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Abstract
Quantifying the temperature sensitivity of methane (CH4) production is crucial for predicting how
wetland ecosystems will respond to climate warming. Typically, the temperature sensitivity (often
quantified as a Q10 value) is derived from laboratory incubation studies and then used in
biogeochemical models. However, studies report wide variation in incubation-inferred Q10 values,
with a large portion of this variation remaining unexplained. Here we applied observations in a
thawing permafrost peatland (Stordalen Mire) and a well-tested process-rich model (ecosys) to
interpret incubation observations and investigate controls on inferred CH4 production
temperature sensitivity. We developed a field-storage-incubation modeling approach to mimic the
full incubation sequence, including field sampling at a particular time in the growing season,
refrigerated storage, and laboratory incubation, followed by model evaluation. We found that CH4

production rates during incubation are regulated by substrate availability and active microbial
biomass of key microbial functional groups, which are affected by soil storage duration and
temperature. Seasonal variation in substrate availability and active microbial biomass of key
microbial functional groups led to strong time-of-sampling impacts on CH4 production. CH4

production is higher with less perturbation post-sampling, i.e. shorter storage duration and lower
storage temperature. We found a wide range of inferred Q10 values (1.2–3.5), which we attribute to
incubation temperatures, incubation duration, storage duration, and sampling time. We also show
that Q10 values of CH4 production are controlled by interacting biological, biochemical, and
physical processes, which cause the inferred Q10 values to differ substantially from those of the
component processes. Terrestrial ecosystem models that use a constant Q10 value to represent
temperature responses may therefore predict biased soil carbon cycling under future climate
scenarios.

1. Introduction

Understanding and quantifying methane (CH4) pro-
duction temperature sensitivity are important to

improve predictions of how wetland ecosystems
will respond to and feedback on climate warming
(Davidson and Janssens 2006). The sensitivity of CH4

production to temperature is often described by a Q10
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value, which is defined as the factor by which CH4

production increases when temperature increases by
10 ◦C (van Hulzen et al 1999). Q10 is usually derived
from laboratory incubation experiments where soil
samples are placed in controlled conditions at dif-
ferent temperatures and CH4 production is meas-
ured over time (Zheng et al 2018). Such incubation-
inferred Q10 values are often incorporated into ter-
restrial ecosystem models. A constant Q10 value of 2
is often assumed (Walter and Heimann 2000, Riley
et al 2011), although a large variation of Q10 values
has been reported, and a large portion of that variab-
ility remains unexplained (Craine et al 2010, Hamdi
et al 2013, Meyer et al 2018, Haaf et al 2021). The sig-
nificant effects Q10 value can have on modeled CH4

emissions implies the need to better understand and
quantify variations in Q10 (Riley et al 2011). We note
that many of these issues have also been shown to be
important for evaluating the temperature sensitivity
of soil carbon dioxide (CO2) production (Gu et al
2004, Davidson et al 2006, Fierer et al 2006, Zhou et al
2009).

The limited understanding of CH4 production
temperature sensitivity arises from several factors
(Segers 1998). First, CH4 production processes are
complex and involve various microbial activities,
including syntrophic interactions and competition
for key substrates (LeMer and Roger 2001, Bridgham
et al 2013). Heterotrophic microbes drive the break-
down of complex organic polymers to simple sub-
strates. Fermentation of these substrates result in pro-
duction of additional substrates including H2, CO2,
and acetate. Acetate can be fermented to form CO2

and CH4 by acetoclastic methanogens (AM), and
CO2 can be reduced to CH4 using H2 as an electron
donor by hydrogenotrophicmethanogens (HM). The
rates of these processes are also affected by environ-
mental factors such as soil moisture, soil temperature,
oxygen concentration, and substrate concentrations
(Schlesinger and Bernhardt 2013).

Although laboratory experiments provide a con-
trolled environment with comparatively stable soil
moisture and temperature, uncertainties can arise
from the time or season of soil collection, condi-
tions under which the soil is stored (i.e. temperat-
ure, duration), and pre-treatment periods (Rhymes
et al 2021, Schroeder et al 2021, Wilson et al 2021).
Previous work assessing the impacts of sampling time
and storage on microbial activities, CH4 production,
and inferences of Q10 values had inconsistent res-
ults (Rhymes et al 2021, Wilson et al 2021). For
example, Lupascu et al (2012) found sampling time
affects CH4 production but not inferred Q10. In con-
trast, Bergman et al (2000) found that Q10 values of
CH4 production varies with the time of collection
due to substrate availability and seasonal variability
in active microbial biomass. These conflicting results
may stem from challenges in quantifying controlling

factors (e.g. carbon quality, substrate concentrations
and composition, and microbial biomass and activ-
ity) continuously and accurately (Blagodatskaya and
Kuzyakov 2013), thereby hindering interpretation of
incubation measurements.

Here we apply observations and a well-tested
process-rich model, ecosys, to (1) interpret laboratory
incubation observations; (2) investigate controls on
inferredCH4 production temperature sensitivity; and
(3) inform incubation strategies. The ecosys model
simulates the physical, hydrological, and biological
processes that govern ecosystem responses to envir-
onmental conditions and has been applied in dozens
of permafrost sites (Grant et al 2017, Mekonnen
et al 2021, Riley et al 2021). Ecosys represents mul-
tiple microbial functional groups that affect com-
plex biogeochemical transformations of carbon and
nutrients. Our study site is Stordalen Mire, a per-
mafrost site in northern Sweden, with an extensive
research history, including modeling (Chang et al
2019a, 2019b, 2020) and a rich observational record
(Bolduc et al 2020). We chose this site because per-
mafrost regions contain a large amount of organic
carbon which is vulnerable to decomposition by soil
microbes, releasing greenhouse gases including CH4

and CO2 (Tarnocai et al 2009). We hypothesized that
incubation methods (i.e. sampling time, storage tem-
perature, and storage duration) would influence CH4

production during incubation by altering the initial
incubation conditions, consequently impacting infer-
ence of the temperature sensitivity. To address our
hypothesis, we developed a field-storage-incubation
(FSI) modeling approach that mimics the full incub-
ation process, including the timing of field soil sample
collection, soil sample storage, and incubation. Then
we evaluated our model and FSI approach through
comparison with field observations and laboratory
incubationmeasurements. Aftermodel validation, we
conducted FSI simulation experiments where we var-
ied storage duration, storage temperature, sampling
time, initial substrate and microbial biomass condi-
tions, and incubation temperatures to investigate how
these factors affect CH4 production and inferred Q10

values.

2. Methods and data

2.1. Study site description
Stordalen Mire is a peatland situated in northern
Sweden (68.35◦N, 19.05◦E). The climate in this area
is subarctic with annual mean temperature of 0.07 ◦C
and mean precipitation of 308 mm y−1 (1986–
2006) (Bäckstrand et al 2010). The fen, one of the
three sub-habitats in the study site, is fully thawed
and inundated, with large reported CH4 emissions
(McCalley et al 2014, Holmes et al 2022). On this site,
sedges (Eriophorum angustifolium) are the dominant
plant species. Due to recent permafrost collapse and
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increasing inundation, the fen area has increased by
100% from 1970 to 2014, increasingly offsetting the
CO2 sink at theMire (Varner et al 2022). TheMire has
been closelymonitored since the 1970s and a compre-
hensive dataset of the site has been generated (Bolduc
et al 2020). Peat cores were collected and transported
for laboratory analysis including microbial analysis
(Woodcroft et al 2018), biogeochemistry, and incub-
ation experiments (Hodgkins et al 2014).

2.2. Measurements
Climate forcing data that is used to drive the ecosys
model includes air temperature, precipitation, radi-
ation, wind speed, and relative humidity. Forcing data
prior to year 2014 are based on the GSWP3 reanalysis
dataset and bias-corrected using long-term Abisko
research station measurements at the Stordalen Mire
(Chang et al 2019b). From 2014–2017, forcing
data were obtained from the European center for
medium-range weather forecasts atmospheric reana-
lyses (ERA5) (supplemental material). Terrestrial gas
flux data, including CH4 and CO2 fluxes from 2011–
2017, were recorded from auto-chamber systems on-
site (McCalley et al 2014, Mondav et al 2014, Holmes
et al 2022). Water table depth and thaw depth were
also recorded and published (Crill et al 2023). Soil
organic matter measurements are available at dif-
ferent depths at the autochamber sites (Hodgkins
et al 2014). The incubation experimental data (i.e.
CH4 production) used for model testing in this
study were also from Hodgkins et al (2014), which
provides details on the site, storage, and incubation
protocols.

2.3. Ecosys model
The ecosysmodel is amechanistically-based terrestrial
ecosystem model that couples hydrological, thermal,
plant, and microbial dynamics and their exchanges
with the atmosphere. Ecosys has been tested on mul-
tiple ecosystems including the Stordalen Mire site
in this study (Chang et al 2019a, 2019b). Ecosys
has also been successfully tested against scenarios
of environmental change, including warming exper-
iments (Bouskill et al 2020) and elevated atmo-
spheric CO2 conditions (Grant 2013). Eleven micro-
bial functional groups that regulate carbon, nitrogen,
and phosphorus dynamics are explicitly represen-
ted in ecosys. Decomposition rates of different soil
organic matter pools are a function of decomposer
biomass and substrate concentration, and are also
affected by soil moisture. The effect of temperature
on decomposition rate is represented with a mod-
ified Arrhenius function which considers the inac-
tivation of enzymes under high and low temperat-
ures (Sharpe and DeMichele 1977, Grant 2014). This
temperature sensitivity function does not consider
other environmental constraints (e.g. soil moisture,
substrate levels) beyond temperature, so we term it
the intrinsic temperature sensitivity (Davidson and

Janssens 2006, Wu et al 2021). We then calculate Q10

values based on that intrinsic temperature sensitivity
and compare them with the Q10 values inferred from
the simulated incubation experiments. Soil moisture
and temperature are solved based on heat and water
transfer schemes though canopy-snow-litter-soil pro-
files.Microbial respiration rates are represented based
on Michaelis-Menten kinetics with influences from
soil water potential, oxygen concentration, nutrient
availability, and temperature. Ecosys represents CH4

production (acetoclastic methanogenesis and hydro-
genotrophic methanogenesis), and CH4 oxidation
(table S1 and figure S1). A detailed description of
model structure, inputs, and outputs of ecosys can be
found in the data availability statement.

2.4. The simulation experiment
Here we developed and applied an FSI simulation
approach (figure 1). In this approach, we first use eco-
sys to model a soil profile under long-term field con-
ditions to create a modeled soil core consistent with
the field soil core. A soil layer is then extracted numer-
ically from thatmodeled field soil core and used in the
model incubation protocol, which mimics laboratory
sampling, storage, and incubation procedures. This
modeling approach creates reasonable initial condi-
tions for the incubation simulations and allows us
to evaluate the model against field observations and
laboratory incubation measurements.

We apply this FSI approach in Stordalen Mire,
using field observations and incubation measure-
ments from the fen site. For the field simulations,
we run ecosys for the field site from 1980 until 2017
using the climate forcing described above. Simulation
results are then compared against field observations
to determine the appropriate field simulation scen-
ario. From this baseline field simulation a soil layer is
numerically extracted on the modeled date, 15 June
2011, mimicking the field sampling. Then the model
is run with that soil layer through the storage and
incubation periods. The storage and incubation con-
ditions of that soil layer follow the incubation experi-
ment procedure in Hodgkins et al (2014). However, a
preincubation was not performed in the simulation
because we forced the modeled soil and headspace
to have no oxygen at the beginning of the incuba-
tion (baseline scenario). In the storage and incubation
phases, modeled plants are removed and therefore no
fresh litter inputs occur, and temperature and humid-
ity are held constant (figure 1). Anaerobic conditions
in the model are maintained by setting oxygen con-
centrations in the soil and headspace to zero at the
start of storage. High N2 concentrations in the head-
space are set to mimic the N2 flushing in the initial
incubation experiment. Simulated CH4 production is
then compared against incubation experimental res-
ults for model evaluation.

In addition to our baseline simulation, we sim-
ulated the following incubation scenarios: sampling
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Figure 1. A schematic representation of the three-phase FSI modeling approach: (1) field, (2) storage, and (3) incubation. The
baseline scenario includes simulation under field conditions until sampling on 15 June 2011, sample storage for 7 months at 4 ◦C,
and sample incubation at 22 ◦C for 90 d.

times during the growing season (15 July, 15 August,
15 September), storage conditions (temperature:
−20 ◦C; storage duration: 2 and 12 months), and
incubation temperatures (4, 11, 33 ◦C). The cumu-
lative CH4 production under each combination of
factors was used to infer Q10 values following the
‘equal-time’ approach (Hamdi et al 2013), wherein
cumulative CH4 production is evaluated at the same
time from two cores incubated at different temperat-
ures. The inferred Q10 value is calculated as:

Q10 =

(
C2

C1

)10/(T2−T1)

(1)

where C2 and C1 are cumulative CH4 production at
incubation temperatures T2 and T1, respectively.

3. Results and discussion

We next describe our model validation, which
involved two steps: (i) comparison with time series
of field measurements, and (ii) comparison with
laboratory incubation experiments, for which both
measured datasets have been previously published as
described in methods and data.

3.1. Model validation
In addition to ecosys validation at the same site using
field observational data from earlier years (i.e. 2003–
2014 (Chang et al 2019a, 2019b)), we compared
simulation results with the newest site observations
through 2017 (Holmes et al 2022). Our modeled
CH4 emissions agree well with measurements across

the simulation period (RMSE = 68 mgC m−2 d−1,
R = 0.76, figure 2(a)). Measured and modeled thaw
depth, water table depth, and net ecosystem car-
bon exchange (NEE) also agree well (figure S2).
Finally, modeled soil organic carbon content (440–
460 g kg−1) also compares well with observations
(466 g kg−1). These comparisons give confidence that
ecosys reasonably captures the thermal-hydrological
state and carbon cycling dynamics at the site. Also,
these comparisons give us confidence that the numer-
ically extracted soil for the FSI simulation experi-
ments broadly matches the actual soil samples used
in the laboratory incubation experiments.

CH4 production during the modeled baseline
incubation experiments broadly matched the obser-
vations from Hodgkins et al (2014) (figure 2(b);
RMSE = 21 umol (g dry)−1), with modeled and
observed gas production both accumulating more
slowly with time, in line with many published incub-
ations studies, which show that respiration rates
decline after the first few days as fast-cycling carbon is
depleted and slow-cycling carbon becomes the main
contributor to microbial activity (Fang et al 2005,
Schädel et al 2020).

3.2. Time-dependent CH4 production,
biogeochemistry, andmicrobial biomass during
incubations
Modeled CH4 production by acetoclastic methano-
genesis and hydrogenotrophic methanogenesis both
decrease with time during the baseline incuba-
tion simulation (figure 3(a)). To disaggregate the
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Figure 2. (a) Modeled CH4 emissions closely align with field observations at the fen site for the period 2011–2017. Solid blue lines
represent simulation results, while markers denote measurements. Error bars indicate the standard deviation of daily CH4

emission measurements obtained from two autochamber systems. (b) Modeled cumulative CH4 production is consistent with
incubation measurements reported by Hodgkins et al (2014). The solid blue line represents simulation results and the markers
represent measurements. Error bars in (b) depict the standard deviation of CH4 production measurements in incubation
experiments across three soil samples from the same site as the field observations.

factors regulating modeled CH4 production, we ana-
lyzed the modeled substrate concentrations (i.e. dis-
solved organic carbon (DOC), acetate, and hydro-
gen (H2)) and active microbial biomass (i.e. AM,
HM, fermenter, and methanotroph) most closely
related to CH4 emissions (figure S1). These sub-
strates and active microbial biomass change dynam-
ically during incubations. H2, the product of fer-
mentation and a substrate for HM, shows a sim-
ilar trend as the decreasing CH4 production rate.
Microbial biomass shows an initial slight increase
followed by a steady decrease, in contrast to DOC
and acetate concentration trends. Microbial growth,
accompanied by DOC and acetate consumption, res-
ult in increased need for microbial maintenance
respiration. When total respiration falls short of
maintenance respiration needs, microbes senesce,
producing microbial residue (Grant et al 1993).
Decomposition of microbial residue contributes to
the slight accumulation of DOC and acetate after 20 d
(figure 3(b)).

We hypothesized that DOC and microbial bio-
mass concentrations at the beginning of the incuba-
tion experiment were important controllers for sub-
sequent CH4 production. To explore this idea, we
performed two simulation scenarios with increased
levels of initial DOC (factor of ten) and microbial
biomass (factor of ten) of all microbial functional
groups (figures S3 and S4). Both simulations have
similar patterns in the relationship between CH4 pro-
duction rates, substrates, and active microbial bio-
mass. Increased DOC leads to an initial increase in
CH4 production, driven by sustained high H2 con-
centrations from fermentation and growth of fer-
menters and methanogens. This modeled increase
in soil respiration rate from adding initial substrates
has also been reported in incubation experiments
(Bergman et al 2000, Pegoraro et al 2019). Notably,
the effect on CH4 production of increasing initial
microbial biomass is about twice that of increas-
ing initial DOC, averaged over 3 months. A tenfold

increase in microbial biomass resulted in sustained
high DOC concentrations due to increased hydrolysis
of soil organic matter (SOM) to soluble DOC. In this
scenario, we did not see an increase in microbial bio-
mass, possibly due to high maintenance respiration
rates (caused by the highmicrobial biomass) that lead
to the senescence of microbes. Our results demon-
strate that DOC concentration and active microbial
biomass are limiting factors of CH4 production in
incubations.

The simulated biomass of active AM, HM, and
fermenters all decreased during baseline incubations
with the relative proportions of these functional
groups remaining relatively constant (figure 3(c)).
The methanotroph biomass remains low due to
anaerobic conditions. We confirmed that modeled
methanotrophs will grow when oxygen is added to
the modeling system, as expected. Our results of
microbial biomass composition align with results in
Wilson et al (2021) thatmicrobial relative abundances
were not changed significantly during incubations of
fen samples at Stordalen Mire. However, accurately
measuring active microbial biomass in experimental
incubations has been challenging (Blagodatskaya and
Kuzyakov 2013), and debates persist about micro-
bial changes during storage and incubation periods
(Stenberg et al 1998). Stenberg et al (1998) found (a)
microbial biomass decreased significantly at 2 ◦C, as
estimated by the chloroform fumigation-extraction
method and (b) small changes in biomass estim-
ated by the substrate induced respiration method.
Microbiome 16 S rRNA copy number, an indicator of
microbial biomass, has been reported not changing
significantly during incubation (Wilson et al 2019,
Fofana et al 2022).

3.3. Factors regulating incubation results
3.3.1. Storage duration
To test the effect of storage duration (at 4 ◦C)
on CH4 production, we conducted simulations for
two additional storage duration scenarios (2 and
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Figure 3.Modeled substrate concentration and active microbial biomass drive decreases in CH4 production during baseline
scenario incubations. (a) CH4 production rates by AM (acetoclastic methanogens) and HM (hydrogenotrophic methanogens);
(b) concentrations of DOC, acetate, and H2; and (c) active AM, HM, methanotroph, and fermenter biomass.

12 months), and compared with the default scenario
(i.e. 7 month storage duration). While the results of
the 12 month storage scenario resemble those of the
7 month scenario, distinct differences emerged for
the 2 month storage scenario, suggesting that storage
duration significantly affects cumulative CH4 pro-
duction rates during incubation (figures 4(a) and
(b)). The 2 month scenario is similar to the scen-
ario with added initial DOC described above (figure
S3). The initial DOC concentration is much larger
(about 2 times greater) when storage duration is 2
versus 7 months. The additional initial resource in
the 2 month storage scenario leads to a rapid increase
in CH4 production rates, and a >40 d period to
decline to rates comparable to the other storage dura-
tion scenarios (figure 4(b)). The rapid increase and
subsequent decrease of CH4 production rates are
regulated by the interplay of substrates and micro-
bial biomass (figures 4(c)–(h)). The rapid decrease
in DOC between about days 3 and 20 is consistent
with increased fermentation biomass and products
including acetate and H2 (figures 4(d), (e), and (h),
C6H12O6 + 2H2O—> 2CH3COOH+ 2CO2 + 4H2).
This quick decrease in DOC concentration also aligns
with the rapid growth of AM and HM (figures 4(f)
and (g)). The slow accumulation of DOC and acet-
ate after 20 d is similar to patterns observed in other
storage scenarios, as described above.

Recognizing the significance of initial incubation
conditions, we extended the analysis to include the
storage phase in both the 7 month and 2 month

storage scenarios (figures S5 and S6) to investig-
ate the reason for their distinct initial conditions.
Although the initial storage conditions are identical
for the 7 month and 2 month scenarios, the continu-
ous depletion of DOC from prolonged storage res-
ults in a higher DOC concentration in the shorter
2 month storage scenario compared to the 7 month
storage scenario. Additionally, the close correspond-
ence between substrates and microbial biomass dur-
ing storage mirrors the relationship shown in the
incubation phase. This close correspondence might
be attributed to microbial decomposition being the
sole source of substrates, given the absence of grow-
ing plants and root exudates during both phases.

There is ongoing debate regarding whether
storage duration affects incubation data analysis.
Stenberg et al (1998) found that microbial biomass
and activity in soil are influenced by storage condi-
tions, with storage duration being less important
when soils are stored at freezing (−20 ◦C) com-
pared to refrigeration (2 ◦C) temperatures. However,
other studies found that microbial biomass carbon
and enzyme activities were not substantially affected
when stored at 4 or −20 ◦C (Lee et al 2007, Wilson
et al 2021).

Our results indicate that 4 ◦C storage dura-
tion significantly affects CH4 production through
its effects on initial incubation substrate concentra-
tions, which then affect microbial activity and bio-
mass. The simulated storage temperature of −20 ◦C
led to negligible microbial activity during storage

6



Environ. Res. Lett. 19 (2024) 044069 Z Li et al

Figure 4. Storage duration affects CH4 production during incubation through regulating substrate concentrations and microbial
biomass. Legend labels refer to storage duration. Comparisons are made for storage durations of 2, 7, and 12 months for: (a)
cumulative CH4 production, (b) CH4 production rate, (c) DOC concentration, (d) acetate concentration, (e) H2 concentration,
(f) AM biomass, (g) HM biomass, and (h) fermenter biomass. Initial conditions of the storage phase, storage temperature (4 ◦C),
and incubation conditions are the same for all the storage duration scenarios. Except for storage duration, all the simulation
conditions are the same as the default scenario.

and thereby high initial incubation DOC concentra-
tion (figure S7). Subsequently, the CH4 production
is much higher during incubation compared to stor-
age at 4 ◦C under the same storage duration (figure
S5). Based on these results we suggest either limit-
ing storage duration or using a freezing storage tem-
perature to minimize consumption of substrates dur-
ing storage. Note that we focus on permafrost soils in
this study where microbes are accustomed to freez-
ing conditions. Introducing freezing temperature to
warmer soil might lead to death of microbes and
distorted interpretation of the incubation (Weiser
Russell and Osterud Clarice 1945).

3.3.2. Sampling time
Sampling time (i.e. the time in the growing season
when incubation material is collected from the field)

influences CH4 production during soil incubations
and the effects on CH4 production rate diminish
over time (figures 5(a) and (b)). Notably, CH4 pro-
duction is larger during the incubation period when
samples are taken in June, with production declining
each sampling month until September. This effect is
most prominent in the initial∼20 d of the incubation
period. The highermodeled CH4 production rates for
June samples are attributed to the higher availability
of H2 (i.e. substrate for HM, figure 5(e)) and active
biomass of AM, HM, and fermenters (figures 5(f)–
(h)) during this period. Tracing back to the stor-
age phase, we found higher initial storage microbial
biomass for all functional groups when sampling in
September (figure S8) compared with sampling in
June (figure S5), leading to more rapid DOC con-
sumption and earlier mortality of microbes. As a
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Figure 5. Sampling time affects CH4 production during incubations through regulating the initial substrate concentrations and
microbial biomass. Comparisons are made for sampling times of June 15, July 15, August 15, and September 15, denoted as JUN,
JUL, AUG, and SEP, respectively. Results show (a) cumulative CH4 production, (b) CH4 production rate, (c) DOC concentration,
(d) acetate concentration, (e) H2 concentration, (f) AM biomass, (g) HM biomass, and (h) fermenter biomass.

result, in the initial phase of incubation, substrate
concentrations in the September sampling scenario
(compared to June sampling) are higher (from dead
microbes) but active microbial biomass is lower, res-
ulting in lower CH4 production.

The conclusion above that earlier sampling time
(i.e, June vs. September) leads to a higher cumulat-
ive CH4 production during incubations is also valid
for long-term incubations with −20 ◦C storage tem-
perature (figure S9). However, for short-term incuba-
tions less than 10 d, CH4 production rates are slightly
higher when sampling in September. Experimental
results from Lupascu et al (2012) show a progress-
ive increase in CH4 production rates when sampled
from June to September for top 20 cm soil incubated
at 4 ◦C. Bergman et al (2000) highlighted the signi-
ficant impact of sampling time on incubation results,
and showed that whether early season sampling time

led to larger incubationCH4 production varied across
field sites.

Overall, our results demonstrate that sampling
time can significantly affect incubation CH4 produc-
tion. However, the intricate interplay between sub-
strates andmicrobial biomass, coupledwith the initial
incubation conditions influenced by storage temper-
ature and duration, adds complexity to understand-
ing how sampling time affects CH4 production dur-
ing incubation.

3.4. Sampling time, storage duration, and
incubation duration affect inferred temperature
sensitivity
As described inmethods, we inferredQ10 values using
cumulative CH4 production in the same manner as is
typically done from laboratory incubations (i.e. the
equal-time method). We hypothesized that sampling

8
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Figure 6. Q10 values vary with incubation duration (x-axis), temperature pairs (y-axis), (a) sampling time, and (b) storage
duration. Temperature pairs represent the two temperatures chosen for calculating Q10 values using the equal-time method
(equation (1)). Note Q10 values in the first (June 15) and sixth (7 months) groups of columns are identical because those Q10

values are inferred from the same default simulation with sampling time of June 15 and storage duration of 7 months. (c)
Microbial growth and maintenance Q10 values calculated based on the modified Arrhenius function used in ecosys.

time (15 June, 15 July, 15 August, 15 September),
storage duration (2, 7, 12 months), incubation dur-
ation (3, 20, 50, 90 d), and incubation temperature
(4, 11, 22, 33 ◦C; figure S10) would all affect inferred
Q10 values. Across all these cases, we inferred Q10

values between 1.2 and 3.5 (figure 6). These results
align well with published Q10 values from laborat-
ory incubation experiments on permafrost soils. For
example, Lupascu et al (2012) reported values of 1.9–
3.5 at a sedge site in Stordalen Mire based on laborat-
ory incubation experiments. Dutta et al (2006) repor-
ted a mean Q10 value of 1.9 ± 0.3 for permafrost
soil samples across tundra and boreal forest sites in
Siberia, incubating at controlled temperatures of 5,
10, and 15 ◦C.

In general, inferred Q10 values are largest for
storage durations of 2 months, indicating that when
substrate levels are high, the enhancement of CH4

production due to warming is also higher. For the
2month storage scenario, Q10 values initially increase
and then decrease with incubation duration, corres-
ponding to the phases of microbial growth and death.
We also inferred much higher Q10 values under the
simulation scenarios of higher initial DOC concen-
tration and−20 ◦C storage temperature (figure S11).
Except for the 2 month storage scenario, Q10 values
stabilize after incubating for ∼50 d. This effect of
incubation duration on inferred Q10 values has also
been reported in incubation experiments (Reichstein
et al 2005, Gudasz et al 2015). Additionally, our
inferred Q10 values tend to be higher at lower temper-
ature pairs (e.g. using 4 ◦C and 11 ◦C) compared to
using higher temperature pairs, consistent with prior
findings (Zhou et al 2009).

Using the modeled CH4 production results to
infer Q10 values allows a comparison to the intrinsic
temperature sensitivity coded in the model. Ecosys
uses a modified Arrhenius function (Sharpe and

DeMichele 1977, Grant et al 1993) to infer the effect
of temperature on microbial activity (termed the
intrinsic temperature sensitivity). Because substrate
concentrations, nutrient constraints, oxygen concen-
trations, and pH also affect activity rates in the model
(and real world), the Q10 values inferred from emer-
gent CH4 production are expected to be different
from the intrinsic value (Davidson et al 2006). This
issue is important for model development, since it
is common practice to use laboratory inferred Q10

values in biogeochemical models without account-
ing for all the other factors which affect CH4 produc-
tion rates already included in themodel. The intrinsic
Q10 values in ecosys range from 2.1 to 7.4 based on
the prescribed temperature pairs (figure 6), decreas-
ing as the incubation temperature pairs increase, and
are a factor of about 1.4–2.5 higher than the inferred
values (calculated using the mean for each temperat-
ure pair shown in figure 6). Thus, a model that used
an inferred Q10 value from a laboratory incubation,
and that also included other factors affecting respira-
tion rates, could be substantially biasing low their pre-
dicted CH4 production temperature sensitivities.

Further, the fact that the inferred Q10 values
depend on substrate concentrations, microbial bio-
mass, and temperature, as discussed above, and that
those factors are often dynamic in real ecosystems,
has significant implications for applications in ter-
restrial ecosystem models. Frequently, incubation
experiments last days to months, with the result-
ing Q10 value calculated for the incubation duration.
However, modelers often apply the inferred Q10 value
to represent transient (often hourly) changes in res-
piration rates caused by temperature (Gu et al 2004).
Misunderstanding of inferred Q10 values in terrestrial
ecosystem models could lead to an underestimation
of the response of soil respiration to warming, espe-
cially in cold regions (Zhou et al 2009).
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Q10 values inferred from incubation studies have
been widely adopted and have contributed to under-
standing of ecosystem responses to change. While it
may be acceptable for empirical ecosystem models
lacking representations of substrates and microbes to
use a temperature sensitivity response that includes
all those external effects, those models miss key
mechanisms and are less favorable for simulating
carbon-climate feedbackswith environmental change
(Sulman et al 2018, Chang et al 2021, Tang et al 2023).
Moving forward, particularly for process-based ter-
restrial ecosystem models that represent microbial
activities and substrate dynamics, we recommend the
use of mechanistic temperature sensitivity represent-
ations of component processes that contribute to the
overall emission instead of a constant Q10 value for
CH4 production or emission (Davidson et al 2006,
Tang and Riley 2020). The characterization of such
temperature sensitivities can be informed by theoret-
ical studies and incubation experiments. When char-
acterizing temperature sensitivities based on incuba-
tion experiments, we suggest using short-term incub-
ations with abundant substrates, avoiding storage
(or above-freezing conditions), and measuring other
factors known to affect CH4 production rates (e.g.
substrate levels, microbial biomass). The exact form
of the temperature sensitivity representation is still
under discussion. Somemodels, such as the modified
Arrhenius function by Sharpe and DeMichele (1977),
incorporate the high and low temperature inactiv-
ation of enzymes in organism activity. The macro-
molecular rate theory model, which accounts for the
change in heat capacity associated with the trans-
ition between the enzyme–substrate complex and the
enzyme–transition state, has recently been proposed
(Alster et al 2016, 2020, Liang et al 2018), as have other
approaches based on chemical kinetics (e.g. Tang and
Riley 2024). Other studies argued that the emergent
temperature response also depends on dynamic inter-
actions betweenmineral surfaces and substrates, sub-
strate lability, enzymes, andmicrobes (Tang and Riley
2014).

4. Conclusions

We applied observations and a well-tested process-
rich model, ecosys, to interpret laboratory incuba-
tion observations and investigate controls on inferred
temperature sensitivity (i.e. Q10) of methane (CH4)
production. A field-storage-incubation (FSI) simu-
lation approach was developed to mimic the incub-
ation process. The ecosys model and the simulation
approach were benchmarked using observations of
field CH4 emissions and incubation CH4 production.
Incubation simulation results show that dynamic
CH4 production rates are regulated by the interplay
between substrates (DOC, acetate, andH2) and activ-
ities of acetoclastic and hydrogenotrophic methano-
gens and fermenters. Using the model, we found that

storage duration, storage temperature, and sampling
time affect CH4 production through interactionswith
substrates and microbial biomass.

Our findings explain how the inferred temper-
ature sensitivity of CH4 production is affected by
incubation duration, incubation temperatures, stor-
age duration, storage temperature, and sampling
time. The inferredQ10 values were substantially lower
than the intrinsic temperature sensitivity used in
the model because other factors (e.g. substrates and
microbial biomass) also affect CH4 production. In
other words, Q10 values of CH4 production and emis-
sion are regulated by a complex interplay of biolo-
gical, biochemical, and physical processes. This inter-
action leads to the aggregatedQ10 being different than
those of the component processes. Terrestrial ecosys-
tem models relying on a constant Q10 value to char-
acterize temperature responses may therefore predict
biased soil carbon cycling under future climate scen-
arios. Our framework for simulating incubations and
the associated findings provide valuable insights for
interpreting incubation observations and lead us to
propose hypotheses relating to the effects of storage
duration and sampling time on Q10 that could be
tested in incubation experiments. Further, our work
emphasizes the need to accuratelymeasure important
auxiliary variables such as substrate availability and
active microbial biomass during incubation exper-
iments to improve mechanistic understanding and
modeling of carbon cycling responses to warming.
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