|𝑁𝑁𝑢𝑢) (2. 18) 

Typically, 𝑉𝑉 is much smaller than 𝑁𝑁𝑢𝑢; then Var(𝑉𝑉|𝑁𝑁𝑢𝑢) ≈ Var(𝑉𝑉|𝑁𝑁𝑢𝑢 + 𝑉𝑉). Let 𝑋𝑋 denote HIV 

seroconversion status (1 = seropositive, 0 = seronegative); then 𝑉𝑉|𝑁𝑁𝑢𝑢 + 𝑉𝑉 ∼ Binom(𝑁𝑁𝑢𝑢 +

𝑉𝑉,𝜋𝜋), where 𝜋𝜋 ≝ 𝑃𝑃�𝑌𝑌 = 1│𝑌𝑌 = 1 ∪ 𝑋𝑋 = 0�. Since 𝜋𝜋 is typically small: 

Var(𝑉𝑉|𝑁𝑁𝑢𝑢 + 𝑉𝑉) = (𝑁𝑁𝑢𝑢 + 𝑉𝑉)(𝜋𝜋 − 𝜋𝜋2) ≈ (𝑁𝑁𝑢𝑢 + 𝑉𝑉)𝜋𝜋 ≈ 𝑁𝑁𝑢𝑢𝜋𝜋 

Further, using ∪ to denote union and ∩ to denote intersection, we have: 

𝜋𝜋 ≝ 𝑃𝑃(𝑌𝑌 = 1|𝑌𝑌 = 1 ∪ 𝑋𝑋 = 0) 

=
𝑃𝑃(𝑌𝑌 = 1)

𝑃𝑃(𝑌𝑌 = 1 ∪ 𝑋𝑋 = 0)  

≈ 𝑃𝑃(𝑌𝑌 = 1) [assuming 𝑃𝑃(𝑌𝑌 = 1 ∪ 𝑋𝑋 = 0) ≈ 1] 

≈ 𝑔𝑔(𝜓𝜓) 𝜇𝜇 [by Eq. 2.11] 

Returning to Eq. 2.18, we now have: 

Var(𝜄𝜄|̂𝑁𝑁𝑢𝑢) ≈
𝑁𝑁𝑢𝑢 𝑔𝑔(𝜓𝜓) 𝜇𝜇

(𝑁𝑁𝑢𝑢 𝜇𝜇)2 =
𝑔𝑔(𝜓𝜓)
𝑁𝑁𝑢𝑢 𝜇𝜇

(2. 19) 

Thus, the approximate conditional variance of 𝜄𝜄 ̂is inversely related to 𝜇𝜇. Assuming that 𝑔𝑔(𝜓𝜓) 

does not change too substantially with 𝜓𝜓, we would minimize Var(𝜄𝜄)̂ by choosing an MAA 

that maximizes 𝜇𝜇. 

Unfortunately, 𝜇𝜇 and 𝜓𝜓 are positively correlated; as the mean window period becomes 

longer, so too does the shadow. Thus, we are faced with a tradeoff between precision and lag 
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time, analogous to a classical bias-variance tradeoff. Typically, the optimal MAA is defined as 

the one that maximizes 𝜇𝜇, subject to the constraint that the upper 95% bootstrap confidence 

interval for 𝜓𝜓 is less than 365 days. (Brookmeyer, Konikoff, et al. 2013) This constraint 

increases the likelihood that the resulting cross-sectional incidence estimate will correspond 

to recent incidence in the population of interest. 

Note that selecting an MAA to maximize �̂�𝜇 will induce some bias, analogous to model 

selection bias and the phenomenon of regression to the mean; thus, the �̂�𝜇 estimate for the 

chosen MAA generated from the data set that was used to select that MAA can no longer be 

assumed to be a consistent estimate of 𝜇𝜇. However, the induced bias might not be very large. 

A simulation study estimated a bias of approximately 3 days when selecting an optimal MAA 

out of a set of 31,680 MAAs involving up to four biomarkers. (Konikoff 2015) 

2.3 Uncertainty quantification for cross-sectional incidence estimation 

Confidence intervals for cross-sectional incidence estimates should account for the 

uncertainty both in estimating the prevalence of MAA-positive infection and in relating that 

prevalence to incidence via the 𝜇𝜇 parameter. Parametric methods have been developed for 

this purpose. (Brookmeyer 1997; Cole et al. 2007) 

2.4 HIV Biomarker Data Sets 

The calibration data set that we will consider in this dissertation consists of 2,442 samples 

of HIV Clade C infections from 278 participants with interval-censored durations of infection 

(approximately 0.1 to 9.9 years after seroconversion; see Table 2.1). These samples were 

obtained from three cohort studies which recruited individuals who had acquired HIV 

infections while enrolled in clinical trials evaluating interventions for HIV prevention.  
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2.4.1 The CAPRISA 004 and 002 studies 

The CAPRISA 004 study, conducted by the Centre for the AIDS Programme of Research in 

South Africa (CAPRISA), was a randomized controlled trial of a vaginal antiretroviral 

microbicide to prevent HIV infection. (Abdool Karim et al. 2010) 1085 initially HIV-negative 

women living in KwaZulu-Natal, South Africa, were recruited between 2007 and 2009 and 

randomly assigned into treatment and placebo study arms. Each participant was scheduled 

to return monthly for HIV testing for 30 months. 98 participants acquired HIV during the 

trial; these participants were offered enrollment into the CAPRISA 002 Acute Infection 

cohort study, which included blood sample collection biweekly for the first three months 

after enrollment, then monthly until 12 months, then every three months or as medically 

indicated, until antiretroviral therapy initiation or at least two years from seroconversion. 

(Garrett et al. 2015). 518 of these blood samples from 90 participants, collected between one 

month and four years after detection of seroconversion, were subsequently assayed for 

several biomarkers of recent infection. (Laeyendecker et al. 2018) 

2.4.2 The FHI 360 HC-HIV and GS studies 

The Hormonal Contraception and Risk of HIV Acquisition (HC-HIV) study, conducted by 

Family Health International (FHI) 360, evaluated hormonal contraception and HIV infection. 

(C. S. Morrison et al. 2007) 4439 initially HIV-uninfected women seeking healthcare services 

from family planning clinics in Uganda and Zimbabwe were recruited for the study between 

November 1999 and January 2004. Follow-up HIV tests were conducted every 12 weeks for 

15-24 months; 213 of those 4439 participants tested positive at some point after enrollment. 

188 of these 213 participants were then enrolled in the Hormonal Contraception and HIV 

Genital Shedding and Disease Progression (GS) Study, which included blood sample 
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collection at 4, 8, and 12 weeks following enrollment in the GS study and then at 12-week 

intervals for up to 9.3 years (C. S. Morrison et al. 2011) 1,839 blood samples from 162 

participants were subsequently assayed for several biomarkers of recent infection; all but 

three of these samples came from the participants in Zimbabwe. (Laeyendecker et al. 2018) 

2.4.3 The HPTN 039 and 039-01 studies 

The HIV Prevention Trials Network (HPTN) 039 study evaluated the effects of herpes 

simplex virus type 2 treatment on HIV acquisition risk. (Reid et al. 2010) 602 participants 

were recruited from a study site in Lusaka, Zambia between October 2003 and November 

2007. HIV testing was performed quarterly, for up to 18 months. Participants who acquired 

HIV infections during the course of the study were invited to join the HPTN-039-01-Ancillary 

study. (Celum and Wald 2004) These participants had blood samples collected at enrollment 

in the ancillary study and at 1, 5, and 6 months after enrollment. 85 of these blood samples, 

from 25 individuals, were subsequently assayed for several biomarkers of recent infection. 

(Laeyendecker et al. 2018) 

2.4.4 The HPTN-068 study 

An additional sample set was obtained from an independent, longitudinal cohort study that 

evaluated the impact of conditional cash transfer on HIV acquisition by young women in 

South Africa (HPTN 068). The study was conducted from 2012 to 2015. Samples collected in 

2014 were used for cross-sectional incidence estimation; these results can be compared to 

the observed longitudinal incidence in the cohort. This analysis included 1,360 participants 

(1,269 HIV-uninfected and 91 HIV-infected participants; 61 participants were infected in 

2013 or earlier). The observed longitudinal incidence in HPTN 068 in the 2014 survey was 
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1.9% (95% CI: 1.3, 2.7). 

 

Table 2.1: Demographics of several study cohorts of HIV Subtype C infected individuals 

  
Cohort 

 
Characteristic CAPRISA 002 FHI-360 GS HPTN 039-01 

Country of origin South Africa Zimbabwe* Zambia 

Number of samples 518 1,839 85 

Number of unique subjects 90 162 25 

Range of duration of infection in years 0.06 to 3.7 0.04 to 9.9 0.15 to 0.8 

Mean samples per subject (range) 6 (1-7) 12 (1-20) 4 (1-4) 

Female sex, % of subjects 100% 100% 100% 

Number samples from subjects on ART (%) 12 (2.2%) 220 (11.3%) 0 (0%) 

Duration of infection in years 
   

  0.0 to 0.5 159 306 42 

  0.5 to 1.0 173 262 43 

  1.0 to 2.0 88 448 0 

  2.0 to 3.0 76 105 0 

  3.0 to 5.0 22 347 0 

  ≥ 5.0 0 371 0 

CD4 cell count 
   

  >500 228 685 54 

  500-200 271 822 26 

  <200 14 104 0 

  missing 5 228 5 

Viral load (copies/mL) 
   

  >10,000 260 560 37 

  10,000 to 1,000 161 278 26 

  <1,000 92 227 19 

  missing 5 774 3 

*All participants from South Africa, Zimbabwe and Zambia were assumed to have subtype C infection based on the prevalence 
of subtype C in those countries. The FHI-360 cohort included one individual from Uganda with three samples. That individual 

was infected with HIV subtype C based on subtype assessment of the pol region. 
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CHAPTER 3 
Missing Biomarker Data 

One key advantage of MAAs is that they can significantly reduce assay costs compared to 

testing all biological samples with all biomarkers. The cost savings results because only 

samples provisionally classified as MAA positive need to be tested in the next step of the 

algorithm with another biomarker in order to determine the MAA classification. 

Furthermore, the order of the steps of the algorithm can be arranged to help minimize costs: 

the less expensive or less labor-intensive assays can be performed in the initial steps, and 

the most expensive assays performed in the final step. By so doing, the number of biological 

samples that need to be tested in the final step is relatively small. For example, in HIV 

incidence estimation, viral load testing is often placed at the final step of MAAs. 

However, exploiting this opportunity for cost-savings leads to incomplete data sets, 

which can become a problem when attempting to apply MAAs different from those for which 

the data set was originally intended. Biomarker measurements could also be missing from a 

data set because there was insufficient biological sample material to adequately perform 

some of the assays, because biological samples have been lost, or because of other logistical 

and administrative reasons. 

The objective of this chapter is to consider some of the statistical challenges for 

addressing missing biomarker data for cross-sectional incidence estimation. In Section 3.1 

we consider several methods for handling missing biomarkers when estimating the mean 

window period of an MAA based on biological samples with approximately known durations 

of infection. In Section 3.1.3 we evaluate the performance of these various methods by 

simulation. We examine two naïve approaches, one using all samples that can be classified 
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by the MAA and another using all samples with complete biomarker data, and we show that 

each of these approaches can lead to biased estimators of the mean window period. We 

propose a conditional approach for handling the missing data. The main idea of the 

conditional approach with two biomarkers is to decompose the likelihood into a product of 

two factors. The first factor corresponds to the first biomarker result and the second factor 

corresponds to the second biomarker result conditional on the first biomarker result. This 

approach accounts for the possibility that the missingness mechanism for a given biomarker 

may depend on the values of the other biomarkers in the MAA. We show that this method 

performs well. In Section 3.1.5, we apply these methods in practice to calibration data set of 

biomarker data collected longitudinally from individuals with HIV Subtype C infections. 

Once an MAA has been developed and its mean window period has been estimated, it is 

ready to be used in a cross-sectional survey to estimate incidence. However, missing 

biomarker data can also occur in the survey for any of the reasons mentioned previously. In 

Section 3.2 we consider approaches for handling missing biomarkers in a cross-sectional 

survey for estimating incidence, and in Section 3.2.1 we evaluate these approaches by 

simulation. We again show that several naïve estimators can lead to biased results, whereas 

a conditional approach performs well. The results are discussed in Section 3.3. 

3.1 Estimating the mean window period with incomplete calibration data 

In this section we consider approaches for handling missing biomarker data when 

estimating the mean window period of an MAA from a calibration data set. Here we consider 

algorithms consisting of two biomarkers assayed sequentially, where missing biomarker 

data is only possible for the second biomarker in the algorithm. One example of a two 
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biomarker MAA for HIV incidence estimation is a widely used algorithm based on LAg-

Avidity assay and viral load, for which MAA positivity requires LAg-Avidity < 1.5 normalized 

optical density units (OD-n) and viral load > 1000 copies/mL. (Rehle et al. 2015) We label 

the two biomarkers 𝐵𝐵1 and 𝐵𝐵2 where biomarker 𝐵𝐵2 is the one with potentially missing values. 

We use the notation 𝑚𝑚𝑖𝑖  to indicate whether the value of the biomarker B2 is missing for the 

𝑖𝑖𝑡𝑡ℎ  serum sample, that is, 𝑚𝑚𝑖𝑖 = 1 if the 𝐵𝐵2 measurement is missing and 𝑚𝑚𝑖𝑖 = 0 if the 

measurement is known. We define the indicator random variables 𝑏𝑏1𝑖𝑖 and 𝑏𝑏2𝑖𝑖 to indicate 

whether the biomarkers meet the criteria for MAA positivity for biomarkers 𝐵𝐵1 and 𝐵𝐵2 

respectively. The random variable 𝑏𝑏2𝑖𝑖 is only observed if 𝑚𝑚𝑖𝑖 = 0. For example, in the two-

assay MAA mentioned above (LAg and viral load), 𝑏𝑏1𝑖𝑖 is set to 1 if LAg-Avidity < 1.5 and 0 

otherwise, and 𝑏𝑏2𝑖𝑖 is set to 1 if viral load > 1000, to 0 if viral load ≤ 1000 and is not observed 

if 𝑚𝑚𝑖𝑖 = 1. Let 𝑌𝑌𝑖𝑖 indicate the MAA classification for the 𝑖𝑖𝑡𝑡ℎ  sample based on the observed data, 

where 𝑌𝑌𝑖𝑖 = +1 if the MAA is positive (which occurs if 𝑏𝑏1𝑖𝑖 = 𝑏𝑏2𝑖𝑖 = 1), 𝑌𝑌𝑖𝑖 = −1 if the MAA is 

negative (which occurs if either 𝑏𝑏1𝑖𝑖 = 0 or 𝑏𝑏2𝑖𝑖 = 0), and 𝑌𝑌𝑖𝑖 = 0 if the MAA classification is 

indeterminate (which occurs if 𝑏𝑏1𝑖𝑖 = 1 and 𝑚𝑚𝑖𝑖 = 1). 

Figure 3.1 shows the classification of biological samples according to MAA status (MAA 

positive, negative and indeterminate) and biomarker 𝐵𝐵2 missing status (𝑚𝑚 = 0 or 1). As 

shown in the figure, some biological samples (the red squares) can be classified as MAA 

negative (𝑌𝑌 = −1) even though biomarker 𝐵𝐵2 is missing. The blue squares correspond to 

samples with 𝑚𝑚𝑖𝑖 = 0, that is, samples for which both biomarkers have been measured. The 

green square corresponds to samples where the MAA status could not be determined (that 

is, where 𝑏𝑏1 = 1 and 𝑚𝑚 = 1).  
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 Figure 3.1: Flow-chart of the sample classification process for a two-biomarker MAA with missing data on the second 
biomarker. 

 

MAA positive, negative, and indeterminate are indicated by 𝑌𝑌 = +1,−1, 0 respectively. Methods WP1 and CS1 use all samples 
where 𝑌𝑌 is determined (red and blue squares); methods WP2 and CS2 use samples only if B2 is observed (blue squares); 

methods WP3 and CS3 use all samples (red; blue; and green squares where MAA is indeterminate). 

As discussed in Chapter 2, the calibration data used for window period estimation 

typically consist of biological samples from seropositive individuals along with interval-

censored durations of infection. Thus, let us denote the data from the 𝑖𝑖𝑡𝑡ℎ biological sample 

as (𝐿𝐿𝑖𝑖 ,𝑅𝑅𝑖𝑖,𝑚𝑚𝑖𝑖 , 𝑏𝑏1𝑖𝑖, 𝑏𝑏2𝑖𝑖), where 𝐿𝐿𝑖𝑖  and 𝑅𝑅𝑖𝑖 are the left and right bounds respectively for the 

duration of infection at the time of biological sample collection. Our analysis task is to 

accurately estimate a model for 𝜙𝜙(𝑡𝑡) = 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 𝑏𝑏2𝑖𝑖 = 1|𝑇𝑇𝑖𝑖 = 𝑡𝑡), from which we will derive 

an estimate of 𝜇𝜇. 

3.1.1 Assumptions 

We will evaluate several methods for estimating the mean window period under a class of 

missingness mechanisms applicable to MAAs. We suppose that the probability that 

𝑩𝑩𝟏𝟏
𝑏𝑏1 = 0

𝑌𝑌 = 0
𝑚𝑚 = 1

𝑌𝑌 = −1
𝑚𝑚 = 1

𝑩𝑩𝟐𝟐

𝑏𝑏1 = 1

𝑌𝑌 = −1
𝑚𝑚 = 0

𝑌𝑌 = +1
𝑚𝑚 = 0

𝑌𝑌 = −1
𝑚𝑚 = 0

𝑏𝑏2 = 0

𝑏𝑏2 = 1
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biomarker 𝐵𝐵2 is missing is independent of 𝑏𝑏2𝑖𝑖, given 𝑏𝑏1𝑖𝑖; i.e., 𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 0, 𝑏𝑏2𝑖𝑖) =

𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 0) = 𝜆𝜆1, and similarly 𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 1, 𝑏𝑏2𝑖𝑖) = 𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 1) = 𝜆𝜆2. In 

the practical application of MAAs we would typically expect 𝜆𝜆1 > 𝜆𝜆2, because biological 

samples that meet the MAA criterion for the first biomarker are more likely to be assayed for 

the second biomarker. If the biomarker tests were run strictly sequentially, then 𝜆𝜆1 = 1. 

However, in practice some biological specimens may have been evaluated for biomarker 𝐵𝐵2 

even if 𝑏𝑏1𝑖𝑖 = 1, because of other research or clinical requirements. In that case 𝜆𝜆1 may be less 

than 1. In the following analyses, while we are considering primarily sequentially-run 

evaluations of the biomarkers, we also allow for the possibility that some measurements may 

be available on 𝐵𝐵2 even if 𝑏𝑏1𝑖𝑖 = 0. 

It is important to note that even if the probability that 𝐵𝐵2 is missing does not depend on 

𝐵𝐵1 (i.e., 𝜆𝜆1 = 𝜆𝜆2 = 𝜆𝜆), the probability that the MAA classification is indeterminate still 

depends on the values of the biomarkers. To see why, note that 𝑃𝑃(𝑌𝑌𝑖𝑖 = 0|𝑏𝑏1𝑖𝑖 = 1) =

𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 1) = 𝜆𝜆2, but on the other hand, we have 𝑃𝑃(𝑌𝑌𝑖𝑖 = 0|𝑏𝑏1𝑖𝑖 = 0) = 0. It is also 

worth noting that although 𝑌𝑌𝑖𝑖 = −1 whenever 𝑏𝑏1𝑖𝑖 = 0, regardless of whether 𝑏𝑏2𝑖𝑖 is observed, 

the value of 𝜆𝜆1 = 𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 0) still affects the simulation results below, because the 

second approach considered removes all observations with 𝑏𝑏2𝑖𝑖 missing, even when the MAA 

classification is already determined by 𝑏𝑏1𝑖𝑖 = 0; we will find that this approach leads to biased 

results specifically when 𝜆𝜆1 ≠ 𝜆𝜆2. 

3.1.2 Analysis approaches 

The first approach that we consider for window period estimation (Method WP1) uses all 

samples whose MAA classification has been determined (i.e., where 𝑌𝑌𝑖𝑖 takes the values of +1 
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or -1) and ignores those samples whose MAA status is undetermined. We thus refer to this 

approach as the “MAA determined analysis”. The data that would go into the analysis are the 

red and blue squares in Figure 3.1. We could fit a flexible logistic regression model for 𝑃𝑃(𝑌𝑌𝑖𝑖 =

 1), such as a cubic spline as a function of the time since seroconversion to the data (𝑌𝑌𝑖𝑖,𝑇𝑇𝑖𝑖) 

where 𝑌𝑌𝑖𝑖 is either -1 or +1. The resulting fitted predicted probability curve, denoted 𝜙𝜙�(𝑡𝑡), is 

integrated from 0 to ∞ to estimate the mean window period; i.e., �̂�𝜇 = ∫ 𝜙𝜙�(𝑡𝑡)𝑑𝑑𝑡𝑡∞
𝑡𝑡=0 . Method 

WP1 has the appeal of seeming to be simple and straightforward, because it uses all the data 

where the MAA classification can be determined, but it is a naïve analysis that can lead to 

unwanted selection effects and biased estimates if 𝜆𝜆2 > 0. We quantify this bias by 

simulation in Section 3.1.3. 

The second approach we consider (Method WP2) uses all samples where both 

biomarkers have been measured; that is, sample 𝑖𝑖 will be excluded from the analysis 

whenever 𝑚𝑚𝑖𝑖 = 1, even if 𝑏𝑏1𝑖𝑖 = 0, in which case the sample can be classified as MAA-

negative. Thus, the data that would go into this analysis are only the blue squares in Figure 

3.1. We refer to this approach as the “complete biomarker analysis” as it uses only samples 

where both biomarkers have been measured. The intuition for this approach is that we 

should remove all samples with incomplete data, rather than only samples with 𝐵𝐵2 missing 

and 𝑏𝑏1 = 1, because the subset of samples with 𝑏𝑏1 = 1 has a higher proportion of MAA-

positives than the overall population; therefore, removing incomplete observations from 

only this subset induces bias. In contrast, if the probability of missingness is not associated 

with the underlying biomarker values (implying 𝜆𝜆1 = 𝜆𝜆2), then removing all incomplete 

samples leaves us with an unbiased sample of biomarker values. However, method WP2 is 
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still biased whenever 𝜆𝜆1 ≠ 𝜆𝜆2. In particular, as we show in Section 3.1.3, even if 𝜆𝜆2 = 0, the 

method will lead to biased results when 𝜆𝜆1 > 0. 

The third approach we consider (Method WP3) uses all the biological samples illustrated 

in Figure 3.1 (blue, red, and green squares). We call this approach a conditional likelihood 

analysis. The factor that is contributed to the likelihood function for the 𝑖𝑖𝑡𝑡ℎ individual is:  

ℒ𝑖𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1|𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖) 𝜆𝜆2 if 𝑏𝑏1𝑖𝑖 = 1,𝑚𝑚𝑖𝑖 = 1
𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1|𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖)(1 − 𝜆𝜆2)𝑃𝑃(𝑏𝑏2𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 1,𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖) if 𝑏𝑏1𝑖𝑖 = 1,𝑚𝑚𝑖𝑖 = 0, 𝑏𝑏2𝑖𝑖 = 1
𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1|𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖)(1 − 𝜆𝜆2)[1 − 𝑃𝑃(𝑏𝑏2𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 1,𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖)] if 𝑏𝑏1𝑖𝑖 = 1,𝑚𝑚𝑖𝑖 = 0, 𝑏𝑏2𝑖𝑖 = 0
[1 − 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1|𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖)] 𝜆𝜆1 if 𝑏𝑏1𝑖𝑖 = 0,𝑚𝑚𝑖𝑖 = 1
[1 − 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1|𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖)] (1 − 𝜆𝜆1) 𝑃𝑃(𝑏𝑏2𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 0,𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖) if 𝑏𝑏1𝑖𝑖 = 0,𝑚𝑚𝑖𝑖 = 0, 𝑏𝑏2𝑖𝑖 = 1
[1 − 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1|𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖)] (1 − 𝜆𝜆1) [1 − 𝑃𝑃(𝑏𝑏2𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 0,𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖)] if 𝑏𝑏1𝑖𝑖 = 0,𝑚𝑚𝑖𝑖 = 0, 𝑏𝑏2𝑖𝑖 = 0

(3. 1) 

We use two different logistic regression models 𝜙𝜙1(𝑡𝑡𝑖𝑖|𝜶𝜶) and 𝜙𝜙2(𝑡𝑡𝑖𝑖|𝜷𝜷) for 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1|𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖) 

and 𝑃𝑃(𝑏𝑏2𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 1,𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖) respectively, where 𝜶𝜶 = (𝛼𝛼0,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4) and 𝜷𝜷 =

(𝛽𝛽1,𝛽𝛽2,𝛽𝛽3,𝛽𝛽4,𝛽𝛽5), are the regression parameters: 

𝜙𝜙1(𝑡𝑡𝑖𝑖|𝛼𝛼) = 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1|𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖)

= 𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑡𝑡−1 �𝛼𝛼0 + 𝛼𝛼1𝑡𝑡𝑖𝑖 + 𝛼𝛼2𝑡𝑡𝑖𝑖2 + 𝛼𝛼3𝑡𝑡𝑖𝑖3 + 𝛼𝛼4�𝐼𝐼𝑡𝑡𝑖𝑖>2(𝑡𝑡𝑖𝑖 − 2)3�� 

𝜙𝜙2(𝑡𝑡𝑖𝑖|𝛽𝛽) = 𝑃𝑃(𝑏𝑏2𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 1,𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖)

= 𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑡𝑡−1 �𝛽𝛽0 + 𝛽𝛽1𝑡𝑡𝑖𝑖 + 𝛽𝛽2𝑡𝑡𝑖𝑖2 + 𝛽𝛽3𝑡𝑡𝑖𝑖3 + 𝛽𝛽4�𝐼𝐼𝑡𝑡𝑖𝑖>2(𝑡𝑡𝑖𝑖 − 2)3�� 

We further assume that 𝑃𝑃(𝑏𝑏2𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 0,𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖),𝜆𝜆1, and 𝜆𝜆2 do not involve the parameters 

𝛼𝛼 or 𝛽𝛽. Then it follows, after rearranging and collecting terms, that the likelihood 

contribution, up to a proportionality constant 𝐾𝐾(𝜆𝜆1, 𝜆𝜆2,𝑚𝑚𝑖𝑖, 𝑏𝑏1𝑖𝑖, 𝑏𝑏2𝑖𝑖), is the product of two 

components: 

ℒ𝑖𝑖 ∝ �𝜙𝜙1(𝑡𝑡𝑖𝑖|𝛼𝛼)𝑏𝑏1𝑖𝑖�1 − 𝜙𝜙1(𝑡𝑡𝑖𝑖|𝛼𝛼)�
1−𝑏𝑏1𝑖𝑖� ⋅ �𝜙𝜙2(𝑡𝑡𝑖𝑖|𝛽𝛽)𝑏𝑏2𝑖𝑖�1 − 𝜙𝜙2(𝑡𝑡𝑖𝑖|𝛽𝛽)�

1−𝑏𝑏2𝑖𝑖�
(1−𝑚𝑚𝑖𝑖)𝑏𝑏1𝑖𝑖

(3. 2) 

Thus, the first component of the likelihood corresponds to the likelihood for the binary 
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outcome 𝑏𝑏1𝑖𝑖. The second component of the likelihood corresponds to the binary outcome 𝑏𝑏2𝑖𝑖 

conditional on 𝑏𝑏1𝑖𝑖 = 1 among biological samples where 𝑏𝑏2𝑖𝑖 is not missing, that is where 𝑚𝑚𝑖𝑖 =

0. Thus, in practice, to find the maximum likelihood estimates of 𝛼𝛼 and 𝛽𝛽 we (1) fit a logistic 

regression model for the outcome 𝑏𝑏1 using all the data, and (2) fit a separate logistic 

regression model for the outcome 𝑏𝑏2 conditional on 𝑏𝑏1 = 1, using the data where 𝑏𝑏2 is 

observed and 𝑏𝑏1 = 1. Then, we estimate 𝑃𝑃(𝑏𝑏1 = 𝑏𝑏2 = 1|𝑇𝑇 = 𝑡𝑡) by 𝜙𝜙�(𝑡𝑡) = 𝜙𝜙�1(𝑡𝑡|𝛼𝛼)𝜙𝜙�2(𝑡𝑡|𝛽𝛽). 

Finally, the mean window period is estimated by �̂�𝜇 = ∫ 𝜙𝜙�(𝑡𝑡)𝑑𝑑𝑡𝑡∞
𝑡𝑡=0  provided 𝜙𝜙�(𝑡𝑡) converges. 

The intuition for this approach is that we have a complete dataset for estimating 𝜙𝜙1(𝑡𝑡|𝛼𝛼), 

since this model does not involve 𝑏𝑏2. We can also estimate 𝜙𝜙2(𝑡𝑡|𝛽𝛽) without bias, using the 

samples where 𝑏𝑏2 is observed (and 𝑏𝑏1 = 1), assuming that conditional on 𝑏𝑏1 = 1, the 

probability that 𝑏𝑏2 is missing is a constant, i.e. 𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 1) = 𝜆𝜆2. Therefore, the 

resulting estimator �̂�𝜇 will be consistent in scenarios where WP1 and WP2 produce biased 

estimates. Approach WP3 does not require the estimation of parameters for 𝜆𝜆1 or 𝜆𝜆2; it only 

requires the assumption that these parameters are constant with respect to 𝑏𝑏2. 

3.1.3 Simulation study of window period estimation with missing biomarkers 

We assessed the abilities of window period methods WP1-WP3 to estimate 𝜇𝜇 using the 

following simulation framework. We first selected a dataset which had complete biomarker 

data for LAg-Avidity and viral load (Konikoff et al. 2013). This dataset contained 1780 

observations from 709 participants of 3 longitudinal cohort studies in the US; participants 

contributed between 1 and 16 observations, at estimated times since seroconversion 

ranging between 1 month and >8 years. We then generated 1000 simulated datasets, 

sampling observations with replacement from the original dataset, clustering by subject ID 
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and stratifying by study cohort, so that each simulated dataset had the same number of 

sampled subjects in each cohort as the original dataset had. We assigned subjects a new ID 

number each time they were sampled. We then imputed the infection duration 𝑇𝑇𝑖𝑖 for each ID 

number by a draw from a uniform distribution over the interval [𝐿𝐿𝑖𝑖,𝑅𝑅𝑖𝑖], where 𝐿𝐿𝑖𝑖  and 𝑅𝑅𝑖𝑖  are 

the left and right bounds for the duration of infection corresponding to that biological sample 

(Brookmeyer, Konikoff, et al. 2013). 

We then performed the following analysis on each simulated dataset. First, we produced 

recency classifications (𝑌𝑌𝑖𝑖 = +1 or 𝑌𝑌𝑖𝑖 = −1) using the MAA consisting of LAg-Avidity < 1.5 

and viral load > 1000. We used these recency classifications, along with the imputed times 

since seroconversion, to produce estimates of the mean window period (�̂�𝜇𝑗𝑗,𝑇𝑇), using the 

procedure for completely observed data described in Section 2.2.3. Thus, in the simulation 

study, the estimated mean window period of each simulated dataset is used as the “gold 

standard.” We considered these estimates to be the “gold standards” for each simulated 

dataset because they were the estimates which would be achieved with completely observed 

data, and which methods WP1-3 should attempt to reproduce.  

We randomly assigned the biomarker 𝐵𝐵2 to be missing by simulating Bernoulli trials for 

each serum sample in the dataset. The probability that 𝐵𝐵2 was assigned to be missing 

depended solely on whether 𝐵𝐵1’s value met its criterion for MAA positivity, i.e., whether 𝑏𝑏1 =

1. We set 𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 0) = 𝜆𝜆1 and 𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 1) = 𝜆𝜆2, and varied the values of 𝜆𝜆1 

and 𝜆𝜆2 across six different simulation scenarios (Table 3.1).  

After determining which observations were missing, we recalculated the MAA 

classifications 𝑌𝑌𝑖𝑖, updating the value to 𝑌𝑌𝑖𝑖 = 0 when 𝑏𝑏1𝑖𝑖 = 1 and 𝑚𝑚𝑖𝑖 = 1, and then applied 
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methods WP1, WP2, and WP3 to the resulting incomplete datasets, producing estimates �̂�𝜇𝑗𝑗,𝑘𝑘 

for the 𝑗𝑗𝑡𝑡ℎ simulated dataset using the 𝑘𝑘𝑡𝑡ℎ method (where 𝑗𝑗 = 1, … , 1000 and 𝑘𝑘 = 1, 2, 3). We 

computed error scores 𝑒𝑒𝑗𝑗,𝑘𝑘 = �̂�𝜇𝑗𝑗,𝑘𝑘 − �̂�𝜇𝑗𝑗,𝑇𝑇 comparing each gold standard estimate with the 

corresponding incomplete-data estimates. We defined the bias of estimator �̂�𝜇𝑘𝑘 as the 

expectation of the error score for the 𝑘𝑘𝑡𝑡ℎ method, E�𝑒𝑒𝑗𝑗,𝑘𝑘�, and we estimated this bias using 

the sample mean �̅�𝑒𝑘𝑘 = 1
𝑛𝑛
∑ 𝑒𝑒𝑗𝑗,𝑘𝑘
𝑛𝑛
𝑗𝑗=1 . Similarly, we defined the root mean squared error (RMSE) 

as �𝐸𝐸 ��𝑒𝑒𝑗𝑗,𝑘𝑘�
2
�, which we estimated by �1

𝑛𝑛
∑ �𝑒𝑒𝑗𝑗,𝑘𝑘�

2𝑛𝑛
𝑗𝑗=1 . We also calculated sample standard 

deviations of the error scores, 𝑠𝑠𝑘𝑘 = � 1
n−1

∑ �𝑒𝑒𝑗𝑗,𝑘𝑘 −  �̅�𝑒𝑘𝑘�
2𝑛𝑛

𝑗𝑗=1 , as well as the sample standard 

error of each estimator �̂�𝜇𝑘𝑘, 𝑆𝑆𝐸𝐸(�̂�𝜇𝑘𝑘) = � 1
n−1

∑ ��̂�𝜇𝑗𝑗,𝑘𝑘 −
1
𝑛𝑛
∑ �̂�𝜇𝑗𝑗,𝑘𝑘
𝑛𝑛
𝑗𝑗=1 �

2
𝑛𝑛
𝑗𝑗=1 . 

3.1.4  Simulation results 

The simulation results are shown in Table 3.1. As 𝜆𝜆2 increased across the simulation 

scenarios, Method WP1 produced increasingly negatively biased estimates of 𝜇𝜇, and 

correspondingly positively biased incidence estimates. The value of 𝜆𝜆1 = 𝑃𝑃(𝑚𝑚𝑖𝑖 = 1|𝑏𝑏1𝑖𝑖 = 0) 

did not affect this method’s results, because all of the samples with 𝑏𝑏1𝑖𝑖 = 0 could be classified 

as 𝑊𝑊𝑖𝑖 = −1, regardless of whether 𝐵𝐵2 was missing; hence, rows 3 and 9 of Table 3.1 are 

identical. (In contrast, note that rows 15 and 18 are only identical due to rounding; there 

were differences between these two simulations for WP3 at the 0.1 level of precision.) 

Method WP2 had substantial positive bias for 𝜇𝜇 in scenarios with 𝜆𝜆2 < 𝜆𝜆1. In scenarios 

where 𝜆𝜆1 approximately equaled 𝜆𝜆2, this method had less bias. Method WP3 had relatively 

small biases across all the scenarios studied, but did have a consistent, modestly negative 
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bias for 𝜇𝜇.  

Relative to the naïve methods, the conditional likelihood approach reduced bias in the 

mean window period estimates by over 80% in several scenarios considered; for example, 

in the scenario with 𝜆𝜆1 = 0.5 and 𝜆𝜆2 = 0, method WP3 had 89% smaller magnitude of bias 

than WP2. The standard errors were similar between the methods in most scenarios; in the 

cases with 𝜆𝜆1 = 0.5, WP2 had larger standard errors than WP1 and WP3. RMSE was 

comparable among the methods in some scenarios, but substantially larger for WP1 and 

WP2 than for WP3 in the scenarios in which these methods had large biases. 

Table 3.1: Performance of 3 methods for handling missing biomarkers for estimation of the Mean Window Period 

𝜆𝜆1 𝜆𝜆2 Method 
Estimated 

bias 
(days) 

𝑆𝑆𝑆𝑆(𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒) 
(days) 

𝑆𝑆𝐸𝐸(�̂�𝜇𝑘𝑘) 
(days) 

RMSE(�̂�𝜇𝑘𝑘) 
(days) 

0.25 0.25 
MAA determined (WP1) -24 8 17 25 

Complete biomarker (WP2) 0 9 20 9 
Conditional likelihood (WP3) -8 8 18 12 

0.50 0.50 
MAA determined (WP1) -53 12 16 54 

Complete biomarker (WP2) -1 17 25 17 
Conditional likelihood (WP3) -9 13 20 15 

0.50 0.25 
MAA determined (WP1) -24 8 17 25 

Complete biomarker (WP2) 40 15 27 43 
Conditional likelihood (WP3) -8 8 18 12 

0.50 0 
MAA determined (WP1) 0 0 18 0 

Complete biomarker (WP2) 74 13 28 75 
Conditional likelihood (WP3) -8 5 17 9 

0.20 0.10 
MAA determined (WP1) -9 5 17 10 

Complete biomarker (WP2) 11 6 20 13 
Conditional likelihood (WP3) -8 6 17 10 

0.10 0.05 
MAA determined (WP1) -4 3 18 6 

Complete biomarker (WP2) 5 4 19 6 
Conditional likelihood (WP3) -8 6 17 10 

 

The simulation results indicate that Method WP1 produced biased estimates of 𝜇𝜇 in the 

scenarios in which a substantial fraction of the samples could not be classified, even in the 
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idealized scenarios in which the probability that 𝐵𝐵2 was missing did not depend on 𝐵𝐵1 (i.e., 

𝜆𝜆1 = 𝜆𝜆2). Method WP2 was approximately unbiased only if 𝜆𝜆1 ≈ 𝜆𝜆2. The bias was small with 

Method WP3 for all scenarios considered. 

3.1.5 Application to HIV Clade C dataset 

In this section, we apply each of our calibration analyses (WP1, WP2, WP3) to the MAA “LAg 

avidity < 1.5, Viral load > 1000” using the Clade C calibration data set described in Section 

2.4. In this data set, all 2442 samples were assayed for the LAg avidity assay but only 1657 

were assayed for viral load; in particular, 97% of samples with LAg avidity < 1.5 OD-n were 

assayed for viral load, but only 62% of samples with LAg avidity > 1.5 OD-n were assayed for 

viral load (Table 3.2). We estimated the mean window period with each missing-data 

calibration analysis approach using this data set, and we then applied the resulting �̂�𝜇 

estimates to the cross-sectional data from the HPTN-068 study described in Chapter 2.4.4. 

All of the observations in this data set were classifiable for this MAA; there were 12 MAA-

positive observations (𝑌𝑌𝑖𝑖 = 1) and 79 MAA-negatives (𝑌𝑌𝑖𝑖 = 0). The resulting incidence 

estimates were compared with the longitudinal incidence estimate from the HPTN-068 

study (1.9%) to compute relative error, treating the longitudinal estimate as a gold standard. 

Table 3.2: Number of samples assayed for viral load in Clade C data set, by LAg assay result 

 Number of samples  
with viral load 

assayed 

Number of samples with 
viral load not assayed 

(missing) 
LAg ≥ 1.5 1271 (62%) 775 (38%) 
LAg < 1.5 386 (97%) 10   (3%) 
Total 1657 (68%) 785 (32%) 

In this example analysis, methods WP1 and WP3 produced similar results, while WP2 

produced substantially different results (Table 3.3). Very few of the observations in the 
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calibration data set were unclassifiable for the MAA being considered (i.e., only 10 

observations had LAg < 1.5 and viral load missing); hence WP1 and WP3 produced similar 

results, as in the corresponding simulation scenarios above. There was a substantial 

discrepancy in viral load missingness rates between LAg ≥ 1.5 and LAg < 1.5, and WP2 

produced a substantially different �̂�𝜇 from WP1 and WP3, as in the simulations. Interestingly, 

WP2 produced the estimate with the smallest discrepancy from the longitudinal estimate 

(1.9%); however, the confidence intervals for the cross-sectional estimates all cover the 

longitudinal point estimate, and likewise the longitudinal confidence interval (1.3%, 2.7%) 

covers all of the cross-sectional point estimates.  

The preceding analysis does not allow us to assess accuracy, for two reasons. First, there 

is no guarantee that the longitudinal estimate represents the true incidence rate, since it is 

derived from a cohort which was sampled stochastically from a larger population. Second, 

this comparison constitutes a single observation from the distribution of errors for each 

method; we cannot draw reliable inferences about that distribution of errors from a single 

observation. 

Table 3.3: Mean window period and incidence estimates using the MAA “LAg avidity < 1.5, Viral load > 1000”, calibrated 
using the HC-HIV data set and estimated using the HPTN-068 data set, by calibration set missing data analysis method 

Analysis Method 

Estimated  
mean window 

period 
�̂�𝜇 (95% CI) 

Cross-sectionally 
estimated incidence 

in HPTN-068 

Relative 
error vs. 

longitudinal 
estimate 

WP1 (all classifiable samples) 132 (112, 155) 2.6% (1.3, 4.7) 38% 
WP2 (all completely assayed samples) 179 (144, 219) 1.9% (1.0, 3.5) 2% 
WP3 (two-step procedure) 134 (113, 160) 2.6% (1.3, 4.6) 35% 

 

3.2 Cross-sectional incidence estimation with missing biomarkers 

The previous section demonstrated that if missing biomarkers are not handled 



36 

appropriately, estimates of the mean window period can be biased. In this section, we 

consider incidence estimation using an MAA applied to a cross-sectional sample with missing 

biomarker values. In this section, it is assumed that the mean window period has already 

been estimated accurately. 

As in Section 3.1, we consider the situation in which an MAA uses two biomarkers, 𝐵𝐵1 and 

𝐵𝐵2, and only 𝐵𝐵2 has missing values. If both biomarkers were observed for all persons, the 

incidence estimate would be 𝜄𝜄 ̂ = 𝑉𝑉 (𝜇𝜇𝑁𝑁𝑢𝑢)⁄ , where 𝑉𝑉 = ∑ 1(𝑌𝑌𝑖𝑖=1)
𝑁𝑁𝑚𝑚
𝑖𝑖=1  is the number of persons 

in the cross-sectional survey who are classified as MAA positive, 1(𝑌𝑌𝑖𝑖=1) is an indicator 

function with value 1 if 𝑌𝑌𝑖𝑖 = 1 and 0 otherwise, 𝑁𝑁𝑢𝑢 is the number of seronegative persons in 

the survey, 𝑁𝑁𝑥𝑥 is the number of seropositive persons in the survey, and 𝜇𝜇 is the (previously 

estimated) mean window period. We evaluate several methods for estimating the incidence 

rate under the same class of missingness mechanisms as in Section 3.1. 

The first cross-sectional incidence approach (Method CS1), which we call the “MAA 

determined analysis”, uses all samples whose MAA status can be determined (i.e. for which 

𝑌𝑌𝑖𝑖 = ±1, the red and blue squares in Figure 3.1) and ignores those samples whose MAA 

status is indeterminate (𝑌𝑌𝑖𝑖 = 0, green square in Figure 3.1). Method CS1 uses this subset to 

estimate the proportion of seropositive samples that would have been classified as MAA 

positive if there were no missing values, using the estimator �̂�𝑝1 = 𝑉𝑉 𝑛𝑛1⁄  where 𝑛𝑛1 = ∑𝑖𝑖=1
𝑁𝑁𝑚𝑚 |𝑌𝑌𝑖𝑖| 

is the number of seropositive samples determined as MAA positive or MAA negative. Then 

the incidence is estimated by: 

𝜄𝜄1̂ =
�̂�𝑝1𝑁𝑁𝑥𝑥
𝜇𝜇𝑁𝑁𝑢𝑢

= �
𝑉𝑉
𝜇𝜇𝑁𝑁𝑢𝑢

� �
𝑁𝑁𝑥𝑥

∑ |𝑌𝑌𝑖𝑖|
𝑁𝑁𝑚𝑚
𝑖𝑖=1

� (3. 3) 
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As before, Method CS1 appears straightforward, because it uses all the samples for which the 

MAA classification can be determined. However, it turns out to be a naïve analysis that can 

lead to severely biased estimates if 𝜆𝜆2 > 0, and we quantify the bias by simulation in Section 

3.2.1. 

The second approach (Method CS2) which we call the complete biomarker analysis, uses 

all samples where both biomarkers have been measured (blue squares in Figure 3.1). 

Method CS2 estimates 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 𝑏𝑏2𝑖𝑖 = 1) by �̂�𝑝2 = 𝑉𝑉 𝑛𝑛2⁄ , where 𝑛𝑛2 = ∑𝑖𝑖=1
𝑁𝑁𝑚𝑚 (1 −𝑚𝑚𝑖𝑖) is the 

number of samples with no missing biomarker values. Then, the incidence rate estimate is: 

𝜄𝜄2̂ =
�̂�𝑝2𝑁𝑁𝑥𝑥
𝜇𝜇𝑁𝑁𝑢𝑢

= �
𝑉𝑉
𝜇𝜇𝑁𝑁𝑢𝑢

� �
𝑁𝑁𝑥𝑥

∑ (1 −𝑚𝑚𝑖𝑖)
𝑁𝑁𝑚𝑚
𝑖𝑖=1

� (3. 4) 

This method is also biased whenever 𝜆𝜆1 ≠ 𝜆𝜆2, as we will show in Section 3.2.1. 

The third approach (Method CS3), which we call the conditional likelihood analysis, uses 

all of the biological samples in Figure 3.1 (blue, red, and green squares). The idea of the 

approach is to estimate 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 𝑏𝑏2𝑖𝑖 = 1) as a product of 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1) and the conditional 

probability  

𝑃𝑃(𝑏𝑏2𝑖𝑖 = 1 ∣ 𝑏𝑏1𝑖𝑖 = 1). First, we estimate 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 1) by �̂�𝑝3𝑎𝑎 = 𝑉𝑉1 𝑁𝑁𝑥𝑥⁄ , where 𝑉𝑉1 =  ∑ 𝑏𝑏1𝑖𝑖
𝑁𝑁𝑚𝑚
𝑖𝑖=1  is 

the number of samples with biomarker 1 indicating recent infection. Second, we estimate 

𝑃𝑃(𝑏𝑏2𝑖𝑖 = 1 ∣ 𝑏𝑏1𝑖𝑖 = 1) by �̂�𝑝3𝑏𝑏 = 𝑉𝑉 𝑛𝑛3⁄ , where 𝑛𝑛3 =  ∑ 𝑏𝑏1𝑖𝑖(1 −𝑚𝑚𝑖𝑖)
𝑁𝑁𝑚𝑚
𝑖𝑖=1  is the number of 

seropositive samples where 𝑏𝑏1 = 1 and the second biomarker 𝐵𝐵2 is observed. Then the 

estimator of 𝑃𝑃(𝑏𝑏1𝑖𝑖 = 𝑏𝑏2𝑖𝑖 = 1) is �̂�𝑝3 = �̂�𝑝3𝑎𝑎�̂�𝑝3𝑏𝑏. It follows that the estimator of incidence is: 

𝜄𝜄3̂ =
�̂�𝑝3𝑁𝑁𝑥𝑥
𝜇𝜇𝑁𝑁𝑢𝑢

= �
𝑉𝑉
𝜇𝜇𝑁𝑁𝑢𝑢

� �
∑ 𝑏𝑏1𝑖𝑖
𝑁𝑁𝑚𝑚
𝑖𝑖=1

∑ 𝑏𝑏1𝑖𝑖(1 −𝑚𝑚𝑖𝑖)
𝑁𝑁𝑚𝑚
𝑖𝑖=1

� (3. 5) 
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3.2.1 Simulation study 

We assessed the abilities of the three methods to estimate incidence using the following 

simulation framework. We used the same source dataset of 𝑁𝑁𝑥𝑥 seropositive samples as in the 

previous simulation. We then generated 1000 simulated datasets, by sampling 𝑁𝑁𝑥𝑥 

observations from this original dataset, with replacement for each simulation. 

We then performed the following analysis on each simulated dataset 𝑗𝑗. First, we produced 

recency classifications (𝑌𝑌𝑖𝑖 = +1 or 𝑌𝑌𝑖𝑖 = −1) using the same MAA as in the previous section. 

We determined the (true) count of MAA-positive samples, denoted 𝑉𝑉𝑗𝑗,𝑇𝑇 = ∑ 𝑏𝑏1𝑖𝑖𝑏𝑏2𝑖𝑖
𝑁𝑁𝑚𝑚
𝑖𝑖=1 . 

As above, we introduced missing values in 𝐵𝐵2 by generating a Bernoulli trial for each 

serum sample in the dataset. We considered the same six missingness scenarios as in Table 

1. 

After determining which observations were missing, we recalculated the MAA 

classifications 𝑌𝑌𝑖𝑖, updating the value to 𝑌𝑌𝑖𝑖 = 0 when 𝑏𝑏1𝑖𝑖 = 1 and 𝑚𝑚𝑖𝑖 = 1, and then we applied 

the three methods to the resulting incomplete dataset to produce estimates �̂�𝑝𝑗𝑗,𝑘𝑘 for the 𝑗𝑗𝑡𝑡ℎ 

simulated dataset using the 𝑘𝑘𝑡𝑡ℎ method (where 𝑗𝑗 = 1, … , 1000 and 𝑘𝑘 = 1, 2, 3). 

We computed relative error scores 𝑒𝑒𝑗𝑗,𝑘𝑘 = (𝜄𝜄�̂�𝑗,𝑘𝑘 − 𝜄𝜄�̂�𝑗,𝑇𝑇) 𝜄𝜄�̂�𝑗,𝑇𝑇⁄  for the 𝑗𝑗𝑡𝑡ℎ simulation using the 

𝑘𝑘𝑡𝑡ℎ method using the fact that 𝜄𝜄�̂�𝑗,𝑘𝑘 = �̂�𝑝𝑗𝑗,𝑘𝑘𝑁𝑁𝑥𝑥 (𝜇𝜇𝑁𝑁𝑢𝑢)⁄  and 𝜄𝜄�̂�𝑗,𝑇𝑇 = 𝑉𝑉𝑗𝑗,𝑇𝑇 (𝜇𝜇𝑁𝑁𝑢𝑢)⁄  share the term 

1 (𝜇𝜇𝑁𝑁𝑢𝑢)⁄ ; thus the relative error reduces to 𝑒𝑒𝑗𝑗,𝑘𝑘 = ��̂�𝑝𝑗𝑗,𝑘𝑘𝑁𝑁𝑥𝑥 − 𝑉𝑉𝑗𝑗,𝑇𝑇� 𝑉𝑉𝑗𝑗,𝑇𝑇� . We defined the relative 

bias of estimator 𝜄𝜄𝑘𝑘 as the expectation of the relative error score for the 𝑘𝑘𝑡𝑡ℎ method, E[𝑒𝑒𝑗𝑗,𝑘𝑘], 

and we estimated this bias using the sample mean �̅�𝑒𝑘𝑘 = 1
𝑛𝑛
∑ 𝑒𝑒𝑗𝑗,𝑘𝑘
𝑛𝑛
𝑗𝑗=1 . We also calculated the 

sample standard deviations of these error scores, 𝑠𝑠𝑘𝑘 = � 1
n−1

∑ �𝑒𝑒𝑗𝑗,𝑘𝑘 −
1
𝑛𝑛
∑ 𝑒𝑒𝑗𝑗,𝑘𝑘
𝑛𝑛
𝑗𝑗=1 �

2
𝑛𝑛
𝑗𝑗=1 , and the 
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square root of the mean squared relative errors (RMSRE), �1
𝑛𝑛
∑ �𝑒𝑒𝑗𝑗,𝑘𝑘�

2𝑛𝑛
𝑗𝑗=1 . 

3.2.2 Simulation results 

We found that as 𝜆𝜆2 increased across the simulation scenarios, Method CS1 produced 

increasingly negatively biased incidence estimates (Table 3.4). The value of 𝜆𝜆1 did not affect 

this method’s results, because all the samples with 𝑏𝑏1 = 0 can be classified as 𝑊𝑊 = −1, 

regardless of whether 𝐵𝐵2 is missing. Method CS2 estimated incidence with substantial 

positive bias in scenarios with 𝜆𝜆2 < 𝜆𝜆1. In scenarios where 𝜆𝜆1 ≈ 𝜆𝜆2, this method showed less 

bias. Method CS3 had minimal biases across all the scenarios simulated.  

Table 3.4: Performance of 3 methods for handling missing biomarker data for estimation of incidence from cross-sectional 
surveys 

𝜆𝜆1 𝜆𝜆2 Method 

Estimated 
bias (mean 
relative 
error, %) 

SD(relative 
error) (%) RMSRE (%) 

0.25 0.25 
CS1 -22 5 23 
CS2 0.4 6 6 
CS3 0.1 5 5 

0.50 0.50 
CS1 -47 6 47 
CS2 0.007 11 11 
CS3 -0.3 9 9 

0.50 0.25 
CS1 -22 5 23 
CS2 42 9 43 
CS3 0.1 5 5 

0.50 0 
CS1 0 0 0 
CS2 78 4 78 
CS3 0 0 0 

0.20 0.10 
CS1 -9 3 9 
CS2 11 4 12 
CS3 -0.001 3 3 

0.10 0.05 
CS1 -4 2 5 
CS2 5 3 6 
CS3 -0.05 2 2 

In summary, Method CS1 was substantially biased for incidence estimation in the 
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scenarios in which a substantial fraction of the samples could not be classified, even under 

the optimistic assumption that 𝐵𝐵2’s missingness probability did not depend on 𝐵𝐵1 (𝜆𝜆1 = 𝜆𝜆2). 

Method CS2 was approximately unbiased only if 𝜆𝜆1 ≈ 𝜆𝜆2. Method CS3 was nearly unbiased 

in all scenarios considered. 

The standard deviations of the relative errors were comparable among the methods, and 

substantially smaller than the largest biases; hence RMSRE was dominated by the 

contributions from bias. 

3.3 Discussion 

The objective of this chapter was to consider some of the statistical challenges posed by 

incomplete biomarker data for cross-sectional incidence estimation. We examined this 

problem both in the context of estimating the mean window period of an MAA and in the 

context of estimating incidence from a cross-sectional survey using an MAA with a 

previously estimated mean window period. We evaluated three methods for handling 

missing data in each of these contexts, simulating the methods’ performance across a range 

of six missingness mechanism scenarios. 

Our main findings were that the “MAA determined” and “complete biomarker” methods 

(WP1/CS1 and WP2/CS2, respectively) produced substantially biased results in a range of 

plausible missingness conditions. The “MAA determined” methods had bias magnitudes 

associated with the fraction of samples that could not be classified by the MAA, whereas the 

“complete biomarker” methods had more bias when the probability of missing 𝐵𝐵2 values 

depended strongly on the value of 𝐵𝐵1. In contrast, the conditional methods which we 

proposed (WP3 and CS3) produced accurate results in all the scenarios that we considered. 
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However, we do note that while the conditional WP3 approach had small bias, it was 

consistently negative. Further study to identify any situations when the bias would be 

positive would be useful. 

The results in this work highlight the perhaps surprising fact that even if the probability 

of missing biomarkers is a constant, simply ignoring unclassifiable samples can lead to bias. 

This result is due to the asymmetry between the positive (recent) and negative 

classifications; one requires the joint occurrence (intersection) of several events, while the 

other requires only that at least one event occur (union). Thus, the MAA classification can 

only be missing if all observed biomarkers indicate a positive result. Our proposed 

conditional likelihood analysis accounts for this asymmetry by modeling each biomarker 

separately. It thus avoids the biases that affect the other two methods. 

There are several important extensions to this work worth considering in future 

research. First, we only assessed the performances of these methods for estimating the mean 

window period and incidence rate. We could also consider the shadow parameter discussed 

in Section 2.2.4 (E. H. Kaplan and Brookmeyer 1999; Brookmeyer 2010). Since the shadow 

is also a function of the probability curve 𝜙𝜙(𝑡𝑡), we expect that “MAA determined” and 

“complete biomarker” analyses would produce biased estimates of the shadow as well. We 

expect that our proposed conditional approach would produce approximately unbiased 

estimates of the shadow, since it estimates 𝜙𝜙(𝑡𝑡) without bias. 

Another complication to consider is that the probability that 𝐵𝐵2 is missing may depend 

on a different dichotomization of 𝐵𝐵1 from the one used by the MAA. For example, in the HC-

HIV data set, viral load was assayed with probability ≈ 1 if LAg-Avidity was below 3.0 OD-n, 
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and was assayed with a smaller probability otherwise. With such a dataset, when using 

Method WP3 and the LAg-Avidity < 1.5, viral load > 1000 MAA to estimate 𝜇𝜇 or incidence, we 

could condition on 𝐵𝐵1 < 𝑐𝑐, where 𝑐𝑐 is any value between the missingness cutoff (3.0) and the 

MAA cutoff (1.5), rather than conditioning on 𝑏𝑏1𝑖𝑖 = 1. It seems that the optimal choice of 𝑐𝑐 

would be the largest value, in order to maximize the number of observations used to estimate 

the conditional model 𝑃𝑃(𝑏𝑏2 = 1 ∣ 𝐵𝐵1 < 𝑐𝑐); smaller cutoffs might lead to instability in the 

estimation of the conditional model. 

Finally, more complex scenarios, including MAAs using more than two biomarkers and 

MAAs with missing data in more than one biomarker, may require more sophisticated 

analyses. We only considered missingness in viral load, which is a relatively expensive 

biomarker. As new generations of potentially expensive assays for detecting incident 

infections are developed, it can be anticipated that situations will arise in which multiple 

biomarkers have missing values, due to scientific or resource constraints. It will be important 

to further develop and refine methods for addressing these challenges.  
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CHAPTER 4 
Transporting MAA Calibration Results 

In order to be useful for calibrating the cross-sectional incidence estimate, it is usually 

assumed that the calibration data set comes from a population in which the relationship 

between duration of infection and biomarker distributions matches the relationship in the 

target population. This assumption is most plausible when the calibration data set is 

collected from a source resembling the target population, such as the same demographic 

area at an earlier time point. Even in such cases, there may be differences between the 

calibration data set and the target population due to evolution of the epidemic. (Hallett et al. 

2009) Over time, the pathogen might mutate, or the relative prevalence of different strains 

might change. Similarly, the distribution of innate biological responses to the pathogen in the 

population might change. Moreover, patterns of clinical treatment might change. Any such 

differences could alter the relationship between infection duration and biomarker values 

and would need to be accounted for in order to achieve accurate calibration for the target 

population. 

In the HIV incidence setting, discrepancies between the target population and the 

calibration data set could occur for several reasons. First, there has been and continues to be 

increasing use of anti-retroviral therapy (ART) for HIV infected persons throughout most 

parts of the world. (Piot and Quinn 2013) Initiation of ART therapy is occurring earlier in the 

course of infection. ART induces viral suppression, and viral suppression may modify some 

biomarker levels because antibody titers would tend to decrease, thereby making 

longstanding infections resemble recent infections. (Laeyendecker et al. 2015) An initial data 

set collected years before widespread ART use may no longer be applicable to the current 
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target population. Second, the subtypes of HIV that are circulating in a population may evolve 

over time. (Hemelaar et al. 2011) HIV subtype may affect biomarker levels and their 

relationship to duration of infection. (Longosz et al. 2015; Kassanjee et al. 2014) The 

changing mix of subtypes can create discrepancies between the initial data set and the target 

populations. 

If 𝜙𝜙(𝑡𝑡) ≝ Pr(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) differs between the target population and the source of the 

calibration data set, then estimates of 𝜇𝜇 and 𝜓𝜓 based on straightforwardly estimating 𝜙𝜙(𝑡𝑡) 

from the calibration data set as described in Chapter 2 will not be consistent for the target 

population. One simple solution is to collect a new calibration data set that is representative 

of the current target population for the statistical analyses. However, that approach is 

expensive and could take considerable time, negating the advantages of the cross-sectional 

approach to incidence estimation. The objective of this chapter is to develop methods that 

address the discrepancy between the initial training data set and the target population for 

cross-sectional incidence estimation. 

In this chapter, we show how an initial calibration data set which is not representative of 

the target population because of differences in the characteristics of the epidemic can be 

adjusted and still utilized for calibrating methods to perform cross-sectional incidence 

estimation in the target population. We consider a scenario in which there is one covariate 

whose distribution differs between the calibration data set and the target population. In 

Section 4.1, we define notation and assumptions for this scenario. We then propose several 

approaches for addressing this discrepancy: a curve averaging approach (Section 4.2), a 

sample weighting approach (Section 4.3), a resampling approach (Section 4.3.10), and a 
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multivariate biomarker modeling approach with curve averaging and potential outcomes 

modeling variations (Sections 4.4 and 4.5). We construct a simulation study to evaluate the 

methods in Section 4.6.  

4.1 Scenario and notation 

A calibration data set 𝑆𝑆 consists of data on biological specimens from infected individuals. 

On the 𝑖𝑖𝑡𝑡ℎ biological sample, we have measurements on 𝑘𝑘 biomarkers, which we denote by 

the 𝑘𝑘-dimensional vector 𝑩𝑩𝑖𝑖 . Without loss of generality, we consider the case of a single MAA 

for which 𝜇𝜇 and 𝜓𝜓 will be estimated for the target population; if multiple MAAs need to be 

calibrated, the following procedures can be applied separately to each MAA under 

consideration in the calibration process. Let 𝑌𝑌𝑖𝑖 denote the MAA classification of the 𝑖𝑖𝑡𝑡ℎ 

biological sample; for this chapter, we assume no missing values, and let 𝑌𝑌𝑖𝑖 = 1 indicate MAA 

positive, and 𝑌𝑌𝑖𝑖 = 0 indicate MAA negative. We have a censoring interval for duration of 

infection associated with the 𝑖𝑖𝑡𝑡ℎ biological sample, which we denote as [𝐿𝐿𝑖𝑖,𝑅𝑅𝑖𝑖]. In addition, 

we have a binary variable 𝑋𝑋 whose distribution we are concerned may have changed over 

time. For example, in HIV applications 𝑋𝑋 can indicate if persons are virally suppressed. 

Alternatively, 𝑋𝑋 could indicate if persons are infected with a particular HIV subtype. Changes 

in the distribution of 𝑋𝑋 create a discrepancy between the initial data set and the target 

population. The probability that 𝑋𝑋 = 1 may depend on other variables which are also 

recorded in 𝑆𝑆. We assume each of these variables takes discrete values and that a discrete-

valued variable 𝑍𝑍 defines these strata. For example, one value of 𝑍𝑍 might correspond to 

females who have been infected for less than 2 years. Let 𝑃𝑃τ(𝑋𝑋|𝑍𝑍) and 𝑃𝑃κ(𝑋𝑋|𝑍𝑍) represent the 

probabilities in stratum 𝑍𝑍 that 𝑋𝑋 = 1 in the target population (subscript 𝜏𝜏) and calibration 
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data set (subscript 𝜅𝜅), respectively, and let 𝜙𝜙τ(𝑡𝑡) = 𝑃𝑃τ(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) and 𝜙𝜙κ(𝑡𝑡) =

𝑃𝑃κ(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) represent the corresponding probabilities of a positive (“recent”) MAA 

classification. The issues we are addressing in this chapter arise when 𝑃𝑃τ(𝑋𝑋|𝑍𝑍) in the target 

population and 𝑃𝑃κ(𝑋𝑋|𝑍𝑍) in the calibration data set differ for one or more values of 𝑍𝑍. 

4.1.1 Assumptions 

We make several assumptions. First, we assume that 𝑃𝑃τ(𝑋𝑋|𝑍𝑍) is known. In practice, 𝑃𝑃τ(𝑋𝑋|𝑍𝑍) 

could sometimes be estimated, e.g., from simple surveys of antiretroviral use in the target 

population. Such surveys would not need the detailed information on biomarkers as 

required for the initial training data set. If surveys are not available, it is still useful to 

perform sensitivity analyses to examine how results would change under various assumed 

scenarios about 𝑃𝑃τ(𝑋𝑋|𝑍𝑍) in the target population. In this article, we will examine the 

consequences of error in the assumed values of 𝑃𝑃τ(𝑋𝑋|𝑍𝑍) for our methods. 

Second, we assume that the initial calibration data set covers the entire domain of values 

in the target population. This assumption is analogous to the positivity assumption in causal 

inference settings. (Hernán 2012) For example, if the calibration data set included only 

samples collected within the first six months after infection, or did not include any virally 

suppressed samples, but the target population did, then it would not be possible to obtain 

reliable estimates from either of our adjustment procedures. 

Third, we assume that the distribution of biomarker values, conditional on time since 

seroconversion and viral suppression status, does not change between the calibration data 

set and the target population; that is, we assume that 𝑝𝑝τ(𝑩𝑩|𝑋𝑋,𝑍𝑍,𝑇𝑇) = 𝑝𝑝κ(𝑩𝑩|𝑋𝑋,𝑍𝑍,𝑇𝑇) for all 

values of 𝑋𝑋,𝑍𝑍,𝑇𝑇, where 𝑇𝑇 is the infection duration. This assumption implies that all the 
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variables that describe the relevant differences between the initial and target population are 

identified. It is analogous to the conditional exchangeability and consistency assumptions in 

causal inference settings. (Greenland and Robins 1986; Cole and Frangakis 2009) 

Fourth, we assume that 𝑃𝑃τ(𝑋𝑋|𝑍𝑍,𝑇𝑇) = 𝑃𝑃τ(𝑋𝑋|𝑍𝑍), i.e., that 𝑋𝑋 ⫫ 𝑇𝑇|𝑍𝑍. This assumption implies 

that the stratifying variable 𝑍𝑍 completely captures the dependence of 𝑋𝑋 on 𝑇𝑇.  

Fifth, we assume that the distribution of stratifying variable 𝑍𝑍, conditional on infection 

duration 𝑡𝑡, does not change between the calibration data set and the target population; that 

is, we assume that 𝑃𝑃τ(𝑍𝑍|𝑇𝑇) = 𝑃𝑃κ(𝑍𝑍|𝑇𝑇); this is trivially true when 𝑍𝑍 is a function of time, such 

as an indicator variable for duration of infection less than two years. 

A sixth assumption is made for the multivariate modeling approaches in Sections 4.4 and 

4.5. For those approaches we assume that the form of 𝑝𝑝τ(𝑩𝑩|𝑋𝑋,𝑍𝑍,𝑇𝑇) is known, including any 

necessary transformations of the biomarker scales and the functional form of the linear 

predictor model. The parametric assumptions are not required for the other approaches. 

4.2 Curve averaging approach 

We want to estimate 𝜇𝜇𝜏𝜏, the mean window period for the target population, whose definition 

we can decompose as follows: 

𝜇𝜇𝜏𝜏 ≝ � 𝜙𝜙τ(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡≥0

= � 𝑃𝑃τ(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡≥0

= � � � 𝑃𝑃τ(𝑌𝑌 = 1,𝑋𝑋 = 𝑥𝑥,𝑍𝑍 = 𝑧𝑧|𝑇𝑇 = 𝑡𝑡)
𝑥𝑥∈{0,1}𝑧𝑧∈ℛ(𝑍𝑍) 

𝑑𝑑𝑡𝑡
𝑡𝑡≥0

= � � � 𝑃𝑃τ(𝑌𝑌 = 1|𝑋𝑋 = 𝑥𝑥,𝑍𝑍 = 𝑧𝑧,𝑇𝑇 = 𝑡𝑡)𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧,𝑇𝑇 = 𝑡𝑡)𝑃𝑃τ(𝑍𝑍 = 𝑧𝑧|𝑇𝑇 = 𝑡𝑡)
𝑥𝑥∈{0,1}𝑧𝑧∈ℛ(𝑍𝑍)

𝑑𝑑𝑡𝑡
𝑡𝑡≥0

= � � � 𝑃𝑃τ(𝑌𝑌 = 1|𝑋𝑋 = 𝑥𝑥,𝑍𝑍 = 𝑧𝑧,𝑇𝑇 = 𝑡𝑡)𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧)𝑃𝑃τ(𝑍𝑍 = 𝑧𝑧|𝑇𝑇 = 𝑡𝑡)
𝑥𝑥∈{0,1}𝑧𝑧∈ℛ(𝑍𝑍)

𝑑𝑑𝑡𝑡
𝑡𝑡≥0

 

The third equality follows from the law of total probability, the fourth from the definition of 
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conditional probability, and the fifth from the assumption that the stratum variable 𝑍𝑍 

captures the dependence of 𝑋𝑋 on 𝑡𝑡. If the calibration data set were collected from the 

population of interest, we could model the marginal probability 𝑃𝑃τ(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) directly 

from the data and use that model to estimate 𝜇𝜇. However, if we only have calibration data 

collected from a different population, with a different nuisance covariate distribution 𝑃𝑃κ(𝑋𝑋 =

𝑥𝑥|𝑍𝑍 = 𝑧𝑧), the marginal model we estimate from the calibration data set may yield biased 

estimates of target population parameters. 

To overcome this problem, we can instead estimate the conditional model 𝑃𝑃κ(𝑌𝑌|𝑋𝑋,𝑍𝑍,𝑇𝑇). 

Assumption 3 entails that 𝑃𝑃κ(𝑌𝑌|𝑋𝑋,𝑍𝑍,𝑇𝑇) = 𝑃𝑃τ(𝑌𝑌|𝑋𝑋,𝑍𝑍,𝑇𝑇) since 𝑌𝑌 (the binary MAA 

classification) is a deterministic function of 𝑩𝑩 (the vector of biomarker assay values). We 

have directly assumed that 𝑃𝑃τ(𝑍𝑍|𝑇𝑇) = 𝑃𝑃κ(𝑍𝑍|𝑇𝑇). Thus, we can derive an estimate of 𝜙𝜙τ(𝑡𝑡) from 

𝑃𝑃�κ(𝑊𝑊|𝑋𝑋,𝑍𝑍,𝑇𝑇), using the distribution 𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧) corresponding to the target 

population: 

𝜙𝜙�τ(𝑡𝑡) = 𝑃𝑃�τ(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) = � � 𝑃𝑃�κ(𝑌𝑌 = 1|𝑥𝑥, 𝑧𝑧, 𝑡𝑡)𝑃𝑃τ(𝑥𝑥|𝑧𝑧)𝑃𝑃κ(𝑧𝑧|𝑡𝑡)
𝑥𝑥∈ℛ(𝑋𝑋)𝑧𝑧∈ℛ(𝑍𝑍)

(4. 1) 

Then we can use this adjusted marginal model to estimate 𝜇𝜇𝜏𝜏 as usual: 

�̂�𝜇𝜏𝜏 = � 𝜙𝜙�τ(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡≥0

(4. 2) 

This procedure is analogous to the causal inference technique known as g-computation, the 

g-formula, or standardization. (Robins 1986; Pearl 1995, 2010; Vansteelandt and Keiding 

2011; Hernán and Robins 2019). 
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4.3 Sample weighting approach 

Another approach to this problem is to treat the calibration data set as an imbalanced sample 

from the target population. We can use weighted maximum likelihood techniques to correct 

for this imbalance. 

Specifically, let 𝑛𝑛1(𝑧𝑧) ≡ ∑ 1{𝑋𝑋𝑖𝑖=1,𝑍𝑍𝑖𝑖=𝑧𝑧}
𝑛𝑛
𝑖𝑖=1  be the number of observations with 𝑋𝑋 = 1 in 

stratum 𝑧𝑧 of the calibration data set, let 𝑛𝑛0(𝑧𝑧) ≡ ∑ 1{𝑋𝑋𝑖𝑖=0,𝑍𝑍𝑖𝑖=𝑧𝑧}
𝑛𝑛
𝑖𝑖=1  be the number of 

observations with 𝑋𝑋 = 0, and let 𝑛𝑛(𝑧𝑧) = 𝑛𝑛1(𝑧𝑧) + 𝑛𝑛0(𝑧𝑧) be the total for that stratum. For each 

observation (𝑩𝑩,𝑋𝑋,𝑍𝑍, 𝑡𝑡), we can construct weights  

𝑤𝑤𝑋𝑋(𝑍𝑍) =
𝑃𝑃τ(𝑋𝑋|𝑍𝑍)
𝑃𝑃κ(𝑋𝑋|𝑍𝑍)

(4. 3) 

where 𝑃𝑃κ(𝑋𝑋|𝑍𝑍) = 𝑛𝑛𝑋𝑋(𝑍𝑍)/𝑛𝑛(𝑍𝑍). Then if ℒ𝑖𝑖  is the marginal likelihood 𝑃𝑃τ(𝑌𝑌𝑖𝑖 = 𝑦𝑦𝑖𝑖|𝑇𝑇 = 𝑡𝑡𝑖𝑖) of the 

𝑖𝑖𝑡𝑡ℎ observation, the total weighted likelihood of the data set would be:  

ℒ𝑊𝑊 = � (ℒ𝑖𝑖)
𝑤𝑤𝑋𝑋𝑖𝑖(𝑍𝑍𝑖𝑖)

𝑖𝑖∈1:𝑛𝑛

 

Equivalently, if ℓ𝑖𝑖 = logℒ𝑖𝑖  is the log-likelihood of the 𝑖𝑖𝑡𝑡ℎ observation, then the weighted log-

likelihood of the data set would be: 

ℓ𝑊𝑊 = � 𝑤𝑤𝑋𝑋𝑖𝑖(𝑍𝑍𝑖𝑖) ℓ𝑖𝑖
𝑖𝑖∈1:𝑛𝑛

 

We would then find 𝜙𝜙� by maximizing this weighted log-likelihood. 

These weights effectively remove the calibration data set’s association between 𝑍𝑍 and 𝑋𝑋 

(the denominator) and replace it with the target population’s association (the numerator); 

thus the weighted count of observations with 𝑋𝑋 = 1 in stratum 𝑧𝑧 is: 
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�𝑤𝑤𝑋𝑋𝑖𝑖(𝑍𝑍𝑖𝑖) 1{𝑋𝑋𝑖𝑖=1,𝑍𝑍𝑖𝑖=𝑧𝑧}

𝑛𝑛

𝑖𝑖=1

= 𝑛𝑛1(𝑧𝑧) 𝑤𝑤1(𝑧𝑧)

= 𝑛𝑛1(𝑧𝑧) 
𝑃𝑃τ(𝑋𝑋 = 1|𝑍𝑍 = 𝑧𝑧)
𝑃𝑃κ(𝑋𝑋 = 1|𝑍𝑍 = 𝑧𝑧)

= 𝑛𝑛1(𝑧𝑧) 
𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧)
𝑛𝑛1(𝑧𝑧)/𝑛𝑛(𝑧𝑧)

= 𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧) 𝑛𝑛(𝑧𝑧) 

which is the expected count for a simple random sample from the target population, 

conditional on 𝑛𝑛(𝑧𝑧).  

For another perspective, consider the calibration data set as if it were a selection-biased 

sample from the target population. Let 𝑆𝑆 = 1 denote the event that an observation is selected 

and let 𝑆𝑆 = 0 denote non-selection; then we can rewrite 𝑃𝑃κ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧) = 𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 =

𝑧𝑧, 𝑆𝑆 = 1). Then:  

𝑤𝑤𝑥𝑥(𝑧𝑧) =
𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧)
𝑃𝑃κ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧)

=  
𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧)

𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧, 𝑆𝑆 = 1)

=  𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧) 
𝑃𝑃τ(𝑆𝑆 = 1|𝑍𝑍 = 𝑧𝑧)

𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥, 𝑆𝑆 = 1|𝑍𝑍 = 𝑧𝑧)

= 𝑃𝑃τ(𝑆𝑆 = 1|𝑍𝑍 = 𝑧𝑧) 
𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧)

𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥, 𝑆𝑆 = 1|𝑍𝑍 = 𝑧𝑧)

= 𝑃𝑃τ(𝑆𝑆 = 1|𝑍𝑍 = 𝑧𝑧) 
1

𝑃𝑃τ(𝑆𝑆 = 1|𝑋𝑋 = 𝑥𝑥,𝑍𝑍 = 𝑧𝑧)

=  
𝑃𝑃τ(𝑆𝑆 = 1|𝑍𝑍 = 𝑧𝑧)

𝑃𝑃τ(𝑆𝑆 = 1|𝑋𝑋 = 𝑥𝑥,𝑍𝑍 = 𝑧𝑧)
 

Within each stratum 𝑍𝑍 = 𝑧𝑧, 𝑃𝑃τ(𝑆𝑆 = 1|𝑍𝑍 = 𝑧𝑧) is a constant; thus 𝑤𝑤𝑥𝑥(𝑧𝑧) is approximately 
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proportional to the inverse probability of selection given 𝑋𝑋 = 𝑥𝑥. These weights seem 

analogous to those used for inverse probability weighting (IPW) in causal inference and to 

those used for poststratification in finite-population survey sampling. (Hernán and Robins 

2019; Lumley 2010; Westreich et al. 2017; Gelman 2007) 

4.3.1 Resampling approach 

As an alternative to using weights as factors in the log-likelihood, we can sample with 

replacement 𝑃𝑃τ(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧)𝑛𝑛(𝑧𝑧) observations from the stratum {𝑋𝑋𝑖𝑖 = 𝑥𝑥,𝑍𝑍𝑖𝑖 = 𝑧𝑧}; that is, we 

resample the number of observations we would expect from a sample of the target 

population, conditional on 𝑛𝑛(𝑧𝑧). After resampling observations for each combination of (𝑥𝑥, 𝑧𝑧) 

values, we can compile the resampled observations into a new resampled data set, 𝑆𝑆�, with 

distribution 𝑃𝑃(𝑋𝑋,𝑍𝑍) matching the target population. We can treat this resampled data set as 

if it came from the target population and use it to estimate 𝜙𝜙τ(𝑡𝑡) and 𝜇𝜇. 

A connection between the weighting approach and the resampling approach can be seen 

in the weights. In the resampling approach, 1 𝑛𝑛𝑥𝑥(𝑧𝑧)⁄  is the probability that a given 

observation in category {𝑋𝑋 = 𝑥𝑥,𝑍𝑍 = 𝑧𝑧} will be selected, each time that we sample an 

observation from that category with replacement; thus, since there will be 𝑛𝑛(𝑧𝑧)𝑃𝑃τ(𝑥𝑥|𝑧𝑧) 

resampled observations in that category in each resampling data set, 𝑤𝑤𝑥𝑥(𝑧𝑧) =

𝑛𝑛(𝑧𝑧)𝑃𝑃τ(𝑥𝑥|𝑧𝑧) 𝑛𝑛𝑥𝑥(𝑧𝑧)⁄  represents the expected number of times that each observation in 

{𝑋𝑋 = 𝑥𝑥,𝑍𝑍 = 𝑧𝑧} will be selected in a resampling data set. 

The notable difference between the resampling approach and the weighting approach is 

the stochastic nature of the resampling approach. The resampling approach creates new data 

sets with predetermined proportions of suppressed specimens for each time stratum, so that 
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the resulting data sets will have a distribution similar to the target population. Thus the 

(unweighted) likelihood of each resampled data set should be close to the weighted 

likelihood of the original calibration data set. However, because the resampling process is 

stochastic, it introduces an extra source of variability into the resulting estimates of 𝜙𝜙 and 𝜇𝜇. 

This variability can be reduced by generating multiple resampled data sets and merging the 

results, for example by using the median of the resulting �̂�𝜇 distribution as the final estimate. 

In contrast, the weighting approach is not stochastic; like the unadjusted approach, it 

produces a single weighted data set and corresponding 𝜙𝜙�, �̂�𝜇, for a given calibration data set 

and target population. 

Simulations using this resampling approach are considered in our published work (D. 

Morrison et al. 2019); this method is not included in the simulation study below. It produces 

similar results to the sample weighting approach but requires more computation due to the 

need to repeatedly resample the data set. 

4.4 Multivariate modeling and marginalization (MMM) approach 

A third strategy for addressing discrepancies between the calibration data set and target 

populations is similar to the curve averaging approach, in that we will fit a model that 

conditions on viral suppression status 𝑋𝑋; however, instead of directly modeling the 

distribution of MAA classifications, 𝑃𝑃(𝑌𝑌|𝑋𝑋,𝑍𝑍,𝑇𝑇), we will instead initially model the 

multivariate distribution of the individual biomarker values, 𝑝𝑝(𝑩𝑩|𝑋𝑋,𝑍𝑍,𝑇𝑇). We can 

numerically integrate this model to derive 𝑃𝑃(𝑌𝑌|𝑋𝑋,𝑍𝑍,𝑇𝑇): 

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋,𝑍𝑍,𝑇𝑇) = �𝑌𝑌𝑐𝑐(𝒃𝒃) 𝑝𝑝(𝒃𝒃|𝑋𝑋,𝑍𝑍,𝑇𝑇)𝑑𝑑𝒃𝒃 (4. 4) 
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We can then apply equations 4.1 and 4.2 to compute 𝜇𝜇𝜏𝜏, as we did in the curve averaging 

approach. Here, 𝑌𝑌𝑐𝑐(𝒃𝒃) denotes the MAA classification variable, 𝑌𝑌, expressed as a function of 

the vector of biomarker values, b, and the vector of MAA cutoffs, 𝒄𝒄; i.e., 𝑌𝑌𝑐𝑐(𝒃𝒃) = 1�∀𝑗𝑗: 𝑏𝑏𝑗𝑗 < 𝑐𝑐𝑗𝑗�. 

We will refer to this approach as multivariate modeling and marginalization (MMM). 

More specifically, we can use a multivariate Gaussian model for the biomarker assay 

values, with mean function E(𝑩𝑩) = 𝑓𝑓𝜶𝜶(𝑋𝑋,𝑍𝑍,𝑇𝑇) and multivariate normal residual errors 𝝐𝝐 =

𝑩𝑩 − E(𝑩𝑩) ∼ 𝑀𝑀𝑉𝑉𝑁𝑁(𝟎𝟎,𝚺𝚺); here 𝛂𝛂 is the vector of mean function parameters (e.g., regression 

coefficients) and 𝚺𝚺 is the covariance matrix of the residual errors. As an example, we applied 

this approach to the MAA “LAg < 2.8, BioRad < 40” using the calibration data set of biomarker 

data for subtype C infections combining the CAPRISA, FHI, and HPTN 039 cohorts described 

in Chapter 2. (Laeyendecker et al. 2018) In exploratory analysis, we determined that to 

achieve a good model fit with approximately Gaussian errors, it was best to transform the 

BioRad avidity biomarker from its original scale into a logit scale and to transform infection 

duration 𝑡𝑡 onto a logarithmic scale. We thus fit a model the following mean function: 

E[(𝐵𝐵1, logit𝐵𝐵2)′] = 𝛂𝛂0 + 𝛂𝛂1 log10 𝑡𝑡 + 𝛂𝛂2𝑥𝑥 (4. 5) 

where 𝑡𝑡 is the duration of infection and 𝑥𝑥 is viral suppression status (1 = suppressed, 0 = 

not). The maximum likelihood estimates were as follows: 

𝜶𝜶� = �
3.00 1.13
1.54 2.55

−1.08 −0.68
� 

𝚺𝚺� = �1.563 0.413
0.413 1.040� 

Applying equations 4.4, 4.1, and 4.2 for a target population with the viral suppression 

distribution 𝑃𝑃(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧) = {30%, 𝑡𝑡 ≤ 1 year; 60%, t > 1 year}, we would compute �̂�𝜇 =
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143.1 days. For a population with 𝑃𝑃(𝑋𝑋 = 𝑥𝑥|𝑍𝑍 = 𝑧𝑧) = {15%, 𝑡𝑡 ≤ 1 year; 30%, t > 1 year}, we 

would instead compute �̂�𝜇 = 121.8 days. 

4.5 Potential outcomes weighting approaches 

As an alternative to the marginalization step in the MMM approach (i.e., the application of 

equations 4.4, 4.1, and 4.2 to derive �̂�𝜇𝜏𝜏), we could instead adopt a potential outcomes 

perspective and consider, for each observation in the calibration data set, what biomarker 

values we would have observed, if person had the value of 𝑋𝑋 that they did not experience in 

reality. (Neyman 1990; Rubin 1974) If we can estimate these counterfactual biomarker 

values, we can use them to create counterfactual data sets that might have been observed if 

the calibration data were drawn from the target population. 

Let 𝑩𝑩�𝑖𝑖(𝑥𝑥) be the predicted value of 𝑩𝑩𝑖𝑖  with 𝑋𝑋𝑖𝑖 = 𝑥𝑥 holding 𝑡𝑡𝑖𝑖 and 𝑍𝑍𝑖𝑖  fixed at their values 

as given in the observed calibration data set 𝑆𝑆. We can use these predictions to impute the 

potential biomarker values (𝑩𝑩𝑖𝑖(1) ,𝑩𝑩𝑖𝑖(0)) as follows. First, we assume that the observed 

value 𝑩𝑩𝑖𝑖  equals the potential outcome with the observed 𝑋𝑋 value; that is 𝑩𝑩𝒊𝒊(𝑋𝑋𝑖𝑖) = 𝑩𝑩𝑖𝑖 . Second, 

assuming multivariate normal residual errors independent of the covariates, we can 

estimate the counterfactual potential outcome:  

𝑩𝑩�𝑖𝑖(𝑥𝑥) = 𝑩𝑩𝑖𝑖 + (𝑥𝑥 − 𝑋𝑋𝑖𝑖) �𝑩𝑩�𝑖𝑖(1) − 𝑩𝑩�𝑖𝑖(0)� (4. 6) 

That is,  

𝑩𝑩�𝑖𝑖(1) = 𝑩𝑩𝑖𝑖 + �𝑩𝑩�𝑖𝑖(1) − 𝑩𝑩�𝑖𝑖(0)� if 𝑋𝑋𝑖𝑖 = 0 

𝑩𝑩�𝑖𝑖(0) = 𝑩𝑩𝑖𝑖 − �𝑩𝑩�𝑖𝑖(1) − 𝑩𝑩�𝑖𝑖(0)�  if 𝑋𝑋𝑖𝑖 = 1 

For example, consider a simple multivariate normal linear regression model of the form 
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E[𝑩𝑩𝑖𝑖] = 𝛂𝛂0 + 𝛂𝛂1𝑡𝑡𝑖𝑖 + 𝛂𝛂2𝑥𝑥𝑖𝑖 

Then, the estimated counterfactual biomarker values 𝑩𝑩�𝑖𝑖(1 − 𝑋𝑋𝑖𝑖) are: 

𝑩𝑩�𝑖𝑖(1) = 𝑩𝑩𝑖𝑖 + 𝛂𝛂2 if 𝑋𝑋𝑖𝑖 = 0 

𝑩𝑩�𝑖𝑖(0) = 𝑩𝑩𝑖𝑖 − 𝛂𝛂2 if 𝑋𝑋𝑖𝑖 = 1 

The counterfactual imputation process produces two data sets, 𝑆𝑆(1) and 𝑆𝑆(0), each of which 

is a modified copy of the observed calibration data set 𝑆𝑆 with the observed 𝑩𝑩i replaced with 

𝑩𝑩�𝑖𝑖(1) or 𝑩𝑩�𝑖𝑖(0), respectively. 

Given these potential outcomes, we want to construct data sets matching the target 

population’s distribution 𝑃𝑃τ(𝑋𝑋|𝑍𝑍). We can accomplish this goal in several ways.  

4.5.1 Complete potential outcomes weighting (CPOW) approach 

First, we can assign weights 𝑤𝑤𝑖𝑖(1) = 𝑃𝑃τ(𝑋𝑋 = 1|𝑍𝑍𝑖𝑖) to 𝑆𝑆(1) and 𝑤𝑤𝑖𝑖(0) = 𝑃𝑃τ(𝑋𝑋 = 0|𝑍𝑍𝑖𝑖) to 𝑆𝑆(0), 

and concatenate these data sets. Given such an augmented data set, we have two options for 

analysis. First, we could perform weighted maximum likelihood estimation of 𝜙𝜙𝜏𝜏(𝑡𝑡) ≝

𝑃𝑃τ(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡), as in Section 4.3. We call this procedure Complete Potential Outcomes 

Weighting (CPOW). 

4.5.2 Complete potential outcomes sampling (CPOS) approach 

Second, we can stochastically create a single data set 𝑆𝑆� by selecting one of 𝑩𝑩�𝑖𝑖(1) or 𝑩𝑩�𝑖𝑖(0), 

with probabilities 𝑃𝑃τ(𝑋𝑋 = 1|𝑍𝑍𝑖𝑖) and 𝑃𝑃τ(𝑋𝑋 = 0|𝑍𝑍𝑖𝑖) respectively, identical to the weights used 

in CPOW. We call this procedure Complete Potential Outcomes Sampling (CPOS). As in the 

resampling method in Section 4.3.1, we can repeat this procedure multiple times, creating 

data sets 𝑆𝑆�1, … ,𝑆𝑆�𝐾𝐾 , and merge the results (for example by taking the median of the �̂�𝜇s) to 

reduce the variability introduced by stochastic sampling. This approach is considered in (D. 
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Morrison et al. 2019); it is not included in the simulation study below. It produces similar 

results to CPOW but requires more computation due to the need to repeatedly sample from 

the potential outcomes. 

4.5.3 Partial potential outcomes weighting (PPOW) approach 

Both methods above consider both potential outcomes for every observation – hence the 

nomenclature “Complete”. An alternative is to consider the counterfactual outcome only for 

a subset of the observations. Specifically, we propose the following weights/probabilities. 

For observations with 𝑋𝑋𝑖𝑖 = 1 in the calibration data set 𝑆𝑆, assign to 𝑩𝑩�𝑖𝑖(0) the weight 

𝑤𝑤10(𝑍𝑍𝑖𝑖) = max �0,
𝑃𝑃τ(𝑋𝑋 = 0|𝑍𝑍𝑖𝑖) − 𝑃𝑃κ(𝑋𝑋 = 0|𝑍𝑍𝑖𝑖)

𝑃𝑃κ(𝑋𝑋 = 1|𝑍𝑍𝑖𝑖)
� 

and assign to 𝑩𝑩�𝑖𝑖(1) = 𝑩𝑩𝑖𝑖 the weight 1 − 𝑤𝑤10(𝑍𝑍𝑖𝑖). Analogously, for observations with 𝑋𝑋𝑖𝑖 = 0 

in the observed calibration data set 𝑆𝑆, assign to 𝑩𝑩�𝑖𝑖(1) the weight 

𝑤𝑤01(𝑍𝑍𝑖𝑖) = max �0,
𝑃𝑃τ(𝑋𝑋 = 1|𝑍𝑍𝑖𝑖) − 𝑃𝑃κ(𝑋𝑋 = 1|𝑍𝑍𝑖𝑖)

𝑃𝑃κ(𝑋𝑋 = 0|𝑍𝑍𝑖𝑖)
� 

and assign to 𝑩𝑩�𝑖𝑖(0) = 𝑩𝑩𝑖𝑖 the weight 1 − 𝑤𝑤01(𝑍𝑍𝑖𝑖). That is, if 𝑋𝑋𝑖𝑖 = 1 and 𝑃𝑃τ(𝑋𝑋 = 1|𝑍𝑍 = 𝑍𝑍𝑖𝑖) ≥

𝑃𝑃κ(𝑋𝑋 = 1|𝑍𝑍 = 𝑍𝑍𝑖𝑖), only use the observed 𝑩𝑩𝑖𝑖  (with weight 1). Likewise, if 𝑋𝑋𝑖𝑖 = 0 and 

𝑃𝑃τ(𝑋𝑋 = 1|𝑍𝑍 = 𝑍𝑍𝑖𝑖) ≤ 𝑃𝑃κ(𝑋𝑋 = 1|𝑍𝑍 = 𝑍𝑍𝑖𝑖), only use the observed 𝑩𝑩𝑖𝑖 . For the remaining 

observations, we use both the observed value and the counterfactual value, with weights 

determined by the discrepancy between the calibration and target populations. In other 

words, assign weight 𝑣𝑣𝑖𝑖(1) = 𝑋𝑋𝑖𝑖�1 − 𝑤𝑤10(𝑍𝑍𝑖𝑖)� + (1 − 𝑋𝑋𝑖𝑖)𝑤𝑤01(𝑍𝑍𝑖𝑖) to potential outcome 𝑩𝑩�𝑖𝑖(1) 

and weight 𝑣𝑣𝑖𝑖(0) = 𝑋𝑋𝑖𝑖 𝑤𝑤10(𝑍𝑍𝑖𝑖) + (1 − 𝑋𝑋𝑖𝑖)�1− 𝑤𝑤01(𝑍𝑍𝑖𝑖)� to potential outcome 𝑩𝑩�𝑖𝑖(0). Then the 

expected weight assigned to 𝑩𝑩�𝑖𝑖(1), conditional on 𝑍𝑍𝑖𝑖 , is: 
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E[𝑣𝑣𝑖𝑖(1)|𝑍𝑍𝑖𝑖] = 𝑤𝑤01(𝑍𝑍𝑖𝑖) 𝑃𝑃κ(𝑋𝑋 = 0|𝑍𝑍𝑖𝑖) + �1 − 𝑤𝑤10(𝑍𝑍𝑖𝑖)� 𝑃𝑃κ(𝑋𝑋 = 1|𝑍𝑍𝑖𝑖) 

and after substituting the expressions for 𝑤𝑤01(𝑧𝑧) and 𝑤𝑤10(𝑧𝑧) in the above equation, it can be 

seen that E[𝑣𝑣𝑖𝑖(1)|𝑍𝑍𝑖𝑖] = 𝑃𝑃τ(𝑋𝑋 = 1|𝑍𝑍𝑖𝑖), the distribution in the target population. These weights 

can then be used either as likelihood weights or as sampling probabilities; we will call these 

two options Partial Potential Outcomes Weighting (PPOW) and Partial Potential Outcomes 

Sampling (PPOS), respectively. Here we will only consider PPOW, which is less 

computationally intensive. 

Note that when the target population and calibration data set have the same 

distributions, i.e., when 𝑃𝑃τ(𝑋𝑋|𝑍𝑍) = 𝑃𝑃κ(𝑋𝑋|𝑍𝑍), the weights 𝑤𝑤10 and 𝑤𝑤01 both become 0, and only 

the observed outcomes are used. Hence in this case, PPOW and PPOS are equivalent to the 

unadjusted analysis. In contrast, CPOW and CPOS do not reduce to the unadjusted analysis 

in this case. 

4.6 Simulation study 

To compare the bias and precision of the proposed methods, we performed a simulation 

study. We used the multivariate biomarker model that we fit in Section 4.4 to define the 

following data-generating process: 

𝑡𝑡 ∼ Uniform(0,12) 

𝑍𝑍 = 1{𝑡𝑡≤1} 

𝑝𝑝 = 𝑝𝑝1𝑍𝑍 + 𝑝𝑝2(1 − 𝑍𝑍) 

𝑋𝑋 ∼ Bernoulli(𝑝𝑝) 

𝑽𝑽 = (1, log10(𝑡𝑡) ,𝑋𝑋)′ 
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𝜶𝜶 = �
3.00 1.13
1.54 2.55

−1.08 −0.68
� 

𝚺𝚺 = �1.563 0.413
0.413 1.040� 

(𝐵𝐵1, logit(𝐵𝐵2))′ ∼ 𝑁𝑁2((𝑽𝑽′𝜶𝜶)′,𝚺𝚺) 

𝑌𝑌 = 1{𝐵𝐵1<𝑐𝑐1,𝐵𝐵2<𝑐𝑐2} 

The parameters 𝑝𝑝1 and 𝑝𝑝2 specify 𝑃𝑃(𝑋𝑋|𝑍𝑍), and thus these parameters define the differences 

between the target population and the population from which the calibration data set is 

sampled. We can also consider ranges of values of these parameters for each population. 

Note that in this specific scenario, 𝑃𝑃(𝑋𝑋|𝑍𝑍) reduces to a step function on infection duration, 

𝑃𝑃(𝑋𝑋|𝑡𝑡) = 𝑝𝑝11{𝑡𝑡≤1} + 𝑝𝑝21{𝑡𝑡>1}. This simplification occurs because we defined 𝑍𝑍|𝑡𝑡 = 1{𝑡𝑡≤1}. In 

other scenarios, 𝑍𝑍 might have a more complex definition; for example, 𝑍𝑍 might represent 

combinations of gender and a discretization of infection duration. The parameters 𝑐𝑐1, 𝑐𝑐2 

specify the MAA; for the following analyses, they are held fixed at 𝑐𝑐1 = 2.8, 𝑐𝑐2 = 40, which 

are the values determined as optimal for this pair of biomarkers in a previous study. 

(Brookmeyer, Konikoff, et al. 2013) Given this generating model, the true target estimand 𝜇𝜇𝜏𝜏 

can be calculated numerically using the marginalization method described in Section 4.4. 

For each of several scenarios for 𝑃𝑃κ(𝑋𝑋|𝑍𝑍) – that is, for each of several pairs of (𝑝𝑝1,𝑝𝑝2) 

values – and for each of several sample sizes, we generated 2000 simulated calibration data 

sets. For each simulated data set, we applied each of the proposed analyses, as well as a naïve 

unadjusted analysis treating the calibration data as a representative sample of the target 

population, and we collected the resulting estimates of 𝜇𝜇. We compared these estimates to 

the true value computed as described above, to estimate the bias, standard error, and mean 
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squared error of each approach.  

In order to implement these analyses, functional forms needed to be chosen for the 

regression models. In our main simulations, we implemented the potential outcomes 

modeling approaches using the correct functional form for the multivariate biomarker 

model that matched the data-generating process – i.e., the infection duration 𝑡𝑡 enters the 

model on the logarithmic scale and biomarker 𝐵𝐵2 is Gaussian on the logit scale. The 

unadjusted analysis, curve averaging approach, sample weighting approach, and potential 

outcomes weighting approaches were all implemented with infection duration 𝑡𝑡 entering the 

models 𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) and 𝑃𝑃(𝑌𝑌 = 1|𝑥𝑥, 𝑧𝑧, 𝑡𝑡) on a logarithmic scale. It is unclear what the 

“correct” functional form should be for these two models; given the data-generating model 

that we have assumed for this simulation, these functions are transformations of the 

underlying biomarker model which do not seem to have simple algebraic expressions: 

𝑃𝑃(𝑌𝑌 = 1|𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = �𝑌𝑌𝑐𝑐(𝒃𝒃) 𝑝𝑝(𝒃𝒃|𝑥𝑥, 𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝒃𝒃 

𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) = � � 𝑃𝑃(𝑌𝑌 = 1|𝑥𝑥, 𝑧𝑧, 𝑡𝑡) 𝑃𝑃(𝑥𝑥|𝑧𝑧) 𝑃𝑃(𝑧𝑧|𝑡𝑡)
𝑥𝑥∈ℛ(𝑋𝑋)𝑧𝑧∈ℛ(𝑍𝑍)

 

As a sensitivity analysis, we also simulated all of the approaches with linear functional forms 

for 𝑇𝑇, and we simulated the multivariate modeling approaches (MMM, CPOW, and PPOW) 

with 𝐵𝐵2 on its original, untransformed scale. 

4.7 Results 

Table 4.1 shows simulation results comparing the performances of the unadjusted analysis, 

curve averaging approach, sample weighting approach, and multivariate modeling and 

marginalization (MMM) approach for estimating the mean window period in the target 
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population, under several data-generating scenarios with varying assumptions about 

𝑃𝑃𝜅𝜅(𝑋𝑋|𝑍𝑍). In scenarios A and B, the calibration data set had lower levels of viral suppression 

than the target population, and the unadjusted analysis produced estimates with biases of 

approximately 22 days and 12 days, respectively. In contrast, all three adjustment 

approaches produced estimates with biases of less than 3 days in these scenarios. In scenario 

C, the calibration data set had the same levels of viral suppression as the target population, 

and all of the methods, including the unadjusted analysis, produced estimates with minimal 

bias.  

The MMM approach produced estimates with standard errors that substantially smaller 

than those of the other analyses in all three scenarios. The curve averaging and sample 

weighting approaches resulted in substantially larger standard errors than the unadjusted 

analysis in scenarios A and B; in scenario C, these two approaches had standard errors on 

par with the unadjusted analysis. 

Because it had minimal biases and the smallest standard errors, the MMM approach also 

produced the smallest RMSEs in all three scenarios, for every sample size considered. In 

contrast, the curve averaging and sample weighting approaches had larger RMSEs than the 

unadjusted approach in scenarios A and B for sample sizes of 250 and were on par with the 

unadjusted approach in RMSE for sample sizes of 500; the reductions in bias for these 

methods relative to the unadjusted approach only outweighed the increases in variance for 

the larger sample sizes. In scenario C, these approaches had RMSEs comparable to the 

unadjusted analysis for all sample sizes considered. 

Table 4.2 compares the MMM approach with the CPOW and PPOW approaches. The MMM 
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approach had substantially better precision than CPOW and PPOW, but these variants still 

produced unbiased estimates, with SEs and RMSEs that were as small or smaller than those 

produced by the unadjusted analysis, the curve averaging approach, and the sample 

weighting approach. 

Table 4.3 shows simulation results evaluating the robustness of MMM to modeling 

misspecifications. Bias increased substantially when infection duration was modeled on a 

linear scale instead of a logarithmic scale, and bias was even worse when 𝐵𝐵2 was not 

correctly transformed to the logit scale. When both modeling errors were present, the 

average estimated mean window period shrunk to nearly zero, creating a massive bias; the 

standard errors shrunk in this case, but only because the estimated mean window periods 

were consistently close to 0. 

Table 4.4 shows simulation results evaluating the robustness of CPOW to the same 

modeling misspecifications. Bias increased appreciably when 𝐵𝐵2 was not correctly 

transformed to the logit scale, especially for scenario A, but not by nearly as much as for 

MMM. The bias also increased somewhat when infection duration was not correctly 

transformed to a logarithmic scale. When both modeling errors were present, the bias 

increased slightly further than when only 𝐵𝐵2 was incorrectly transformed. Standard error 

was not substantially affected by these misspecifications. Even with both modeling errors, 

MMM had biases comparable to the unadjusted analysis in scenarios A and B, and RMSEs 

comparable to the curve averaging and sample reweighting approaches for sample sizes of 

250 and 500 in all three scenarios. The bias introduced by misspecification only had 

substantial impact on RMSE for larger sample sizes. 
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Table 4.5 shows simulation results evaluating the robustness of PPOW to the same 

misspecifications. The biases found for CPOW in Scenarios A and B are still present, but they 

are slightly smaller. However, the standard errors for PPOW are still larger than those for 

CPOW, so that the RMSE is larger for PPOW than CPOW for sample sizes of 250 or 500. Note 

that in Scenario C, PPOW is unbiased even when misspecified, because it reduces to the 

unadjusted analysis in this case, as discussed previously. 

Table 4.6 shows simulation results evaluating the results of a linear functional form for 

infection duration, 𝑇𝑇, in the unadjusted analysis, curve averaging approach, and sample 

weighting approach. As discussed in Section 4.6, it is unclear what the ideal functional form 

should be for the model 𝑃𝑃(𝑌𝑌 = 1|𝑥𝑥, 𝑧𝑧, 𝑡𝑡) used in the curve averaging approach or for the 

model 𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) used in the unadjusted analysis, sample weighting approach, and 

potential outcomes weighting approaches. The results with a linear form are virtually 

identical to the corresponding ones in Table 4.1, indicating that these methods are relatively 

insensitive to functional form specification under the assumed data-generating model. 

To further explore this issue, we graphed the three curves 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 1,𝑇𝑇 = 𝑡𝑡), 

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 0,𝑇𝑇 = 𝑡𝑡), and 𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡), using the biomarker model parameter values 

listed above and the values 𝑝𝑝1 = 0.3,𝑝𝑝2 = 0.6 for the target population’s viral suppression 

distribution (Figure 4.1). We also included three additional curves, representing population-

level marginal logistic regression models for 𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇). We estimated each of them using 

105 simulated observations from the target distribution. The first model is linear in 𝑡𝑡, i.e. 

logit(𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡)) = 𝛼𝛼0 + 𝛼𝛼1𝑡𝑡. The second model is quadratic in 𝑡𝑡, i.e. 

logit(𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡)) = 𝛼𝛼0 + 𝛼𝛼1𝑡𝑡 + 𝛼𝛼2𝑡𝑡2. The third model is log-linear in 𝑡𝑡, i.e., 
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logit(𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡)) = 𝛼𝛼0 + 𝛼𝛼1 log10(𝑡𝑡). We graphed all curves on both the response 

(probability) and logit scales and provided the areas under the curve (integrated numerically 

from 0 to 10 years) in the legend. From the graphs and corresponding 𝜇𝜇 values, we can see 

that linear and quadratic models (green and orange) are both adequate to accurately 

estimate 𝜇𝜇, even though they are not particularly good approximations to the true marginal 

curve (blue) on either scale. 

Figure 4.1: MAA characteristics for transportability simulation model, on probability scale (left) and logit scale (right) 

 
4.8 Discussion 

Infectious disease prevention and evaluation research rely on accurate incidence estimates. 

Methodological challenges arise because of the difficulty in determining incidence from 

longitudinal cohorts of initially-uninfected persons and documenting infection acquisition. 

(Lagakos and Gable 2008) The cross-sectional approach addresses these challenges because 

incidence can be estimated without requiring longitudinal follow-up of persons. However, 

the cross-sectional approach does rely on an initial training data set to develop and calibrate 

the statistical methods to be used in cross-sectional surveys. The problem addressed in this 
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chapter is that the calibration data set may over time not reflect the current target 

population. We developed methods to adjust the analysis of the calibration data set in order 

to achieve unbiased estimation of the mean window period for the target population. These 

adjustment procedures could help avoid the time and expense of collecting a completely new 

training data set for each new target population. A critical assumption of the methods is that 

the variables that describe the relevant differences between the calibration and target 

population are identified. In our application the relevant variable was anti-retroviral 

treatment which results in viral suppression. 

We proposed a variety of approaches for adjusting the calibration analysis: a curve 

averaging approach, a sample reweighting approach, and a multivariate modeling approach 

with several variations. We found that each of these methods produced estimates with 

negligible bias, as long as their underlying assumptions held true, whereas an unadjusted 

analysis produced estimates with substantial bias when the calibration data set’s viral 

suppression distribution differed from the target population.  

The adjustment methods’ performances differed in precision: the multivariate modeling 

and marginalization (MMM) approach produced the smallest standard errors. This approach 

requires additional parametric assumptions not shared by the curve averaging and 

reweighting approaches; these assumptions resulted in lower standard errors, at the cost of 

vulnerability to bias when those assumptions are violated. Thus, this approach requires 

careful model fitting procedures to be reliable. 

The complete and partial potential outcomes weighting (CPOW and PPOW) approaches 

offer a compromise between the strong modeling assumptions required by the MMM 
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approach and the weaker assumptions of the curve averaging and resampling approaches. 

They still make use of the assumptions of the MMM approach to gain precision but trade 

some of that precision for less vulnerability to bias from violations of those assumptions. 

Overall, these findings suggest that the curve averaging or sample weighting approaches 

may be preferable in situations where the correct functional form for the multivariate 

biomarker model is unclear. However, for calibration data sets with small sample sizes or 

when the functional form for the multivariate model seems clear, the MMM approach with 

sensible modeling assumptions may be worthwhile. The use of flexible nonparametric 

methods such as splines or LOESS to fit the multivariate model may also improve the 

reliability of this method. 

The curve averaging and sample weighting approaches had similar performance 

characteristics to each other; the choice between them may depend on whether the 

conditional model 𝑃𝑃(𝑌𝑌|𝑋𝑋,𝑇𝑇) or the marginal model 𝑃𝑃(𝑌𝑌|𝑇𝑇) is easier to fit well to a given data 

set. The sample weighting approach also requires that there be at least one observation in 

the calibration data set for every combination of 𝑋𝑋 and 𝑍𝑍 values; otherwise, the denominator 

of the weight 𝑤𝑤𝑋𝑋(𝑍𝑍) [Eq. 4.1] for that combination is 0 and the weight itself is infinite. The 

curve averaging approach and MMM approach could still be used in such cases, although 

their reliability would be questionable since their predictions for those 𝑋𝑋 and 𝑍𝑍 values would 

be extrapolations. Ideally, several analysis approaches should be employed in parallel, and 

the results should be compared to check for sensitivity to the specific assumptions of each 

method. 

We assumed that only the levels of viral suppression differed between the training data 
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set and the target population. In reality, there may be several such relevant covariates, such 

as infection subtype, calendar time, and demographic factors that differ between the training 

and target populations. Further, the model for the biomarkers may involve interactions 

among these covariates. Future work could include extending these methods to such 

situations and would involve assuming or estimating a joint model for the covariates as a 

function of time, that is, replacing 𝑃𝑃𝑇𝑇(𝑋𝑋|𝑍𝑍) with 𝑃𝑃𝑇𝑇(𝑋𝑋1, …𝑋𝑋𝑝𝑝|𝑍𝑍), and using this joint model to 

either resample the training data set or generate counterfactually adjusted data sets. 

Here, we considered an MAA that did not include viral suppression status as a biomarker. 

However, it is possible to apply our methods to MAAs that do include viral suppression 

status, even when viral suppression is also the covariate 𝑋𝑋 whose distribution needs to be 

adjusted. 

A critical assumption of our methods for transporting results from the initial training 

dataset to the target population is the exchangeability assumption, that is, 𝑃𝑃𝜏𝜏(𝑌𝑌|𝑋𝑋,𝑍𝑍,𝑇𝑇) =

𝑃𝑃𝜅𝜅(𝑌𝑌|𝑋𝑋,𝑍𝑍,𝑇𝑇). An epidemic could evolve to violate this assumption. For example, if the virus 

mutates, new strains with different biological signatures could be introduced that might 

invalidate the assumption. Changes in clinical practice or in population characteristics could 

also invalidate this assumption; for example, if the mixture of causes of viral suppression 

(from anti-retroviral treatment versus innate resistance) evolves over time, then the 

statistical relationship between suppression and biomarker values may also shift. It is 

important to consider the validity of the exchangeability assumption using expert knowledge 

and any additional data that may be available from the target population. 

While we have discussed model transportation approaches in the context of cross-
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sectional incidence estimation, the proposed approaches are more general. They could be 

applicable in other situations where complex statistical analyses are conducted using an 

initial data set but those results may not be directly transportable to the new target 

population of interest.  

Cross-sectional incidence methods have been successfully applied in many settings 

around the world. (Coates et al. 2014; Solomon et al. 2016) These methods require training 

data sets to develop and calibrate the methods. The approach we have proposed could offer 

a practical and cost-effective way to apply cross-sectional incidence methods to new target 

populations as the epidemic continues to evolve.  
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Table 4.1: Simulation results comparing the performance of adjustment procedures for estimating the mean window period in a target population. Bias, standard error (SE), 
and root mean squared error (RMSE) are given in days. Infection duration 𝑇𝑇 is modeled on a logarithmic scale. 

 
Scenario 

 
Unadjusted 

analysis Curve averaging Sample weighting 

Multivariate 
modeling and 

marginalization 
(“MMM”) 

 
𝑷𝑷𝜿𝜿(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 𝑷𝑷𝝉𝝉(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 

 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 Sample 
size Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE 

A 15% 30% 30% 60% 

250 -21.9 36.0 42.1 -3.7 49.3 49.5 -2.0 48.0 48.0 -1.5 20.7 20.7 
500 -21.2 24.0 32.0 -0.9 32.3 32.3 -0.8 32.3 32.3 -0.6 14.4 14.4 

2500 -22.0 10.4 24.4 -1.2 13.6 13.6 -1.0 13.7 13.7 -0.1 6.6 6.6 
10000 -21.7 5.3 22.3 -0.8 6.9 6.9 -0.5 6.9 6.9 0.1 3.3 3.3 

B 15% 60% 30% 60% 

250 -12.1 37.8 39.6 -0.5 42.1 42.1 -1.2 43.2 43.2 -1.7 19.6 19.6 
500 -11.6 25.4 27.9 0.1 27.9 27.9 -0.8 29.4 29.4 -0.6 14.0 14.0 

2500 -12.1 11.1 16.4 -0.4 11.9 12.0 -1.0 12.2 12.2 -0.1 6.4 6.4 
10000 -11.8 5.7 13.1 -0.2 6.1 6.1 -0.6 6.2 6.2 0.0 3.1 3.1 

C 30% 60% 30% 60% 

250 -0.8 38.2 38.2 -1.3 38.5 38.5 -1.2 38.2 38.2 -1.7 19.4 19.4 
500 -0.1 26.4 26.4 -0.2 26.2 26.2 -0.3 26.1 26.1 -0.6 13.9 13.9 

2500 -1.2 11.4 11.5 -0.9 11.2 11.3 -1.1 11.2 11.3 -0.1 6.3 6.3 
10000 -0.7 5.9 5.9 -0.5 5.8 5.8 -0.7 5.8 5.8 0.0 3.1 3.1 
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Table 4.2: Simulation results comparing the performance of three variations of the multivariate modeling adjustment approach for estimating the mean window period in a 
target population. Bias, standard error (SE), and root mean squared error (RMSE) are given in days. 

 
Scenario 

 

Multivariate modeling 
and marginalization 

(MMM) 

Complete potential 
outcomes weighting  

(CPOW) 

Partial potential 
outcomes weighting  

(PPOW)  𝑷𝑷𝜿𝜿(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 𝑷𝑷𝝉𝝉(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 
 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 Sample size Bias SE RMSE Bias SE RMSE Bias SE RMSE 

A 15% 30% 30% 60% 

250 -1.5 20.7 20.7 -0.8 33.0 33.0 -0.9 35.4 35.4 
500 -0.6 14.4 14.4 -0.4 22.6 22.6 -0.2 24.2 24.2 

2500 -0.1 6.6 6.6 -1.0 9.8 9.8 -0.9 10.4 10.5 
10000 0.1 3.3 3.3 -0.5 5.0 5.0 -0.6 5.3 5.4 

B 15% 60% 30% 60% 

250 -1.7 19.6 19.6 -0.9 32.1 32.1 -0.9 36.3 36.3 
500 -0.6 14.0 14.0 -0.8 22.0 22.1 -0.4 24.7 24.7 

2500 -0.1 6.4 6.4 -0.9 9.6 9.7 -0.9 10.8 10.8 
10000 0.0 3.1 3.1 -0.6 5.0 5.0 -0.7 5.5 5.5 

C 30% 60% 30% 60% 

250 -1.7 19.4 19.4 -0.8 31.9 31.9 -0.8 38.2 38.2 
500 -0.6 13.9 13.9 -0.7 22.0 22.0 -0.1 26.4 26.4 

2500 -0.1 6.3 6.3 -1.0 9.6 9.6 -1.2 11.4 11.5 
10000 0.0 3.1 3.1 -0.6 4.9 5.0 -0.7 5.9 5.9 

 

  



70 

Table 4.3: Simulation results evaluating the robustness of the multivariate modeling and marginalization (MMM) approach for estimating mean window period 
under various model misspecifications. Bias, standard error (SE), and root mean squared error (RMSE) are given in days. 

 
Scenario 

 
Infection duration (𝑻𝑻) scale 

misspecified 
Biomarker 𝑩𝑩𝟐𝟐 scale 

misspecified Both misspecified  𝑷𝑷𝜿𝜿(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 𝑷𝑷𝝉𝝉(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 
 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 Sample size Bias SE RMSE Bias SE RMSE Bias SE RMSE 

A 15% 30% 30% 60% 

250 -56.2 30.8 64.1 -93.2 14.7 94.3 -134.4 8.0 134.7 
500 -56.4 21.4 60.3 -93.0 10.3 93.6 -135.5 5.3 135.6 

2500 -56.8 9.8 57.6 -93.0 4.6 93.1 -136.3 2.1 136.4 
10000 -56.6 4.8 56.8 -92.9 2.3 92.9 -136.4 1.0 136.5 

B 15% 60% 30% 60% 

250 -58.6 28.5 65.1 -86.5 15.3 87.9 -131.9 9.1 132.3 
500 -58.6 19.8 61.8 -86.2 10.8 86.9 -132.9 6.2 133 

2500 -58.8 9.2 59.5 -86.2 4.9 86.3 -133.7 2.6 133.8 
10000 -58.8 4.5 58.9 -86.1 2.4 86.2 -133.9 1.2 133.9 

C 30% 60% 30% 60% 

250 -55.3 29.5 62.7 -83.9 15.5 85.3 -130.2 10.1 130.6 
500 -55.3 20.5 59.0 -83.5 11.0 84.2 -131.2 6.9 131.4 

2500 -55.6 9.5 56.4 -83.5 4.9 83.7 -132.2 2.9 132.2 
10000 -55.5 4.7 55.7 -83.4 2.5 83.5 -132.3 1.4 132.3 
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Table 4.4: Simulation results evaluating the robustness of the complete potential outcomes weighting (CPOW) approach for estimating mean window period under 
various model misspecifications. Bias, standard error (SE), and root mean squared error (RMSE) are given in days. 

 
Scenario 

 
Infection duration scale 

misspecified 
Biomarker 𝑩𝑩𝟐𝟐 scale 

misspecified Both misspecified  𝑷𝑷𝜿𝜿(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 𝑷𝑷𝝉𝝉(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 
 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 Sample size Bias SE RMSE Bias SE RMSE Bias SE RMSE 

A 15% 30% 30% 60% 

250 -4.6 34.7 35.0 -17.6 33.0 37.4 -18.9 34.5 39.3 
500 -4.2 24.1 24.4 -17.0 22.3 28.0 -18.2 23.9 30.0 

2500 -4.3 10.5 11.4 -17.5 9.7 20.0 -18.3 10.5 21.1 
10000 -3.6 5.4 6.5 -17.0 5.0 17.8 -17.7 5.4 18.5 

B 15% 60% 30% 60% 

250 -6.8 34.3 35.0 -12.2 34.2 36.3 -13.1 36.9 39.1 
500 -6.4 23.8 24.7 -11.7 23.1 25.9 -12.6 25.2 28.2 

2500 -6.1 10.6 12.2 -12.2 10.2 15.8 -12.7 11.2 16.9 
10000 -5.7 5.4 7.9 -11.7 5.2 12.8 -12.0 5.8 13.3 

C 30% 60% 30% 60% 

250 -3.9 34.2 34.4 -7.3 34.3 35.1 -7.2 36.8 37.5 
500 -3.2 23.9 24.1 -6.6 23.4 24.3 -6.2 25.4 26.2 

2500 -2.9 10.5 10.9 -7.3 10.2 12.6 -6.5 11.2 12.9 
10000 -2.4 5.5 6.0 -6.7 5.3 8.6 -5.7 5.8 8.2 
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Table 4.5: Simulation results evaluating the robustness of the partial potential outcomes weighting (PPOW) approach for estimating mean window period under 
various model misspecifications. Bias, standard error (SE), and root mean squared error (RMSE) are given in days. 

 
Scenario 

 
Infection duration scale 

misspecified 
Biomarker 𝑩𝑩𝟐𝟐 scale 

misspecified Both misspecified  𝑷𝑷𝜿𝜿(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 𝑷𝑷𝝉𝝉(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 
 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 Sample size Bias SE RMSE Bias SE RMSE Bias SE RMSE 

A 15% 30% 30% 60% 

250 -3.8 36.9 37.1 -14.4 35.2 38.0 -15.6 36.4 39.6 
500 -3.2 25.8 26.0 -13.6 23.8 27.4 -14.9 25.2 29.3 

2500 -3.5 11.3 11.8 -14.4 10.3 17.7 -15.3 11.1 18.8 
10000 -2.9 5.8 6.5 -14 5.3 14.9 -14.7 5.7 15.8 

B 15% 60% 30% 60% 

250 -3.9 38.2 38.4 -7.4 37.0 37.7 -8.9 38.8 39.8 
500 -3.4 26.2 26.5 -6.7 25.1 26.0 -8.4 26.7 28.0 

2500 -3.4 11.7 12.1 -7.3 11.0 13.2 -8.4 11.9 14.5 
10000 -3.0 5.9 6.7 -7.0 5.6 9.0 -7.9 6.1 10.0 

C 30% 60% 30% 60% 

250 -0.9 39.7 39.7 -0.8 38.2 38.2 -0.9 39.7 39.7 
500 -0.3 27.9 27.9 -0.1 26.4 26.4 -0.3 27.9 27.9 

2500 -0.8 12.2 12.2 -1.2 11.4 11.5 -0.8 12.2 12.2 
10000 -0.1 6.3 6.3 -0.7 5.9 5.9 -0.1 6.3 6.3 
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Table 4.6: Simulation results evaluating the accuracy of the unadjusted, curve averaging, and sample weighting approaches for estimating mean window period, 
with infection duration 𝑇𝑇 modeled on a linear scale. Bias, standard error (SE), and root mean squared error (RMSE) are given in days. 

 
Scenario 

 
Unadjusted analysis 

(linear form) 
Curve averaging 

(linear form) 
Sample weighting 

(linear form)  𝑷𝑷𝜿𝜿(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 𝑷𝑷𝝉𝝉(𝑿𝑿 = 𝟏𝟏|𝒁𝒁) 
 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 𝒁𝒁 = 𝟏𝟏 𝒁𝒁 = 𝟐𝟐 Sample 

size Bias SE RMSE Bias SE RMSE Bias SE RMSE 

A 15% 30% 30% 60% 

250 -22.1 36.9 43.0 -1.3 50.5 50.5 -2.2 49.1 49.2 
500 -21.4 25.2 33.1 -0.4 33.5 33.5 -0.8 33.9 33.9 

2500 -21.9 11.2 24.6 -1.0 14.1 14.1 -0.6 14.5 14.5 
10000 -21.3 5.7 22.1 -0.4 7.1 7.1 0.1 7.3 7.3 

B 15% 60% 30% 60% 

250 -12.2 39.3 41.1 1.6 43.4 43.5 -1.3 44.8 44.8 
500 -11.7 26.9 29.4 1.4 29.0 29.0 -1.0 31.0 31.0 

2500 -11.7 12.0 16.7 0.8 12.7 12.7 -0.6 13.0 13.0 
10000 -11.2 6.1 12.8 1.1 6.4 6.5 0.0 6.6 6.6 

C 30% 60% 30% 60% 

250 -0.9 39.7 39.7 -1.0 39.5 39.5 -1.5 39.8 39.8 
500 -0.3 27.9 27.9 -0.5 27.6 27.6 -0.4 27.7 27.7 

2500 -0.8 12.2 12.2 -0.7 12.0 12.0 -0.7 12.0 12.0 
10000 -0.1 6.3 6.3 -0.1 6.1 6.1 -0.1 6.2 6.2 
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CHAPTER 5 
Interval-censored seroconversion dates 

Since seroconversion status is usually only tested periodically in longitudinal studies, 

seroconversion dates and durations of infection are typically interval-censored in calibration 

data sets, as discussed in Section 2.2. In the previous chapters and in the existing literature, 

this issue has been handled by uniform imputation over the censoring intervals. In this 

chapter, we present an alternative approach, using an incomplete-data perspective and the 

EM algorithm. 

Several options exist for regression analysis with interval-censored covariates. One 

option is to treat the midpoints of the censoring intervals as if they were the observed values 

of the censored variable and to regress the outcome on these midpoints. We will refer to this 

approach as midpoint imputation. It has the appeal of simplicity, but we will demonstrate 

that it can lead to substantial bias when censoring intervals are wide. 

A second option, discussed above, is to assume that the interval-censored variable has a 

uniform distribution over the censoring interval and to perform a multiple imputation 

analysis. In such a case a series of imputed data sets are constructed by selecting a random 

value from each censoring interval. Regression model coefficients are then estimated from 

each imputed data set, and these estimates are averaged to produce final estimates. 

(Konikoff et al. 2013) We will refer to this approach as uniform imputation. We will 

demonstrate that it can also lead to substantial bias, potentially more severe than midpoint 

imputation. 

A third option is to simultaneously estimate the parameters of the regression model of 
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interest and the parameters of a model for the nuisance distribution of the interval-censored 

covariate (Hsiao 1983; Goggins et al. 1999; Gómez et al. 2003) We will refer to this approach 

as joint modeling. 

In some cases, an interval-censored covariate is defined as a function of other variables, 

at least one of which is itself interval-censored. In the incidence estimation setting, the 

interval-censored covariate of interest is the duration of infection, defined as the time 

difference between the date of seroconversion, which is interval-censored, and the date of 

biomarker sample collection, which is recorded precisely. In this example, we could model 

the distribution of infection durations directly, ignoring the underlying seroconversion dates 

and biomarker measurement dates. To do so, the approach of Gómez et al (2003), referred 

to as the GEL approach, could be used. This approach aimed to model 𝑝𝑝(𝑌𝑌 = 𝑦𝑦|𝑍𝑍 = 𝑧𝑧) when 

𝑍𝑍 is censored in the interval [𝑍𝑍𝐿𝐿 ,𝑍𝑍𝑅𝑅]. The motivating example was a model of HIV viral load 

(𝑌𝑌) at start of secondary treatment, as a function of the time difference (𝑍𝑍) from primary 

treatment failure to start of secondary treatment. The following assumptions were made: 

I. The data consist of 𝑛𝑛 independent and identically distributed realizations of 

(𝑌𝑌,𝑍𝑍,𝑍𝑍𝐿𝐿 ,𝑍𝑍𝑅𝑅). 

II. 𝑝𝑝(𝑌𝑌 = 𝑦𝑦|𝑍𝑍 = 𝑧𝑧,𝑍𝑍𝐿𝐿 = 𝑙𝑙,𝑍𝑍𝑅𝑅 = 𝑒𝑒) = 𝑝𝑝𝜽𝜽(𝑌𝑌 = 𝑦𝑦|𝑍𝑍 = 𝑧𝑧). 

III. 𝑝𝑝(𝑍𝑍 = 𝑧𝑧|𝑍𝑍𝐿𝐿 = 𝑙𝑙,𝑍𝑍𝑅𝑅 = 𝑒𝑒) = 1{𝑧𝑧 ∈ [𝑙𝑙, 𝑒𝑒]} 𝑝𝑝𝝎𝝎(𝑍𝑍 = 𝑧𝑧) / 𝑝𝑝𝝎𝝎(𝑍𝑍 ∈ [𝑙𝑙, 𝑒𝑒]). 

IV. 𝑍𝑍 has a finite sample space 𝓩𝓩 ⊂ ℝ. 

The distribution of 𝑍𝑍 was modeled non-parametrically; that is, as a multinomial distribution 

with no added assumptions. Let 𝝎𝝎 = {𝜔𝜔(𝑧𝑧) = 𝑝𝑝(𝑍𝑍 = 𝑧𝑧)}𝑧𝑧∈𝓩𝓩 denote the parameters of this 
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distribution. Then the likelihood of 𝑌𝑌, conditional on (𝑍𝑍𝐿𝐿 ,𝑍𝑍𝑅𝑅) and marginalizing over 𝑍𝑍, is: 

𝐿𝐿(𝝎𝝎,𝜽𝜽) = �𝑝𝑝𝝎𝝎,𝜽𝜽(𝑦𝑦𝑖𝑖|𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

= ��𝑝𝑝�𝑦𝑦𝑖𝑖�𝑍𝑍𝑖𝑖 = 𝑧𝑧,𝑍𝑍𝐿𝐿𝑖𝑖 = 𝑙𝑙𝑖𝑖,𝑍𝑍𝑅𝑅𝑖𝑖 = 𝑒𝑒𝑖𝑖� 𝑝𝑝(𝑍𝑍𝑖𝑖 = 𝑧𝑧|𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖)
𝑧𝑧∈𝓩𝓩

𝑛𝑛

𝑖𝑖=1

 

= ��𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖|𝑍𝑍𝑖𝑖 = 𝑧𝑧)
𝑧𝑧∈𝓩𝓩

𝑛𝑛

𝑖𝑖=1

1{𝑧𝑧 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝𝝎𝝎(𝑍𝑍𝑖𝑖 = 𝑧𝑧)/𝑝𝑝𝝎𝝎(𝑍𝑍𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]) 

= ��{𝑝𝑝𝝎𝝎(𝑍𝑍𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖])}−1
𝑛𝑛

𝑖𝑖=1

�� �  𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖|𝑍𝑍𝑖𝑖 = 𝑧𝑧)
𝑧𝑧∈𝓩𝓩∩[𝑙𝑙𝑖𝑖,𝑟𝑟𝑖𝑖]

𝑛𝑛

𝑖𝑖=1

𝜔𝜔(𝑧𝑧) 

This analysis focused on the partial likelihood 

𝐿𝐿∗(𝝎𝝎,𝜽𝜽) = � � 𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖|𝑍𝑍𝑖𝑖 = 𝑧𝑧) 𝜔𝜔(𝑧𝑧)
𝑧𝑧∈𝓩𝓩∩[𝑙𝑙𝑖𝑖,𝑟𝑟𝑖𝑖]

𝑛𝑛

𝑖𝑖=1

 

omitting the term ∏ {𝑝𝑝𝝎𝝎(𝑍𝑍𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖])}−1𝑛𝑛
𝑖𝑖=1 = ∏ {∑ 1{𝑧𝑧 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝜔𝜔(𝑧𝑧)𝑧𝑧∈𝓩𝓩 }−1𝑛𝑛

𝑖𝑖=1 . The analysis 

sought to maximize 𝐿𝐿∗�𝝎𝝎� ,𝜽𝜽�� by iterating between updates to 𝝎𝝎�  (“Step A”) and updates to 𝜽𝜽� 

(“Step B”).  

Step A in turn consisted of a further iteration between the following steps: 

A[i]: For each 𝑧𝑧 ∈ 𝓩𝓩, compute 𝑝𝑝𝝎𝝎� ,𝜽𝜽�(𝑍𝑍𝑖𝑖 = 𝑧𝑧|𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝑦𝑦𝑖𝑖) using Bayes’ Theorem and the 

assumptions: 

𝑝𝑝𝝎𝝎� ,𝜽𝜽�(𝑍𝑍𝑖𝑖 = 𝑧𝑧|𝑙𝑙𝑖𝑖 , 𝑒𝑒𝑖𝑖,𝑦𝑦𝑖𝑖) =
𝑝𝑝𝝎𝝎� ,𝜽𝜽��𝑦𝑦𝑖𝑖�𝑍𝑍𝑖𝑖 = 𝑧𝑧,𝑍𝑍𝐿𝐿𝑖𝑖 = 𝑙𝑙𝑖𝑖,𝑍𝑍𝑅𝑅𝑖𝑖 = 𝑒𝑒𝑖𝑖�𝑝𝑝𝝎𝝎� ,𝜽𝜽��𝑍𝑍𝑖𝑖 = 𝑧𝑧�𝑍𝑍𝐿𝐿𝑖𝑖 = 𝑙𝑙𝑖𝑖 ,𝑍𝑍𝑅𝑅𝑖𝑖 = 𝑒𝑒𝑖𝑖�

∑ 𝑝𝑝𝝎𝝎� ,𝜽𝜽��𝑦𝑦𝑖𝑖�𝑍𝑍𝑖𝑖 = 𝑧𝑧,𝑍𝑍𝐿𝐿𝑖𝑖 = 𝑙𝑙𝑖𝑖,𝑍𝑍𝑅𝑅𝑖𝑖 = 𝑒𝑒𝑖𝑖�𝑧𝑧∈𝓩𝓩 𝑝𝑝𝝎𝝎� ,𝜽𝜽��𝑍𝑍𝑖𝑖 = 𝑧𝑧�𝑍𝑍𝐿𝐿𝑖𝑖 = 𝑙𝑙𝑖𝑖 ,𝑍𝑍𝑅𝑅𝑖𝑖 = 𝑒𝑒𝑖𝑖�
 

=
𝑝𝑝𝜽𝜽�(𝑦𝑦𝑖𝑖|𝑧𝑧) 1{𝑧𝑧 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝𝝎𝝎� (𝑍𝑍𝑖𝑖 = 𝑧𝑧)/𝑝𝑝𝝎𝝎�(𝑍𝑍 ∈ [𝑙𝑙, 𝑒𝑒])

∑ 𝑝𝑝𝜽𝜽�(𝑦𝑦𝑖𝑖|𝑧𝑧) 1{𝑧𝑧 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝𝝎𝝎� (𝑍𝑍𝑖𝑖 = 𝑧𝑧)/𝑝𝑝𝝎𝝎� (𝑍𝑍 ∈ [𝑙𝑙, 𝑒𝑒])𝑧𝑧∈𝓩𝓩
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=
1{𝑧𝑧 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝𝜽𝜽�(𝑦𝑦𝑖𝑖|𝑧𝑧) 𝜔𝜔�(𝑧𝑧)
∑  𝑝𝑝𝜽𝜽�(𝑦𝑦𝑖𝑖|𝑧𝑧) 𝜔𝜔�(𝑧𝑧)𝑧𝑧∈𝓩𝓩∩[𝑙𝑙𝑖𝑖,𝑟𝑟𝑖𝑖]

 

A[ii]: For each 𝑧𝑧 ∈ 𝓩𝓩, update:  

𝜔𝜔�(𝑧𝑧) ←
1
𝑛𝑛
�𝑝𝑝𝝎𝝎� ,𝜽𝜽�(𝑍𝑍𝑖𝑖 = 𝑧𝑧|𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

  

Steps A[i] and A[ii] were iterated until the relative norm difference �𝝎𝝎(𝑛𝑛𝑒𝑒𝑤𝑤) −𝝎𝝎(𝑜𝑜𝑙𝑙𝑑𝑑)�/

�𝝎𝝎(𝑜𝑜𝑙𝑙𝑑𝑑)� was less than a tolerance value.  

Step B consisted of the update: 

𝜽𝜽� ← arg max
𝜽𝜽

log 𝐿𝐿∗(𝝎𝝎� ,𝜽𝜽) = arg max
𝜽𝜽

� log� �  𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖|𝑍𝑍𝑖𝑖 = 𝑧𝑧)
𝑧𝑧∈𝓩𝓩∩[𝑙𝑙𝑖𝑖,𝑟𝑟𝑖𝑖]

𝜔𝜔�(𝑧𝑧)�
𝑛𝑛

𝑖𝑖=1

 

The maximizing value has a closed-form solution if 𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖|𝑧𝑧) is a linear model; otherwise, it 

can be found by numerical methods, such as the Broyden–Fletcher–Goldfarb–Shannon 

(BFGS) quasi-Newton method. (Langohr and Gómez Melis 2014; Bolker and R Core Team 

2020)  

Steps A and B were iterated until the sum of relative norm differences  

�𝝎𝝎(𝑛𝑛𝑒𝑒𝑤𝑤) −𝝎𝝎(𝑜𝑜𝑙𝑙𝑑𝑑)�
‖𝝎𝝎(𝑜𝑜𝑙𝑙𝑑𝑑)‖

+
�𝜽𝜽(𝑛𝑛𝑒𝑒𝑤𝑤) − 𝜽𝜽(𝑜𝑜𝑙𝑙𝑑𝑑)�

‖𝜽𝜽(𝑜𝑜𝑙𝑙𝑑𝑑)‖
 

was less than a tolerance value. 

A limitation of the GEL approach for our application is that it does not account for 

calendar time, which is an important factor to consider in incidence estimation. The 

probability that a given individual becomes infected at a particular point in time depends on 

the contemporary population prevalence of infectious individuals with whom they might 
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interact. 

In this chapter, we propose an alternative to the GEL approach: we can model the 

distribution of seroconversion dates directly and then derive the distribution of infection 

durations from this model. Using this approach, we derive a simpler estimation procedure 

than the GEL approach’s procedure: we remove a second loop nested inside the main 

iteration loop, and we replace a Quasi-Newton maximization step with a faster step using 

Fisher scoring. (Lange 2010) 

5.1 Notation 

In this chapter, we use the following notation. A calibration data set 𝑆𝑆 consists of the 

following random variables observed for each of 𝑁𝑁 participants: the date when participant 𝑖𝑖 

enrolled in the study, 𝐸𝐸𝑖𝑖; the date of participant 𝑖𝑖’s last seronegative test, 𝐿𝐿𝑖𝑖; the date of 

participant 𝑖𝑖’s first seropositive test, 𝑅𝑅𝑖𝑖; the vector of participant 𝑖𝑖’s sample collection dates 

after seroconversion, 𝑶𝑶𝑖𝑖 = (𝑂𝑂𝑖𝑖1, … ,𝑂𝑂𝑖𝑖𝑛𝑛𝑖𝑖); and the vector of MAA classification outcomes for 

participant 𝑖𝑖’s blood samples collected after seroconversion, 𝒀𝒀𝑖𝑖 = (𝑌𝑌𝑖𝑖1, … ,𝑌𝑌𝑖𝑖𝑛𝑛𝑖𝑖). Each 𝑌𝑌𝑖𝑖𝑗𝑗 is 

binary; 𝑌𝑌𝑖𝑖𝑗𝑗 = 1 indicates a positive classification, and 𝑌𝑌𝑖𝑖𝑗𝑗 = 0 indicates a negative 

classification. In addition, we define an unobserved variable: the date when participant 𝑖𝑖 first 

seroconverted, 𝑆𝑆𝑖𝑖. We also define the following variable transformations to represent the 

time differences between a participant’s actual seroconversion date and their biomarker 

sample collection dates: 𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑂𝑂𝑖𝑖𝑗𝑗 − 𝑆𝑆𝑖𝑖  and 𝑻𝑻𝑖𝑖 = (𝑇𝑇𝑖𝑖1, … ,𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖). The corresponding observed 

values are 𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖, 𝒐𝒐𝑖𝑖 = (𝑙𝑙𝑖𝑖1, … , 𝑙𝑙𝑖𝑖𝑛𝑛𝑖𝑖), 𝒚𝒚𝑖𝑖 = (𝑦𝑦𝑖𝑖1, … , 𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖), 𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖𝑗𝑗 = 𝑙𝑙𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑖𝑖, and 𝒕𝒕𝑖𝑖 =

(𝑡𝑡𝑖𝑖1, … , 𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖), respectively. 
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5.2 Assumptions 

To enable our joint modeling analysis, we make nine modeling assumptions about the 

relationships among these variables. These assumptions can be grouped in several ways. 

Assumptions 1-3 are also used by the midpoint and uniform imputation approaches, while 

Assumptions 4-9 are used only for joint modeling. Assumptions 1, 3, 4, 5, and 6 specify 

independence relationships among the variables in our data set; they enable us to 

decompose the joint likelihood into a hierarchical model structure amenable to estimation. 

In this hierarchical model, the sub-model for 𝑌𝑌𝑖𝑖𝑗𝑗 (the binary MAA classification of the sample 

collected on date 𝑂𝑂𝑖𝑖𝑗𝑗) depends only on 𝑇𝑇𝑖𝑖𝑗𝑗 (the elapsed time since seroconversion), and the 

sub-model for 𝑆𝑆𝑖𝑖 (the seroconversion date) depends only on 𝐸𝐸𝑖𝑖 (the enrollment date). 

Assumptions 2-4 characterize the distribution of the outcome, 𝒀𝒀𝑖𝑖 , assumptions 5 and 6 

characterize the distributions of the enrollment and follow-up observation dates 

(𝐸𝐸𝑖𝑖 , 𝐿𝐿𝑖𝑖,𝑅𝑅𝑖𝑖,𝑶𝑶𝑖𝑖), and assumptions 8 and 9 characterize the distribution of the interval-censored 

covariate, 𝑆𝑆𝑖𝑖. Assumption 7 distinguishes the parameter sets for the various sub-models. 

First, we assume that the participants’ data are independently and identically 

distributed; that is, (𝐸𝐸𝑖𝑖, 𝐿𝐿𝑖𝑖,𝑅𝑅𝑖𝑖,𝑶𝑶𝑖𝑖 ,𝒀𝒀𝑖𝑖 , 𝑆𝑆𝑖𝑖) ∼𝑖𝑖𝑖𝑖𝑑𝑑 𝑝𝑝(𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖 , 𝑠𝑠𝑖𝑖). 

Second, we assume that 𝑝𝑝(𝒚𝒚𝑖𝑖|𝒕𝒕𝑖𝑖) has a functional form which would be estimable if 𝒕𝒕𝑖𝑖 

were observed precisely; for example, a generalized additive model (Hastie and Tibshirani 

1990) 

Third, we assume that longitudinally repeated MAA classifications of the same individual 

are mutually independent, conditional on the duration of infection at the time of sample 

collection; i.e., 𝑝𝑝(𝒚𝒚𝑖𝑖|𝒕𝒕𝑖𝑖)  = ∏ 𝑝𝑝(𝑦𝑦𝑖𝑖𝑗𝑗| 𝑡𝑡𝑖𝑖𝑗𝑗)𝑗𝑗∈1:𝑛𝑛𝑖𝑖 . This assumption is unnecessary when the 
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regression parameters are the only estimands of interest; in such cases, we can use any 

regression model 𝑝𝑝(𝒚𝒚𝑖𝑖|𝒕𝒕𝑖𝑖) which we could fit with an uncensored covariate, including models 

with random effects, autoregressive parameters, or other forms of autocorrelation. This 

assumption is necessary for our particular motivating application because we want to 

transform the estimated regression model �̂�𝑝(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗) into an estimated mean window period 

�̂�𝜇; if random effects or other forms of correlation are added to this model, there is no longer 

a straightforward way to use the model to estimate 𝜇𝜇. This issue is further discussed in. Note 

that this assumption and the preceding two are not specific to the joint modeling approach; 

they are also relied upon for midpoint imputation and uniform imputation when we use 

these approaches for our application. 

If individuals never re-entered the MAA-positive state after exiting, then this assumption 

would be clearly false, and a survival model for time-to-MAA-negativity should be used 

instead of the Bernoulli model that we are proposing here. The survival model approach to 

mean window period estimation has been considered elsewhere (Hanson et al. 2016) 

However, depending on the MAA being used, it is possible for individuals to return to the 

MAA-positive state long after exiting, especially as infections progress toward AIDS and the 

immune response weakens (Brookmeyer 2010) In order to allow for this possibility, we 

chose to consider the Bernoulli model. 

Fourth, we assume that conditional on the vector of infection durations corresponding to 

the dates of biomarker sample collection, the corresponding MAA classification is 

independent of the participant’s enrollment date, seroconversion date, seroconversion 

censoring interval endpoints, and biomarker sample collection dates; that is, 
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𝑝𝑝(𝒚𝒚𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖, 𝑠𝑠𝑖𝑖) = 𝑝𝑝(𝒚𝒚𝑖𝑖|𝒕𝒕𝑖𝑖). 

Fifth, we assume that the follow-up dates through the first seropositive test are 

independent of the actual seroconversion date, conditional on enrollment date; that is, 

𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) = 𝑐𝑐(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖; 𝑒𝑒𝑖𝑖) 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]}, where 𝑐𝑐(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖; 𝑒𝑒𝑖𝑖) is the probability, conditional on 

𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖, that participant 𝑖𝑖’s pre-seroconversion follow-up schedule includes tests at 𝑙𝑙𝑖𝑖 

followed by 𝑒𝑒𝑖𝑖. Given such a schedule, 𝐿𝐿𝑖𝑖 = 𝑙𝑙𝑖𝑖 and 𝑅𝑅𝑖𝑖 = 𝑒𝑒𝑖𝑖 if and only if 𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]. This 

assumption entails that 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖 , 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖) = 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖], 𝑒𝑒𝑖𝑖): 

𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖) =
𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)

∑ 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)𝑠𝑠𝑖𝑖∈ℛ(𝑆𝑆𝑖𝑖)
 

=
𝑐𝑐(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖; 𝑒𝑒𝑖𝑖) 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)

𝑐𝑐(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖; 𝑒𝑒𝑖𝑖)∑ 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)𝑠𝑠𝑖𝑖∈ℛ(𝑆𝑆𝑖𝑖)
 

=
1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)

∑ 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)𝑠𝑠𝑖𝑖∈ℛ(𝑆𝑆𝑖𝑖)
 

=
1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)
𝑝𝑝(𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]|𝑒𝑒𝑖𝑖)

(5. 1) 

=
𝑝𝑝(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖, 𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]|𝑒𝑒𝑖𝑖)

𝑝𝑝(𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]|𝑒𝑒𝑖𝑖)
 

= 𝑝𝑝(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖|𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖], 𝑒𝑒𝑖𝑖) 

Note that the right-hand side of this equality is determined by 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖), so both sides only 

depend on the parameters of 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖). This relationship is referred to as non-informative 

censoring, and it is frequently assumed in analyses of interval-censored data (Gómez et al. 

2003; Sun 2006) It is plausible for study designs with prespecified follow-up testing 

schedules, but it might be violated, for example, if study participants can request an earlier 

test date when they feel sick or believe they may have been exposed; e.g., after high-risk 
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behaviors. 

Sixth, we assume that conditional on enrollment date and the censoring interval 

endpoints, the post-seroconversion observation dates are independent from the actual 

seroconversion date; that is, 𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) = 𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖). An equivalent but perhaps less 

intuitive formulation of this assumption is 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖 , 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖) = 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖); we will make use 

of both formulations. 

Seventh, we assume that the conditional distributions 𝑝𝑝(𝑒𝑒𝑖𝑖), 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖), 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖), 

𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖), and 𝑝𝑝(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗) are characterized by disjoint parameter sets; we denote the 

parameters of 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) and 𝑝𝑝(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗) by 𝝎𝝎 and 𝜽𝜽, respectively. 

Eighth, we assume that the seroconversion date, 𝑆𝑆𝑖𝑖, has a countable sample space, 𝒮𝒮 =

{𝑠𝑠1 < 𝑠𝑠2 < ⋯ } ⊂ ℝ+, consisting of an evenly-spaced grid of dates starting with 𝑠𝑠1 = min
𝑖𝑖∈1:𝑁𝑁

𝑙𝑙𝑖𝑖 

and including at least one date from every censoring interval in the data set; the spacing of 

this grid, 𝛾𝛾 = 𝑠𝑠𝑘𝑘+1 − 𝑠𝑠𝑘𝑘, can be as small as computationally feasible, thus approximating a 

continuous distribution. This assumption is a simplification of the true data-generating 

process, but it greatly simplifies the subsequent analysis; it enables us to compute 

expectations over the possible seroconversion dates as sums, rather than as integrals which 

may not be analytically solvable. It should also be noted that in most cases, the exact clock 

time of blood sample collection is not recorded; thus, the observed data are already 

effectively discretized at the day level. 

Ninth, we assume that 𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) = 1{𝑠𝑠𝑖𝑖 ≥ 𝑒𝑒𝑖𝑖} 𝜔𝜔(𝑠𝑠𝑖𝑖)∏ {1 − 𝜔𝜔(𝑢𝑢)}𝑢𝑢∈𝒮𝒮∩[𝑒𝑒𝑖𝑖,𝑠𝑠𝑖𝑖) ; that is, 

conditional on enrollment date 𝐸𝐸𝑖𝑖, the distribution of 𝑆𝑆𝑖𝑖 is analogous to a non-homogeneous 

shifted geometric distribution, with parameter set 𝝎𝝎 = {𝜔𝜔(𝑠𝑠) =
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𝑝𝑝(𝑆𝑆𝑖𝑖 = 𝑠𝑠|𝑆𝑆𝑖𝑖 ≥ 𝑠𝑠,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖) ; 𝑠𝑠 ∈ 𝒮𝒮}, indexed by calendar time 𝑠𝑠. Calendar time, rather than time 

since enrollment or time until the first seropositive test date, is chosen as the basis for the 

parametrization because the risk of infection is viewed as a function of the contemporary 

population disease prevalence. 

Using these assumptions, we will now decompose the joint likelihood of the observed 

data into a hierarchical model. We will then maximize the decomposed joint likelihood using 

the well-known EM algorithm (Dempster et al. 1977; McLachlan and Krishnan 2007) 

5.3 Approach 

If 𝑆𝑆𝑖𝑖 were observed, then the likelihood contribution from each participant’s MAA 

classification data would be ℒ𝑖𝑖∗ = 𝑝𝑝(𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖, 𝑠𝑠𝑖𝑖). This expression is the “complete-data 

likelihood” for individual 𝑖𝑖. Since 𝑆𝑆𝑖𝑖 is not observed, we apply the law of total probability to 

marginalize ℒ𝑖𝑖∗ over 𝑠𝑠𝑖𝑖 and obtain the “observed-data likelihood": 

ℒ𝑖𝑖 = 𝑝𝑝(𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖 ,𝒚𝒚𝑖𝑖) = �𝑝𝑝(𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖, 𝑠𝑠𝑖𝑖)
𝑠𝑠𝑖𝑖∈𝒮𝒮

= �ℒ𝑖𝑖∗

𝑠𝑠𝑖𝑖∈𝒮𝒮

 

The statistical objective is to model 𝜙𝜙(𝑡𝑡) = 𝑝𝑝(𝑌𝑌𝑖𝑖𝑗𝑗 = 1|𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑡𝑡); in order to express ℒ𝑖𝑖  in a form 

involving 𝑝𝑝(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗), we decompose ℒ𝑖𝑖∗ into a hierarchical model reflecting the study design, 

and we simplify this decomposition using our assumptions 2, 4, 5, and 6: 

ℒ𝑖𝑖∗ = 𝑝𝑝(𝑒𝑒𝑖𝑖) 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑝𝑝(𝒚𝒚𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖, 𝑠𝑠𝑖𝑖) 

= 𝑝𝑝(𝑒𝑒𝑖𝑖) 𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖) � 𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗)
𝑗𝑗∈1:𝑛𝑛𝑖𝑖

 

Correspondingly, the observed-data likelihood contribution for participant 𝑖𝑖 is: 
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ℒ𝑖𝑖 = 𝑝𝑝(𝑒𝑒𝑖𝑖) 𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖) �  𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) � 𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗)
𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮

 

The observed-data likelihood for the data set is then ℒ = ∏ ℒ𝑖𝑖𝑖𝑖∈1:𝑁𝑁 , and the observed-data 

log-likelihood is: 

ℓ = � log𝑝𝑝(𝑒𝑒𝑖𝑖) + log𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖) + log��  𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) � 𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗)
𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮

�
𝑖𝑖∈1:𝑁𝑁

 

5.3.1 Estimation procedure 

We would like to estimate 𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗) by maximizing the observed-data log-likelihood, ℓ, but 

the third term of ℓ is the logarithm of a sum and thus is challenging to maximize directly. 

Fortunately, the theory of the EM algorithm proves that for a given parametrized complete-

data model 𝑝𝑝𝚿𝚿(𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖 , 𝑠𝑠𝑖𝑖) and initial parameter estimate 𝚿𝚿� , iterating the following two 

steps will monotonically increase the observed-data likelihood ℒ toward a local maximum 

or saddlepoint; the latter can be escaped by randomly perturbing the converged solution 

(McLachlan and Krishnan 2007) In the E step, we calculate the expectation of the complete-

data log-likelihood, conditional on the observed data and assuming that the parameters of 

the distribution of the unobserved variables, given the observed variables, are equal to the 

current parameter estimates 𝚿𝚿� :  

𝑄𝑄�𝚿𝚿,𝚿𝚿�� = � E𝚿𝚿� [logℒ𝑖𝑖∗(𝚿𝚿) |𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖]
𝑖𝑖∈1:𝑁𝑁

= � � log{ℒ𝑖𝑖∗(𝚿𝚿)}𝑝𝑝𝚿𝚿� (𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)
𝑠𝑠𝑖𝑖∈𝒮𝒮𝑖𝑖∈1:𝑁𝑁

 

In the M step, we maximize 𝑄𝑄(𝚿𝚿,𝚿𝚿� ) over the possible values of 𝚿𝚿 and update 𝚿𝚿�  to this new 

value; the function 𝑄𝑄(𝚿𝚿,𝚿𝚿� ) is often easier to maximize than the observed-data log-

likelihood. We will now specify this algorithm for our data analysis problem.  
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E step: 

To complete the E step, we need to solve for 𝑝𝑝𝚿𝚿� (𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖, 𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖). Applying Bayes’ Theorem 

and our assumptions, we find: 

𝑝𝑝𝚿𝚿� (𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖) =
𝑝𝑝𝚿𝚿� (𝒚𝒚𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑝𝑝𝚿𝚿� (𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖)

∑ 𝑝𝑝𝚿𝚿� (𝒚𝒚𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑝𝑝𝚿𝚿� (𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖)𝑠𝑠𝑖𝑖∈𝒮𝒮
 

=
𝑝𝑝𝛉𝛉�(𝒚𝒚𝑖𝑖|𝒕𝒕𝑖𝑖) 𝑝𝑝𝛚𝛚� (𝑠𝑠𝑖𝑖|𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖], 𝑒𝑒𝑖𝑖)

∑ 𝑝𝑝𝛉𝛉�(𝒚𝒚𝑖𝑖|𝒕𝒕𝑖𝑖) 𝑝𝑝𝛚𝛚� (𝑠𝑠𝑖𝑖|𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖], 𝑒𝑒𝑖𝑖)𝑠𝑠𝑖𝑖∈𝒮𝒮
 

We can calculate 𝑝𝑝𝛚𝛚� (𝑠𝑠𝑖𝑖|𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖], 𝑒𝑒𝑖𝑖) in that expression as follows: 

𝑝𝑝𝝎𝝎(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖|𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖],𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖) =
𝑝𝑝𝝎𝝎(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖 , 𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]|𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)

𝑝𝑝𝝎𝝎(𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]|𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)
  

=
𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]|𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖 ,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖) 𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖|𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)

𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]|𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)
 

=
1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖|𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)

𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]|𝐸𝐸 = 𝑒𝑒𝑖𝑖)
 

= 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]}
 𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖 , 𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖|𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖) 
 𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 ≤ 𝑒𝑒𝑖𝑖, 𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖|𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)

 

= 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖 , 𝑒𝑒𝑖𝑖]}
 𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖|𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖 ,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)
 𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 ≤ 𝑒𝑒𝑖𝑖|𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖 ,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)

𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)
𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)

 

= 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]}
 𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖|𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)
 𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 ≤ 𝑒𝑒𝑖𝑖|𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)

 

= 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]}
𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖|𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)

1 − 𝑝𝑝𝜔𝜔(𝑆𝑆𝑖𝑖 > 𝑒𝑒𝑖𝑖|𝑆𝑆𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖,𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖)
 

= 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]}
1{𝑠𝑠𝑖𝑖 ≥ 𝑒𝑒𝑖𝑖} 𝜔𝜔(𝑠𝑠𝑖𝑖)∏ (1 − 𝜔𝜔(𝑢𝑢))𝑢𝑢∈𝓢𝓢∩[max(𝑙𝑙𝑖𝑖,𝑒𝑒𝑖𝑖),𝑠𝑠𝑖𝑖)

1 −∏ (1 − 𝜔𝜔(𝑢𝑢))𝑢𝑢∈𝓢𝓢∩[max(𝑙𝑙𝑖𝑖,𝑒𝑒𝑖𝑖),𝑟𝑟𝑖𝑖]
 

=  1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖], 𝑠𝑠𝑖𝑖 ≥ 𝑒𝑒𝑖𝑖}
𝜔𝜔(𝑠𝑠𝑖𝑖)∏ (1 − 𝜔𝜔(𝑢𝑢))𝑢𝑢∈𝓢𝓢∩[max(𝑙𝑙𝑖𝑖,𝑒𝑒𝑖𝑖),𝑠𝑠𝑖𝑖)

1 −∏ (1 − 𝜔𝜔(𝑢𝑢))𝑢𝑢∈𝓢𝓢∩[max(𝑙𝑙𝑖𝑖,𝑒𝑒𝑖𝑖),𝑟𝑟𝑖𝑖]
 

Thus, to perform the E step we only need estimates for 𝝎𝝎 and 𝜽𝜽. 
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M step: 

Expanding the term logℒ𝑖𝑖∗(𝚿𝚿) in 𝑄𝑄�𝚿𝚿,𝚿𝚿��, we have: 

logℒ𝑖𝑖∗(𝚿𝚿) = log 𝑝𝑝(𝑒𝑒𝑖𝑖) + log𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) + log𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) + log𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖)

+ � log𝑝𝑝𝜽𝜽�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�
𝑗𝑗∈1:𝑛𝑛𝑖𝑖

 

By assumption 5, each of these terms involves a disjoint set of parameters; thus to maximize 

𝑄𝑄�𝚿𝚿,𝚿𝚿��, we can maximize each term’s expectation separately. Further, the terms log𝑝𝑝(𝑒𝑒𝑖𝑖) 

and log𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖) do not involve 𝑠𝑠𝑖𝑖, so their expectations are merely the original terms. 

They can be maximized immediately in the first M step and do not need to be revisited in 

subsequent iterations. Since we are not interested in these distributions and the E step does 

not require the parameters of these distributions, we can ignore the details of specifying and 

maximizing them. For the same reason, we can also ignore the term log𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖). Thus, 

maximizing 𝑄𝑄�𝚿𝚿,𝚿𝚿�� over 𝚿𝚿 reduces to maximizing 𝑄𝑄∗�𝚿𝚿,𝚿𝚿�� = 𝑄𝑄𝜽𝜽�𝚿𝚿,𝚿𝚿�� + 𝑄𝑄𝝎𝝎�𝚿𝚿,𝚿𝚿�� over 

𝝎𝝎 and 𝜽𝜽, respectively, where: 

𝑄𝑄𝜽𝜽�𝚿𝚿,𝚿𝚿�� = � � � log�𝑝𝑝𝜽𝜽�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗��
𝑗𝑗∈1:𝑛𝑛𝑖𝑖

𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)
𝑠𝑠𝑖𝑖∈𝒮𝒮𝑖𝑖∈1:𝑁𝑁

 

𝑄𝑄𝝎𝝎�𝚿𝚿,𝚿𝚿�� = � � log{𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)}𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)
𝑠𝑠𝑖𝑖∈𝒮𝒮𝑖𝑖∈1:𝑁𝑁

 

That is, the M step can be subdivided into two parallel sub-steps, 𝜽𝜽� ← arg max
𝜽𝜽

𝑄𝑄𝜽𝜽�𝚿𝚿,𝚿𝚿�� and 

𝝎𝝎� ← arg max
𝝎𝝎

𝑄𝑄𝝎𝝎�𝚿𝚿,𝚿𝚿��. Assuming a discrete distribution for the interval-censored covariate 

ensures that these expressions are tractable to maximize. 

We can maximize 𝑄𝑄𝝎𝝎�𝚿𝚿,𝚿𝚿�� analytically. For 𝑠𝑠,𝑢𝑢 ∈ 𝓢𝓢 ∩ [𝑒𝑒𝑖𝑖,∞), we have: 
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log𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) = log𝜔𝜔(𝑠𝑠𝑖𝑖) + � log�1 − 𝜔𝜔(𝑣𝑣)�
𝑣𝑣∈𝓢𝓢∩[𝑒𝑒𝑖𝑖,𝑠𝑠𝑖𝑖)

 

𝑑𝑑
𝑑𝑑𝜔𝜔(𝑢𝑢) log𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) = 1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}

1
𝜔𝜔(𝑢𝑢) − 1{𝑢𝑢 ∈ [𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖)}

1
1 −𝜔𝜔(𝑢𝑢) 

𝑑𝑑
𝑑𝑑𝜔𝜔(𝑢𝑢)𝑄𝑄𝝎𝝎�𝚿𝚿,𝚿𝚿�� = � ��

𝑑𝑑
𝑑𝑑𝜔𝜔(𝑢𝑢) log𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)� 𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)

𝑠𝑠𝑖𝑖∈𝓢𝓢𝑖𝑖∈1:𝑁𝑁

 

As a temporary shorthand, let 𝓅𝓅 = 𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖); then, setting 𝑑𝑑
𝑑𝑑𝜔𝜔(𝑢𝑢) Qω�𝚿𝚿,𝚿𝚿�� = 0 

and solving for 𝜔𝜔(𝑢𝑢), we have: 

 � ��
𝑑𝑑

𝑑𝑑𝜔𝜔(𝑢𝑢) log𝑝𝑝𝝎𝝎(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)�𝓅𝓅
𝑠𝑠𝑖𝑖∈𝓢𝓢𝑖𝑖∈1:𝑁𝑁

= 0  

 ⇔ � ��1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}
1

𝜔𝜔(𝑢𝑢) − 1{𝑢𝑢 ∈ [𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖)}
1

1 − 𝜔𝜔(𝑢𝑢)�𝓅𝓅
𝑠𝑠𝑖𝑖∈𝓢𝓢𝑖𝑖∈1:𝑁𝑁

= 0 

⇔ � � 1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}
1

𝜔𝜔(𝑢𝑢)𝓅𝓅 − 1{𝑢𝑢 ∈ [𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖)}
1

1 − 𝜔𝜔(𝑢𝑢)𝓅𝓅
𝑠𝑠𝑖𝑖∈𝓢𝓢𝑖𝑖∈1:𝑁𝑁

= 0 

⇔ � � 1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}
1

𝜔𝜔(𝑢𝑢)𝓅𝓅
𝑠𝑠𝑖𝑖∈𝓢𝓢𝑖𝑖∈1:𝑁𝑁

− � � 1{𝑢𝑢 ∈ [𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖)}
1

1 − 𝜔𝜔(𝑢𝑢)𝓅𝓅
𝑠𝑠𝑖𝑖∈𝓢𝓢𝑖𝑖∈1:𝑁𝑁

= 0 

⇔
1

𝜔𝜔(𝑢𝑢) � � 1{𝑢𝑢 = 𝑠𝑠𝑖𝑖} 𝓅𝓅
𝑠𝑠𝑖𝑖∈𝓢𝓢𝑖𝑖∈1:𝑁𝑁

=
1

1 − 𝜔𝜔(𝑢𝑢) � � 1{𝑢𝑢 ∈ [𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖)} 𝓅𝓅
𝑠𝑠𝑖𝑖∈𝓢𝓢𝑖𝑖∈1:𝑁𝑁

 

⇔ �1 − 𝜔𝜔(𝑢𝑢)���1{𝑢𝑢 = 𝑠𝑠𝑖𝑖} 𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

= 𝜔𝜔(𝑢𝑢)��1{𝑢𝑢 ∈ [𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖)} 𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

 

⇔ ���1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

− 𝜔𝜔(𝑢𝑢)�� 1{𝑢𝑢 = 𝑠𝑠𝑖𝑖} 𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

� = 𝜔𝜔(𝑢𝑢)�� 1{𝑢𝑢 ∈ [𝑒𝑒𝑖𝑖, 𝑠𝑠)} 𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

 

⇔��1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

= 𝜔𝜔(𝑢𝑢)��(1{𝑢𝑢 ∈ [𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖)} + 1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}) 𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

 



88 

⇔��1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

= 𝜔𝜔(𝑢𝑢)�� 1{𝑢𝑢 ∈ [𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖]} 𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

 

⇔��1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

= 𝜔𝜔(𝑢𝑢)�� 1{𝑒𝑒𝑖𝑖 ≤ 𝑢𝑢}1{𝑠𝑠𝑖𝑖 ≥ 𝑢𝑢} 𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

 

⇔��1{𝑢𝑢 = 𝑠𝑠𝑖𝑖}𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

= 𝜔𝜔(𝑢𝑢)�1{𝑒𝑒𝑖𝑖 ≤ 𝑢𝑢}�1{𝑠𝑠𝑖𝑖 ≥ 𝑢𝑢} 𝓅𝓅
𝑠𝑠𝑖𝑖𝑖𝑖

 

⇔��1{𝑢𝑢 = 𝑠𝑠𝑖𝑖} 𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖 ,𝒚𝒚𝑖𝑖)
𝑠𝑠𝑖𝑖𝑖𝑖

= 𝜔𝜔(𝑢𝑢)�1{𝑒𝑒𝑖𝑖 ≤ 𝑢𝑢}�1{𝑠𝑠𝑖𝑖 ≥ 𝑢𝑢} 𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)
𝑠𝑠𝑖𝑖𝑖𝑖

 

⇔�  𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑢𝑢|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)
𝑖𝑖

= 𝜔𝜔(𝑢𝑢)� 1{𝑒𝑒𝑖𝑖 ≤ 𝑢𝑢} 𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑆𝑆𝑖𝑖 ≥ 𝑢𝑢|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖, 𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)
𝑖𝑖

 

⇔ 𝜔𝜔(𝑢𝑢) =
∑ 𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑢𝑢|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)𝑖𝑖∈1:𝑁𝑁

∑ 1{𝑒𝑒𝑖𝑖 ≤ 𝑢𝑢} 𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑆𝑆𝑖𝑖 ≥ 𝑢𝑢|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)𝑖𝑖∈1:𝑁𝑁
 

Thus, we have the following closed-form update formula: 

𝜔𝜔�(𝑢𝑢) ←
∑ 𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑆𝑆𝑖𝑖 = 𝑢𝑢|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)𝑖𝑖∈1:𝑁𝑁

∑ 1{𝑒𝑒𝑖𝑖 ≤ 𝑢𝑢}𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑆𝑆𝑖𝑖 ≥ 𝑢𝑢|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)𝑖𝑖∈1:𝑁𝑁
 

In this update, we estimate the probability of seroconverting on day 𝑠𝑠, conditional on not 

seroconverting prior to 𝑠𝑠, as the sum of the probabilities that each participant seroconverted 

at day 𝑠𝑠, divided by the sum of the probabilities that each participant was at risk of 

seroconverting on day 𝑠𝑠. These estimates resemble the factors of the Kaplan-Meier product-

limit estimate of a survival function (E. L. Kaplan and Meier 1958) To ensure computational 

stability for the time points in the latest censoring interval of a data set, we can add a small 

offset to the denominator of this update formula, such as 0.1. This offset results in a small 

amount of regularization. 
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The objective function for updating 𝜽𝜽� is equivalent to the log-likelihood of a weighted 

regression model, where the data points are the possible completions of our observed data 

and the weights are the probabilities of those completions, given the observed data and the 

current parameter estimates. Thus, if we have assumed 𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗) is a generalized additive 

model, we can find the maximizing value using optimization algorithms such as Fisher 

scoring, implemented in standard software such as the “bigglm()” function in R (Lumley 

2013; R Core Team 2019) 

In summary, the M step reduces to two parallel sub-steps: 

 

𝜔𝜔�(𝑠𝑠)  ←  
∑ 𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑆𝑆𝑖𝑖 = 𝑠𝑠|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)𝑖𝑖∈1:𝑁𝑁

∑ 1{𝑒𝑒𝑖𝑖 ≤ 𝑠𝑠}𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑆𝑆𝑖𝑖 ≥ 𝑠𝑠|𝑒𝑒𝑖𝑖 , 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)𝑖𝑖∈1:𝑁𝑁
 for each 𝑠𝑠 ∈ 𝒮𝒮 (5. 2) 

𝜽𝜽�  ←  arg max
𝜽𝜽

� � � log�𝑝𝑝𝜽𝜽(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗)�
𝑗𝑗∈1:𝑛𝑛𝑖𝑖

𝑝𝑝𝛚𝛚� ,𝛉𝛉�(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖)
𝑠𝑠𝑖𝑖∈𝒮𝒮𝑖𝑖∈1:𝑁𝑁

(5. 3) 

These sub-steps are computed separately from each other; the updated values of 𝝎𝝎�  are not 

used in the update to 𝜽𝜽� in the same EM iteration, and vice versa. Each parameter is updated 

only once per EM iteration.  

5.3.2 Convergence criteria 

We have now completely specified the E and M steps of an EM algorithm. To assess 

convergence of the algorithm, we can monitor the relative change in the observed-data 

likelihood between iterations 𝑘𝑘 and 𝑘𝑘 + 1: 

Δℒ
(𝑘𝑘) =

ℒ (𝑘𝑘+1) − ℒ (𝑘𝑘)

ℒ (𝑘𝑘) =
ℒ (𝑘𝑘+1)

ℒ (𝑘𝑘) − 1 

Alternatively, we can monitor the absolute change in the observed data log-likelihood: 
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Δℓ
(𝑘𝑘) = logℒ (𝑘𝑘+1) − logℒ (𝑘𝑘) = log �

ℒ (𝑘𝑘+1)

ℒ (𝑘𝑘) � = log�Δℒ
(𝑘𝑘) + 1� 

Since lim
𝑥𝑥→0

(log{𝑥𝑥 + 1} − 𝑥𝑥) = 0, these metrics are asymptotically equivalent. We can calculate 

Δℒ
(𝑘𝑘) as follows: 

Δℒ
(𝑘𝑘) =

ℒ (𝑘𝑘+1)

ℒ (𝑘𝑘) − 1 =
∏ ℒ𝑖𝑖

(𝑘𝑘+1)
𝑖𝑖∈1:𝑁𝑁

∏ ℒ𝑖𝑖
(𝑘𝑘)

𝑖𝑖∈1:𝑁𝑁
− 1 = �

ℒ𝑖𝑖
(𝑘𝑘+1)

ℒ𝑖𝑖
(𝑘𝑘)

𝑖𝑖∈1:𝑁𝑁

− 1 

= �
𝑝𝑝(𝑒𝑒𝑖𝑖)𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖)∑ �𝑝𝑝𝝎𝝎� (𝑘𝑘+1)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) ∏ 𝑝𝑝𝜽𝜽�(𝑘𝑘+1)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖 �𝑠𝑠𝑖𝑖∈𝒮𝒮

𝑝𝑝(𝑒𝑒𝑖𝑖)𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖)∑ �𝑝𝑝𝝎𝝎� (𝑘𝑘)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) ∏ 𝑝𝑝𝜽𝜽�(𝑘𝑘)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖 �𝑠𝑠𝑖𝑖∈𝒮𝒮   
𝑖𝑖∈1:𝑁𝑁

− 1 

= �
∑ 𝑝𝑝𝝎𝝎� (𝑘𝑘+1)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) ∏ 𝑝𝑝𝜽𝜽�(𝑘𝑘+1)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮

∑ 𝑝𝑝𝝎𝝎� (𝑘𝑘)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑝𝑝(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖) ∏ 𝑝𝑝𝜽𝜽�(𝑘𝑘)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮   
𝑖𝑖∈1:𝑁𝑁

− 1 

= �
∑  𝑝𝑝𝝎𝝎� (𝑘𝑘+1)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑐𝑐(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖; 𝑒𝑒𝑖𝑖) 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} ∏ 𝑝𝑝𝜽𝜽�(𝑘𝑘+1)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮

∑  𝑝𝑝𝝎𝝎� (𝑘𝑘)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 𝑐𝑐(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖; 𝑒𝑒𝑖𝑖) 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} ∏ 𝑝𝑝𝜽𝜽� (𝑘𝑘)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮𝑖𝑖∈1:𝑁𝑁

− 1 

= �
𝑐𝑐(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖; 𝑒𝑒𝑖𝑖)∑  𝑝𝑝𝝎𝝎� (𝑘𝑘+1)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} ∏ 𝑝𝑝𝜽𝜽�(𝑘𝑘+1)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮

𝑐𝑐(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖; 𝑒𝑒𝑖𝑖)∑  𝑝𝑝𝝎𝝎� (𝑘𝑘)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} ∏ 𝑝𝑝𝜽𝜽� (𝑘𝑘)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮   
𝑖𝑖∈1:𝑁𝑁

− 1 

= �
∑ 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝𝝎𝝎� (𝑘𝑘+1)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)∏ 𝑝𝑝𝜽𝜽� (𝑘𝑘+1)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮

∏ �∑ 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝𝝎𝝎� (𝑘𝑘)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)∏ 𝑝𝑝𝜽𝜽� (𝑘𝑘)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮 �𝑖𝑖∈1:𝑁𝑁𝑖𝑖∈1:𝑁𝑁

− 1 

= �
∑  𝑝𝑝𝝎𝝎� (𝑘𝑘+1)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)∏ 𝑝𝑝𝜽𝜽� (𝑘𝑘+1)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮∩[𝑙𝑙𝑖𝑖,𝑟𝑟𝑖𝑖]

∑ 𝑝𝑝𝝎𝝎� (𝑘𝑘)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)∏ 𝑝𝑝𝜽𝜽� (𝑘𝑘)�𝑦𝑦𝑖𝑖𝑗𝑗�𝑡𝑡𝑖𝑖𝑗𝑗�𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮∩[𝑙𝑙𝑖𝑖,𝑟𝑟𝑖𝑖]𝑖𝑖∈1:𝑁𝑁

− 1 

Correspondingly, the change in log-likelihood reduces to: 

Δℓ
(𝑘𝑘) = ℓ(𝑘𝑘+1) − ℓ(𝑘𝑘) = � log

∑  𝑝𝑝𝝎𝝎� (𝑘𝑘+1)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)∏ 𝑝𝑝𝜽𝜽�(𝑘𝑘+1)(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗)𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮∩[𝑙𝑙𝑖𝑖,𝑟𝑟𝑖𝑖]

∑ 𝑝𝑝𝝎𝝎� (𝑘𝑘)(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)∏ 𝑝𝑝𝜽𝜽�(𝑘𝑘)(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗)𝑗𝑗∈1:𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖∈𝒮𝒮∩[𝑙𝑙𝑖𝑖,𝑟𝑟𝑖𝑖]

𝑛𝑛

𝑖𝑖=1

 

Note that we have canceled 𝑝𝑝(𝑒𝑒𝑖𝑖), 𝑝𝑝(𝒐𝒐𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖), and 𝑐𝑐(𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖; 𝑒𝑒𝑖𝑖) out of this expression; hence 

it is computable, even though we never actually parametrized or estimated those functions.  
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In practice, we found it difficult to choose a tolerance level for Δℓ that was sufficient for 

small sample sizes and necessary for large sample sizes; for large sample sizes, the increase 

in log-likelihood can still seem substantial for many iterations after 𝜽𝜽� is no longer changing 

appreciably. As a computational shortcut for the simulation study below, we used a relatively 

lax convergence cutoff for the change in log-likelihood, Δℓ
(𝑘𝑘) < 0.1, and we added another 

metric based on the relative change in 𝜽𝜽�: Δ𝜽𝜽
(𝑘𝑘) = max

𝑗𝑗∈1:𝑝𝑝
|𝜃𝜃�𝑗𝑗

(𝑘𝑘+1) − 𝜃𝜃�𝑗𝑗
(𝑘𝑘)| |𝜃𝜃�𝑗𝑗

(𝑘𝑘)|� < 0.0001.  

Note that this metric does not include 𝝎𝝎� . We had two reasons for only considering the 

change in 𝜽𝜽� and not in 𝝎𝝎� . First, the purpose of our analysis is to estimate 𝜇𝜇, which is a function 

of 𝜽𝜽 and not 𝝎𝝎; we consider 𝝎𝝎 to be a nuisance parameter which we only need in order to 

account for the uncertainty about the precise value of our covariate due to interval-

censoring. For our particular motivating application, we might have even ignored 𝜽𝜽� and 

judged convergence based on the change in �̂�𝜇, which is the estimate we are ultimately most 

interested in; our implementation of the algorithm includes this metric as an alternative 

option. However, for the purposes of this chapter, we chose to present the criterion based on 

𝜽𝜽�, since in other applications of this approach, the regression parameters may be the 

estimands of primary interest. Second, the final few 𝜔𝜔�(𝑠𝑠) estimates (ordered by calendar 

time) take many iterations to converge, because they are estimated using only the data from 

the last participants to seroconvert. However, this instability also does not substantially 

affect the overall likelihood, since these parameters only affect the likelihood contributions 

from those last few participants. 

Even if we considered the full set of parameters (𝝎𝝎,𝜽𝜽), the theory of the EM algorithm 

does not guarantee that the relative or absolute change in the parameters decreases 
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monotonically. Thus, even if 𝜽𝜽� has not changed much for several iterations, these estimates 

may start changing substantially again in a later iteration. Therefore, we used both the 

likelihood convergence criterion Δℓ
(𝑘𝑘) and the parameter convergence criterion Δ𝜽𝜽

(𝑘𝑘), and we 

stopped our algorithm only when both criteria fall below pre-specified cutoffs.  

5.3.3 Uncertainty quantification 

As discussed in Chapter 2, the bootstrap approach has been used in combination with 

uniform imputation to estimate standard errors and construct confidence intervals for �̂�𝜇. 

(Efron 1979; Konikoff et al. 2013) The bootstrap can also be used with joint modeling. To 

preserve the longitudinal structure of the data set, bootstrap resampling is performed at the 

participant level, with all observations from a resampled participant included in the 

bootstrapped data set as many times as that individual is sampled, with a new synthetic ID 

generated each time an individual is resampled. Once a bootstrap data set has been 

generated, the analysis can be run on this data set, producing an estimate of 𝜇𝜇. This process 

is repeated for e.g. 1000 bootstrap data sets, generating a corresponding number of 

bootstrapped �̂�𝜇 estimates. The standard error of �̂�𝜇 can then be estimated using the standard 

deviation of the bootstrapped �̂�𝜇 estimates, and a 95% confidence interval can be constructed 

using the 2.5% and 97.5% quantiles of the distribution of bootstrapped �̂�𝜇 estimates. We 

demonstrate this approach in the simulation analyses below. The same process can also be 

used to generate standard errors and confidence intervals for 𝜽𝜽� when the regression 

parameters are the estimands of interest. The bootstrap is computationally expensive, 

especially when combined with an EM algorithm for each bootstrapped data set, but it is 

feasible, especially since the bootstrapped data sets can be analyzed simultaneously in 
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parallel, if sufficient computing resources are available.  

5.4 Comparison of GEL approach and current approach 

Our data structure (𝐸𝐸, 𝐿𝐿,𝑅𝑅,𝑶𝑶,𝒀𝒀, 𝑆𝑆) is an extension of the GEL approach’s data structure 

(𝑌𝑌,𝑍𝑍,𝑍𝑍𝐿𝐿 ,𝑍𝑍𝑅𝑅); note that 𝑍𝑍 is analogous to 𝑻𝑻 = 𝑶𝑶 − 𝑆𝑆, 𝑍𝑍𝐿𝐿 is analogous to 𝑶𝑶 − 𝑅𝑅, and 𝑍𝑍𝑅𝑅 is 

analogous to 𝑶𝑶 − 𝐿𝐿. Accordingly, with minor modifications to account for repeated 

measurements on each participant, the GEL approach could be performed on our data set. 

Our approach allows a similar but simpler estimation procedure. 

5.4.1 Similarities 

Our approach borrows several key ideas from the GEL approach, including iteratively 

maximizing the likelihood, the discrete approximation for the sample space of the interval-

censored covariate, and an adaptation of the assumptions to our setting; our assumptions 1, 

2, 3, and 6 are analogous to assumptions I-IV of the GEL approach, respectively. Our E step is 

analogous to step A[i] in the GEL approach; both consist of calculating the distribution of the 

censored covariate, conditional on the observed variables and the current parameter 

estimates. 

5.4.2 Differences in model specification 

As discussed above, the GEL approach directly models the distribution of 𝑍𝑍, whereas our 

approach indirectly models the distribution of 𝑇𝑇 as a function of the distributions of 𝑶𝑶 and 𝑆𝑆. 

We model 𝑆𝑆 using a non-homogenous geometric distribution, conditional on study 

enrollment date and with parameters indexed by calendar date; in contrast, the GEL 

approach modeled 𝑍𝑍 using a multinomial distribution with parameters indexed by the time 

difference between the date of the censored event and the outcome measurement date. Our 
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modeling choice was motivated by the characteristics of our intended application: we view 

the risk of infection at a given time point as a function of enrollment date and the time-

varying population prevalence starting from that date, interacting with individual risk 

behaviors.  

5.4.3 Differences in estimation procedure 

The updates for 𝝎𝝎�  and 𝜽𝜽� in the M step are analogous to step 0 and B of the GEL approach, 

respectively, but there are noteworthy differences. We perform the update for 𝝎𝝎�  once per 

update to 𝜽𝜽�, avoiding the inner loop of Steps A[i] and A[ii]. Furthermore, our update for 𝜽𝜽� 

maximizes the expectation of the logarithm of the outcome distribution, whereas the GEL 

approach maximizes the logarithm of the expectation. Consequently, the GEL approach for 

generalized linear models cannot use Fisher scoring to find the MLEs; instead, a version of 

the Broyden–Fletcher–Goldfarb–Shannon (BFGS) Quasi-Newton method is used. Using 

Fisher scoring instead of BFGS resulted in a substantial speed increase for our analysis. Also, 

in the GEL approach, the expectation in step A[ii] does not condition on 𝑦𝑦𝑖𝑖.  

5.5 Simulation study 

To evaluate the performance characteristics of our joint modeling approach, as well as 

midpoint imputation and uniform imputation, we developed a data-generating model, which 

we used to produce simulated data sets. We designed the data-generating model based on 

the FHI 360 HC-HIV and GS studies, described in Section 2.4.2.  

5.5.1 Data-generating model 

We began by specifying a cohort size, 𝑁𝑁0. We considered two sizes: 𝑁𝑁0 = 4500 participants, 

to resemble the HC-HIV study, and 𝑁𝑁0 = 100,000 participants, to examine the methods’ 
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large-sample properties.  

Next, for each participant, we simulated the enrollment date 𝐸𝐸𝑖𝑖 from a discrete uniform 

distribution on the first 366 dates starting from the study start date. We assigned each 

participant a corresponding study exit date, 𝐹𝐹𝑖𝑖 = 𝐸𝐸𝑖𝑖 + 3650 days, representing the end of 

follow-up ten years after enrollment. 

We assumed that only a small fraction of the population is at risk of infection; specifically, 

we assumed that each cohort participant has a 𝜋𝜋 = 0.05 probability of being at risk. We 

assigned each simulated participant an at-risk status 𝐴𝐴𝑖𝑖  as a Bernoulli random variable with 

𝑝𝑝(𝐴𝐴𝑖𝑖 = 1) = 𝜋𝜋. Simulated individuals with 𝐴𝐴𝑖𝑖 = 0 have no chance of contributing 

observations to the calibration data set, since they will never seroconvert. For the 

participants with 𝐴𝐴𝑖𝑖 = 1, we assumed a time-to-event model for the distribution of 

seroconversion dates with a linearly changing instantaneous hazard rate 𝜆𝜆(𝑡𝑡) = 𝛼𝛼 + 𝛽𝛽𝑡𝑡, 

where 𝑡𝑡 is time since the study start date (in years), 𝛼𝛼 is the hazard of seroconversion at 

study start (events per person-year), and 𝛽𝛽 is the change in hazard per calendar year (events 

per person-year2). We considered the following seven pairs of 𝛼𝛼 and 𝛽𝛽 values: (0, 0.5), (0, 1), 

(0, 2), (1, 0), (1, 0.5), (10, 0), and (10, 0.5). 

From this hazard model, we calculated the inverse survival function G𝑖𝑖
−1(𝑢𝑢) as follows. 

Letting 𝑡𝑡0 denote the study start date and 𝑡𝑡(𝑠𝑠) = (𝑠𝑠 − 𝑡𝑡0)/365 denote the elapsed time (in 

years) from 𝑡𝑡0 to 𝑠𝑠, this hazard model leads to the following participant-specific cumulative 

hazard function: 

Λ𝑖𝑖�𝑡𝑡(𝑠𝑠)� = � (𝛼𝛼 + 𝛽𝛽𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡(𝑠𝑠)

𝑢𝑢=𝑡𝑡(𝑒𝑒𝑖𝑖)
= �𝛼𝛼𝑡𝑡(𝑠𝑠)  +

𝛽𝛽
2

{𝑡𝑡(𝑠𝑠)}2� − �𝛼𝛼𝑡𝑡(𝑒𝑒𝑖𝑖) +
𝛽𝛽
2

{𝑡𝑡(𝑒𝑒𝑖𝑖)}2� 
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The corresponding survival function is G𝑖𝑖(𝑠𝑠) = 𝑝𝑝(𝑆𝑆𝑖𝑖 ≥ 𝑠𝑠|𝐸𝐸𝑖𝑖 = 𝑒𝑒𝑖𝑖) = exp�−Λ𝑖𝑖�𝑡𝑡(𝑠𝑠)��. If 𝛽𝛽 ≠

0, then by the quadratic formula: 

G𝑖𝑖
−1(𝑢𝑢) = 𝑡𝑡0 +

−𝛼𝛼 ± �𝛼𝛼2 − 2𝛽𝛽{log(𝑢𝑢) − [𝛼𝛼𝑡𝑡(𝑒𝑒𝑖𝑖) + 𝛽𝛽{𝑡𝑡(𝑒𝑒𝑖𝑖)}2/2]}
𝛽𝛽

× 365 days/year 

For 𝛽𝛽 = 0.5, the positive square-root is the one of interest, since otherwise G𝑖𝑖
−1(𝑢𝑢) < 𝑡𝑡0. For 

𝛽𝛽 = 0, the distribution reduces to a shifted exponential distribution with rate parameter 𝛼𝛼; 

then the survival function is G𝑖𝑖(𝑠𝑠) = exp[−𝛼𝛼{𝑡𝑡(𝑠𝑠) − 𝑡𝑡(𝑒𝑒𝑖𝑖)}], and the inverse survival function 

is G𝑖𝑖
−1(𝑢𝑢) = 𝑡𝑡0 + [𝑡𝑡(𝑒𝑒𝑖𝑖) − {𝑙𝑙𝑙𝑙𝑔𝑔(𝑢𝑢) 𝛼𝛼⁄ }] × 365 days/year. We then simulated the 

seroconversion date 𝑆𝑆𝑖𝑖 = G𝑖𝑖
−1(𝑈𝑈𝑖𝑖), where 𝑈𝑈𝑖𝑖 has a standard continuous uniform distribution. 

We considered two protocols for pre-seroconversion follow up: testing every 12 weeks 

(84 days), as in the HC-HIV study, or testing every year (365 days). Let 𝛿𝛿 ∈ {84, 365} denote 

this parameter. For each design, we assumed that there would be a small amount of random 

deviation from the protocol in scheduling each test; specifically, each test is scheduled 𝛿𝛿 +

𝑆𝑆𝑖𝑖𝑗𝑗  days after the last test, where 𝑆𝑆𝑖𝑖𝑗𝑗  is simulated from a discrete uniform distribution on the 

integers {−7, … , 7}. These offsets, combined with the variation in study enrollment dates, 

entail that the resulting censoring intervals are not limited to a mutually exclusive set of 

calendar-time intervals; instead, the participants’ censoring intervals can partially overlap 

with each other. This modeling choice is realistic and helps avoid edge cases in which the EM 

algorithm struggled to converge. The seroconversion interval is defined as [𝐿𝐿𝑖𝑖 ,𝑅𝑅𝑖𝑖], where 𝐿𝐿𝑖𝑖  

is the date of the last test before 𝑆𝑆𝑖𝑖, and 𝑅𝑅𝑖𝑖 is the date of the first test after 𝑆𝑆𝑖𝑖. Simulated 

participants for whom seroconversion is not detected before the end of their follow-up 

duration (i.e., 𝑅𝑅𝑖𝑖 > 𝐹𝐹𝑖𝑖) do not contribute any observations to the calibration data set and 
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were removed from the subsequent data-generation steps. 

The first post-seroconversion blood sample collection date is the date when 

seroconversion is detected; that is, 𝑂𝑂𝑖𝑖1 = 𝑅𝑅𝑖𝑖 . The subsequent collection dates {𝑂𝑂𝑖𝑖𝑗𝑗;  𝑗𝑗 ∈ 2:𝑛𝑛𝑖𝑖} 

follow the GS Study protocol of visits at 4, 8, and 12 weeks after 𝑅𝑅𝑖𝑖 and then at 12-week 

intervals, continuing until 10 years after enrollment in the pre-seroconversion phase of the 

study (𝐹𝐹𝑖𝑖). For simplicity, scheduling offsets were not implemented for these dates; we did 

not see any reason why such offsets would meaningfully alter the results. 

For each observation date 𝑂𝑂𝑖𝑖𝑗𝑗, we calculated the corresponding time (in years) since 

seroconversion, 𝑇𝑇𝑖𝑖𝑗𝑗 = �𝑂𝑂𝑖𝑖𝑗𝑗 − 𝑆𝑆𝑖𝑖�/365. We then simulated an MAA classification, 𝑌𝑌𝑖𝑖𝑗𝑗, from the 

Bernoulli distribution with success probability 𝜙𝜙(𝑡𝑡) = 𝑝𝑝(𝑌𝑌𝑖𝑖𝑗𝑗 = 1|𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑡𝑡) = (1 +

exp{−(𝜃𝜃0 + 𝜃𝜃1𝑡𝑡)})−1, where 𝜃𝜃0 = 0.986 is the log-odds of MAA-positive biomarker assay 

measurements on the date of seroconversion, and 𝜃𝜃1 = −3.88 is the change per year since 

seroconversion in the log-odds of MAA-positive biomarkers; these parameters were 

estimated using midpoint imputation (for convenience) from the Clade C data set described 

in Section 2.4, consisting of 2,442 samples from the CAPRISA 002, FHI-360 GS, and HPTN 

039-01 cohort studies (Laeyendecker et al. 2018) The corresponding mean window period 

𝜇𝜇 is approximately 122.6 days: 

𝜇𝜇 = � 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

𝑡𝑡=0
 

= � (1 + exp{−(𝜃𝜃0 + 𝜃𝜃1𝑡𝑡)})−1𝑑𝑑𝑡𝑡
∞

𝑡𝑡=0
 

= �
log{exp(𝜃𝜃0 + 𝜃𝜃1𝑡𝑡) + 1}

𝜃𝜃1
�
𝑡𝑡=0

∞
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= −
log{exp(𝜃𝜃0) + 1}

𝜃𝜃1
 

≈ 122.6 days 

We used this target parameter value to assess our data analysis methods’ accuracy.  

For this simulation, the functional form of 𝜙𝜙(𝑡𝑡) was specified as a generalized linear 

model with a Bernoulli outcome distribution, a logistic link function, and with the log-odds 

linear in 𝑡𝑡; this form was chosen for simplicity and because it permitted a closed-form 

expression for 𝜇𝜇. In practice, we would typically use a logistic model with a higher-order 

polynomial or spline function for the log odds, and we would integrate 𝜙𝜙�(𝑡𝑡) numerically to 

calculate �̂�𝜇. Using polynomials or splines for the linear component of the model allows the 

fitted curve 𝜙𝜙�(𝑡𝑡) to be flexible and data-adaptive. The use of a logistic link function is not 

crucial; probit or identity link functions could also be used. With a sufficiently flexible form 

for the linear component, any shape for 𝜙𝜙�(𝑡𝑡) is possible for any of these link functions. 

5.5.2 Simulation analysis 

We implemented the data-generating model, as well as the midpoint imputation, uniform 

imputation, and joint modeling analyses, in the R statistical computing environment, version 

3.6.1, starting from code implementing the GEL approach (R Core Team 2019; Langohr and 

Gómez Melis 2014) We generated 1000 simulated data sets for each combination of cohort 

size 𝑁𝑁0 ∈ {4500, 105} participants, mean follow-up interval 𝛿𝛿 ∈ {84, 365} days, and hazard 

function 𝜆𝜆(𝑡𝑡) ∈ {0 + 0.5𝑡𝑡, 0 + 𝑡𝑡, 0 + 2𝑡𝑡, 1 + 0𝑡𝑡, 1 + 0.5𝑡𝑡, 10 + 0𝑡𝑡, 10 + 0.5𝑡𝑡} events per 

person-year. With each data set, we performed midpoint imputation, uniform imputation 

with 100 imputed data sets, and our joint modeling analysis; all three analyses used the 

correct logistic functional form to model 𝜙𝜙(𝑡𝑡) = 𝑝𝑝(𝑌𝑌𝑖𝑖𝑗𝑗 = 1|𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑡𝑡). We stopped the EM 
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algorithm when Δℓ
(𝑘𝑘) < 0.1 and Δ𝜽𝜽

(𝑘𝑘) < 0.0001. Each analysis produced an estimate �̂�𝜇𝑖𝑖 for each 

data set 𝑖𝑖 ∈ {1: 1000}. Accordingly, for each analysis we estimated bias and standard error 

by E�[�̂�𝜇 − 𝜇𝜇] = �̅̂�𝜇 − 𝜇𝜇 and �E�[(�̂�𝜇 − E[𝜇𝜇̂])2] = �(𝑛𝑛 − 1)−1 ∑ (�̂�𝜇𝑖𝑖 − �̅̂�𝜇)2𝑛𝑛
𝑖𝑖=1 , respectively, where 

�̅̂�𝜇 = 𝑛𝑛−1 ∑ �̂�𝜇𝑖𝑖𝑛𝑛
𝑖𝑖=1 . Results are listed in Tables 5.1 and 5.2.  

To apply our joint modeling approach, we needed to choose a spacing width 𝛾𝛾 for the grid 

of possible seroconversion dates, 𝒮𝒮, in the seroconversion date model. The choice of 𝛾𝛾 

determines the number of dates in 𝒮𝒮, and equivalently the number of parameters in 𝝎𝝎 which 

must be estimated; smaller values of 𝛾𝛾 require more parameters. For the scenarios with 

mean pre-seroconversion follow-up interval 𝛿𝛿 = 84 days, we chose 𝛾𝛾 = 1 day (Table 5.1). 

For the scenarios with 𝛿𝛿 = 365 days, the simulations took too long to run with 𝛾𝛾 = 1 day, 

given our computational resources and current software implementation, so we instead 

performed the analysis with 𝛾𝛾 = 7 days (Table 5.2). To determine whether different choices 

of 𝛾𝛾 affected bias and variance, we also performed the joint analysis with 𝛾𝛾 values of 7, 28, 

and 42 days for the scenarios with 𝛿𝛿 = 84 days, and with 𝛾𝛾 values of 28 and 42 days for the 

scenarios with 𝛿𝛿 = 365 days (Table 5.3). 

Enrollment dates are routinely recorded in cohort studies. Unfortunately, in our 

particular data sets, we did not have enrollment dates available. As a possible solution, we 

considered assuming that all participants had enrolled prior to the start of the earliest 

censoring interval. To test this strategy using our simulation framework, we generated a 

modified version of each simulated data set, with the enrollment dates, 𝑒𝑒𝑖𝑖, overwritten to 

equal min
𝑖𝑖
𝑙𝑙𝑖𝑖. We then applied our joint modeling analysis to these modified data sets (Table 
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5.4); note that midpoint and uniform imputation are unaffected by these data modifications. 

To demonstrate our proposed bootstrap approach to uncertainty quantification, we 

applied it to an example simulated data set from the scenario with 𝑁𝑁0 = 4500 cohort 

participants, 𝛿𝛿 = 365 days between pre-seroconversion follow-up visits, and hazard rate 

𝜆𝜆(𝑡𝑡) = 1 + 0.5𝑡𝑡 events per person-year. 

5.6 Simulation results 

Table 5.1 shows simulation results for scenarios with cohorts of 𝑁𝑁0 = 4500 participants. Our 

joint modeling analysis consistently produced estimates with biases of less than 9 days off 

from the target value, 𝜇𝜇 = 122.6 days, across all combinations of follow-up interval widths 

(𝛿𝛿) and hazard functions (𝛼𝛼 + 𝛽𝛽𝑡𝑡) that we tested. In contrast, midpoint imputation produced 

estimates with biases of up to 76 days off from the target value, and uniform imputation 

produced estimates with biases of up to 99 days off from the target value. Standard errors 

were comparable for all three methods in most scenarios; they were substantially larger for 

joint modeling in the scenarios with wide censoring intervals and fast hazard rates, but even 

in these scenarios, the increase in standard error was less than the reduction in bias, relative 

to the other methods. 

The biases for midpoint imputation ranged from moderately positive (+12.0 days) to 

very negative (-75.7 days), whereas the biases for uniform imputation ranged from 

negligibly positive (+0.7 days) to very negative (-98.7 days). The cause of these biases is 

explored in detail in Section 5.7. In short: the distribution of the seroconversion date 

conditional on the enrollment date and censoring interval, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖), is right-skewed in 

the scenarios with 𝛼𝛼 ∈ {1,10}; these methods incorrectly assume that this distribution is 
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uniform or at least symmetric, and the violation of this assumption produces bias: these 

methods tend to overestimate the seroconversion date and hence underestimate the elapsed 

time from seroconversion until biomarker collection, resulting in an underestimate of 𝜇𝜇. In 

contrast, for the scenarios with 𝛼𝛼 = 0, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖) can be left-skewed, right-skewed, or 

symmetric, depending on where the censoring interval, (𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖), is located relative to the peak 

of 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖). In these scenarios, the bias introduced by uniform or midpoint imputation can be 

either positive or negative, depending on the hazard function’s slope, 𝛽𝛽, and the mean follow-

up interval width, 𝛿𝛿. 

Table 5.1: Simulation results: bias and standard error of estimates for μ, by method, in scenarios with cohort size N0 = 4500. 

Simulation parameters Bias of �̂�𝜇 (days) Standard error of �̂�𝜇 (days) 
𝛿𝛿: 

mean pre-
seroconversion 

follow-up interval 
(days) 

𝛼𝛼 + 𝛽𝛽𝑡𝑡: 
hazard rate 

(events / 
person-year) 

Midpoint 
imputation 

Uniform 
imputation 

Joint 
modeling 

Midpoint 
imputation 

Uniform 
imputation 

Joint 
modeling 

84 0 + 0.5𝑡𝑡 0.2 0.7 -0.3 4.4 4.4 4.5 
 0 + 𝑡𝑡 -0.1 0.5 -0.1 4.3 4.3 4.3 
 0 + 2𝑡𝑡 -0.4 0.1 0.3 4.3 4.3 4.4 
 1 + 0𝑡𝑡 -0.5 0.1 0.2 4.3 4.3 4.4 
 1 + 0.5𝑡𝑡 -0.9 -0.4 0.1 4.4 4.4 4.4 
 10 + 0𝑡𝑡 -10.0 -9.5 -0.7 4.3 4.3 4.6 
 10 + 0.5𝑡𝑡 -10.2 -9.7 -0.6 4.3 4.3 4.6 

365 0 + 0.5𝑡𝑡 12.0 -19.3 -1.9 7.8 7.2 8.3 
 0 + 𝑡𝑡 6.1 -25.4 -0.9 8.0 7.0 8.9 
 0 + 2𝑡𝑡 -5.7 -37.5 0.1 8.2 6.7 10.5 
 1 + 0𝑡𝑡 -2.4 -33.9 -0.7 8.1 6.9 9.7 
 1 + 0.5𝑡𝑡 -8.6 -40.0 -0.7 8.3 6.7 10.3 
 10 + 0𝑡𝑡 -75.1 -98.3 8.7 10.0 3.2 35.8 
 10 + 0.5𝑡𝑡 -75.7 -98.7 8.0 10.1 3.2 36.1 

Table 5.2 shows simulation results for scenarios with cohorts of 𝑁𝑁0 = 100,000 

participants. The estimated biases in these scenarios are nearly identical to those in table 1, 

except that joint modeling no longer results in any substantial bias, even for 𝛿𝛿 = 365 and 

𝛼𝛼 = 10; it appears that the bias we observed for joint modeling when 𝑁𝑁0 = 4500 was only a 

finite-sample phenomenon. The standard errors are mostly negligible at this cohort size for 
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all three methods, except again for joint modeling in the scenarios with 𝛿𝛿 = 365 and 𝛼𝛼 = 10. 

Table 5.2: Simulation results: bias and standard error of estimates for 𝜇𝜇, by method, in scenarios with cohort size N0 =
100,000. 

Simulation parameters Bias of �̂�𝜇 (days) Standard error of �̂�𝜇 (days) 
𝛿𝛿: 

mean pre-
seroconversion 

follow-up interval 
(days) 

𝛼𝛼 + 𝛽𝛽𝑡𝑡: 
hazard rate 

(events / 
person-year) 

Midpoint 
imputation 

Uniform 
imputation 

Joint 
modeling 

Midpoint 
imputation 

Uniform 
imputation 

Joint 
modeling 

84 0 + 0.5𝑡𝑡 0.3 0.9 0.0 0.9 0.9 1.0 
 0 + 𝑡𝑡 0.0 0.6 0.0 0.9 0.9 0.9 
 0 + 2𝑡𝑡 -0.6 0.0 0.0 0.9 0.9 0.9 
 1 + 0𝑡𝑡 -0.6 0.0 0.0 0.9 0.9 0.9 
 1 + 0.5𝑡𝑡 -0.9 -0.3 0.0 0.9 0.9 0.9 
 10 + 0𝑡𝑡 -10.1 -9.6 0.0 0.8 0.8 0.9 
 10 + 0.5𝑡𝑡 -10.4 -9.9 0.0 0.8 0.8 0.9 

365 0 + 0.5𝑡𝑡 12.0 -19.3 -0.2 1.7 1.5 1.7 
 0 + 𝑡𝑡 6.0 -25.3 -0.2 1.6 1.5 1.8 
 0 + 2𝑡𝑡 -6.1 -37.5 -0.1 1.7 1.4 2.1 
 1 + 0𝑡𝑡 -3.2 -34.3 -0.4 1.7 1.4 2.0 
 1 + 0.5𝑡𝑡 -8.9 -40.0 -0.3 1.7 1.4 2.0 
 10 + 0𝑡𝑡 -77.8 -98.5 0.0 2.0 0.7 7.9 
 10 + 0.5𝑡𝑡 -78.3 -98.9 -0.2 2.0 0.7 8.0 

Table 5.3 examines the effects of changing the joint modeling approach’s seroconversion 

model grid width tuning parameter, γ, in the scenarios with cohort size 𝑁𝑁0 = 4500 and 

hazard rate slope 𝛽𝛽 = 0.5. Scenarios with 𝛽𝛽 = 0 produced nearly identical results (not 

shown). We only observed substantial effects of 𝛾𝛾 on bias or standard error for the scenario 

with 𝛼𝛼 = 10 events per person year. In the scenario with 𝛿𝛿 = 365 and 𝛼𝛼 = 10, there was a 

noticeable bias-variance trade-off: larger values of 𝛾𝛾 produced larger biases but smaller 

standard errors. 

Table 5.4 examines the consequences of incorrectly assuming that all participants 

enrolled prior to the start of the earliest censoring interval. This assumption led to biases 

and standard errors approximately equal to those produced by uniform imputation in Table 

1; clearly, it is an unsafe assumption. 
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Table 5.3: Simulation results: bias and standard error of joint modeling approach estimate for 𝜇𝜇, by seroconversion model 
grid width, in scenarios with cohort size N0 = 4500 and hazard rate slope 𝛽𝛽 = 0.5. 

𝛿𝛿: 
mean pre-

seroconversion 
follow-up interval 

(days) 

𝛼𝛼 + 𝛽𝛽𝑡𝑡: 
hazard rate 

(events / person-
year) 

𝛾𝛾: 
Seroconversion 

model grid width 

Bias of �̂�𝜇 
(days) 

Standard 
error of �̂�𝜇 

(days) 

84 0 + 0.5𝑡𝑡   1 -0.3 4.5 
    7 -0.2 4.5 
  28 -0.1 4.5 
  42 0.0 4.5 
 1 + 0.5𝑡𝑡   1 0.1 4.4 
    7 0.1 4.4 
  28 -0.1 4.4 
  42 -0.3 4.5 
 10 + 0.5𝑡𝑡   1 -0.6 4.6 
    7 -0.9 4.6 
  28 -2.0 4.6 
  42 -3.3 4.6 

365 0 + 0.5𝑡𝑡   1 -1.9 8.3 
    7 -1.6 8.3 
  28 -1.0 8.3 
  42 -0.3 8.3 
 1 + 0.5𝑡𝑡   1 -0.7 10.3 
    7 -0.8 10.3 
  28 -0.9 10.2 
  42 -0.9 10.2 
 10 + 0.5𝑡𝑡   1 8.0 36.1 
    7 2.3 34.2 
  28 -10.2 29.9 
  42 -16.7 27.7 
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Table 5.4: Simulation results: bias and standard error of joint modeling estimate for 𝜇𝜇 with incorrect enrollment dates, in 
scenarios with cohort size N0 = 4500 

𝛿𝛿: 
mean pre-seroconversion 
follow-up interval (days) 

𝛼𝛼 + 𝛽𝛽𝑡𝑡: 
hazard rate 

(events / person-year) 
Bias of �̂�𝜇 (days) Standard error 

of �̂�𝜇  (days) 

84 0 + 0.5𝑡𝑡 -0.8 4.5 
 0 + 𝑡𝑡 -1.0 4.3 
 0 + 2𝑡𝑡 -1.2 4.3 
 1 + 0𝑡𝑡 -1.5 4.4 
 1 + 0.5𝑡𝑡 -1.8 4.4 
 10 + 0𝑡𝑡 -10.7 4.3 
 10 + 0.5𝑡𝑡 -10.8 4.4 

365 0 + 0.5𝑡𝑡 -10.2 8.0 
 0 + 𝑡𝑡 -18.0 8.2 
 0 + 2𝑡𝑡 -34.6 7.7 
 1 + 0𝑡𝑡 -26.6 9.4 
 1 + 0.5𝑡𝑡 -36.6 9.2 
 10 + 0𝑡𝑡 -98.2 3.3 
 10 + 0.5𝑡𝑡 -98.6 3.3 

To illustrate the joint modeling approach, Figure 5.1 shows an example of an estimated 

cumulative distribution function for seroconversion date, given enrollment on the first day 

of the study (dotted line). We produced this estimate by applying our joint modeling analysis 

to a data set which we simulated using the data-generating model described in Section 5.5.1, 

for the following scenario: initial cohort study size 𝑁𝑁0 = 100,000 participants, mean pre-

seroconversion follow-up interval 𝛿𝛿 = 365 days, true hazard rate at study start 𝛼𝛼 = 1 event 

per person-year, true hazard rate changing by 𝛽𝛽 = 0.5 events per person-year2, and joint 

model seroconversion grid spacing width 𝛾𝛾 = 7 days. The random number generator was 

initialized with seed = 1. We also show the true data-generating cumulative distribution 

function (solid line). In this figure, the estimated survival curve is very close to the true 

survival curve; due to the large sample size, there is very little variance left in the estimated 

curve.  
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Figure 5.1: Estimated cumulative distribution function and data-generating cumulative distribution function for 
seroconversion date, given enrollment on the first day of the study, for a simulated data set.  

 

Figure 5.2 shows an example of 𝜙𝜙� and �̂�𝜇 estimates produced by applying the midpoint 

imputation, uniform imputation, and joint modeling approaches to the same simulated data 

set used in Figure 5.1. There is very little sampling variance left at this sample size, so 

discrepancies between the data-generating model and the three estimated models can be 

attributed predominantly to bias. For this simulated data set, our joint modeling approach 

produced a 𝜙𝜙� estimate nearly identical to the data-generating model’s; the corresponding 

estimate �̂�𝜇 = 121.5 days is only 1.1 days below the target value derived from the data-

generating model, 𝜇𝜇 = 122.6 days. In contrast, midpoint imputation moderately 

underestimated 𝜙𝜙(𝑡𝑡) for the first 9 months after seroconversion and underestimated 𝜇𝜇 by 

11 days. Uniform imputation substantially underestimated 𝜙𝜙(𝑡𝑡) for the first 9 months, and 

moderately overestimated 𝜙𝜙(𝑡𝑡) for the next two years; the resulting �̂�𝜇 = 81.8 days 
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underestimated 𝜇𝜇 by more than 40 days. 

Figure 5.2: Estimated probability of MAA-positive biomarkers as a function of time since seroconversion, by method, for a 
simulated data set. 

 

When we performed the bootstrap procedure from Section 5.3.3 on an example data set 

from the scenario with 𝑁𝑁0 = 4500 cohort participants, 𝛿𝛿 = 365 days between pre-

seroconversion follow-up visits, and hazard rate 𝜆𝜆(𝑡𝑡) = 1 + 0.5𝑡𝑡 events per person-year, the 

resulting bootstrap confidence interval was (117.3, 164.0), and the corresponding estimated 

standard error was 11.6, which is comparable to the estimate generated from the full set of 

simulations for this scenario, 10.3 (Table 1). 
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5.7 Distribution of seroconversion date, conditional on seroconversion 
window 

We can understand why uniform imputation and midpoint imputation suffer from biases in 

some of our simulation scenarios by examining the distribution of the seroconversion date, 

conditional on the seroconversion censoring interval and enrollment date, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖). 

In our simulation’s data-generating model, the follow-up dates through the first 

seropositive test are independent of the actual seroconversion date, conditional on 

enrollment date; that is, Assumption 5 holds, and thus Eq. 5.1, derived in Section 5.2, also 

holds:  

𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖) =
1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖)
𝑝𝑝(𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]|𝑒𝑒𝑖𝑖)

∝ 1{𝑠𝑠𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖]} 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖) 

That is, the density of the seroconversion date, conditional on the seroconversion censoring 

interval, is proportional to the original seroconversion date density, truncated to the 

seroconversion censoring interval. This proportionality allows us to understand the 

conditional density by examining the unconditional density. 

Consider the case of a participant who enrolls at the start of the study, i.e., 𝐸𝐸𝑖𝑖 = 𝑡𝑡0. We 

can derive an analytic expression for the unconditional density of the seroconversion date, 

using the relationships among the hazard, density, and survival functions: 

𝑝𝑝(𝑆𝑆𝑖𝑖 = 𝑠𝑠|𝐸𝐸𝑖𝑖 = 𝑡𝑡0) = 𝜆𝜆�𝑡𝑡(𝑠𝑠)�𝑃𝑃(𝑆𝑆𝑖𝑖 ≥ 𝑠𝑠|𝐸𝐸𝑖𝑖 = 𝑡𝑡0) 

= 𝜆𝜆�𝑡𝑡(𝑠𝑠)� exp �−� 𝜆𝜆(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
� 

= �𝛼𝛼 + 𝛽𝛽𝑡𝑡(𝑠𝑠)� exp �− �𝛼𝛼𝑡𝑡(𝑠𝑠) +
𝛽𝛽
2

{𝑡𝑡(𝑠𝑠)}2�� 
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This density is shown in Figure 5.3 for each seroconversion hazard function that we 

considered. We can see that the four scenarios with 𝛼𝛼 > 0 all have monotonically decreasing 

densities for seroconversion date, whereas the three scenarios with 𝛼𝛼 = 0 have densities 

which increase to a maximum and then decrease.  

Figure 5.3: Simulation data-generating probability density functions for seroconversion date, by hazard function, given 
enrollment at study start. 

 

We can determine whether and when such a maximum will occur, as a function of 𝛼𝛼 and 

𝛽𝛽, by taking the derivative of the density and setting that derivative equal to 0: 

𝑑𝑑
𝑑𝑑𝑡𝑡(𝑠𝑠)𝑝𝑝

(𝑆𝑆𝑖𝑖 = 𝑠𝑠|𝐸𝐸𝑖𝑖 = 𝑡𝑡0) =
𝑑𝑑

𝑑𝑑𝑡𝑡(𝑠𝑠) �𝜆𝜆�𝑡𝑡
(𝑠𝑠)� exp �−� 𝜆𝜆(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
�� 

= exp �−� 𝜆𝜆(𝑢𝑢) 𝑑𝑑𝑢𝑢
𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
�

𝑑𝑑
𝑑𝑑𝑡𝑡(𝑠𝑠)

𝜆𝜆�𝑡𝑡(𝑠𝑠)�  +  𝜆𝜆(𝑠𝑠)
𝑑𝑑

𝑑𝑑𝑡𝑡(𝑠𝑠)
exp �−� 𝜆𝜆(𝑢𝑢) 𝑑𝑑𝑢𝑢

𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
� 
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= exp �−� 𝜆𝜆(𝑢𝑢) 𝑑𝑑𝑢𝑢
𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
�

𝑑𝑑
𝑑𝑑𝑡𝑡(𝑠𝑠)

𝜆𝜆�𝑡𝑡(𝑠𝑠)�

+ 𝜆𝜆�𝑡𝑡(𝑠𝑠)� exp �−� 𝜆𝜆(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
�

𝑑𝑑
𝑑𝑑𝑡𝑡(𝑠𝑠)

�−� 𝜆𝜆(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
� 

= exp �−� 𝜆𝜆(𝑢𝑢) 𝑑𝑑𝑢𝑢
𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
�

𝑑𝑑
𝑑𝑑𝑡𝑡(𝑠𝑠)

𝜆𝜆�𝑡𝑡(𝑠𝑠)� + 𝜆𝜆�𝑡𝑡(𝑠𝑠)� exp �−� 𝜆𝜆(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
� �−𝜆𝜆�𝑡𝑡(𝑠𝑠)�� 

= exp �−� 𝜆𝜆(𝑢𝑢) 𝑑𝑑𝑢𝑢
𝑡𝑡(𝑠𝑠)

𝑢𝑢=0
� ��

𝑑𝑑
𝑑𝑑𝑡𝑡(𝑠𝑠)

𝜆𝜆�𝑡𝑡(𝑠𝑠)�� − �𝜆𝜆�𝑡𝑡(𝑠𝑠)��
2
� 

= 𝑝𝑝(𝑆𝑆𝑖𝑖 ≥ 𝑠𝑠|𝐸𝐸𝑖𝑖 = 𝑡𝑡0) �𝛽𝛽 − �𝛼𝛼 + 𝛽𝛽𝑡𝑡(𝑠𝑠)�
2
� 

= 𝑝𝑝(𝑆𝑆𝑖𝑖 ≥ 𝑠𝑠|𝐸𝐸𝑖𝑖 = 𝑡𝑡0)(𝛽𝛽 − [𝛼𝛼2 + 2𝛼𝛼𝛽𝛽𝑡𝑡(𝑠𝑠) + 𝛽𝛽2{𝑡𝑡(𝑠𝑠)}2]) 

= 𝑝𝑝(𝑆𝑆𝑖𝑖 ≥ 𝑠𝑠|𝐸𝐸𝑖𝑖 = 𝑡𝑡0)[−𝛽𝛽2{𝑡𝑡(𝑠𝑠)}2 − 2𝛼𝛼𝛽𝛽𝑡𝑡(𝑠𝑠) + (𝛽𝛽 − 𝛼𝛼2)] 

The first factor is strictly positive and can be ignored. The second term is quadratic in 𝑠𝑠, so 

by the quadratic formula, its roots are: 

𝑡𝑡(𝑠𝑠) =
2𝛼𝛼𝛽𝛽 ± �4𝛼𝛼2𝛽𝛽2 + 4𝛽𝛽2(𝛽𝛽 − 𝛼𝛼2)

−2𝛽𝛽2
=

2𝛼𝛼𝛽𝛽 ± 2𝛽𝛽�𝛼𝛼2 + (𝛽𝛽 − 𝛼𝛼2)
−2𝛽𝛽2

=
−𝛼𝛼 ± �𝛽𝛽

𝛽𝛽
 

We know that 𝛼𝛼 must be nonnegative (since it is the hazard rate at the start of the study). 

Since we are considering a hazard that begins at 𝑡𝑡(𝑠𝑠) = 0, we are only interested in positive 

roots. So, the density will have a maximum at 𝑡𝑡(𝑠𝑠) = ��𝛽𝛽 − 𝑎𝑎�/𝛽𝛽 if 𝛼𝛼 < �𝛽𝛽; i.e., if 𝛽𝛽 > 𝛼𝛼2. 

From Figure 5.3, we can see that with a linear hazard function, the conditional density of 

𝑆𝑆 within a censoring interval can be left-skewed, right-skewed, or symmetric, depending on 

𝛼𝛼, 𝛽𝛽, and the position of the censoring interval. However, even for scenarios in which the 

density is clearly right-skewed and monotonically decreasing, the conditional density may 

be approximately uniform, if the width of the censoring interval is sufficiently narrow in 

comparison with the slope of the density; for example, Figure 5.4 shows the same seven 
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densities, zoomed in on the first 84 days after study start; as shown above, these curves are 

proportional to the seroconversion densities conditional on a censoring interval [0, 84]. 

Given an interval of this width, the scenarios with 𝛼𝛼 = 1 have essentially uniform densities 

for the seroconversion date, conditional on the seroconversion censoring interval, whereas 

the scenarios with 𝛼𝛼 = 0 or 𝛼𝛼 = 10 still have substantially non-symmetric densities (left-

skewed and right-skewed, respectively) for censoring intervals consisting of the first 84 

days. 

Figure 5.4: Simulation data-generating probability density functions for seroconversion date, by hazard function, given 
enrollment at study start, for the first 84 days after study start. 

 

Figure 5.5 shows the same seven densities, zoomed in on the first 365 days after study 

start; we can see that given a censoring interval of this size and position, the scenarios with 
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𝛼𝛼 = 1 now have slightly right-skewed densities for the seroconversion date, and the density 

corresponding to 𝜆𝜆(𝑡𝑡) = 0 + 2𝑡𝑡 is now nonmonotone but still left-skewed. 

Figure 5.5: Simulation data-generating probability density functions for seroconversion date, by hazard function, given 
enrollment at study start, for the first 365 days after study start. 

 

These results indicate why the midpoint and uniform imputation approaches had more 

bias in the scenarios with 𝛼𝛼 = 10 or 𝛿𝛿 = 365 (𝛿𝛿 is the mean pre-seroconversion follow-up 

interval length); these approaches assume a uniform or at least symmetric density for the 

seroconversion date within the seroconversion censoring interval, which is approximately 

correct if that interval is sufficiently narrow relative to the hazard rate but can be 

substantially incorrect otherwise. When the distribution is heavily right-skewed, these 

methods will tend to overestimate the seroconversion date and thus underestimate the 
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duration of infection at the date of sample collection, resulting in a negative bias in the 

resulting estimates of 𝜇𝜇. When the slope of the density is nonmonotone, the bias from these 

methods could go in either direction, depending on the exact hazard function and the 

censoring interval widths, as seen in our simulation results (Tables 5.1-5.2). 

5.8 Difficulties in calculating μ for outcome models with autocorrelation 

The third assumption in our analysis is that longitudinally repeated MAA classifications of 

the same individual are mutually independent, conditional on the duration of infection at the 

time of sample collection; i.e. 𝑝𝑝(𝒚𝒚𝑖𝑖|𝒕𝒕𝑖𝑖)  = ∏ 𝑝𝑝(𝑦𝑦𝑖𝑖𝑗𝑗| 𝑡𝑡𝑖𝑖𝑗𝑗)𝑗𝑗∈1:𝑛𝑛𝑖𝑖 . In practice, longitudinal 

biomarker observations may exhibit substantial within-individual correlation; however, it is 

hoped that by using an appropriate functional form for the relationship between time and 

MAA classification, any such autocorrelation can be removed. This assumption is not 

necessary for the joint modeling approach in general; it is necessary for our motivating 

application, regardless of whether joint modeling, midpoint imputation, or uniform 

imputation is used, because it enables us to identify the marginal distribution 𝜙𝜙(𝑡𝑡) =

𝑝𝑝(𝑌𝑌 = 1| 𝑇𝑇 = 𝑡𝑡) with 𝑝𝑝(𝑦𝑦𝑖𝑖𝑗𝑗| 𝑡𝑡𝑖𝑖𝑗𝑗), which is then used to compute 𝜇𝜇 as described above. 

To see how models with autocorrelation pose difficulties for our motivating application, 

consider the example of adding a random effect on the regression intercept. Our joint 

modeling approach can be straightforwardly extended to such a scenario, by replacing the 

generalized additive model 𝑝𝑝(𝑦𝑦𝑖𝑖𝑗𝑗| 𝑡𝑡𝑖𝑖𝑗𝑗) with 𝑝𝑝(𝑦𝑦𝑖𝑖𝑗𝑗| 𝑡𝑡𝑖𝑖𝑗𝑗,𝑢𝑢𝑖𝑖) 𝑝𝑝(𝑢𝑢𝑖𝑖), where 𝑢𝑢𝑖𝑖  is the individual-

specific random effect. We could fit this model by maximum likelihood if seroconversion date 

𝑆𝑆𝑖𝑖 were directly observable; hence we can fit it using joint modeling and the EM algorithm: 

in the M step, the estimates of the fixed effects and variance components are updated via 
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maximum likelihood, and in the E step, the marginal likelihood based on these estimates, 

�̂�𝑝(𝑦𝑦𝑖𝑖𝑗𝑗| 𝑡𝑡𝑖𝑖𝑗𝑗) = E[�̂�𝑝(𝑦𝑦𝑖𝑖𝑗𝑗| 𝑡𝑡𝑖𝑖𝑗𝑗 ,𝑈𝑈𝑖𝑖)|𝑡𝑡𝑖𝑖𝑗𝑗], is used to update 𝑝𝑝𝚿𝚿� (𝑠𝑠𝑖𝑖|𝑒𝑒𝑖𝑖 , 𝑙𝑙𝑖𝑖, 𝑒𝑒𝑖𝑖,𝒐𝒐𝑖𝑖,𝒚𝒚𝑖𝑖). We could also fit this 

model using midpoint imputation or uniform imputation. Regardless of which estimation 

approach we use, if 𝑝𝑝(𝑦𝑦𝑖𝑖𝑗𝑗|𝑡𝑡𝑖𝑖𝑗𝑗 ,𝑢𝑢𝒊𝒊) has a nonlinear link function, then the marginal distribution 

𝜙𝜙(𝑡𝑡) = 𝑝𝑝(𝑌𝑌𝑖𝑖𝑗𝑗 = 1|𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑡𝑡) = 𝐸𝐸[𝑝𝑝(𝑌𝑌𝑖𝑖𝑗𝑗 = 1|𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑡𝑡,𝑈𝑈𝒊𝒊)|𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑡𝑡] is no longer equivalent with the 

value predicted by the fixed effects. For example, given the logistic mixed-effects model 

𝑝𝑝�𝑌𝑌𝑖𝑖𝑗𝑗 = 1�𝑇𝑇𝑖𝑖𝑗𝑗,𝑈𝑈𝑖𝑖� = expit�𝜃𝜃0 + 𝜃𝜃1𝑇𝑇𝑖𝑖𝑗𝑗 + 𝑈𝑈𝑖𝑖�, 𝑈𝑈𝑖𝑖 ∼𝑖𝑖𝑖𝑖𝑑𝑑 𝑁𝑁(0,𝜎𝜎𝑢𝑢2), 𝑈𝑈𝑖𝑖 ⫫ 𝑻𝑻𝑖𝑖 , we find: 

𝐸𝐸�𝑝𝑝�𝑌𝑌𝑖𝑖𝑗𝑗 = 1�𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑡𝑡,𝑈𝑈𝑖𝑖�|𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑡𝑡� = � expit{𝜃𝜃0 + 𝜃𝜃1𝑡𝑡 + 𝑢𝑢𝑖𝑖}𝑝𝑝(𝑈𝑈𝑖𝑖 = 𝑢𝑢𝑖𝑖) 𝑑𝑑𝑢𝑢𝑖𝑖
𝑢𝑢𝑖𝑖∈ℝ

 

≠ expit{𝜃𝜃0 + 𝜃𝜃1𝑡𝑡} 

Future work could involve solving this problem; generalized estimating equations may be 

helpful. 

5.9 Discussion 

The simulation results for midpoint imputation and uniform imputation showed the 

potential for substantially underestimating or overestimating 𝜇𝜇; the biases from these 

methods were nearly identical between the smaller and larger sample sizes, indicating that 

in some scenarios, these methods are asymptotically inconsistent. In contrast, joint modeling 

produced asymptotically consistent estimates in all scenarios considered, as long as accurate 

study enrollment dates were available for analysis. When participants were incorrectly 

assumed to have all enrolled prior to the first censoring interval, our method no longer 

produced accurate estimates and instead performed similarly to uniform imputation.  

In the scenarios with mean pre-seroconversion follow-up interval 𝛿𝛿 = 84 days, midpoint 
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imputation and uniform imputation resulted in similar amounts of bias. In the scenarios with 

𝛿𝛿 = 365 days, uniform imputation resulted in substantially more severe biases than 

midpoint imputation. It may seem surprising that uniform imputation led to more bias than 

midpoint imputation, since the expected value of a uniform variable is the interval midpoint. 

However, it should be noted that both the resulting model estimate 𝜙𝜙�(𝑡𝑡) and mean window 

period estimate �̂�𝜇 = ∫ 𝜙𝜙�(𝑡𝑡)𝑑𝑑𝑡𝑡∞
𝑡𝑡=0  are nonlinear functions of the imputed seroconversion 

dates; furthermore, uniform imputation involves averaging the estimated parameters of 

𝜙𝜙�(𝑡𝑡) across the multiply-imputed data sets, on the log-odds scale. Future work could include 

further study of these biases. Additionally, midpoint imputation resulted in larger standard 

error than uniform imputation in many scenarios; these differences could also be further 

investigated. 

In this analysis, we assumed that the follow-up dates through the first seropositive test 

are independent of the actual seroconversion date, conditional on enrollment date. In 

practice, depending on the study protocols, the follow-up dates might deviate from the 

planned schedules if study participants can request an earlier test date when they feel sick 

or believe they may have been recently exposed – for example, after high-risk behaviors. In 

such cases, our assumption of independence between the follow-up dates and the actual 

seroconversion date would be invalid, and the joint modeling analysis presented in this 

chapter might produce biased estimates. To handle such a scenario, the model used in the 

analysis would need to be changed accordingly; such an extension would be worthwhile for 

future work. 

In our simulation study, we assumed that the MAA classification model 𝜙𝜙�(𝑡𝑡) used in the 
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analysis was correctly specified to match the functional form of the data-generating model. 

In practice, the correct functional form would be unknown and model fitting would be 

required. The model fitting process would be complicated by the fact that the covariate 𝑡𝑡𝑖𝑖𝑗𝑗  is 

not known precisely, making graphical approaches to regression modeling diagnostics more 

challenging to apply. Exploration of best practices for model fitting in this setting and 

evaluation of the consequences of mis-specification would also be worthwhile for future 

work. 

Future work could also include combining the joint modeling approach for interval-

censored seroconversion dates with a survival analysis, mixed-effects modeling, or 

functional data analysis approach for modeling MAA classifications, and the effects of model 

mis-specification relative to the data-generating process could be quantified. For example, if 

the onset date of the MAA-negative state were precisely observable, then the joint model and 

EM estimation procedure proposed here could be straightforwardly combined with a time-

to-event model for onset of MAA-negativity by redefining 𝑌𝑌𝑖𝑖 as the MAA-negative onset date; 

then a time-to-event model for 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑠𝑠𝑖𝑖) would be substituted in place of 𝑝𝑝(𝒚𝒚𝑖𝑖|𝒕𝒕𝑖𝑖) in the 

likelihood decomposition, and the EM algorithm would otherwise remain the same. 

However, in practice the MAA-negative onset dates would also be interval-censored, which 

could further complicate the analysis. A Markov model approach allowing repeated 

transitions between the MAA-positive and MAA-negative states might also be of interest. 

In both the analysis model and the simulation data-generating model described in this 

analysis, the seroconversion date hazard function was assumed not to vary within the subset 

of individuals at any risk of infection. In our implementation, we have further extended the 
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seroconversion date model to accommodate stratification by baseline characteristics. For 

example, if participants were recruited from several clinics serving different populations, we 

might estimate clinic-specific hazard functions. Furthermore, if data has been combined 

from multiple cohort studies, we might stratify by cohort. Future work could include 

modeling unobserved or time-varying risk factors. We also assumed that there was no 

possibility of drop-out prior to the protocol-defined study exit date; unmodeled associations 

between infection risk and drop-out risk could lead to bias. Future work could explore such 

effects. 

We may be able to improve precision for small samples if we can assume a simple 

parametric model for the hazard function, such as a low-order polynomial with random 

effects by participant. Such an assumption could substantially reduce the number of 

parameters that need to be estimated for the seroconversion date model, relative to our 

current non-parametric approach. 

While our analysis was motivated by and tailored to a specific example, the joint 

modeling approach is more general. The interval-censored covariate need not be a function 

of a time-to-event variable; other forms of inexact measurement also result in interval-

censoring. Joint modeling could be useful in those contexts as well. 
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CHAPTER 6 
Conclusion 

6.1 Challenges Addressed 

In this dissertation, we addressed three statistical challenges which are frequently 

encountered when using cross-sectional biomarker surveys to estimate infectious disease 

incidence: analyzing data sets with incomplete biomarker data, transporting MAA 

calibration estimates to new populations and epidemiological conditions, and accounting for 

interval-censored seroconversion dates in calibration data sets. These challenges all 

required inferences about indirectly-observed probability distributions.  

In Chapter 3, we considered a data set in which one of two biomarkers used in an MAA 

was incompletely assayed, resulting in missing MAA classifications. We needed to 

extrapolate from the observed incomplete data distribution to the unobserved distribution 

which would have been observed if every sample had all been assayed for both biomarkers. 

We assumed that the incompletely-assayed biomarker’s missingness status was 

independent of its underlying distribution, conditional on the other, completely assayed 

biomarker indicating a recent infection. This assumption motivated a hierarchical model 

which produced accurate estimates of the mean window period and incidence rate in 

simulation scenarios. In contrast, a single model fit using all the observations that could be 

classified produced biased estimates, whenever there was substantial missingness in 

biomarker. Single models fit using the subset of samples for which all biomarkers were 

assayed also produced biased results when the probability of assaying the second biomarker 

depended on the value of the first biomarker. 

In Chapter 4, we needed to extrapolate from an MAA calibration data set to a target 
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population with different patterns of viral suppression conditional on duration of infection, 

resulting in a different mean window period. Here, we presented several estimation 

approaches borrowed from the causal inference literature. The “curve averaging” approach 

modeled MAA classifications conditional on viral suppression and duration of infection using 

the calibration data set, and then marginalized this model using the target population’s 

distribution of viral suppression. The “sample weighting” approach constructed weights to 

account for the differences in viral suppression between the calibration data set and target 

population and then used these weights to analyze the calibration data, either by weighted 

maximum likelihood analysis or by weighted resampling. The “multivariate modeling and 

marginalization” and “potential outcomes modeling” approaches modeled the multivariate 

distribution of the biomarker assay values conditional on viral suppression and duration of 

infection, using the calibration data set; the MMM approach then marginalized this model, 

whereas the potential outcomes approaches used this model to estimate the counterfactual 

biomarker values that would have been observed for each observation under opposite viral 

suppression conditions. The potential outcomes approaches then modeled the 

corresponding MAA classifications conditional on duration of infection using either 

weighted likelihood or weighted sampling. 

The proposed approaches in Chapter 4 all relied on a number of assumptions – most 

notably, that the distribution of viral suppression in the target population is known or 

estimable, and that the distribution of biomarker values, conditional on viral suppression 

and duration of infection, is equivalent between the calibration data set and the target 

population. The MMM and potential outcomes modeling approaches additionally required 

assuming a functional form for the conditional distribution of biomarker values, whereas the 
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other two approaches only assumed a functional form for the conditional distribution of 

MAA classifications. All of these approaches produced mean window period estimates with 

minimal bias when their assumptions were valid, but the first two approaches resulted in 

substantially larger standard errors than the multivariate modeling approaches. On the 

other hand, when the additional assumptions of the multivariate modeling approaches were 

violated, its performance suffered accordingly. Hence, the choice of analysis should depend 

on whether the added assumptions of the multivariate modeling approaches are defensible 

for a particular analysis. 

In Chapter 5, we considered the question of how best to handle interval-censored 

seroconversion dates in calibration data sets. Here, we needed to extrapolate from the 

observed distribution of seroconversion censoring intervals to the unobserved distribution 

of seroconversion dates. To do so, we made a number of assumptions, most notably that the 

dates of follow-up visits prior to diagnosis are independent of the actual seroconversion 

date. These assumptions led us to a joint modeling approach based on the EM algorithm 

which produced accurate estimates of the mean window period in simulation scenarios. In 

contrast, an analysis approach using the seroconversion censoring interval midpoint as an 

estimate of the seroconversion date produced substantially biased estimates in scenarios 

with wide censoring intervals. An approach using uniform imputation over the censoring 

interval also performed poorly in these scenarios. However, in the scenarios with relatively 

narrow censoring intervals and lower hazard rates, all three approaches performed 

similarly; in such cases, the added computational requirements of the joint modeling 

approach would be unnecessary. 
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6.2 Future Work 

These methods all have avenues for further development. As discussed in Chapter 4, the 

missing data analysis could be extended to consider more complex missingness mechanisms, 

possibly involving incomplete measurements in more than one biomarker. The 

transportability analyses in Chapter 5 could be extended to accommodate more complex 

differences between the calibration data set and the target population, possibly involving a 

vector of mediating covariates whose relationships with infection duration have changed. 

The joint modeling analysis of interval-censored seroconversion dates in Chapter 6 should 

be extended to include additional covariates in the outcome sub-model, so that it can be 

combined with the methods in Chapter 5. Furthermore, the EM algorithm for the joint 

modeling approach is computationally intensive, especially when combined with 

bootstrapping to produce uncertainty estimates. A more efficient implementation of the 

algorithm, or an alternative approach to quantifying uncertainty, would be valuable. 

Similarly, a non-saturated model for the distribution of seroconversion dates might reduce 

computation time and improve precision. 

6.3 Closing Thoughts 

The methods presented in this dissertation were all motivated by the application of 

calibrating and performing HIV incidence estimation using cross-sectional surveys of 

biomarker prevalence; however, these methods are more generally applicable. Incomplete 

data, extrapolation to new populations, and interval-censored covariates are frequently-

encountered challenges in statistical analysis. 

Moreover, the cross-sectional survey-based approach to incidence estimation has 
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applicability for other diseases than HIV. The key aspect of HIV infection that makes 

incidence estimation particularly challenging is its frequently lengthy pre-symptomatic 

period, which means that cases may be several years old by the time they are diagnosed; 

hence the rate of new diagnoses in a population constitutes a lagged and temporally blurred 

indicator of the incidence rate. Other diseases with long latent periods may also benefit from 

this approach to incidence estimation. Even for diseases with shorter latent periods, this 

approach may be useful when it is crucial to rapidly detect changes in incidence. For example, 

during the coronavirus-19 (COVID-19) pandemic, this approach could be deployed by 

identifying individuals who are COVID-positive according to PCR or antigen testing but not 

yet symptomatic and using the prevalence of these individuals in weekly or daily cross-

sectional snapshots to estimate incidence. We hope that the methods presented in this 

dissertation will encourage the use of the cross-sectional approach to incidence estimation 

in a variety of contexts and will help address the inevitable real-world complications in the 

data collection process. 

  

 



122 

Appendix: Consolidated Notation List 

𝜅𝜅 Calibration population 

𝜆𝜆 Biomarker missingness probability 

𝜇𝜇 Mean duration of MAA-positive infection (“mean window period”) 

𝜏𝜏 Target population 

𝜓𝜓 Shadow of MAA 

𝜙𝜙(𝑡𝑡) Probability of MAA-positive infection, conditional on time: 𝑃𝑃(𝑌𝑌 = 1|𝑇𝑇 = 𝑡𝑡) 

𝐵𝐵,𝐵𝐵1,𝐵𝐵2 Biomarker variables 

𝑏𝑏 Indicator variable for a biomarker being inside its cutoff for recent 
classification (1 = recent, 0 = not recent). 

𝑐𝑐, 𝑐𝑐1, 𝑐𝑐2 Biomarker cutoff values for “recent” status 

𝐸𝐸 Study enrollment date 

ℎ(𝑠𝑠) Incidence rate at time 𝑠𝑠, 𝑝𝑝(𝑆𝑆 = 𝑠𝑠|𝑆𝑆 ≥ 𝑠𝑠) 

𝐿𝐿 Left endpoint of censoring interval for seroconversion date 𝑆𝑆 

𝑚𝑚 Indicator of biomarker missingness (1: missing, 0: observed) 

𝑁𝑁𝑢𝑢 Number of uninfected individuals in a cross-sectional biomarker survey 

𝑁𝑁𝑥𝑥 Number of infected individuals in a cross-sectional biomarker survey 

𝑁𝑁 Number of individuals in a data set 

𝑛𝑛𝑖𝑖  Number of biomarker samples collected for individual 𝑖𝑖  

𝑶𝑶 Vector of post-seroconversion observation dates when biomarker samples 
were collected 
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𝑃𝑃(𝐴𝐴) The probability mass of event 𝐴𝐴 

𝑝𝑝(𝐴𝐴) The probability density of event 𝐴𝐴 

𝑅𝑅 Right endpoint of censoring interval for seroconversion date 𝑆𝑆 

𝑆𝑆 Seroconversion date (the date when an individual would first be diagnosed 
with the condition of interest if tested). 

𝑇𝑇 Elapsed time since seroconversion (“duration of infection”) 

𝑡𝑡0 The calendar date at which a cross-sectional survey is performed. 

𝑡𝑡max Time point after seroconversion beyond which we assume that 𝜙𝜙(𝑡𝑡) ≈ 0 

𝑉𝑉 Number of MAA-positive individuals in a cross-sectional biomarker survey 

𝑊𝑊(𝑠𝑠) The population in which an individual is living at calendar time 𝑠𝑠. 

𝑋𝑋 In Chapter 2: Seroconversion status (1 = seropositive, 0 = seronegative) 
In Chapter 4: Covariate(s) mediating the relationship between infection 
duration and biomarker distribution, e.g., anti-retroviral usage 

𝑌𝑌 Multi-assay algorithm (MAA) recency classification: 1 = “recent”, 0 = “non-
recent” 

𝑍𝑍 Variables mediating the relationship between infection duration (𝑇𝑇) and 𝑋𝑋 
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