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Neurobiology of Disease

Nonsinusoidal Beta Oscillations Reflect Cortical
Pathophysiology in Parkinson’s Disease

X Scott R. Cole,1 Roemer van der Meij,2 Erik J. Peterson,2 Coralie de Hemptinne,5 X Philip A. Starr,5

and X Bradley Voytek1,2,3,4

1Neurosciences Graduate Program, 2Department of Cognitive Science, 3Institute for Neural Computation, and 4Kavli Institute for Brain and Mind,
University of California–San Diego, La Jolla, California 92093, and 5Department of Neurological Surgery, University of California–San Francisco,
San Francisco, California 94143

Oscillations in neural activity play a critical role in neural computation and communication. There is intriguing new evidence that the
nonsinusoidal features of the oscillatory waveforms may inform underlying physiological and pathophysiological characteristics. Time-
domain waveform analysis approaches stand in contrast to traditional Fourier-based methods, which alter or destroy subtle waveform
features. Recently, it has been shown that the waveform features of oscillatory beta (13–30 Hz) events, a prominent motor cortical oscillation,
may reflect near-synchronous excitatory synaptic inputs onto cortical pyramidal neurons. Here we analyze data from invasive human primary
motor cortex (M1) recordings from patients with Parkinson’s disease (PD) implanted with a deep brain stimulator (DBS) to test the hypothesis
that the beta waveform becomes less sharp with DBS, suggesting that M1 input synchrony may be decreased. We find that, in PD, M1 beta
oscillations have sharp, asymmetric, nonsinusoidal features, specifically asymmetries in the ratio between the sharpness of the beta peaks
compared with the troughs. This waveform feature is nearly perfectly correlated with beta-high gamma phase-amplitude coupling (r � 0.94), a
neural index previously shown to track PD-related motor deficit. Our results suggest that the pathophysiological beta generator is altered
by DBS, smoothing out the beta waveform. This has implications not only for the interpretation of the physiological mechanism by which
DBS reduces PD-related motor symptoms, but more broadly for our analytic toolkit in general. That is, the often-overlooked time-domain
features of oscillatory waveforms may carry critical physiological information about neural processes and dynamics.

Key words: beta; motor cortex; oscillation; Parkinson’s disease; phase-amplitude coupling; waveform

Introduction
Oscillatory activity is abundant in electrophysiological record-
ings in a variety of species, brain regions, and spatial scales (Engel

et al., 2001; Buzsáki and Draguhn, 2004; Schnitzler and Gross,
2005; Buzsáki, 2006). These neural oscillations are critical for
efficient communication within and across brain structures
(Fries, 2005, 2015; Voytek and Knight, 2015). The vast majority
of research examining the relationship between neural oscilla-
tions and cognition or disease uses Fourier-based methods to
filter the signals into semiarbitrary frequency bands of interest.
Although powerful, these methods inherently smooth the signal,
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Significance Statement

To better understand the neural basis of cognition and disease, we need to understand how groups of neurons interact to com-
municate with one another. For example, there is evidence that parkinsonian bradykinesia and rigidity may arise from an over-
synchronization of afferents to the motor cortex, and that these symptoms are treatable using deep brain stimulation. Here we
show that the waveform shape of beta (13–30 Hz) oscillations, which may reflect input synchrony onto the cortex, is altered by deep
brain stimulation. This suggests that mechanistic inferences regarding physiological and pathophysiological neural communica-
tion may be made from the temporal dynamics of oscillatory waveform shape.
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altering or removing finer temporal features. This is especially
striking given the mounting evidence that features of the oscilla-
tory waveform, such as its general shape, sharpness, rise-to-decay
symmetry, etc., may inform underlying physiology (Sherman et
al., 2016; Cole and Voytek, 2017). In particular, some cortical
oscillations in the beta (13–30 Hz) range have been shown to have
characteristic waveforms that are shaper and steeper than a ca-
nonical sinusoid (Sherman et al., 2016). Computational modeling
suggests these nonsinusoidal features may reflect the temporal syn-
chrony of excitatory input currents onto cortical pyramidal neurons
(Sherman et al., 2016), such that a sharper waveform reflects greater
synchrony in synaptic input. That is, careful consideration of oscil-
latory waveform shape may provide critical clues about underlying
neurophysiology and neural communication.

We examine the hypothesis that deep brain stimulation (DBS)
treatment in patients with Parkinson’s disease (PD) changes the
waveform shape of beta oscillations in the primary motor cortex
(M1), indicating that input synchrony to M1 may be altered. Previ-
ous reports have associated untreated PD with excessive beta syn-
chronization in the basal ganglia (Brown, 2003). Additionally, recent
evidence in M1 has shown increased phase-amplitude coupling
(PAC) between beta phase and high gamma (50–200 Hz) amplitude
in PD patients (de Hemptinne et al., 2013). This pathologically
strong PAC is reduced during DBS (de Hemptinne et al., 2015). This
is particularly intriguing, as high gamma amplitude has been shown
to index local population firing rate (Mukamel et al., 2005; Ray et al.,
2008; Manning et al., 2009; Miller et al., 2009a, 2014). Such exagger-
ated PAC in PD has been broadly interpreted to represent an over-
synchronization of local spiking in the cortex (Voytek and Knight,
2015; de Hemptinne et al., 2015).

Here we observe that PD patients show a change in beta wave-
form shape during DBS, in line with the hypothesis that PD is
associated with oversynchronized cortical inputs that are amelio-
rated via DBS. Additionally, the sharpness of a patient’s beta
oscillations predicted motor rigidity such that sharper beta (more
synchronized inputs) was associated with greater rigidity. We
extend the previous report showing decreased beta-high gamma
PAC in PD patients during DBS, finding that beta waveform
sharpness strongly tracks PAC across subjects. Although previous
reports have shown that sharp transients can lead to “spurious”
PAC (Kramer et al., 2008; Tort et al., 2013; He, 2014; Aru et al.,
2015; Gerber et al., 2016; Lozano-Soldevilla et al., 2016), we em-
phasize here that these sharp beta features are not artifactual, in
the sense that they are not the apparent result of mechanical or
electrical noise. Rather, these features may provide novel insights
into the physiological processes that generate them, with PAC
being one method of detecting sharp waveforms that may reflect
oversynchronized inputs. Because qualitatively different wave-
forms can underlie increased PAC (Vaz et al., 2017), we contend
that a more thorough analysis of PAC should include time-
domain characteristics in conjunction with spectral features.

Materials and Methods
Recordings analyzed in this report are the same as those analyzed in a
previous report of 23 PD patients before and during DBS (de Hemptinne
et al., 2015).

Data collection. M1 recordings were obtained from 23 PD patients (20
male, 3 female) as previously described (de Hemptinne et al., 2013, 2015;
Panov et al., 2017). Patients were recruited at the University of California
at San Francisco or the San Francisco Veteran Affairs Medical Center.
Patients were diagnosed with idiopathic PD with mild to moderate bra-
dykinesia/rigidity and UPDRS III (Unified Parkinson’s Disease Rating
Scale part III) scores between 30 and 60. Patients underwent DBS im-
plantation in the awake state and provided written informed consent.

Patients were excluded if they had prominent tremor or peak-to-peak
M1 LFP amplitude �50 �V. Data collection was approved by the insti-
tutional ethics committees and was in agreement with the Declaration of
Helsinki.

DBS was as previously described (de Hemptinne et al., 2015). T2-
weighted MRI was used to target the STN, with adjustments made based
on movement-related spiking activity. Intraoperative computed tomog-
raphy scans coregistered with preoperative MRI were used to confirm
electrode placement of the DBS lead (model 3389 in 17 patients and 3387
in 6 patients; Medtronic). An analog neurostimulator (Medtronic model
3625) was used to set therapeutic stimulation parameters. Because opti-
mal stimulation settings were not found before recording, an increased
voltage (4 V) was used for stimulation between the motor territory of
STN and its dorsal border. More details on patients and stimulation can
be found in the previous reports (de Hemptinne et al., 2013, 2015).

A six-contact subdural electrocorticography strip was placed on the
cortical surface using the burr hole for DBS lead placement. The target
was the arm area of M1, 3 cm from midline and medial to the hand knob.
Electrode contacts were platinum with a 4 mm total diameter, 2.3 mm
exposed diameter, and 1 cm spacing between contacts (Ad-Tech). Cor-
rect placement of electrodes was confirmed using intraoperative com-
puted tomography merged with preoperative MRI or lateral fluoroscopy.
Additionally, physiological confirmation was obtained using median
nerve stimulation (frequency � 2 Hz, pulse width � 200 �s, pulse train
length � 160, amplitude � 25– 40 mAmp) to evoke somatosensory po-
tentials. The most posterior contact showing a negative N20 waveform
was defined as the closest electrode to M1.

Antiparkinsonian medication was stopped 12 h before surgery. Data
were collected 5– 60 min after lead insertion to minimize the confound-
ing effect of a temporary “microlesion” associated with lead insertion. In
bilateral DBS implantation surgeries, brain activity was recorded on the
second side implanted to allow more time between the cessation of
propofol sedation and the start of electrocorticography recording. First,
data were collected and evaluated after lead insertion, before any stimu-
lation (“before DBS”). Second, data were collected when DBS was turned
on for the first time (“during DBS”), before searching for optimal contact
and stimulation parameters. Third, “after DBS” data were collected after
DBS turned off for several minutes.

Recordings were collected using Microguide Pro (Alpha Omega) or
the Guideline 4000 customized clinical recording system (FHC) with a sam-
pling rate between 1000 and 3000 Hz. A needle electrode in the scalp was
used as the ground. Signals were bandpass filtered 1–500 Hz and amplified
7000�. While the analyzed data were collected, subjects were relaxing with
eyes open, fixating on a point �1 m away. The first 30 s of data without
obvious electrical noise or movement were selected for analyses.

Data preprocessing. Data were processed in the same way as previously
reported (de Hemptinne et al., 2013, 2015). Recordings were referenced
using a bipolar montage in which each channel was referenced to the
immediately anterior channel. Data were downsampled to 1000 Hz. Line
noise was removed with a notch filter between 58 Hz and 62 Hz (Butter-
worth, order � 3). Additionally, in this paper, all signals were cleaned of
high-frequency artifacts by low-pass filtering at 200 Hz (FIR filter, win-
dow method, order � 250 ms) and applying narrowband notch filters
(Butterworth, order � 3) to remove any sharp peaks in power spectra
�80 Hz caused by DBS stimulation and electronic noise. The same filters
were applied to all recordings from the same subject (before DBS and
during DBS).

Oscillation sharpness. The procedure for estimating the sharpness of
beta oscillations is illustrated in Figure 1A, B and begins with finding
oscillatory peaks and troughs. First, the raw voltage trace is bandpass
filtered using an FIR filter (window method, cutoff frequencies � 13 and
30 Hz, order � 231 ms). Time points of rising and falling zero-crossings
are identified. Returning to the raw signal, the time point of maximal
voltage between a rising zero-crossing and a subsequent falling zero-
crossing is defined as the peak. Similarly, the time point of minimal
voltage between a falling zero-crossing and a subsequent rising zero-
crossing is defined as a trough.

Sharpness of each peak and trough is defined in Equation 1 in which
Vpeak is the voltage at the oscillatory peak and Vpeak�5 ms and Vpeak�5 ms
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correspond to the voltage 5 ms before and after the peak, respectively, as
follows:

Sharppeak �
	Vpeak � Vpeak�5 ms
 � 	Vpeak � Vpeak�5 ms


2
(1)

Trough sharpness is calculated in the same manner. Intuitively, extrema
sharpness increases as the absolute voltage difference between the ex-
trema and the surrounding time points increases. Although 5 ms is cho-
sen as the temporal width to quantify sharpness, results are similar for
other choices of sharpness width (data not shown).

The mean sharpness throughout a recording is calculated for peaks
and troughs separately (�600 each in each 30 s recording). The reported
sharpness ratio metric is the ratio of the sharpness of the two extrema,
such that the ratio is always �1 as in Equation 2 as follows:

sharpness ratio

� max�
1

Npeaks
�peaks Sharppeak

1

Ntroughs
�troughs Sharptrough

,

1

Ntroughs
�troughs Sharptrough

1

Ntroughs
�peaks Sharppeak

� (2)

This ratio accounts for differences in the amplitudes across subjects that
can be caused by variance in electrode conductance. In Figure 2, this ratio
is not fixed to be �1, but rather mean peak sharpness is divided by mean
trough sharpness.

Oscillation steepness. Steepness of the rises and decays of each oscilla-
tion is calculated using the peaks and troughs identified as described
above. For rise steepness, the time series of interest is the raw voltage
between each trough and the subsequent peak as in Equation 3 as follows:

steepnessrise � max	�V	t � 1
 � V	t
�, ttrough � t � tpeak � 1


(3)

The maximum value of the instantaneous first derivative (numpy.diff) of
this signal is defined as the steepness for this single rise period. The steepness
of decay periods is similarly calculated using the raw voltage time series
between each peak and the subsequent trough. The average rise and decay
steepness are calculated for each recording across all rise and decay peri-
ods. A steepness ratio is then calculated for each recording by dividing the
average steepness for all rises/decays by the average steepness for all de-
cays/rises (such that the ratio is �1) as in Equation 4 (below). In Figure 2,
this ratio is not fixed to be �1, but rather rise steepness is divided by
decay steepness.

steepness ratio � max�steepnessdecays

steepnessrises
,

steepnessrises

steepnessdecays
� (4)

Specific code for the novel metrics introduced, along with tutorials, is
available at https://github.com/voytekresearch/misshapen.

Spectral analysis. The power spectrum of a signal is calculated by
squaring the absolute value of its Fourier transform (numpy.fft.fft).
Beta power (see Fig. 5) is calculated for each 30 s signal by summing the
coefficients in the power spectrum in the beta frequency range (13–30
Hz). Spectrograms of signals (see Fig. 4E) are calculated using a contin-
uous wavelet transform (7 cycle complex Morlet wavelets 1–200 Hz with
a 1 Hz step size, scipy.signal.morlet with s � 0.5). Beta frequency for each
recording is estimated by counting the number of peaks identified as
described above and dividing by the duration of the recording.

The beta and high gamma components of the signal are obtained by
using FIR filters (window method, scipy.signal.firwin). Two-pass zero-
phase filtering is performed with these filters (scipy.signal.filtfilt). Filter
orders are chosen to obtain both a desirable frequency response and
reasonable temporal resolution. Beta bandpass filters have cutoff fre-
quencies of 13 and 30 Hz and an order of 231 ms. High gamma bandpass
filters have cutoff frequencies of 50 and 200 Hz and an order of 240 ms.
Amplitude of the high gamma component (see Fig. 6 A, B) is calculated
by the magnitude of its Hilbert transform. The high gamma amplitude is
sampled at the peaks and troughs in each beta oscillation (see Fig. 4B).

Statistical PAC is estimated using the normalized modulation index met-
ric (Özkurt and Schnitzler, 2011). PAC was estimated using the open-source
package, pacpy, available at https://github.com/voytekresearch/pacpy. The
high gamma amplitude is calculated as described above. The beta phase is
similarly calculated by the angle of the Hilbert transform of this compo-
nent. Results are similar when applying four alternative metrics of statis-
tical PAC (Canolty et al., 2006; Penny et al., 2008; Tort et al., 2010) or
when a comodulogram method is used as in the previous report (de
Hemptinne et al., 2015) (data not shown). The preferred phase of cou-
pling for each recording (see Fig. 3G) is determined by the angle of the
circular sum of the instantaneous beta phase, weighted by the instanta-
neous high gamma amplitude.

Comodulograms (see Figs. 3 A, B, 6C,D) are calculated similar to the
previous report (de Hemptinne et al., 2015). The frequency range for the
phase-providing oscillation ranges from 6 to 40 Hz with a step size and
bandwidth of 2 Hz. For the amplitude-providing oscillation, the fre-
quency ranges from 20 to 200 Hz with a step size and bandwidth of 4 Hz.
At each frequency step, a 7 cycle complex Morlet wavelet is used as a
bandpass filter, and either the instantaneous angle or magnitude of the
filtered signal is calculated to extract phase or amplitude time series,
respectively. The modulation index method (Tort et al., 2010) is used to
quantify statistical PAC between each combination of filtered signals in
the comodulogram.

Statistical PAC histograms (see Fig. 3D–F ) are calculated from the beta
phase time series and high gamma amplitude time series used to calculate
statistical PAC. The high gamma amplitude is then averaged across 10
equally sized bins of beta phase. A similar phase estimate as described
previously (Siapas et al., 2005; Belluscio et al., 2012; Trimper et al., 2014)
is applied to account for the nonsinusoidal shape of neural oscillations.
Time points of peaks and troughs are identified as in Oscillation sharp-
ness. The time points of these extrema are then used to linearly interpo-
late a theoretical phase value for each sample.

Analysis of individual beta cycles is performed by separating the cycles
trough-to-trough or peak-to-peak using the extrema found as described
above. The sharpness of each cycle is measured, and they are split into five
groups based on this value to compare extrema-locked high gamma
amplitude (see Fig. 4C) or statistical PAC (see Fig. 4D). In Figure 5C, the
sharpness ratio between each trough and subsequent peak is correlated
with the voltage difference between these two extrema.

To visualize potential coupling between beta and gamma oscillations,
event-related averages of the raw data (see Fig. 4F ) were calculated by
triggering on the peaks of the high gamma component (obtained with the
filter described above). High gamma peaks were only used as triggers if
the amplitude at that time point was in the top 10th percentile, to limit
triggering during periods with negligible high gamma power in which the
peak phase is essentially random.

Generation of canonical asynchronous PAC. A canonical signal with
beta-high gamma asynchronous PAC (see Fig. 6B) is simulated in three
steps: (1) a beta oscillation is simulated by bandpass filtering 30 s of white
noise with a bandpass FIR filter (13–30 Hz); (2) high gamma is similarly
simulated by bandpass filtering 30 s of white noise with a 50–200 Hz band-
pass FIR filter (the amplitude of the high gamma is then modulated by the
beta phase by multiplying its time series by 1 [� abs(��)/	] and scaling by
0.03 to decrease its amplitude relative to the simulated beta oscillation); and
(3) the beta oscillation and high gamma components are added together.

Statistics. The Scipy package (version 0.16.0) in Python (version 2.7) is
used for all statistical analysis. Unless indicated otherwise, all correlations
are Pearson and all p values are two-tailed.

Results
M1 beta oscillations in PD are flattened by DBS
To quantify beta waveform shape, peaks and troughs were first
identified throughout each 30 s recording (Fig. 1A; see Materials
and Methods). After locating the extrema, the sharpness of each
peak and trough was quantified (Fig. 1B; see Materials and Meth-
ods). Importantly, the metric we use for extrema sharpness
is higher for oscillations with sharp transients (e.g., sawtooth
waves) compared with sinusoids. The symmetry in the sharpness
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Figure 1. Waveform shape of M1 beta oscillation changes in PD. A, Estimation of beta oscillatory extrema. Row 1, a raw voltage signal; Row 2, the raw voltage is bandpass-filtered in the beta
frequency range to identify rising phases (yellow dots) and falling phases (green dots); Row 3, in between each rise and decay, peaks (purple circles) and troughs (teal circles) are identified in the raw
voltage signal. B, Sharpness of each extrema is calculated as shown by the formulas on the right. The extrema sharpness is the average difference between the voltage at the extrema and the voltage
at 5 ms before and after the extrema. These time points are indicated by teal vertical lines around the trough and purple vertical lines around the peak. The voltage (Figure legend continues.)
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of oscillatory peaks and troughs is visualized by the degree of
overlap in the distributions of sharpness over all extrema in the
signal (Fig. 1C,D) and is quantified as the “sharpness ratio.” We
find that DBS treatment decreases sharpness ratio in PD patients
(Fig. 1E; paired t test, t(22) � 2.5, p � 0.019), and thus, asymmet-
rically affects peak and trough sharpness. Furthermore, PD pa-
tients’ clinical rigidity scores before DBS positively correlate with
sharpness ratio (Fig. 1F; Spearman r � 0.54; n � 23; p � 0.014).
However, the changes in rigidity score and sharpness ratio do not
correlate with each other (Spearman r � 0.17; n � 23; p � 0.48).

Differences in sharpness ratio can be caused by increases
and/or decreases in the sharpness of one or both extrema. Here,
we find that the average sharpness of peaks and troughs decreases
with DBS application (paired t test, t(45) � 2.4, p � 0.027). Addi-
tionally, the extrema sharpness itself does not correlate with the
clinical rigidity score (Spearman correlation; r � �0.17; n � 23;
p � 0.49), indicating that it is the ratio of peak to trough sharp-
ness that is changed after DBS, and not their sharpness in general.

M1 beta has a consistent sawtooth-like waveform
To characterize the waveform of M1 beta, we additionally com-
pute a steepness ratio, similar to the sharpness ratio, across sub-
jects. The steepness ratio quantifies the asymmetry between the
steepness of the rise and the steepness of the decay period within
a beta cycle (see Materials and Methods). Across recordings,
steepness ratio is strongly correlated with sharpness ratio (Fig.
2A; r � 0.84, p � 10�12). That is, beta oscillations whose peaks
are sharper than their troughs have rise phases that are steeper
than their decay phases (Fig. 2B, top right). In contrast, oscilla-

4

(Figure legend continued.) �5 ms around the trough is around the same as the trough voltage
(blue triangles and circle), and the voltage �5 ms around the peak changes relatively more
(purple triangles, relative to purple circle). C, D, Distributions of peak and trough sharpness
across a 30 s recording for a PD patient (C) before DBS and (D) during DBS. E, The sharpness ratio
(between peak sharpness and trough sharpness) is decreased by DBS. F, Clinical rigidity scores
are positively correlated with sharpness ratio in PD patients before DBS. E, F, Each dot indicates
1 patient. *p � 0.05.

Figure 2. M1 beta oscillations have a consistent sawtooth shape. A, Positive correlation between the relative sharpness beta oscillatory peaks and the relative steepness of beta voltage rises. Each
marker represents the average sharpness and steepness in a 30 s recording from a PD patient either before DBS (blue) or during DBS (red). B, Schematic voltage traces corresponding to each quadrant
of A. M1 beta falls in the dark gray quadrants (quadrants I and III) of this two-dimensional space. C, Example voltage traces from 2 patients corresponding to the sawtooth waveforms in quadrants
I and III. These waveform shapes are consistent with the dark gray, but not the light gray, sawtooth shapes in B.
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tions whose troughs are sharper than their peaks have decay
phases that are steeper than their rise phases (Fig. 2B, bottom
left). Example recordings from 2 PD patients before DBS show
these sawtooth-like waveform shapes in raw data (Fig. 2C). The
neural dynamics in M1 seem to produce field potentials that have
a consistent sawtooth-like waveform in which the extremum fol-
lowing a steep voltage change is sharper than the extremum pre-
ceding the steep voltage change.

Beta oscillation sharpness increases statistical PAC
Previous work showed that beta-high gamma PAC is also
changed by DBS application (de Hemptinne et al., 2015), and
additionally showed that PAC in PD patients was higher relative
to epilepsy and cervical dystonia patients (de Hemptinne et al.,
2013). In the following, we extend these findings by relating PAC
to sharpness ratio. This is interesting because the relation of these
past results to waveform shape can lead to novel hypotheses re-
garding the relevant pathophysiological processes in PD (Cole
and Voytek, 2017). Because of recent reports (Gerber et al., 2016;
Lozano-Soldevilla et al., 2016; Vaz et al., 2017), we make it ex-
plicit that our measure of PAC is agnostic to the type of processes
that generates it; we will refer to it as statistical PAC in the remain-
der. Importantly, we reiterate that this by no means indicates that
the PAC we quantify is artifactual (i.e., due to nonbrain sources),
only that it can reflect multiple generative mechanisms within the
brain. The statistical relationship between these two frequency
bands is true, although the common physiological interpretation
of two coupled processes differs from the interpretation as
changes in waveform sharpness.

First, we show that M1 beta-high gamma statistical PAC was
decreased during DBS application, following previous reports.
The comodulograms for 1 example patient (Fig. 3A,B), shows
higher coupling between beta phase and broadband high gamma
amplitude before DBS compared with during DBS. In general,

DBS application to PD patients decreases the statistical PAC (Fig.
3C; paired t test, t(45) � 2.7, p � 0.013), as previously reported.
We newly observe that, in general, high gamma amplitude is
specifically coupled to the peaks and troughs of the beta oscilla-
tions, as opposed to nonextrema phases of the beta cycle (such as
the rise or decay periods of the oscillation). This is shown for 3
example PD patients before DBS, with the strongest high gamma
at the peak (Fig. 3D), trough (Fig. 3E), or both (Fig. 3F), and for
all PD patients in Figure 3G. This pattern of increased PAC at
peaks and troughs is statistically observed as a positive correlation
between the modulation index and the absolute value of the co-
sine of the preferred phase (Spearman correlation, r � 0.58, n �
23, p � 0.003).

We now extend the above by presenting a converging se-
quence of results that shows the extrema sharpness of beta wave-
forms is strongly related to statistical PAC (Fig. 4), providing
strong evidence that sharpness is the main contributor to phase-
locked high gamma. First, we find that the sharpness ratio of beta
oscillations is strongly correlated with beta-high gamma statisti-
cal PAC across PD patients before DBS (Fig. 4A; r � 0.94, p �
10�10) and during DBS (r � 0.89, p � 10�7). The remaining
results are illustrated for one representative subject before DBS
(Fig. 4B–F), and similar results were obtained in all other record-
ings. Second, we find a positive correlation between extrema
sharpness and high gamma amplitude at that extrema (Fig. 4B).
The correlation between these features is similar for both peaks
and troughs. Third, providing a time-resolved view of the above,
the strength of high gamma amplitude increases as a function of
extrema sharpness (Fig. 4C). Fourth, the strength of phase-
locking of high gamma amplitude across the beta cycle increases
as a function of extrema sharpness (Fig. 4D). This is known to be
the case when PAC is driven by sharp temporal features (He,
2014). The asymmetry in high gamma amplitude around the beta
peak (Phase 0) indicates stronger high gamma amplitude in the

Figure 3. Estimates of phase-amplitude coupling in PD. A, Comodulogram showing estimated beta-high gamma PAC in an example PD patient before DBS. B, The estimated PAC decreases with
DBS application. C, Estimated PAC decreases with DBS application. D–F, Distributions of high gamma amplitude as a function of beta phase for 3 example PD patients before DBS showing increased
high gamma amplitude at (D) the peak of the beta oscillation, (E) trough of the beta oscillation, and (F) both extrema of the beta oscillation. G, High estimated PAC is observed specifically in
recordings in which the high gamma amplitude is increased around the peak (phase � 0) or trough (phase � �	, 	) C, G, Each dot indicates 1 patient. *p � 0.05.

Cole et al. • Nonsinusoidal Oscillations in Parkinson’s Disease J. Neurosci., May 3, 2017 • 37(18):4830 – 4840 • 4835



rise phase of the beta oscillation relative to its decay phase. This
follows from the sawtooth-like shape of the beta oscillations (Fig.
2B, quadrants 1 and 3), in that high-frequency sinusoids are nec-
essary to reconstruct steep voltage rises. Fifth, we show a time-
frequency representation of amplitude (Fig. 4E) for an example
burst of beta oscillations (white trace, peaks numbered) of vary-
ing sharpness (values printed above plot). We observe that the
high-frequency amplitude is strongest (highest PAC) for the
sharper peaks (peaks 2, 3, 4, and 6), and weakest (lowest PAC) at
the smoother peaks (peaks 1 and 5). Sixth, and finally, we show an
event-related average triggered on the peaks of the high gamma
component (see Materials and Methods). This is a common type
of visualization for PAC. Typically, in the case of two coupled
oscillations, this reveals a waveform in which the high-frequency
oscillation appears �t � 0, together with the low-frequency os-
cillation at an offset matching the phase of the statistical PAC
(Tort et al., 2013). However, in Figure 4F, we do not observe a
high-frequency oscillation, but rather see a sharp voltage tran-

sient, as would be expected from a sawtooth-like waveform (Tort
et al., 2013).

Caveats of the relation between waveform sharpness and
statistical PAC
A positive correlation between sharpness ratio and statistical PAC
could be caused by sharp, phase-locked high gamma rhythms,
instead of the sharpness of beta oscillations highlighted above. To
gain more certainty that sharpness came from beta instead of
high gamma, sharpness ratio was recalculated on data that was
low-pass filtered at 50 Hz (FIR filter, window method, order �
250 ms). This removes the high gamma component used to esti-
mate PAC (Fig. 5A). This new sharpness ratio measure (after
low-pass filtering) is still correlated with the statistical PAC com-
puted before low-pass filtering (Fig. 5B; r � 0.80, p � 10�5).
Some decrease in correlation strength (in this case, r � 0.94 to
0.80) is expected because sharp extrema are (by definition)
broadband in their spectrum and are necessarily flattened by the

Figure 4. Sharp beta oscillations yield phase-locked high gamma amplitude. A, Sharpness ratio is highly correlated with estimated PAC across all subjects before DBS. B–F, Illustration of the
relationship between extrema sharpness and phase-locked high gamma amplitude for an example PD patient before DBS. B, Extrema sharpness is positively correlated with the high gamma
amplitude at the extrema. C, High gamma amplitude is locked to the peak of beta oscillations specifically for the sharpest beta oscillations. Beta cycles were split into five groups based on the peak
sharpness. Line color varies from the least sharp beta cycles (light gray) to the sharpest beta cycles (black). D, The distribution of high gamma amplitude as a function of beta phase is uniform for beta
cycles with low sharpness (light gray) and nonuniform for sharp beta cycles. E, Spectrogram of a 400 ms period of raw voltage recording exhibiting beta oscillations. The sharpest beta oscillations
(peaks 2, 3, 4, and 6) have increased amplitude in the high gamma frequency range compared with the cycles with lower sharpness (peaks 1 and 5). F, Event-related average of raw voltage triggered
at the peaks of high gamma oscillations (with the top 10% of amplitude).
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50 Hz low-pass filter. Crucially, although the beta waveform is
only mildly affected by the low-pass filter, the high gamma fluc-
tuations are suppressed to the level of noise floor of the amplifier.
This makes it extremely unlikely that any residual high gamma
fluctuations cause a correlation, let alone one of r � 0.80. As such,
the correlation provides strong evidence that the sharpness mea-
sures are not influenced by high gamma fluctuations, but instead
originated from the shape of the beta waveform.

In our approach, the sharpness is calculated at each beta cycle
throughout the recording, even if no beta oscillation is evident in
the raw voltage. One concern with this approach is that noise in a
regimen of low beta amplitude could cause spurious results in wave-
form analysis. To test for this potential confound, we restrict our
analysis to only the cycles in the top 10% of beta amplitude for each
recording. The main results still hold under this control analysis:
(1) there is a decrease in sharpness ratio with DBS application
(paired t test, t(22) � 2.6, p � 0.015); and (2) there is a strong corre-
lation between sharpness ratio and PAC (r � 0.84, p � 10�6).

Because sharpness ratio is calculated using the raw electro-
physiological signal of each extremum and two samples (sampled
at 1 kHz) around it, it is worth noting that 90% of the variance in
statistical PAC is captured by only using �12% of the data (6

samples per period, which contains �50 samples). However,
sharpness ratio is not the only dimension of shape that correlates
with statistical PAC, as many other waveform features determine
the precise Fourier decomposition (such as steepness ratio).
Sharpness ratio and steepness ratio both individually correlate
with statistical PAC after holding the other metric constant (par-
tial correlations, sharpness ratio: r � 0.70, p � 0.0002; steepness
ratio: r � 0.44, p � 0.034) and together explain 93% of the vari-
ance in statistical PAC of PD patients before DBS.

Another potential caveat in the analysis of waveform sharp-
ness is that increases in beta frequency could underlie increases in
the sharpness, as a shorter cycle of the same amplitude is neces-
sarily sharper. However, this is likely not the case, as we find no
effect of DBS on the beta frequency in PD patients (paired t test,
t(22) � �0.84, p � 0.41; see Materials and Methods). Power does
not confound the sharpness ratio measure because multiplicative
scaling of a waveform to increase its power would have no effect
on the sharpness ratio.

Beta oscillation asymmetry correlates with power
During visual inspection of the raw data, high-power beta oscil-
lations seemed to be more asymmetric (i.e., higher sharpness

Figure 5. Power spectral properties of motor cortical recordings and relation to estimated phase-amplitude coupling. A, A 50 Hz lowpass filter was applied to attenuate high gamma power.
B, When extrema sharpness was recalculated on these lowpass-filtered signals, there remained a strong positive correlation with statistical PAC in the original signal. C, Histogram of correlation
coefficients between sharpness ratio and amplitude across all beta cycles in a recording. Each count is one 30 s recording. D, There is a positive correlation between estimated PAC and beta power.
E, A strong positive correlation between sharpness ratio and estimated PAC (modulation index) remains even after beta power is regressed out. F, Average power spectra across all subjects before
DBS (black) and during DBS (blue). Shaded region represents SEM. B, D, E, Each dot indicates one 30 s recording.
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ratio) compared with low-power beta oscillations. If true, this
trend could provide additional insight into the physiological
process generating beta oscillations. We quantified this trend by
correlating the sharpness ratio of an individual cycle with the
peak-to-trough amplitude of that cycle. To avoid confounding
the results with periods of no beta oscillatory activity, only cycles
in the top 10th percentile of peak-to-trough amplitude for each
recording were analyzed. Across recordings before and during
DBS, there is a consistent subject-by-subject positive correlation
between the amplitude of a cycle and its sharpness ratio (Fig. 5C;
one-sample t test, t(45) � 6.10, p � 10�6).

Because beta power is positively correlated with both sharp-
ness ratio (Fig. 5C) and statistical PAC (Fig. 5D; r � 0.37, p �
0.011), it could be the case that the correlation between waveform
shape and statistical PAC is merely due to a common power bias.
However, this is likely not the case, as sharpness ratio is still
correlated with statistical PAC after holding beta power constant
(Fig. 5E; partial correlation, r � 0.87, p � 10�7). Additionally, we
note that the average power spectra are similar before and
during DBS (Fig. 5F ), and so it is unlikely that the changes in
waveform shape and statistical PAC with DBS are merely due to
changes in narrowband power.

Discussion
Increased sharpness ratio in motor cortical beta oscillations
in Parkinson’s Disease
Although beta oscillations are a normal feature of the basal
ganglia-thalamocortical loop, PD is associated with excessive
neuronal synchronization in the beta frequency band (Kühn et
al., 2005; Moran et al., 2008). Despite an established relationship
between beta band neuronal synchronization and PD, the phys-
iological mechanism causing PD-related motor dysfunction has
been unclear. However, the recent reports showing that statistical
PAC is pathologically strong in PD hypothesize that this over-
coupling impairs information flow and in turn causes motor
dysfunction (de Hemptinne et al., 2013). Specifically, PD is
associated with an increase in beta-high gamma statistical PAC in
M1 (de Hemptinne et al., 2013, 2015; Kondylis et al., 2016). Sim-

ilarly, elevated alpha-high gamma statistical PAC has been ob-
served in the sensorimotor cortex of essential tremor patients
(Kondylis et al., 2016). These observations have been critical
given that oscillatory coupling, and specifically PAC, is thought
to be crucial for the control of information flow in human cortex
(Fries, 2005; Canolty et al., 2006; Peterson and Voytek, 2015;
Voytek and Knight, 2015; Voytek et al., 2015).

We confirm and extend the previous report of exaggerated
statistical PAC in PD by analyzing oscillation shape, given the
recent reports that oscillation waveform shape may provide in-
formation about their physiological generators (Sherman et al.,
2016; Cole and Voytek, 2017). Specifically, recent modeling work
suggests that cortical beta waveform sharpness may index the
degree of synchrony of input onto cortical pyramidal cells (Sher-
man et al., 2016). Therefore, here we leveraged analytic ap-
proaches on time series to test the hypothesis that beta waveform
sharpness is decreased by DBS, suggesting that the synchrony of
synaptic input to M1 is decreased. For M1, synchronous bursts of
distal excitatory input may reflect the previously reported in-
crease in beta synchrony in the basal ganglia (Sharott et al., 2005;
Mallet et al., 2008a, b; Devergnas et al., 2014). Just as exaggerated
PAC has been hypothesized to overwhelm neural processing, too
much synchrony consumes an excessive amount of “neural
bandwidth” (Reyes, 2003; Rossant et al., 2011; Brette, 2012; Börg-
ers et al., 2014), hampering, rather than enhancing, neural com-
munications. Given how potent synchronous activity can be in
driving downstream population spiking (Reyes, 2003; Wang et
al., 2010; Rossant et al., 2011), we suggest that excessive syn-
chrony in M1 may be key to understanding PD pathology. There-
fore, our results support previous hypotheses that DBS reduces
PD-related movement symptoms by decorrelating the excessively
synchronized neural activity in the basal ganglia-thalamocortical
loop (Rubin and Terman, 2004; Moran et al., 2012; Wilson, 2013;
Voytek and Knight, 2015). Notably, the reported change in wave-
form shape with DBS leads to a similar interpretation as the de-
crease in estimated PAC. However, the critical difference between
these two interpretations is that the former invokes a modifica-

Figure 6. Sharp beta oscillations produce similar cross-frequency coupling estimates compared with canonical phase-amplitude coupling. A, Raw voltage recording in a PD patient before DBS
(black) overlaid with the high gamma component (thick red line) and its analytic amplitude (thin red line). B, Same format as A with a simulated signal with canonical PAC between the phase of beta
oscillations and high gamma amplitude. C, D, Comodulograms showing similar estimated PAC between beta phase and high gamma amplitude in both the (C) M1 recording and (D) canonical PAC
signal.
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tion of a single process whereas the latter invokes a decrease in
coupling between two processes.

We note that the higher-power beta oscillations tend to be the
most asymmetric in terms of extrema sharpness (Fig. 5C). If the
beta waveform reflects the strength and synchrony of the afferent
synaptic currents, as reasoned above, this trend may reflect that
beta periods with the strongest synaptic input also have the most
synchronous input.

The current description of nonsinusoidal waveforms in motor
cortex is reminiscent of previously described mu rhythms. Mu
rhythms are arch-shaped (i.e., high sharpness ratio, unity steep-
ness ratio) oscillations �10 Hz (Tiihonen et al., 1989; Pfurt-
scheller et al., 1997). Similarly, the present analysis observed
more extreme sharpness ratios than steepness ratios (Fig. 2).
Therefore, it may be tempting to relate the oscillations in the
current study to the mu rhythm. However, the oscillations here
are at a beta frequency, whereas mu rhythms characteristically
oscillate at an alpha frequency. Therefore, the oscillations in the
present study are likely related to previous reports of sensorimo-
tor beta rhythms (e.g., Miller et al., 2012) and distinct from pre-
vious reports of mu rhythms.

Nonsinusoidal oscillations can underlie statistical PAC
Cross-frequency coupling (CFC) analysis techniques quantify in-
teractions between neural oscillations. One example of CFC is
PAC, in which the phase of an oscillation is correlated with the
amplitude of a higher-frequency oscillation or broadband high-
frequency activity (Canolty et al., 2006). The degree of interaction
between these two frequency components has been estimated using
PAC metrics, often with the assumption that low-frequency oscilla-
tory phase organizes neuronal cell assembly spiking (Canolty et al.,
2006; Lisman and Jensen, 2013; de Hemptinne et al., 2013, 2015;
Voytek et al., 2015; Watrous et al., 2015). In this view, there are
two separate interacting neural processes: a low-frequency oscil-
lator that modulates local spiking probability.

However, it is helpful to distinguish several biophysical pro-
cesses that can contribute to statistical PAC: coupling can occur
between two oscillatory processes; alternatively, a low-frequency
oscillator associated with synaptic currents (Miller et al., 2009b;
Okun et al., 2010; Buzsáki et al., 2012; Einevoll et al., 2013;
Mazzoni et al., 2015) may be coupled to high gamma activity,
associated with asynchronous spiking activity (Ray et al., 2008;
Manning et al., 2009; Miller et al., 2009a, 2014). Furthermore,
statistical PAC is increased by nonsinusoidal waveforms, as
previously been shown in synthetic data (Kramer et al., 2008;
Lozano-Soldevilla et al., 2016), high-voltage spindles (Tort et al.,
2013), and cortical alpha oscillations (Lozano-Soldevilla et al.,
2016). These previous reports, as well as a recent review (Aru et
al., 2015) have offered suggestions for determining the nature of
PAC, which can be diverse across the human cortex, simultane-
ously exhibiting both oscillatory and nonsinusoidal modes (Vaz
et al., 2017). We here emphasize the importance of visually inspect-
ing the raw time series to judge whether statistical PAC is driven
by sharp voltage changes, as shown here, by true oscillation-to-
oscillation coupling, or by sustained asynchronous activity during
particular low-frequency oscillatory phases.

The sharp waveforms reported here produce similar statistical
PAC results compared with canonical asynchronous PAC wave-
forms (Fig. 6). The difference between the temporal dynamics in
these waveforms (Fig. 6A,B) suggests a difference in the under-
lying neural activity, which is not differentiated by statistical
PAC. While high gamma amplitude correlates with local popula-
tion spiking activity (Ray et al., 2008; Manning et al., 2009; Miller

et al., 2009a, 2014), the magnitude of previously reported high
gamma changes are low, on the order of a few microvolts. In
contrast, the apparent high gamma resulting from the sharp
time-domain deflections seen here are an order of magnitude
stronger, �100 �V in some cases (Fig. 6A). This extreme differ-
ence in magnitude suggests that the underlying phenomena of
high gamma may not be the same in these two cases.

In conclusion, we offer a new perspective in which sharp
voltage transients within an oscillation may carry physiologi-
cal information. These often-overlooked temporal domain fea-
tures should complement spectral CFC analyses. When used in
conjunction, temporal domain analysis can offer novel insights
into the biophysical processes generating the statistical PAC.
Here, we demonstrate that the sharpness of motor cortical beta
waveforms, previously shown to reflect synchronous input, are
decreased with DBS treatment of PD. Furthermore, the sharpness
ratio measure positively correlates with clinical rigidity measures.
This synchrony interpretation offers new insight into the patho-
physiology of PD, serving as an example of how a combination of
both spectral and temporal analyses may be useful in extracting
critical information from electrophysiological signals.
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