
Lawrence Berkeley National Laboratory
Applied Math & Comp Sci

Title
Comparison of distributed memory algorithms for X-ray wave propagation in
inhomogeneous media.

Permalink
https://escholarship.org/uc/item/0g5578p2

Journal
Optics Express, 28(20)

ISSN
1094-4087

Authors
Ali, Sajid
Du, Ming
Adams, Mark F
et al.

Publication Date
2020-09-28

DOI
10.1364/oe.400240

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0g5578p2
https://escholarship.org/uc/item/0g5578p2#author
https://escholarship.org
http://www.cdlib.org/

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29590

Comparison of distributed memory algorithms
for X-ray wave propagation in inhomogeneous
media
SAJID ALI,1 MING DU,2 MARK F. ADAMS,3 BARRY SMITH,4 AND
CHRIS JACOBSEN2,5,6,*

1Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
2Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
3Scalable Solvers Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
5Department of Physics & Astronomy, Northwestern University, Evanston, Illinois 60208, USA
6Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
*jacobsen@anl.gov

Abstract: Calculations of X-ray wave propagation in large objects are needed for modeling
diffractive X-ray optics and for optimization-based approaches to image reconstruction for objects
that extend beyond the depth of focus. We describe three methods for calculating wave propagation
with large arrays on parallel computing systems with distributed memory: (1) a full-array Fresnel
multislice approach, (2) a tiling-based short-distance Fresnel multislice approach, and (3) a finite
difference approach. We find that the first approach suffers from internode communication delays
when the transverse array size becomes large, while the second and third approaches have similar
scaling to large array size problems (with the second approach offering about three times the
compute speed).

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Diffraction limited storage rings are providing the next advance in X-ray brightness from quasi-
time-continuous synchrotron light sources [1]. These allow one to combine the high penetrating
power and short wavelength of X-rays for nanoscale imaging of increasingly large specimens.
Due to the overlap of features in a single view of an extended object, one must use tomography to
obtain a 3D view of a specimen from a series of 2D projection images. However, as the transverse
spatial resolution δres is improved, the depth of focus (DOF) decreases according to [2,3]

DOF = 2
λ

θ2
=

2
0.612

δ2res
λ
' 5.4

δ2res
λ

, (1)

where θ is the numerical aperture of the imaging optic, and 0.61 = 1.22/2 comes from the
Airy function for circular optics. Because of the depth of focus, features at different depths in
an extended specimen are no longer sharply viewed in a single projection image. One way to
overcome this limitation is to move to an optimization-based approach to image reconstruction,
where one constructs a guess of the 3D object, calculates wavefield propagation through the
object leading to an exit wave (and subsequently to predicted image intensities), and then adjusts
the guess of the object until the difference between predicted and measured image intensities is
minimized. Variations of such an approach have been demonstrated in electron microscopy [4,5],
light microscopy [6–8], and X-ray microscopy [9–12].
In order to accurately represent the forward problem, these approaches all require one to

implement computational wavefield modulation and propagation through a complex 3D object,
and thus determine the complex exit wave leaving the object. This propagation is usually done
with a multislice approach [13–15], where for one illumination direction one treats the object as

#400240 https://doi.org/10.1364/OE.400240
Journal © 2020 Received 16 Jun 2020; revised 11 Aug 2020; accepted 11 Aug 2020; published 21 Sep 2020

https://orcid.org/0000-0003-1602-6646
https://orcid.org/0000-0001-8562-0353
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.400240&domain=pdf&date_stamp=2020-09-21

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29591

being comprised of a set of slices along the beam direction ẑ with each slice being thinner than
the DOF of Eq. (1). In this approach, the wavefield entering each slice is first modulated by the
cumulative non-uniform refractive index variations of the slice along the beam direction, after
which the resulting wavefield is transferred through the homogeneous average refractive index of
the slice of material to the entrance of the next slice.
Once one has calculated the coherent exit wave leaving the specimen, one can model the

subsequent transfer of this wave to measured intensities. This might be done using a lens to
produce a direct measure of this exit wave in absorption contrast, or a lens with a Zernike phase
ring to transfer weak phase variations to intensities, or holography over modest propagation
distances, or far-field diffraction inmethods such as coherent diffraction imaging and ptychography.
Each of these approaches have their own relative merits, but in all cases, one needs to know
the exit wave in order to calculate the expected intensities and compare them with measured
intensities to improve one’s guess of the complex refractive specimen.
Because of the potential for X-rays to be used for high resolution, beyond-DOF imaging of

thick materials, we consider the question of the computational speed of various approaches for
solving the forward problem when extended to large datasets. As an example, X-ray ptychography
has been used to obtain δres = 12 nm images of integrated circuit features through 300 µm of
silicon [16], and 8 nm resolution through 130 µm [17]. Both examples were of near-planar feature
layers so that beyond-DOF imaging methods were not required. However, if one were to extend
these results to a more general 3D object with a pixel size of half the achieved spatial resolution,
one would need to propagate 2D wavefields with an array size of [(300 µm)/(6 nm)]2=50,0002 or
[(130 µm)/(4 nm)]2=32,5002. Even larger array sizes are imaginable given that about 10% of a
15 keV incident X-ray beam is transmitted through 1 mm of silicon. It is therefore valuable to
consider the computational costs of various approaches for large-array-size wave propagation
through inhomogeneous materials.

The most commonly employed method [18–22] for computing evolution of an X-ray wavefield
through an inhomogenous refractive object is to use the multislice (MS) method with Fresnel
propagation to transfer the wavefield to the position of the next slice. As will be described in Sec.
2.1, this approach involves fast Fourier transforms (FFTs) and multiplication with the Fresnel
propagator kernel of Eq. (8). However, another computational approach as described in Sec.
2.3 is to use the Helmholtz equation as a starting point, and solve for the exit wave using finite
difference (FD) methods for solving partial differential equations (PDEs). In calculations for
wave propagation in X-ray waveguides, this FD approach has been shown to offer speed and
accuracy advantages [23,24].
We compare here multislice and finite difference based approaches for the calculation of

large-array-size problems in X-ray wave propagation in inhomogeneous media. Comparisons of
the two approaches at optical/UV wavelengths for fibres [25] and waveguides [26], and in the
X-ray regime for waveguides as noted above, suggest that finite-difference methods are faster, and
also more accurate as the propagation step size increases. However, those comparisons have been
on problem sizes that fit on a single computational node, whereas for future X-ray experiments
we wish to compare their performance on array sizes of 50,0002 or more pixels, as noted above.
Therefore, we consider distributed memory parallel implementations of both methods. In the
case of the multislice method using FFTs, we consider both a simple whole-array FFT approach,
as well as a parallelized version of a short-distance tiling-based approach [27]. For the multislice
and finite difference method, we make use of a well-developed software toolkit for solving partial
differential equations PETSc/TS framework [28,29] on workstations as well as supercomputers.
We first describe the mathematics of our approaches in Sec. 2, provide implementation details in
Sec. 3, before discussing metrics in Sec. 4 and results in Sec. 6.

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29592

2. Algorithms

We consider here the forward problem of how to calculate the exit wave leaving a heterogeneous
refractive index distribution for a large object. In the full-array Fresnel multislice approach,
this is done by a sequence of wavefield propagation calculations for one guess of the object,
which in turn, is nested within the iterative adjustment of the guess of the object to minimize
the difference between predicted and measured image intensities. Because the calculation of
wavefield propagation in a heterogeneous medium is undertaken repeatedly, we are interested in
approaches that minimize computational time.

Specialized hardware has been developed that can calculate (10,000)2 pixel holograms in just
100 ms [30], though this hardware only solves one step in the overall optimization problem, as
noted above. Using a single workstation with a graphical processing unit (GPU), a solid-state drive
(SSD) for rapid transfer of partial data to and from limited random access memory (RAM), and
efficient tiling strategies as will be discussed in Sec. 2.2 below, single instances of short-distance
wavefield propagation of (131,072)2 pixel arrays have been demonstrated with an impressive
calculation time of 3.6 minutes [27]. Doing calculations like this in a shorter computational
time, and within the context of an optimization-based image reconstruction approach, can be
achieved if one utilizes distributed memory parallelism in high performance computing clusters.
These clusters typically consist of nodes that are connected by high-bandwidth, low-latency
interconnects (with many advances on the latest supercomputers [31]), and protocols such as the
message passing interface (MPI) for distribution and coordination of parallelized operations [32].

Because of our interest in X-ray microscopy applications, we limit ourselves to considering the
refractive effect of an inhomogeneous medium. Most transmission imaging in X-ray microscopy
is either done at soft X-ray photon energies around light element K absorption edges (0.2-0.8 keV),
or energies of 2–15 keV where one obtains good penetration while still maintaining reasonable
contrast from microscopic features [3,33]. In our energy range of interest, X-ray interactions are
well described by a complex refractive index n of

n(x, y, z) = 1 − δ(x, y, z) − iβ(x, y, z) (2)

where we have used the sign convention appropriate for writing forward wave propagation in the
propagation direction ẑ as exp[−iknz] with k = 2π/λ. The phase shifting part δ and absorptive
part β of the refractive index are well tabulated [34], and are typically in the range of 10−3–10−7,
with δ � β in most cases. When representing an object in a 3D array with slice thickness ∆z
along the illumination direction ẑ, the net refractive effect of the jth slice is determined by

δj(x, y) =
1
∆z

∫ zj+∆z

zj
δ(x, y, z) dz

βj(x, y) =
1
∆z

∫ zj+∆z

zj
β(x, y, z) dz

(3)

leading to an advance in the phase ϕ of

exp[iϕ] = exp[ikδj(x, y)∆z] (4)

and a magnitude reduction exp[−a] of

exp[−a] = exp[−kβj(x, y)∆z] (5)

for the slice. In visible light one might want to use the mean refractive index n̄ for propagation
to the plane of the next slice, and the refractive index variations n(x, y, z) − n̄ the calculation of
Eq. (3) for the effect of inhomogeneities within a slice. However, the small values of δ and β for
X-rays make that unnecessary.

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29593

2.1. Full-array Fresnel multislice

As noted above, full-array Fresnel multislice is a well-known approach developed first in electron
microscopy [13,14] and subsequently applied in visible light optics [15] and in X-ray microscopy
[18–21] studies. With our particular interest in X-ray optics, this approach has been shown
to produce results for very thick optics that are equivalent to those provided by coupled-wave
equations [22], allowing for the simulation of the focusing properties of combinations of diffractive
X-ray optics [35] as well as accurate modeling of the forward problem for image recovery of
objects extending beyond the depth of focus limit [11,12]. What the approach leaves out is the
ability to account for backscattered waves [36], but this effect is weak in X-ray interactions with
non-crystallline media. Starting with a wave ψs incident on a slice, we first apply the phase
advance and magnitude reductions of Eqs. (4) and (5) produced by the slice, giving

ψ
j
s(x, y) = ψs(x, y) �

{
exp

[
ik∆zδj(x, y)

]
exp

[
−k∆zβj(x, y)

]}
(6)

as the modulated wavefield, where � represents pointwise multiplication. We then propagate this
modulated wavefield to the exit plane of this slice, giving a downstream wavefield ψd(x, y) of

ψd(x, y) = F −1
{
F

{
ψ
j
s(x, y)

}
� H(u, v,∆z)

}
(7)

F represents a Fourier transform and F −1 its inverse, and (u, v) are the transverse coordinates in
the Fourier transform domain. The reciprocal space Fresnel propagation kernel H(u, v,∆z) of

H(u, v,∆z) = exp
[
−ik∆z

√
1 − λ2(u2 + v2)

]
(8)

is preferred (rather than the equivalent kernel in real space) for short propagation distances to
avoid aliasing artifacts [37,38]. One then has

Nz = t/∆z (9)

slices for the overall calcuation for a specimen with thickness t. This leads to Algorithm 1 for
full-array Fresnel multislice.

How thin should the slices be in the multislice method? Based on Eq. (1), one would expect to
require ∆z ≤ DOF. One comparison tested the full-array Fresnel multislice method (which can
model arbitrary refractive index distributions) against coupled wave equation methods (which can
be applied to easily defined, regular structures) [22]. This comparison used a parameterization
that (in hindsight) is equivalent to the Klein–Cook parameter Q [39] of

Q =
π

2(1 − δ)
λz
∆2r

(10)

for X-ray volume gratings with period 2∆r and thickness z aligned to the propagation direction ẑ.
WhenQ is well below 1, one can use simple scalar diffraction to describe the effects of the grating,
whereas Q ≥ 1 corresponds to the case where volume grating effects become pronounced. If we
limit the slice thickness to a value such that Q ≤ 0.5 and assume 1 − δ ' 1, the slice thickness ∆z
should be kept below a value zK-C of

zK-C ≤
1
π

δ2res
λ

(11)

or zK-C ' 0.32δ2res/λ instead of DOF ' 5.4δ2res/λ. However, this is an extreme case that applies
to regular gratings at the Nyquist limit, aligned to the beam propagation direction ẑ. In practice,
a good approach is to start with ∆z = DOF, and reduce it towards ∆z = zK-C while watching for
asymptotic convergence of the exit wave.

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29594

Algorithm 1: Algorithm for implementation of full-array Fresnel multislice.
/* initialize */

ψ(x, y) ←− 1
for j=1,N do

SliceDiff(j)
FreeProp(∆z)

end
Procedure SliceDiff(n)

/* Apply refractive effect of slice using Eq. 6 */

ψ
j
s(x, y) = ψs(x, y) �

{
exp

[
ik∆zδj(x, y)

]
exp

[
−k∆zβj(x, y)

]}
return

Procedure FreeProp(∆z)
/* Free space propagation using Eq. 7 from source s to destination d

plane */

ψ
j
s(x, y)

F
−→ Ψ(u, v)

Ψ(u, v) = Ψ(u, v) � exp
[
−ik∆z

√
1 − λ2(u2 + v2)

]
Ψ(u, v) F

−1

−−−→ ψd(x, y)
return

The refractive modulation step of Eq. (6) is a per pixel operation (i.e., each pixel in the output
array depends only on the corresponding pixel in the input array), leading it to be trivially
parallelizable, and one could even distribute the set of δj(x, y) and βj(x, y) from all depth planes to
the appropriate nodes prior to initiating the calculation. However, the Fourier transform of Eq. (7)
is a whole-2D-array operation, so it is not trivially parallelizable. While there is considerable
activity on developing efficient large-array parallel FFT implementations [40–42], inter-node
communication requirements still set performance limits [43]. This motivates the use of other
approaches for carrying out the operation of Eq. (7).

2.2. Tiling-based short-distance Fresnel multislice

In the mathematical definition of a discrete Fourier transform, the value of one input plane
pixel affects all pixels in the transform, and vice versa. However, in short-distance wavefield
propagation, information is localized due to the finite angle θ = λ/(2∆r) of first-order diffraction
from the finest features that are Nyquist sampled when using a pixel size of ∆r [44,45]. For
a propagation distance zprop, this means that Nyquist-sampled diffraction information at the
subsequent slice is contained within a radius r1 of

r1 = zprop tan(θ) = zprop tan
(
sin−1

λ

2∆r

)
=

λzprop√
(2∆r)2 − λ2

'
λzprop
2∆r

(12)

where the identity tan(sin−1(x)) = x/
√
1 − x2 has been used; the approximate result applies to

our case because the pixel size ∆r is much larger than the X-ray wavelength. However, this does
not incorporate the reality that interference fringes from weak features taper off in amplitude at
large transverse distances. An alternative criterion is to consider diffraction from a half-edge,
which can be characterized using the Cornu spiral [46] in terms of a dimensionless parameter
w = r2

√
2/(λzprop). This gives

r2 =
w
√
2

√
λzprop (13)

as an expression for the transverse distance r2 for a given propagation distance zprop. In half-edge
Fresnel diffraction from a fully opaque object, one reaches the 8th dark fringe, where the intensity

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29595

modulation is down to 8%, at a value of w = 5.61. Since X-ray microscopy usually involves
weak phase objects, their effect at this transverse distance will be quite small; as a result, we use
w = 5.61 to give

r2 = 3.97
√
λzprop (14)

as a reasonable transverse distance beyond which there should be little effect from neighboring
features.
Recognizing the limited transverse extent of diffraction from upstream features, one can use

a tiling approach to parallelize the short-distance Fresnel multislice calculation [27]. In this
approach, a large 2D array is split into a large series of much smaller tiles with buffer zones
around their edges as shown in Fig. 1. One can then propagate these tiles separately, discard
the buffer zones, and recombine the tiles to form the large 2D array at the downstream plane.
These tiles can be sized to fit GPU memory [27] or other specialized hardware [30]. They can
also be distributed to nodes on a high performance computing cluster, which is the approach
we use here. Consider a large input wavefield array ψs(Nx,Ny), and a refractive index array
δj=1...Nz (Nx,Ny) + iβj=1...Nz (Nx,Ny). The number of slices is Nz from Eq. (9), with ∆z no larger
than the depth of focus DOF of Eq. (1) and possibly as small as zK-C of Eq. (11). The tiles will
have dimensions ψs(Nx,tile,Ny,tile) so that there are Nx/Nx,tile and Ny/Ny,tile tiles in the x and y
dimensions, respectively. To any interior tile, one must add a buffer zone of physical width r2
from Eq. (14), or pixel width

Nbuffer = r2/∆x, (15)

to each side of the tile with information from neighboring tiles as shown in Fig. 1. This allows
one to account for diffraction from features at the edge of nearby tiles into the field of view of
the particular tile being processed. For a multislice calculation, one can choose between two
alternative approaches to tiling-based Fresnel diffraction using these arrays:

• 2D tiling: In this approach, at each slice one divides ψs(Nx,Ny) into tiles ψs(Nx,tile +
2Nbuffer,Ny,tile + 2Nbuffer), and also the refractive index distribution n = 1 − δ − iβ for slice
j into tiles of δj(Nx,tile + 2Nbuffer,Ny,tile + 2Nbuffer) and βj(Nx,tile + 2Nbuffer,Ny,tile + 2Nbuffer).
In this case, r2 (Eq. (14)) and Nbuffer (Eq. (15)) are calculated for the thickness of one slice,
or z = ∆z. The tiles with their buffer zones are distributed to nodes. The refractive index
modulation is then applied using Eq. (6), after which propagation by the slice thickness
z = ∆z is carried out using Eq. (7) to yield ψd(Nx,tile + 2Nbuffer,Ny,tile + 2Nbuffer). The
buffer zone is then stripped, and ψd(Nx,tile,Ny,tile) is then returned. The various tiles of
ψd(Nx,tile,Ny,tile) are then used to form the full input wavefield ψs(Nx,Ny) entering the next
slice, and the process is repeated. Because the free space propagation step of Eq. (7) is
carried out over a small distance z = ∆z ranging between z = DOF and z = zK-C, this
approach has the advantage of requiring a smaller buffer zone size Nbuffer. However, at each
of the Nz slices of the calculation, it requires collecting the ψd(Nx,tile,Ny,tile) tiles from the
computational nodes to re-form the full array ψd(Nx,Ny) which then is used to distribute
the set of ψs(Nx,tile + 2Nbuffer,Ny,tile + 2Nbuffer), δj+1(Nx,tile + 2Nbuffer,Ny,tile + 2Nbuffer), and
βj+1(Nx,tile + 2Nbuffer,Nx,tile + 2Nbuffer) tile arrays to the computational nodes.

• 3D tiling: In this approach, at the outset one divides the input wavefield ψ0(Nx,Ny) into
tiles ψ0(Nx,tile + 2Nbuffer,Ny,tile + 2Nbuffer) with r2 (Eq. (14)) and thus Nbuffer (Eq. (15))
calculated using z = t, the total sample thickness (a much larger value than the slice
thickness ∆z). One also generates 3D tilings of the refractive index arrays δj=1...Nz (Nx,tile +
2Nbuffer,Ny,tile + 2Nbuffer) and βj=1...Nz (Nx,tile + 2Nbuffer,Ny,tile + 2Nbuffer) for all the Nz slices,
which are then distributed to computational nodes. The multislice calculation through
all Nz slices can then be calculated on each node, after which the buffer zone is removed
and the wavefield exiting the sample at each tile position is returned as ψd(Nx,tile,Ny,tile)

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29596

so that the overall specimen exit wave ψd(Nx,Ny) can be assembled. This approach has
the advantage of not requiring any data transfer between computational nodes during the
multislice calculation, but it involves each node carrying out its calculations on a larger
array due to the increased size of Nbuffer with z = t.

Fig. 1. For tiling-based short-distance Fresnel multislice, one can use a tiling approach
to split a large 2D array of dimension Nx × Ny into a set of smaller arrays, each of size
Nx,tile × Ny,tile, so that these smaller arrays can be processed on separate computational
nodes. When doing so, one must add a buffer zone of physical width r2 (Eq. (14)), and pixel
width Nbuffer = r2/∆x (Eq. (15)), to each side of the tile with information from neighboring
tiles. This accounts for diffraction from features at the edge of nearby tiles coming into the
field of view of the tile being processed.

We use the 3D tiling approach, as described in Algorithm 2. Before conducting numerical
experiments using the choice of r2 = 3.97

√
λzprop as in Eq. (14), we conducted a validation

test using a 2563 voxel object that was also used in another publication [12]. The object array
contains a hollow capillary tube positioned in the middle. We propagated a plane wave through
the object, with the object divided into four 3D tiles of 128 × 128 × 256 in a 2 × 2 grid. This way,
each tile has a part of the non-vacuum object filling up to its edge; when the buffer zone width
is too small, diffraction fringes of the object would wrap around and reenter from the opposite
side, causing errors compared to the result given by full-array Fresnel multislice (the reference).
We repeated the propagation simulation to sweep the value of w/

√
2 from 1 to 8, leading to the

results shown in Fig. 2. When using w/
√
2 = 4, which is very close to the value of 3.97 that

we have chosen, the mean-squared-error (MSE) of the wavefield moduli between the output of
tiling-based propagation and the reference falls to about 1 × 10−9. Given that the variance of the
reference modulus is 4 × 10−6, this is a negligible error and should lead to sufficiently accurate
results.

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29597

Fig. 2. Mean squared error of the exit wave of a subregion of a 3D object as a function of the
buffer zone width r2 = (w/

√
2)

√
λzprop of Eq. (13), showing that the choice of r2 = 3.97

√
λz

of Eq. (14) gives good results (a mean squared error of 10−9 compared to a variance in the
reference modulus of 4× 10−6). Shown here is the result of using tiling-based short-distance
propagation through a 2563 voxel object as used in another publication [12]. The object was
split into 4 128 × 128 tiles with the “seams” of the tiles running across the object, and buffer
zones are added around each tile.

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29598

Algorithm 2: Algorithm for implementing the 3D tiling aproach to tiling-based short-
distance Fresnel multislice. Variable names with lower case n, namely nx,tile and ny,tile,
denote the number of tiles in x and y. Og and Ol are respectively the global and local (tile)
object function, which symbolize both δand β. Similarly, ψg and ψl represent global and
local wavefields.
forall i=mpi-ranks do

/* initialize */

nx,tile, ny,tile, Nx,tile, Ny,tile = Init(Nx, Ny, Nranks)
r = DetermineTilePosition(nx,tile, ny,tile, Nx,tile, Ny,tile, irank)
/* Initialize global wavefield array (assuming plane wave). */

ψg ←− 1
ψl = ExtractTile(r, ψg)
Ol = ExtractTile(r, Og)
for n=1,N do

SliceDiff(Ol)
FreeProp(∆z)

end
WriteOutput(ψl)

end
Procedure Init(Nx, Ny, Nranks)

/* Determine work distribution. */

nx,tile = int{ [(Nx/Ny) × Nranks]
1/2 }

ny,tile = int{ [(Ny/Nx) × Nranks]
1/2 }

Nx,tile, Ny,tile = ceil{ max [Ny/ny,tile,Nx/ny,tile] }
return nx,tile, ny,tile, Nx,tile, Ny,tile

Procedure DetermineTilePosition(nx,tile, ny,tile, Nx,tile, Ny,tile, irank)
/* Determine local work area for this mpi rank */

/* Return tile co-ordinates with the tile included */

r← [Ny,tile × floor{irank/nx,tile},Nx,tile ×mod(irank, nx,tile)]
return r

Procedure ExtractTile(r, Og)
/* Fill local tile array with values from global array */

Ol ←− Og
return

Procedure WriteOutput(ψl)
/* Combine the output at each rank to form global output while

discarding buffer zone of size Nbuffer, write it to HDF5 in parallel

*/

return

2.3. Finite difference methods

The scalar Helmholtz equation of [2]

∇2ψ + k2 (n(x, y, z))2 ψ = 0 (16)

describes the propagation of a wave ψ with wavenumber k = 2π/λ through an inhomogeneous
medium with refractive index n(x, y, z). To simplify its solution, the wave ψ is separated into two
parts: a part u(x, y, z) that varies in the weak refractive medium, and a part exp[−ikz] that is an

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29599

unmodified forward-propagating wave in the propagation direction ẑ. This gives

ψ(x, y, z) = u(x, y, z) exp[−ikz]. (17)

Given the weak X-ray refractive index of Eq. (2), we can assume ∂2u/∂z2 � ∂2ψ/∂z2 and
approximate Eq. (16) with the parabolic wave equation [47,48] of

−2ik
∂u
∂z
+

(
∂2

∂x2
+
∂2

∂y2

)
u + k2(n2 − 1)u = 0. (18)

If we make the definitions
A ≡
−i
2k

F(x, y, z) ≡ −
ik
2

[
n2(x, y, z) − 1

] (19)

= kβ(x, y, z)(δ(x, y, z) − 1) +
ik
2
(β(x, y, z)2 − δ(x, y, z)2), (20)

we can write Eq. (18) as

A
(
∂2u
∂x2
+
∂2u
∂y2

)
−
∂u
∂z
+ F(x, y, z) u = 0. (21)

The expression of Eq. (21) presents a linear second order parabolic differential equation that
describes a boundary value problem. Given that we know u(x, y, zs) (at the source plane) and
require u(x, y, zd) (at the destination plane), it is more appropriate to rewrite Eq. (21) as an initial
value problem [23] so that the equation being solved for at each plane is elliptic. Note that while
a more recent formulation of an equivalent to Eq. (22) exists [24], the expression of Eq. (22) is
sufficiently accurate for our purposes given the fact that we work at the hard X-ray energy regime.
The formulation of Eq. (21) has also been used in prior studies of X-ray wave propagation in
thick zone plates [49] and waveguides [23]. We can rewrite Eq. (21) as

∂u
∂z
= A

(
∂2u
∂x2
+
∂2u
∂y2

)
+ F(x, y, z) u. (22)

The expression of Eq. (22) can be discretized by the use of finite difference methods. Traditionally,
the space derivatives are evaluated using a central difference scheme and the time integration
is performed via implicit methods (where we have defined time to be the coordinate along the
propagation axis). As noted in Sec. 1, this finite difference method has been shown to outperform
the full-array Fresnel multislice algorithm when comparing compute time for the same degree of
accuracy on single node computers [23,24].
The general Helmholtz equation problem is known to be challenging to solve using finite

difference methods [50]. Previous implementations have favored methods that only require
tridiagonal matrix inversions using the Thomas algorithm [51]. For one-dimensional systems, the
Crank-Nicolson method [52] has been used, while two-dimensional problems have been tackled
using Alternating Direction Implicit schemes [51,53] where the wave is propagated along one
axis at a time to generate the familiar tridiagonal system of equations. The main disadvantage of
ADI is poor scalability to large-scale problems [54].

Instead of formulations that require tridiagonal inversions, we employ iterative solvers along
with preconditioners to enable the use of the Crank-Nicholson method for both one- and two-
dimensional problems. As expanded upon in the implementation section, we are not required to
program these algorithms since we express the problem using PETSc [28,29] which allows us to
compose scalable solvers.

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29600

The recent availability of high-level discrete adjoint frameworks [55,56] offers another approach
for the optimization problem. These frameworks allow one to access the sensitivity of the
parameters necessary for an optimization-based inverse-problem reconstruction algorithm. These
automatically generated adjoint solvers utilizing the same mode of parallelism as the equations,
and potentially run faster than the forward problem (owing to the properties of adjoints and the
fact that the adjoints are implemented as a series of linear solves). This is in contrast to the
approach used by algorithmic differentiation [57,58], which operates on low-level operations and
therefore does not offer quite as high performance.

3. Implementation

The full-array Fresnel multislice (Sec. 2.1) and finite difference (Sec. 2.3) algorithms described
above have been implemented using the 3.13.1 release of the PETSc/TS framework [28,29] which
is designed to support scalable solvers for partial differential equations (with code available [59]).
PETSc supports distributed memory computing using the Message Passing Interface (MPI) [60]
as well as the use of graphical processing units. The tiling-based short-distance Fresnel multislice
algorithm (Sec. 2.2) was implemented in Python (with code available [61]) using the mpi4py
package [62,63] for distributed memory parallelism, and the scientific Python stack SciPy [64]
for multithread parallelism for each MPI task. All algorithms used the HDF5 library [65] for
parallel disk I/O.

PETSc was installed on workstations and clusters using the spack package manager [66] with
the Intel Compiler Collection to take full advantage of the underlying hardware. The Intel Math
Kernel Library was chosen as the BLAS/LAPACK implementation for optimal performance for
all algorithms.

Initial development and debuggingwas done on aLinux-basedworkstation “xrmlite.”Algorithm
composition and tuning for optimal distributed memory performance were carried out on the
cluster “bebop,” while final scaling studies were performed using the supercomputer “theta,”
both at Argonne National Laboratory. The characteristics of these systems are listed in Table 1.
PETSc does not use multi-threading, but benefits from higher memory bandwidth, which is
available on the KNL processor at high process counts. The tiling-based short-distance Fresnel
multislice method prefers the number of ranks per node to be a perfect square, which in this case,
happens to match the maximum number of physical cores. Thus, for tests of all three approaches
on “theta,” we set the CPU affinity to “depth”, used one thread per rank, and one thread per core.
The terminology for the configuration options is given in [67]. We used the balsam workflow
manager [68] to pack multiple jobs for queue submission.

Table 1. Compute systems used and their configuration. The machine “xrmlite” is a
Linux workstation at Northwestern University. The cluster “bebop” is at the

Laboratory Computing Resource Center (LCRC) at Argonne National Laboratory
(with four Northwestern University nodes included), while the cluster “theta” is at the

Argonne Leadership Computing Facility (ALCF) [69,70]. With both “bebop” and
“theta,” we used only a fraction of the large number of available nodes for the strong
scaling studies described in Sec. 6.2. We note that “xrmlite” has two Quadro P5000

GPUs, each connected to the CPU via PCIe3.0.

Compute System Processor Cores/node Memory/node Interconnect

xrmlite 2x Xeon E5-2620 v4 16 512 GB N/A

bebop/LCRC Xeon Phi 7250 68 192 GB Omni-Path Fabric

theta/ALCF Xeon Phi 7230 64 192 GB Aries Dragonfly

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29601

3.1. Full-array Fresnel multislice

The full-array Fresnel multislice algorithm was implemented using the PETSc [28,71] framework
which provides data structures for scalable and efficient linear algebra [72].

The PETSc application programmer interface (API) conceptualizes the fast Fourier transform
(FFT) as a matrix multiplication by an “FFT” matrix, where FFT(x) is a matrix multiply A ∗ x,
but the A matrix is never explicitly constructed. Behind the scenes, the FFT is executed by
the FFTW library [73] on CPUs. This matrix multiply can, however, only be performed on a
specific class of vectors, since FFTW has its own requirements for distribution of data. PETSc
also includes functionality to either create vectors that conform to the FFTW format (with the
correct data distribution and padding), or the ability to scatter data from a regular MPI vector to
a FFT-compatible vector.
We choose the “FFTW format” as the data structure for all of the vectors that are used in

the full-array Fresnel multislice algorithm. This frees us from the tedious task of performing
explicit data restructuring to switch between having the wave be FFTW-aligned and having it be
distributed as a regular array for dot products (corresponding to Eq. (6)). The only downside to
this approach is the poor scalability of distributed memory FFT for a large number of MPI ranks
[40,41].
The above implementation of the multislice algorithm makes it straightforward to carry out

the functions described in Algorithm 1 using the PETSc API.

3.2. Tiling-based short-distance Fresnel multislice

We used a hybrid programming model combining the message-passing interface (MPI) and
multi-threading to implement the tiling-based short-distance Fresnel multislice algorithm. After
propagation, the buffer zone of size Nbuffer on each edge of a wavefield tile is discarded, and the
valid region of the wavefield is written directly into the correct position of the output array. The
output array is stored in an HDF5 file that is accessed in parallel by all ranks. The HDF5 [65]
library was accessed via the Python interface h5Py [74,75]. Distributed memory programming
was done via the mpi4Py package [62,63] which provides Python bindings to the MPI standard.
Fast Fourier transforms (FFTs) were performed using the Intel-processor-optimized package
mkl-fft [76] via its NumPy bindings.

3.3. Finite difference

For the finite difference approach, the TS ODE/DAE [29] integrator library (distributed as part
of PETSc/TAO) provides a wide variety of scalable solvers for ordinary differential equations
(ODEs) and differentiable-algebraic equations (DAEs), obviating the need to write explicit
time integration algorithms. Therefore, we chose to implement the finite difference problem
as a linear time-step (TS) object in PETSc. To manage the distributed memory grid, we used
PETSc’s data-management distributed-array (DMDA) object [28] which is designed for optimal
performance when using logically rectangular grids (it re-orders the memory mapping to suit
typical differential equation solver operations). As mentioned earlier, previous implementations
[23,24] of parabolic wave equation solvers relied on algorithms that were not easily scalable
to distributed parallel compute nodes. PETSc enables using a wide variety of preconditioners
and Krylov solvers which can be tuned to the problem at hand, thus allowing us to design an
algorithm with superior performance and scaling characteristics for parallel computing.
The discretization in space was performed via the central differencing scheme for space

derivatives, and the time integration was performed by the TS object using either a first or
second-order implicit method as dictated by the needs to the problem being solved. Because
our eventual goal is to go from solving the forward propagation problem for a particular object
guess (the forward problem), to solving for the object (the inverse problem), maintaining large
propagation sizes per step is important as this ensures a minimal size of the refractive index

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29602

grid while still accurately modelling the diffraction phenomenon. For this reason, we did not
test explicit methods such as Euler or non-adaptive Runge-Kutta, as these are unstable at large
step sizes. While a one-stage second order implicit method (known as the implicit midpoint
method) gives the same result as a two-stage second order implicit method (with endpoint,
known as Crank-Nicholson), the two-stage method is significantly faster. Therefore, we used the
Crank-Nicholson scheme [52] in PETSc.
We used a GMRES linear solver [77,78] with preconditioning determined by the nature of

diffracting object. When the object has some order to its structure (such as for simulating the
focusing of thick Fresnel zone plates), algebraic multigrid preconditioning [79–81] was used.
When the object of interest is better characterized as being irregular, we observed that an additive
Schwarz preconditioner [82,83] was faster. For elliptic problems, one-level additive Schwarz
methods are known to be non-optimal with increasing problem size (hence one needs multigrid
methods). Depending on the ratio of the time-step size to the subdomain size squared for parabolic
problems, it is possible to show the algorithms are optimal [84]; that is, the coarser level solvers
of multigrid are not needed. This phenomena is similar to the fact one can replace the full-array
Fresnel multislice method with the tiling-based short-distance Fresnel multislice method.

The general idea of multigrid schemes arises from the observation that low frequency residuals
are challenging to eliminate using classical relaxation-based preconditioning schemes. Thus
multigrid preconditioning works by transferring the residual to a coarser grid (where the residual
now contains high frequency components), solving for which gives an estimate for the error
which is then transferred back to the fine grid. Classical geometric multigrid preconditioning [85]
uses interpolation operators based on the grid geometry to generate the coarse grids. However,
algebraic multigrid preconditioning requires no information about the grid, and constructs coarse
grids based on the system of equations being solved [80,81]. The selection of coarse grids
(akin to graph partitioning) and construction of interpolation operators (with a Galerkin process)
together form the “setup” phase. These coarse grids and interpolation operators can be reused
for subsequent applications [80,81] of the preconditioner, thereby amortizing the cost of the
setup phase. Algebraic multigrid preconditioning has been shown to work well for discretized
Helmholtz operators [86].

The general idea of domain decomposition schemes is to split the task of solving the system of
equations (arising from the partial differential equation discretization) from one large domain
into smaller overlapping domains [82,83,87]. These sub-blocks are then solved independently
and these solutions are then iteratively combined. In particular, we used the restricted additive
Schwarz method as a preconditioner, which has been shown to improve performance when
compared to using it as a solver [87].

4. Wavefield convergence metric

In order to numerically compare the step size sensitivity of each method, we measured the
minimum number of slices Nz,min that each method takes to yield a converged result. In the
limit of taking thinner slices (that is, as the number of slices Nz is increased towards Nz,∞),
multislice calculations converge on an exit wave ψd with magnitudes A∞,i and phases φ∞,i at
pixel positions i. However, if one were to calculate convergence using the phase φ∞,i of the exit
wave ψd, one would possibly need to use phase unwrapping from the complex wavefield, which
can be time-consuming and prone to error. The problem can be circumvented by calculating the
root-mean-square (RMS) difference of the complex wavefields. Suppose the magnitude of the
wavefield calculated using Nz steps is An,i at pixel i, while the converged magnitude one would
obtain using an infinite number of infintitessimally thin slices is A∞,i; also, suppose the phases in

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29603

the two cases are φn,i and φ∞,i, respectively. The complex wavefield RMS difference is given by

ξcomplex =

[
1
N

∑
i

[
An,i exp(iφn,i) − A∞,i exp(iφ∞,i)

]2] 1
2

=

[
1
N

∑
i

[
A2
n,i + A

2
∞,i − 2An,iA∞,i cos(|φn,i − φ∞,i |)

]] 1
2

.

(23)

Because phase contrast dominates in hard X-ray imaging, we can assume An,i ' A∞,i ' Ā
everywhere, with Ā ' exp[−k β̄t] using the Lambert-Beer law of I = I0 exp[−2kβt] with the X-ray
refractive index n = 1 − δ − iβ [3], and β̄ indicating the spatial average within the inhomogenous
specimen. Since cos(x) ≈ 1 − x2/2, Eq. (23) reduces to

Ā ξcomplex = Ā
√

1
N

∑
i

[
2 − 2 cos(|φn,i − φ∞,i |)

]
' Ā

√
1
N

∑
i
|φn,i − φ∞,i |2

' Ā ξφ .

(24)

This approximation is illustrated in Fig. 3. Since the RMS phase error ξφ represents the standard
deviation of a Gaussian distribution, the net reduction in the summation of amplitudes from many

Fig. 3. Illustration of the metric for measuring the RMS average Ā ξφ of the magnitude
error at one pixel i between the complex value before convergence (An,i exp[iφn,i]; shown in
blue) and after convergence (A∞,i exp[iφ∞,i]; shown in red). When obtaining a particular
measure of the phase difference φn,i − φ∞,i from a complex value z̃ = A exp[iφ] on the real
(Re) and imaginary (Im) plane, one could obtain erroneous values in the case shown where
the phase before convergence is reported as π − εn,i while the phase after convergence is
reported as −(π − ε∞,i), one would obtain an erroneous phase difference φn,i − φ∞,i of near
2π. Calculating the RMS difference between complex wavefields (Eq. (24)) circumvents this
problem by measuring the end-to-end distance between the red and blue vectors at individual
pixels i, a result that does not require phase wrapping. When the moduli An,i and A∞,i are
similar, the average modulus of the green vector (labeled here as Ā ξφ using Eq. (24)) is
approximately linearly related to the RMS average of Ā |φn,i − φ∞,i | subtended by the blue
and red vectors.

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29604

waves [3,88,89] is given by exp[−ξ2φ/2]. Therefore if we set the requirement

ξφ ≤ (0.05) 2π, (25)

we see that we obtain errors in the unattenuated amplitude (Ā ' 1) of a wave no greater than 4.8%,
since exp[−(0.05(2π))2/2] = 0.952. This is far more stringent than the usual Rayleigh quarter
wave criterion for tolerance of phase errors. We therefore judge convergence by decreasing the
slice thickness ∆z (and thus increasing the number of slices Nz for a given specimen thickness t)
until further decreases in ∆z lead to changes in ξφ of less than (0.05)2π = 0.31 in accordance with
Eq. (25). This gives us a measurement for the number of slices nC required to reach convergence
of

nC = min{n|Ā ξφ(n) ≤ Ā (0.05)2π} (26)

which we will report for various tests of calculating X-ray wave propagation through thick
inhomogeneous media.
For cases where the inhomogeneous object is surrounded by a featureless outer border (such

as is the case for circular zone plates within a rectangular array), the calculation of the RMS
amplitude error ξcomplex ' Ā ξφ shown below will be from the feature-containing region, with
featureless regions excluded.

5. Experiments

Our goal is to understand the characteristics of the full-array Fresnel multislice, tiling-based
short-distance Fresnel multislice, and finite difference methods for propagating large area X-ray
wavefields through thick inhomogeneous media. To do this, we carried out numerical tests using
two different diffracting objects: a Fresnel zone plate thick enough that waveguide effects become
apparent (Sec. 5.1), and a X-ray microtomography reconstruction of a charcoal specimen scaled
to match the conditions of nanoscale imaging (Sec. 5.2). In order to understand the relative
scattering power of these objects, we calculated the object’s RMS phase deviation as

σφ =
2π∆z
λ

[
1

Nx,y

∑
x,y

[∑
z
δ(x, y, z) − δ̄(z)

]2] 1
2

(27)

where δ̄(z) refers to a uniform object with the phase shifting part of the refractive index set to
the weighted mean of the refractive indices of the same slice (with axial coordinate z). For
our calculations, we assumed a photon energy of E = 15 keV (giving λ = 0.0827 nm), and a
transverse calculation grid size or pixel size of ∆x = 2 nm. Assuming that half-period features can
be as small as δres = ∆x, one can use Eq. (1) to find a calculation depth of focus of DOF = 26.0
nm, and Eq. (11) to find that the thickness at which the Klein-Cook parameter becomes Q = 0.5
is given by zK-C = 1.54 nm (so that one can assume scalar diffraction, without waveguide effects,
within one slice thickness). However, one can in fact use larger slice thicknesses ∆z and still meet
our convergence criteria ξφ ≤ 0.05(2π) from Eq. (25), as will be shown below.

5.1. Fresnel zone plate test object

Fresnel zone plates (Fig. 4) are widely used as X-ray nanofocusing optics [3], since they offer
normal incidence mounting and easy energy tunability. For conventional Fresnel zone plates, the
spatial resolution is given by δres = 1.22drN where drN is the width of the outermost, finest zone,
and for gold zone plates at E = 15 keV a thickness along the X-ray beam direction ẑ of about
t = 3 µm is required to achieve focusing efficiencies that can in theory be as high as about 25%.
Since we wish to test the ability of different wave propagation calculation methods to account for
waveguide effects in thick structures, we chose to simulate a zone plate with a finest outermost
zone width of drN = 20 nm and a thickness of t = 30.81 µm, giving a Klein-Cook parameter

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29605

(Eq. (10)) of Q = 10 for the zone width rather than the pixel size. For this zone plate, the depth of
focus DOF corresponding to the spatial resolution of δres = 1.22drN is DOF = 38.7 µm (Eq. (1)),
while the distance over which the zone width would produce a value for the Klein-Cook parameter
of Q = 0.5 is zK-C = 2.3 µm (Eq. (11)). The magnitude of the exit wave for a zone plate averaged
over the central region (≈ 25% side length) is Ā ≈ 0.43 for a plane wave input with a magnitude
of unity. Thus, threshold for convergence (Eq. (24)) for the zone plate test object is

[Ā ξφ]zp = Ā (0.05)2π = 0.135. (28)

Within this central region, the diffractive power (Eq. (27)) was calculated to be σφ = 13.60.

Fig. 4. Fresnel zone plate test object, with a thickness t and a finest zone width of drN . The
beam propagation direction ẑ is also indicated.

Because we wanted to explore the scaling of our calculation with increasing array size (Nx,Ny)

with constant pixel size ∆x = 2 nm, at each array size we generated a zone plate with the above
minimum zone width drN and thickness t, but with a diameter d equal to 80% of the array size,
or d = 0.8Nx∆x. We used partial voxel filling of the zone plate material’s refractive index to
handle the cases where the boundary of a zone plate zone was within a voxel [22]. Since there
is no variation of the zone structure along the direction of propagation ẑ, we only need to store
one two-dimensional array for each (Nx,Ny) array which greatly simplifies storage issues. When
using a plane wave ψs for illumination, we would be able to propagate the exit wave ψd to the
focus position f given by

f =
d · drN
λ

(29)

which we have done in other studies [22,35]. However, for our present purposes, we just wish to
find the minimum number of slices that lead to convergence of the exit wave to approximately
the same value obtained with using a much larger number of slices in the calculation: that is, nC
as described by Eq. (26).

5.2. Porous aluminum test object

As noted above, a Fresnel zone plate provides a structure that can be extended axially to the case
where waveguide effects come into play. However, a zone plate is also a highly regular structure,
whereas more general specimens in X-ray microscopy are quite irregular.

For a test object that more accurately represents objects that are imaged at synchrotron sources,
we used part of an X-ray tomographic reconstruction of an activated charcoal sample acquired in
a previous study [90], and now available as the dataset “activated-charcoal” in TomoBank [91].
This 4 mm diameter specimen was imaged using 25 keV X-rays, with a reconstruction pixel size
of 0.6 µm, resulting in object slices of 6613×6613 pixels, and a total number of 4198 object slices
(or a 6613 × 6613 × 4198 voxel array). We then generated a baseline phantom from a subvolume

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29606

from this array in a manner we now describe (and which is illustrated in Fig. 5). Each object slice
in the original reconstruction had a slight ring artifact near the rotation axis center due to imperfect
alignment of the data on the reconstruction rotation axis, and these rings could have contributed
to a cylindrical waveguide artifact in the final phantom. Therefore, a 2448 × 2448 × 4198 voxel
subregion was selected that did not include this ring artifact. This subregion was then replicated
into a 2 × 2 grid in the plane of the object slices, with pyramid blending [90,92] used at the tile
overlaps, and the outermost 15% of the object slice area blended out to vaccum (that is, to a
specimen density of zero). This resulted in a 4096 × 4096 × 4198 voxel volume, which was then
rotated so that the original tomographic rotation axis became the beam propagation direction.
Since the multislice propagation slice thickness ∆z is usually much larger than the transverse
pixel size ∆x, we then selected 51 tomographic reconstruction object slices (each separated from
its neighbor by 50 slices, out of the center 51 · 50 = 2550 slices in the 4198 slice direction) from
this volume. This way, the selected slices are sufficiently different to avoid waveguide effects.
This yielded a 4096 × 4096 × 51 voxel array, with 4096 × 4096 pixels in the transverse direction
and 51 pixels along the beam propagation direction ẑ. Finally, the “baseline” phantom in our
numerical study is assumed to contain 500 slices of thickness ∆z = 147.46/500 = 0.295 µm
along the beam propagation direction ẑ. This (Nx×Ny×nz) = (4096×4096×500) voxel baselone
object was formed by looping the 51 object slices back and forth (i.e., arranging the slices in the
order 1, 2, . . ., 50, 51, 50, 49, . . ., 2, 1, 2, . . . and its repeat). For convergence tests where Nz was
varied to find nC of Eq. (26) in both Fresnel multislice methods, a smaller number of slices were
obtained by linear interpolation of the baseline object along the propagation direction ẑ, leading
to a modified phantom of 4096 × 4096 × Nz voxels.

Fig. 5. The process used to generate the porous aluminum phantom object (right). A larger
scale tomographic reconstruction of an activated charcoal specimen (left) was used as the
data source. From the 4198 tomographic reconstruction slices of 6613 × 6613 pixels each, a
2448 × 2448 × 51 voxel subregion was selected through all slices to avoid ring artifacts near
the rotation axis. This subregion was then replicated into a 4 × 4 grid in the plane of the
object slices, with pyramid blending used at the tile overlaps and the edges blended out to
vaccum (that is, to a specimen density of zero). The resulting 4096 × 4096 × 51 voxel array
was then rotated so that the original data rotation axis (veritcal, at left) became the beam
propagation direction ẑ in the phantom object at right, after which both the pixel size and the
contrast of the object were modified to yield the porous aluminum phantom object.

The original tomographic reconstruction was acquired using absorption contrast, whereas we
wished to simulate a complex object. Therefore we normalized the absorption map so that it
had a mean occupancy of 1, and multiplied it by the tabulated value [93] of δ + iβ (Eq. (2)) for
aluminum at 15 keV, effectively giving each voxel a different fractional filling with aluminum.
The histogram of the resulting densities shown in Fig. 6 reveals that this led to some pixels
having unphysically high densities (which we realized after our convergence and scaling tests
were complete), but this only serves to make the object have slightly larger refractive properties
with no impact on measuring convergence or calculating speeds of the algorithms tested. We

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29607

also added to each slice 10–20 disk-shaped gold particles with radii ranging from 5 to 20 pixels
(10–40 nm), and a thickness of one slice (or ∆z = 0.295 µm) to create strongly scattering features.
This was accomplished by replacing the δ + iβ of aluminum with that of gold at those positions.
The total object thickness was set to t = 147.5 µm so that the object gave the same diffractive
power σφ = 13.60 (Eq. (27)) as the zone plate object. The object thus created had a magnitude of
its exit wave of A = 0.78 averaged over the central region, leading to a threshold for convergence
(Eq. (24)) of

[Ā ξφ]Al = Ā (0.05)2π = 0.245. (30)

We refer to this test specimen as the porous aluminum phantom.

Fig. 6. Histogram of voxel densities of the porous aluminum test object. By setting the
average occupancy of the charcoal test object to 1 and then multiplying by the refractive
index of aluminum, the porous aluminum test object was inadvertently created with voxel
densities exceeding the actual density of aluminum. This means that the test object was
more strongly refracting than a true aluminum object would be, but this does not affect our
measurement of the convergence or timing properties of the algorithms tested.

6. Results

6.1. Convergence results

Our first test was to compare the convergence of the three algorithms as a function of the number
of slices Nz = t/∆z (Eq. (9)). For this test, we used the porous aluminum test object with thickness
t = 147.5 µm and (4096)2 transverse pixels. The object was re-sampled along the propagation
direction ẑ to vary ∆z and thus Nz. The exit wave was then calculated with the three algorithms
of Sec. 2 and successful convergence was measured using Ā ξφ of Eqs. (24) and (25) using the
value [Ā ξφ]Al = 0.245 of Eq. (30). As seen in Fig. 7, the Fresnel multislice approaches gave
similar values for the minimum number of slices nC = 84 for full-array Fresnel multislice and
nC = 90 for tiling-based short-distance Fresnel multislice. The corresponding maximum slice
thicknesses of ∆z = 1.76 and ∆z = 1.64 µm, respectively, are both well beyond the minimum
pixel value of DOF = 0.026 µm noted above. For the finite-difference algorithm, a much larger
minimum number of slices of nC = 352 was required, corresponding to ∆z = 0.42 µm for this
irregular object.

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29608

Fig. 7. Convergence test for the three algorithms of Sec. 2 using the porous aluminum
test object. For this test, the 40962 transverse subarray of the object was selected, and the
thickness t = 147.5 µm was bilinearly re-sampled onto a variable number of slices Nz. Using
the convergence criterion of Eq. (26) giving a tolerance for this sample of [Ā ξφ]Al = 0.245
(Eq. (30)), the full-array Fresnel multislice approach reached convergence with nC = 84
slices with ∆z = 1.64 µm while the tiling-based short-distance Fresnel multislice approach
required nC = 90 slices with ∆z = 1.64 µm. The finite difference method required nC = 352
slices with ∆z = 0.42 µm for this irregular object.

We also used the porous aluminum object to test the performance of the finite difference
algorithm as a function of the transverse array size Nx × Ny, with results shown in Fig. 8. As the
array size was decreased from 40962 to 5122 transverse pixels, the minimum number of slices
decreased from nC = 352 to nC = 96, with the nC = 96 result corresponding to a slice thickness
of ∆z = 1.54 µm which is more similar to what is required for the Fresnel multislice approaches.
We then tested the three algorithms on the t = 30.81 µm thick Fresnel zone plate test object,

where one would expect to see the finest zone width drN = 20 nm give rise to depth of focus
effects (Eq. (1)) at DOF = 38.7 µm and waveguide effects (Eq. (11)) at zK-C = 2.3 µm. We
tested the convergence of all three algorithms as a function of transverse array size as shown in
Fig. 9, where the zone plate diameter d (and thus focal length f) was adjusted to fill 80% of the
transverse array size in each case. With this highly regular object, the finite difference algorithm
required fewer slices to converge (nC = 8, giving ∆z = 3.85 µm) while the two Fresnel multislice
algorithms required more slices (nC = 21 and ∆z = 1.47 µm for full-array Fresnel multislice,
and nC = 23 and ∆z = 1.34 µm for tiling-based short-distance Fresnel multislice). Since the
finite difference method has been shown to converge quickly in calculations of X-ray waveguides
[23,24], it is not surprising that it performs better with the regular structure of thick zone plates.
All three cases required slice thicknesses that are within a factor of 2 of the Klein-Cook thickness

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29609

Fig. 8. Convergence of the finite difference approach as a function of transverse array
size for the porous aluminum object. As in Fig. 7, the indicated size of transverse array
(ranging from 5122 to 40962 pixels) was extracted from the object, and the total object
thickness t = 147.5 µm was bilinearly sampled along the propagation direction ẑ to vary Nz.
For each array size, the minimum number of slices nC (Eq. (26)) was calculated using the
convergence threshold [Ā ξφ]Al = 0.245 of Eq. (30). As can be seen, the finite difference
method converges more quickly with smaller transverse arrays, reaching nC = 96 (with slice
thickness ∆z = 1.54 µm) at 5122 transverse grid size with this irregular object.

zK-C = 2.3 µm estimated using Eq. (11), and all three cases had convergence properties that did
not depend on the transverse grid size.

6.2. Scaling results

Having established the convergence of each approach, we then considered performance scalings on
parallel computing systems as required for future image reconstruction problems with increasingly
large array sizes. Because of the need to adjust transverse array sizes for these tests, we used the
Fresnel zone plate test object described in Sec. 5.1, where the zone plate diameter was 80% of
the transverse array size. Based on the results shown in Fig. 9, we used nC = 8 slices for the finite
difference approach, nC = 21 for the full-array Fresnel multislice approach, and nC = 23 slices
for the tiling-based short-distance Fresnel multislice approach. We carried out these tests on the
compute system “theta” with properties described in Table 1. The tiling-based short-distance
Fresnel multislice approach requires the number of ranks per node to be a perfect square, so
we were able to use 64 MPI ranks per compute node, matching the number of compute cores
available on each node of “theta.”
The finite difference approach includes a “setup” phase that constructs a new preconditioner

object each time a new calculation size is encountered (for the algebraic multigrid preconditioner,
this involves setting up the coarse grids and interpolation matrices as described in Sec 3). This
preconditioner can then be reused for subsequent applications on the same array size. In our
tests below, a preconditioner was constructed for the first propagation step and used, as is, for
all the following steps. In an optimization context where the time-stepping (TS) object (which

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29610

Fig. 9. Convergence test of the three algorithms for a Fresnel zone plate as a highly regular
test object. In all cases, the zone plate thickness was t = 30.81 µm and the minimum zone
width was drN = 20 nm, but the diameter d (and thus focal length f) of the zone plate
was adjusted to match 80% of the transverse array size for 40962, 163842, and 655362
transverse pixels, respectively. Using the convergence threshold [Ā ξφ]zp = 0.135 (Eq. (28))
for this object to find the minimum number of slices nC (Eq. (26)), all three algorithms had
minimum slice numbers nC that were independent of transverse array size and that were
within a factor of 2 of the thickness zK-C = 2.3 µm (Eq. (11)) at which waveguide effects
would be expected for this specimen. The finite difference method required fewer slices
with nC = 8 and ∆z = 3.85 µm, while the two Fresnel multislice methods required slightly
more slices (nC = 21 and ∆z = 1.47 µm for full-array Fresnel multislice, and nC = 23 and
∆z = 1.34 µm for tiling-based short-distance Fresnel multislice).

handles the time integration, as described in Sec 3) is re-used, this setup cost would amount to a
negligible amount of total runtime.
Our first test was to look at the total computation time for a fixed transverse array size of

327682 pixels while increasing the number of computational nodes used. In the case of 100%
parallel computing efficiency, this so-called “strong scaling” test would be carried out in the time
it takes one node to do the entire problem divided by the number of nodes used. As seen in
Fig. 10, the full-array Fresnel multislice approach shows only a modest decrease in compute time
when more nodes are used, until at 64 nodes and above the calculation time begins to increase,
rather than decrease. The “strong scaling” details shown in Fig. 11 show why: the time for doing
a fast Fourier transform (FFT) increases with these many nodes as internode communication
speed limits outweigh the gains offered by using more cores when carrying out FFTs on large
arrays. Because the tiling-based short-distance Fresnel multislice approach gives each node a
subarray to work on with communication only at the calculation start (when each node is given
its data) and end (when the full exit wave is assembled), it has improved scaling properties
especially in terms of FFT time as shown in the bottom row of Fig. 11. The finite difference
method implemented using PETSc takes a longer time even though a smaller number of slices
nC are required (Fig. 9), but using more nodes for the same problem gives a more rapid relative
decrease in calculation time (that is, better “strong scaling”) until there is no further gain when
using more than about 100 nodes for this problem size.

Because our ultimate goal is to use parallel computing to calculate X-ray propagation through
increasingly large objects, our next test was to consider array sizes that scaled up with increasing
numbers of nodes used. Based on the observation in Figs. 10 and 11 that FFT performance
decreases when each node is required to work with array sizes smaller than 40962, we used an
array size of (4096

√
Nnodes)

2 in this “weak scaling” test. We increased the number of nodes
Nnodes by factors of 4 (1, 4, 16, . . .) for the full-array Fresnel multislice method in order to have
radix-2 array sizes, and also for the finite difference method; since the tiling-based short-distance

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29611

Fig. 10. Time for calculating the exit wave from the zone plate test object as a function of
the number of nodes used. This “strong scaling” test was done with a constant transverse
grid size of Nx × Ny = 327682 pixels on the computational cluster “theta” (see Table 1), and
using the number of slices nC each algorithm required for convergence to the error tolerance
[Ā ξφ]zp of Eq. (28) (the resulting values of nC were consistently within 1 or 2 slices of
the values shown in Fig. 9). While the finite difference method takes the longest amount
of time with a small number of nodes, it benefits the most from increased parallelization
so that the calculation time drops significantly by the time 128 nodes are employed. The
full-array Fresnel multislice method shows only a modest time decrease as more nodes are
employed, until at 64 nodes the calculation time begins to increase due to the requirement for
considerable data communication between nodes. Because the tiling-based short-distance
Fresnel multislice approach allows each node to proceed through to the exit wave plane
before inter-node communication is again required, it takes the least time but after 64 nodes
one again sees a slight increase in calculation time if additional nodes are used. Note that 64
nodes corresponds to a transverse array size of 40962 pixels per node. Further details on this
“strong scaling” test are provided in Fig. 11.

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29612

Fig. 11. Further details on the “strong scaling” test results shown in Fig. 10. These tests
were of the zone plate test object on a Nx × Ny = 327682 pixel transverse grid. For each of
the three calculation methods, we show at top the speedup versus the number of nodes used
(with a a linear “perfect scaling” trend showing up as a curved line on this log-linear plot).
This shows that the finite difference method has the best scaling to calculation speedup with
increased number of nodes. At bottom we show the time required for key operations in
the various methods: the time required for a fast Fourier transform (FFT) in the full-array
Fresnel multislice and tiling-based short-distance Fresnel multislice methods, and the time
for problem setup and then problem solution for the finite difference method. With the
full-array FFT approach, the advantage of having more processors is outweighed by data
communication overhead when 64 or more nodes are used.

Fresnel multislice approach requires splitting a large transverse array into an integer number
of tiles in each direction, for that method, we increased Nnodes by a series of perfect squares
(12, 22, 32, . . .). As shown in Fig. 12, the total compute time for the full-array Fresnel multislice
approach increases dramatically when the transverse array size goes beyond Nx × Ny = 327682,
with Fig. 13 making it clear that this is due to the time of calculating the FFT of a single large array
with lots of internode data communication. The tiling-based short-distance Fresnel multislice
approach is the fastest in this test, with the FFT time essentially unaffected by overall transverse
array size as shown in Fig. 13; this is as expected given that in this approach each node works
only on its local “tile” of the larger array. Once again, the finite difference approach is slower
than the tiling-based short-distance Fresnel multislice approach, but it also shows more favorable
scaling efficiency with larger problem size as shown in Fig. 13.

While the largest transverse array size used in the scaling tests described above was Nx × Ny =

655362, we also carried out one calculation using the tiling-based short-distance Fresnel multislice
approach on a 1310722 pixel array. This was done on “theta” using 256 nodes and 64 ranks
per node. This calculation took 12 seconds for data reading and tile division, 99 seconds for

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29613

Fig. 12. Time for calculating the exit wave for the zone plate test object as a function of
increasing the transverse array size along with the number of nodes, with each node given a
transverse grid size of Nx × Ny = 40962 (leading to a net array size of 655362 for 256 nodes,
as indicated just below the top of the plot). For each algorithm, the number of slices nC
was as required for convergence to the error tolerance [Ā ξφ]zp of Eq. (28), giving values
of nC that were in all cases within 1 or 2 slices of the values shown in Fig. 9. This “weak
scaling” test shows that both the finite difference and tiling-based short-distance Fresnel
multislice approaches scale well as the problem size increases with the number of nodes
used, consistent with the “strong scaling” test results of Fig. 10. With the full-array Fresnel
multislice approach, the time required for data communication between nodes for full-array
FFTs means that even with many nodes available large problems require considerably more
time to compute.

writing the array out to an HDF5 file, and 25 seconds for a series of nC = 22 slices, or about 1.1
seconds per slice. Recognizing that the scale of compute power available from “theta” makes this
a completely unfair comparison, this is much faster than the 3.6 minute calculation time reported
for the equivalent of 1 slice on a standard workstation [27]. We also carried out a tiling-based
short-distance Fresnel multislice calculation on a 40962 zone plate test object broken into four
tiles, with these tiles divided between two graphical processing units (GPUs) on the compute
server “xrmlite” (Table 1). In this case, it took 3.68 seconds for CPU–GPU communication,
and 0.14 seconds for the FFT calculation, confirming the benefits of GPU based parallelism for
FFTs (as expected [94]). Therefore, distributed GPU parallelism is a viable approach for the
tiling-based short-distance Fresnel multislice algorithm when the tiles fit in GPU memory.

While the main components of PDE solvers involve sparse linear algebra that are also memory-
bound due to their low arithmetic intensity [28], optimal design and implementation of solvers for
good performance on GPUs [95] remains a challenge that is being currently addressed [96,97].
In particular PETSc’s algebraic multigrd (GAMG) can execute the solve phase entirely on the
GPUs and there is ongoing development on performing the setup phase on the GPUs as well

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29614

Fig. 13. Further details on the “weak scaling” test results shown in Fig. 12. These tests were
of the zone plate test object with a constant array size of Nx × Ny = 40962 per node, leading
to a net array size of 655362 for 256 nodes. The top row shows the scaling efficiency for each
of the three algorithms, which is the completion time compared to the 1 node result divided
by the number of nodes used. The bottom row shows the time for key operations in each
method: a fast Fourier transform or FFT for the Fresnel multislice approaches, and problem
setup and solution for the finite difference method. As can be seen, the full-array Fresnel
multislice approach has especially poor “weak scaling” performance due to the need for
internode communcation at each slice position, while the tiling-based short-distance Fresnel
multislice approach offers better parallel performance. The finite difference approach takes
a longer time, but with less of a decrease in efficiency for larger transverse array size.

[97]. These performance benefits are passed onto users and do not require changes to application
codes. Thus, we note that our finite difference solver will be able to use GPU parallelism when
available with minimal code changes.

7. Conclusion

To reach the full potential of X-ray microscopy of combining high penetration in thick samples
with nanoscale spatial resolution, it will become necessary to compute wave propagation through
inhomogeneous media with a very large array size. This can be used both for calculating the
performance of X-ray focusing optics, and also for creating a forward model that can be used for
image reconstruction using numerical optimization approaches.
Two approaches used thus far in X-ray microscopy are the finite difference method [23,24],

and the Fresnel multislice method [18–22]. We have implemented the finite difference method
using the PETSc package [28,29], which offers efficient scaling on distributed memory compute
systems. For the Fresnel multislice approach, we have used the fast Fourier transform interfaces
built into PETSc for the full-array Fresnel multislice algorithm. We have also used mpi4py to
implemented a parallelized version of the tiling-based short-distance Fresnel multislice approach

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29615

that has been developed first for digital holography [27]. All three algorithms can compute
moderately large transverse array problems in a reasonable time. In contrast to multislice
methods, the finite difference approach requires fewer slices nC for convergence when applied to
the highly-regular, strong-waveguide-effect zone plate test object (Fig. 9), with more slices, nC
required for the irregular porous aluminum test object. Additionally, for an irregular object, the
finite difference approach requires fewer slices to convergence at larger pixel sizes (Fig. 8), which
is opposite to the behavior of full-array Fresnel multislice approach. This behavior of the finite
difference approach could be used for robust reconstructions at downsampled resolutions.
With the full-array Fresnel multislice approach, one begins to suffer from internode com-

munication bottlenecks at array sizes of Nx × Ny = 327682 on the compute cluster “theta”
described in Table 1. The finite difference method and the tiling-based short-distance Fresnel
multislice approach offer much better scaling to large array sizes, as shown in Figs. 12 and
13, with the latter approach requiring roughly a third less compute time. We have also tested
the tiling-based short-distance Fresnel multislice approach on array sizes as large as 1310722
with good results. Together, these approaches show that parallelized software packages on high
performance compute clusters allow one to calculate X-ray wave propagation in inhomogeneous
media with reasonable execution times for very large array sizes. The combination of advances
in bright X-ray sources [1] and in high performance computing therefore makes it possible to
contemplate nanoscale X-ray imaging of macro-sized objects. The methods tested here show
that the forward problem of simulating the exit wave for a guess of the object is computationally
tractable, allowing for its use in an optimization approach for object reconstruction.

Funding

Basic Energy Sciences (DE-AC02-06CH11357); Advanced Scientific Computing Research
(DE-AC02-06CH11357); National Institute of Mental Health (R01MH115265).

Acknowledgments

We thank Tim Salditt and Jacob Soltau for helpful discussions regarding the finite difference
method. We thank Hong Zhang for programming advice and bug fixes for linear TS solver, and
PETSc developers on the petsc-users mailing list for general guidance. We also thank Ed Bueler
for providing a preprint of the forthcoming book “PETSc for Partial Differential Equations.” We
also thank Argonne Leadership Computing Facility staff for help with optimizing the performance
of the algorithms, including but not limited to Sudheer Chunduri for MPI tuning, and Kevin
Harms and Taylor Childers for I/O tuning.

Disclosures

The authors declare no conflicts of interest.

References
1. M. Eriksson, J. F. van der Veen, and C. Quitmann, “Diffraction-limited storage rings – a window to the science of

tomorrow,” J. Synchrotron Radiat. 21(5), 837–842 (2014).
2. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999), seventh ed.
3. C. Jacobsen, X-ray Microscopy (Cambridge University Press, Cambridge, 2020).
4. W. Van den Broek and C. T. Koch, “Method for retrieval of the three-dimensional object potential by inversion of

dynamical electron scattering,” Phys. Rev. Lett. 109(24), 245502 (2012).
5. D. Ren, C. Ophus, M. Chen, and L. Waller, “A multiple scattering algorithm for three dimensional phase contrast

atomic electron tomography,” Ultramicroscopy 208, 112860 (2020).
6. A. M. Maiden, M. J. Humphry, and J. M. Rodenburg, “Ptychographic transmission microscopy in three dimensions

using a multi-slice approach,” J. Opt. Soc. Am. A 29(8), 1606–1614 (2012).
7. U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach

to optical tomography,” Optica 2(6), 517–522 (2015).

https://doi.org/10.1107/S1600577514019286
https://doi.org/10.1103/PhysRevLett.109.245502
https://doi.org/10.1016/j.ultramic.2019.112860
https://doi.org/10.1364/JOSAA.29.001606
https://doi.org/10.1364/OPTICA.2.000517

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29616

8. U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic
image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comput. Imaging 2(1),
59–70 (2016).

9. A. Suzuki, S. Furutaku, K. Shimomura, K. Yamauchi, Y. Kohmura, T. Ishikawa, and Y. Takahashi, “High-resolution
multislice x-ray ptychography of extended thick objects,” Phys. Rev. Lett. 112(5), 053903 (2014).

10. E. H. R. Tsai, I. Usov, A. Diaz, A. Menzel, and M. Guizar-Sicairos, “X-ray ptychography with extended depth of
field,” Opt. Express 24(25), 29089–29108 (2016).

11. M. A. Gilles, Y. S. G. Nashed, M. Du, C. Jacobsen, and S. M. Wild, “3D x-ray imaging of continuous objects beyond
the depth of focus limit,” Optica 5(9), 1078–1086 (2018).

12. M. Du, Y. S. G. Nashed, S. Kandel, D. Gürsoy, and C. Jacobsen, “Three dimensions, two microscopes, one code:
Automatic differentiation for x-ray nanotomography beyond the depth of focus limit,” Sci. Adv. 6(13), eaay3700
(2020).

13. J. M. Cowley and A. F. Moodie, “The scattering of electrons by atoms and crystals. I. A new theoretical approach,”
Acta Crystallogr. 10(10), 609–619 (1957).

14. K. Ishizuka and N. Uyeda, “A new theoretical and practical approach to the multislice method,” Acta Crystallographica
A 33(5), 740–749 (1977).

15. J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc.
Am. 71(7), 803–810 (1981).

16. J. Deng, Y. P. Hong, S. Chen, Y. S. G. Nashed, T. Peterka, A. J. F. Levi, J. Damoulakis, S. Saha, T. Eiles, and C.
Jacobsen, “Nanoscale x-ray imaging of circuit features without wafer etching,” Phys. Rev. B 95(10), 104111 (2017).

17. J. Deng, C. A. Preissner, J. A. Klug, S. Mashrafi, C. Roehrig, Y. Jiang, Y. Yao, M. J. Wojcik, M. D. Wyman, D. J.
Vine, K. Yue, S. Chen, T. Mooney, M. Wang, Z. Feng, D. Jin, Z. Cai, B. P. Lai, and S. Vogt, “The Velociprobe: An
ultrafast hard x-ray nanoprobe for high-resolution ptychographic imaging,” Rev. Sci. Instrum. 90(8), 083701 (2019).

18. A. R. Hare and G. R. Morrison, “Near-field soft X-ray diffraction modelled by the multislice method,” J. Mod. Opt.
41(1), 31–48 (1994).

19. Y. V. Kopylov, A. V. Popov, and A. V. Vinogradov, “Diffraction phenomena inside thick Fresnel zone plates,” Radio
Sci. 31(6), 1815–1822 (1996).

20. Y. Wang and Jacobsen, “A numerical study of resolution and contrast in soft x-ray contact microscopy,” J. Microsc.
191(2), 159–169 (1998).

21. H. Yan, “X-ray nanofocusing by kinoform lenses: A comparative study using different modeling approaches,” Phys.
Rev. B 81(7), 075402 (2010).

22. K. Li, M. Wojcik, and C. Jacobsen, “Multislice does it all: calculating the performance of nanofocusing x-ray optics,”
Opt. Express 25(3), 1831–1846 (2017).

23. C. Fuhse and T. Salditt, “Finite-difference field calculations for two-dimensionally confined x-ray waveguides,” Appl.
Opt. 45(19), 4603–4608 (2006).

24. L. Melchior and T. Salditt, “Finite difference methods for stationary and time-dependent x-ray propagation,” Opt.
Express 25(25), 32090–32109 (2017).

25. R. Scarmozzino and R. M. Osgood Jr., “Comparison of finite-difference and Fourier-transform solutions of the
parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A 8(5), 724–731 (1991).

26. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron.
26(8), 1335–1339 (1990).

27. D. Blinder and T. Shimobaba, “Efficient algorithms for the accurate propagation of extreme-resolution holograms,”
Opt. Express 27(21), 29905–29915 (2019).

28. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcín, A. Dener, V. Eijkhout, W. D.
Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P.
Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc users manual,” Tech. Rep. ANL-95/11 - Revision
3.11, Argonne National Laboratory (2019).

29. S. Abhyankar, J. Brown, E. M. Constantinescu, D. Ghosh, B. F. Smith, and H. Zhang, “PETSc/TS: a modern scalable
ODE/DAE solver library,” arXiv:1806.01437 (2018).

30. T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N.
Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation
holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).

31. C. Zimmer, S. Atchley, R. Pankajakshan, B. E. Smith, I. Karlin, M. L. Leininger, A. Bertsch, B. S. Ryujin, J. Burmark,
A. Walker-Loud, M. A. Clark, and O. Pearce, “An evaluation of the CORAL interconnects,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, (Association for
Computing Machinery, New York, NY, USA, 2019), SC ’19.

32. D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata, R. E. Grant, T. Naughton, H. P. Pritchard, M. Schulz,
and G. R. Vallee, “A survey of MPI usage in the US exascale computing project,” Concurrency Computat. Pract.
Exper. 32(3), e4851 (2020).

33. D. Attwood and A. Sakdinawat, X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, Cambridge,
2017), 2nd ed.

34. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and
reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).

https://doi.org/10.1109/TCI.2016.2519261
https://doi.org/10.1103/PhysRevLett.112.053903
https://doi.org/10.1364/OE.24.029089
https://doi.org/10.1364/OPTICA.5.001078
https://doi.org/10.1126/sciadv.aay3700
https://doi.org/10.1107/S0365110X57002194
https://doi.org/10.1107/S0567739477001879
https://doi.org/10.1107/S0567739477001879
https://doi.org/10.1364/JOSA.71.000803
https://doi.org/10.1364/JOSA.71.000803
https://doi.org/10.1103/PhysRevB.95.104111
https://doi.org/10.1063/1.5103173
https://doi.org/10.1080/09500349414550061
https://doi.org/10.1029/96RS01939
https://doi.org/10.1029/96RS01939
https://doi.org/10.1046/j.1365-2818.1998.00353.x
https://doi.org/10.1103/PhysRevB.81.075402
https://doi.org/10.1103/PhysRevB.81.075402
https://doi.org/10.1364/OE.25.001831
https://doi.org/10.1364/AO.45.004603
https://doi.org/10.1364/AO.45.004603
https://doi.org/10.1364/OE.25.032090
https://doi.org/10.1364/OE.25.032090
https://doi.org/10.1364/JOSAA.8.000724
https://doi.org/10.1109/3.59679
https://doi.org/10.1364/OE.27.029905
https://doi.org/10.1038/s41928-018-0057-5
https://doi.org/10.1002/cpe.4851
https://doi.org/10.1002/cpe.4851
https://doi.org/10.1006/adnd.1993.1013

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29617

35. K. Li and C. Jacobsen, “More are better, but the details matter: combinations of multiple Fresnel zone plates for
improved resolution and efficiency in x-ray microscopy,” J. Synchrotron Radiat. 25(4), 1048–1059 (2018).

36. M. Chen, D. Ren, H.-Y. Liu, S. Chowdhury, and L. Waller, “Multi-layer Born multiple-scattering model for 3D phase
microscopy,” Optica 7(5), 394–403 (2020).

37. J. W. Goodman, Introduction to Fourier optics (W.H. Freeman, 2017).
38. K. Li and C. Jacobsen, “Rapid calculation of paraxial wave propagation for cylindrically symmetric optics,” J. Opt.

Soc. Am. A 32(11), 2074–2081 (2015).
39. W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14(3),

123–134 (1967).
40. F. Franchetti, D. G. Spampinato, A. Kulkarni, D. Thom Popovici, T. M. Low, M. Franusich, A. Canning, P.

McCorquodale, B. V. Straalen, and P. Colella, “FFTX and SpectralPack: A first look,” in 2018 IEEE 25th
International Conference on High Performance Computing Workshops (HiPCW), (2018), pp. 18–27.

41. D. Takahashi, “Implementation of parallel FFTs on cluster of Intel Xeon Phi processors,” (2018). SIAM-PP-2018.
42. D. Takahashi, Parallel FFT Algorithms for Distributed-Memory Parallel Computers (Springer Singapore, 2019), pp.

77–112.
43. H. Ibeid, L. Olson, and W. Gropp, “FFT, FMM, and multigrid on the road to exascale: Performance challenges and

opportunities,” J. Parallel Distr. Com. 136, 63–74 (2020).
44. H. Yoshikawa, “Fast computation of Fresnel holograms employing difference,” Opt. Rev. 8(5), 331–335 (2001).
45. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with

wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
46. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1976), 4th ed.
47. V. A. Fock, Electromagnetic diffraction and propagation problems (Pergamon, Oxford, UK, 1995).
48. S. N. Vlasov and V. I. Talanov, “The parabolic equation in the theory of wave propagation,” Radiophys. Quantum

Electron. 38(1-2), 1–12 (1996).
49. Y. V. Kopylov, A. V. Popov, and A. V. Vinogradov, “Application of the parabolic wave equation to x-ray diffraction

optics,” Opt. Commun. 118(5-6), 619–636 (1995).
50. O. G. Ernst and M. J. Gander, “Why it is difficult to solve Helmholtz problems with classical iterative methods,” in

Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds. (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012), pp. 325–363.

51. J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods (Springer New York, 1995).
52. J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations

of the heat-conduction type,” Math. Proc. Cambridge Philos. Soc. 43(1), 50–67 (1947).
53. D. W. Peaceman and H. H. Rachford Jr., “The numerical solution of parabolic and elliptic differential equations,” J.

Soc. Ind. Appl. Math. 3(1), 28–41 (1955).
54. Y. Saad and H. A. van der Vorst, “Iterative solution of linear systems in the 20th century,” J. Comput. Appl. Math.

123(1-2), 1–33 (2000). Numerical Analysis 2000. Vol. III: Linear Algebra.
55. P. E. Farrell, D. A. Ham, S. W. Funke, and M. E. Rognes, “Automated derivation of the adjoint of high-level transient

finite element programs,” SIAM J. Sci. Comput. 35(4), C369–C393 (2013).
56. H. Zhang, E. M. Constantinescu, and B. F. Smith, “PETSc TSAdjoint: a discrete adjoint ODE solver for first-order

and second-order sensitivity analysis,” arxiv:1912.07696 (2019).
57. A. Griewank and A. Walther, Evaluating Derivatives (Society for Industrial and Applied Mathematics, 2008), 2nd ed.
58. U. Naumann, The Art of Differentiating Computer Programs (Society for Industrial and Applied Mathematics, 2011).
59. S. Ali, https://github.com/s-sajid-ali/xwp_petsc.
60. M. P. I. Forum, “A message-passing interface standard, version 3.1,” https://www.mpi-forum.org/docs/mpi-3.1/mpi31-

report.pdf.
61. M. Du, https://github.com/mdw771/beyond_dof.
62. L. Dalcín, R. Paz, and M. Storti, “MPI for Python,” J. Parallel Distr. Com. 65(9), 1108–1115 (2005).
63. L. Dalcín, R. Paz, M. Storti, and J. D’Elía, “MPI for Python: Performance improvements and MPI-2 extensions,” J.

Parallel Distr. Com. 68(5), 655–662 (2008).
64. T. E. Oliphant, “Python for scientific computing,” Comput. Sci. Eng. 9(3), 10–20 (2007).
65. The HDF Group, “Hierarchical Data Format, version 5,” http://www.hdfgroup.org/HDF5/ (1997–2019).
66. T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski, and S. Futral, “The Spack

package manager: bringing order to HPC software chaos,” in SC15: International Conference for High-Performance
Computing, Networking, Storage and Analysis, (IEEE Computer Society, Los Alamitos, CA, USA, 2015), pp. 1–12.

67. A. L. C. Facility, “Affinity on theta,” https://www.alcf.anl.gov/support-center/theta/affinity-theta.
68. M. A. Salim, T. D. Uran, J. T. Childers, P. Balaprakash, V. Vishwanath, and M. E. Papka, “Balsam: Automated

scheduling and execution of dynamic, data-intensive HPC workflows,” arxiv:1909.08704 (2019).
69. A. L. C. Facility, “Theta machine overview,” https://www.alcf.anl.gov/support-center/theta/theta-machine-overview.
70. K. Harms, T. Leggett, B. Allen, S. Coghlan, M. Fahey, C. Holohan, G. McPheeters, and P. Rich, “Theta: Rapid

installation and acceptance of an XC40 KNL system,” Concurrency Computat. Pract. Exper. 30(1), e4336 (2018).
71. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcín, A. Dener, V. Eijkhout, W. D.

Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P.
Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc Web page,” https://www.mcs.anl.gov/petsc (2019).

https://doi.org/10.1107/S1600577518007208
https://doi.org/10.1364/OPTICA.383030
https://doi.org/10.1364/JOSAA.32.002074
https://doi.org/10.1364/JOSAA.32.002074
https://doi.org/10.1109/T-SU.1967.29423
https://doi.org/10.1016/j.jpdc.2019.09.014
https://doi.org/10.1007/s10043-001-0331-y
https://doi.org/10.1364/OL.34.003133
https://doi.org/10.1007/BF01051853
https://doi.org/10.1007/BF01051853
https://doi.org/10.1016/0030-4018(95)00295-J
https://doi.org/10.1017/S0305004100023197
https://doi.org/10.1137/0103003
https://doi.org/10.1137/0103003
https://doi.org/10.1016/S0377-0427(00)00412-X
https://doi.org/10.1137/120873558
https://github.com/s-sajid-ali/xwp_petsc
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://github.com/mdw771/beyond_dof
https://doi.org/10.1016/j.jpdc.2005.03.010
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1109/MCSE.2007.58
http://www.hdfgroup.org/HDF5/
https://www.alcf.anl.gov/support-center/theta/affinity-theta
https://www.alcf.anl.gov/support-center/theta/theta-machine-overview
https://doi.org/10.1002/cpe.4336
https://www.mcs.anl.gov/petsc

Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29618

72. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management of parallelism in object oriented
numerical software libraries,” in Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P.
Langtangen, eds. (Birkhäuser Press, 1997), pp. 163–202.

73. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
Special issue on “Program Generation, Optimization, and Platform Adaptation”.

74. A. Collette, “HDF5 for Python,” (2008).
75. “HDF5 for Python, https://www.h5py.org/.
76. O. Pavlyk, D. Nagorny, A. Guzman-Ballen, A. Malakhov, H. Liu, E. Totoni, T. A. Anderson, and S. Maidanov,

“Accelerating scientific Python with Intel optimizations,” in Proceedings of the 16th Python in Science Conference,
K. Huff, D. Lippa, D. Niederhut, and M. Pacer, eds. (2017), pp. 106–112.

77. Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems,” SIAM J. Sci. and Stat. Comput. 7(3), 856–869 (1986).

78. Y. Saad, “A flexible inner-outer preconditioned GMRES algorithm,” SIAM J. Sci. Comput. 14(2), 461–469 (1993).
79. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial: Second Edition, Other Titles in Applied

Mathematics (Society for Industrial and Applied Mathematics, 2000).
80. K. Stüben, “A review of algebraic multigrid,” J. Comput. Appl. Math. 128(1-2), 281–309 (2001). Numerical Analysis

2000. Vol. VII: Partial Differential Equations.
81. U. M. Yang, “Parallel algebraic multigrid methods — high performance preconditioners,” in Numerical Solution of

Partial Differential Equations on Parallel Computers, A. M. Bruaset and A. Tveito, eds. (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006), pp. 209–236.

82. O. Widlund and M. Dryja, An additive variant of the Schwarz alternating method for the case of many subregions,
Technical Report 339, Ultracomputer Note 131 (Department of Computer Science, Courant Institute, 1987).

83. B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain decomposition: parallel multilevel methods for elliptic partial
differential equations (Cambridge University Press, Cambridge, UK, 1996).

84. X.-C. Cai, “Additive Schwarz algorithms for parabolic convection-diffusion equations,” Numer. Math. 60(1), 41–61
(1991).

85. F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde, “Parallel geometric multigrid,” in Numerical Solution of
Partial Differential Equations on Parallel Computers, A. M. Bruaset and A. Tveito, eds. (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006), pp. 165–208.

86. M. F. Adams, “Algebraic multigrid methods for direct frequency response analyses in solid mechanics,” Comput.
Mech. 39(4), 497–507 (2007).

87. M. J. Gander, “Schwarz methods over the course of time,” Electronic Transactions on Numerical Analysis 31,
228–255 (2008).

88. A. Maréchal, “Étude des effects combinés de la diffraction et des aberrations géométriques sur l’image d’un point
lumineux,” Revue D’Optique Théorique et Instrumentale 26, 257–277 (1947).

89. J. Ruze, “The effect of aperture errors on the antenna radiation pattern,” Nuovo Cimento 9(S3), 364–380 (1952).
90. R. F. C. Vescovi, M. Du, V. De Andrade, W. Scullin, D. Gürsoy, and C. Jacobsen, “Tomosaic: efficient acquisition

and reconstruction of teravoxel tomography data using limited-size synchrotron x-ray beams,” J. Synchrotron Rad.
25(5), 1478–1489 (2018).

91. F. De Carlo, D. Gürsoy, D. J. Ching, K. J. Batenburg, W. Ludwig, L. Mancini, F. Marone, R. Mokso, D. M. Pelt, J.
Sijbers, and M. Rivers, “TomoBank: a tomographic data repository for computational x-ray science,” Meas. Sci.
Technol. 29(3), 034004 (2018).

92. E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. . Burt, and J. M. Ogden, “Pyramid methods in image processing,”
RCA Engineer 29, 33–41 (1984).

93. T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. A. Solé, C. Ferrero, and L. Vincze, “The xraylib
library for x-ray–matter interactions. Recent developments,” Spectrochim. Acta, Part B 66(11-12), 776–784 (2011).

94. P. Steinbach andM.Werner, “gearshifft – the FFT benchmark suite for heterogeneous platforms,” inHigh Performance
Computing J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, eds. (Springer International Publishing, Cham, 2017),
pp. 199–216.

95. H. Anzt, E. Boman, R. Falgout, P. Ghysels, M. Heroux, X. Li, L. Curfman McInnes, R. Tran Mills, S. Rajamanickam,
K. Rupp, B. Smith, I. Yamazaki, and U. Meier Yang, “Preparing sparse solvers for exascale computing,” Phil. Trans.
R. Soc. A 378(2166), 20190053 (2020).

96. R. T. Mills, “Progress with PETSc on manycore and GPU-based systems on the path to exascale,”
https://www.mcs.anl.gov/petsc/meetings/2019/slides/mills-petsc-2019.pdf.

97. B. Smith, R. T. Mills, T. Munson, S. Wild, M. Adams, S. Balay, G. Betrie, J. Brown, A. Dener, S. Hudson, M. Knepley,
J. Larson, O. Marin, H. Morgan, J.-L. Navarrow, K. Rupp, P. Sanan, H. Zhang, H. Zhang, and J. Zhang, “Recent
PETSc/TAO enhancements for exascale,” https://ecpannualmeeting.com/assets/overview/posters/petsc-ecp2020-
poster.pdf.

https://doi.org/10.1109/JPROC.2004.840301
https://www.h5py.org/
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0914028
https://doi.org/10.1016/S0377-0427(00)00516-1
https://doi.org/10.1007/BF01385713
https://doi.org/10.1007/s00466-006-0047-8
https://doi.org/10.1007/s00466-006-0047-8
https://doi.org/10.1007/BF02903409
https://doi.org/10.1107/S1600577518010093
https://doi.org/10.1088/1361-6501/aa9c19
https://doi.org/10.1088/1361-6501/aa9c19
https://doi.org/10.1016/j.sab.2011.09.011
https://doi.org/10.1098/rsta.2019.0053
https://doi.org/10.1098/rsta.2019.0053
https://www.mcs.anl.gov/petsc/meetings/2019/slides/mills-petsc-2019.pdf
https://ecpannualmeeting.com/assets/overview/posters/petsc-ecp2020-poster.pdf
https://ecpannualmeeting.com/assets/overview/posters/petsc-ecp2020-poster.pdf

