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Abstract
Faithful representation of sound envelopes in primary auditory cortex (A1) is vital for temporal processing and perception of
natural sounds. However, the emergence of cortical temporal processing mechanisms during development remains poorly
understood. Although cortical inhibition has been proposed to play an important role in this process, direct in-vivo evidence
has been lacking. Using loose-patch recordings in rat A1 immediately after hearing onset, we found that stimulus-following
ability in fast-spiking neurons was significantly better than in regular-spiking (RS) neurons. In-vivo whole-cell recordings of
RS neurons revealed that inhibition in the developing A1 demonstrated much weaker adaptation to repetitive stimuli than
in adult A1. Furthermore, inhibitory synaptic inputs were of longer duration than observed in vitro and in adults. Early in
development, overlap of the prolonged inhibition evoked by 2 closely following stimuli disrupted the classical temporal
sequence between excitation and inhibition, resulting in slower following capacity. During maturation, inhibitory duration
gradually shortened accompanied by an improving temporal following ability of RS neurons. Both inhibitory duration and
stimulus-following ability demonstrated exposure-based plasticity. These results demonstrate the role of inhibition in
setting the pace for experience-dependent maturation of temporal processing in the auditory cortex.
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Introduction
Considering the transient nature of environmental and com-
munication sounds, temporal processing is particularly

important for the auditory system (Mauk and Buonomano
2004). Natural sounds such as human speech and animal vocal-
ization are temporally modulated, and can be recognized
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largely based on their temporal modulation patterns (Rosen
1992; Kanwal et al. 1994; Shannon et al. 1995; Wang et al. 1995;
Ahissar et al. 2001; Nagarajan et al. 2002; Singh and Theunissen
2003). For modulation frequency within the ethological range,
centered around 6–10Hz in rodents (Liu et al. 2003; Kim and
Bao 2009), these sounds are likely represented in the auditory
cortex (ACx) by responses that are time locked to the stimuli
envelopes (Ahissar et al. 2001; Joris et al. 2004).

Compared with adult humans, infants have a limited tem-
poral sound resolution ability (Kuhl et al. 1997). Human psycho-
physical studies have also demonstrated a common association
between impaired cortical temporal processing and auditory and
language disabilities in children (Tallal et al. 1996; Wright et al.
1997; Nagarajan et al. 1999; Temple et al. 2001). Congenitally,
deaf children who receive an early cochlear implant often
develop significantly better cortical stimulus-following ability
compared with those who receive an implant at later ages
(Ponton et al. 1996, 1999; Shepherd et al. 1997), indicating a
critical role of sensory experience in the maturation of cortical
temporal processing. Recent animal studies revealed the devel-
opmental course of temporal processing in the cortex, and
showed sensitivity to the acoustic environment not only for the
maturation of spectral tuning and binaural integration (de
Villers-Sidani et al. 2007; Polley et al. 2013), but that cortical
representation of temporally modulated sounds is also pro-
foundly influenced by early sensory experience (Chang and
Merzenich 2003; Chang et al. 2005; Zhou and Merzenich 2008).
However, the mechanisms underlying the experience-dependent
development of cortical temporal responses remain unclear.

In the auditory system of rodents, thalamocortical connect-
ivity largely matures at around P14 (Zhao et al. 2009; Barkat
et al. 2011; Hackett et al. 2015), whereas cortical temporal
response properties mature toward the end of the first post-
natal month (Chang et al. 2005). This apparent time difference
suggests a potential role of intracortical mechanism in the mat-
uration of cortical temporal processing. Previous studies con-
ducted both in vivo and in vitro reported a decrease in input
resistance in the ACx of rodents from infancy to adulthood
(Dorrn et al. 2010; Oswald and Reyes 2011), suggesting an even
higher excitability of auditory cortical neurons in young brains.
Therefore, the contribution of cellular excitability to the control
of temporal response resolution in the developing A1 might be
limited.

The role of inhibitory circuits in the functional maturation
of sensory cortices has been extensively studied in the past
decade (Hensch 2005; Sun 2007; Feldman 2009; Froemke and
Jones 2011; Kullmann et al. 2012; Le Magueresse and Monyer
2013). Particularly, in the primary visual cortex, the level of
inhibition increases to open and then close the critical period of
ocular dominance plasticity. Inhibitory synapses in the ACx also
have been demonstrated to be exceptionally dynamic during
development (Sanes and Kotak 2011). Progressive, experience-
dependent improvement of frequency-selectivity of inhibition
appears instrumental for the maturation of auditory cortical syn-
aptic receptive field (Dorrn et al. 2010, but also see Sun et al.
2010). How cortical inhibition changes may contribute to the
development of cortical processing in temporal domain is still
unclear. Extracellular studies of the development of the spectral
and temporal response properties of auditory cortical neurons
revealed a significantly stronger forward-masking effect in the
developing A1 (after hearing onset) than in adult A1, suggesting
inhibitory receptive fields of a prolonged temporal nature (Chang
et al. 2005). Indeed, paired recordings between pyramidal and
specific subtype of inhibitory neurons in Layers 2/3 of the

developing ACx slice demonstrated inhibitory postsynaptic cur-
rents (IPSCs) with long duration (Kotak et al. 2008; Oswald and
Reyes 2011; Takesian et al. 2012). However, in intact neural net-
work, inputs from different subtypes of inhibitory neurons inte-
grate to shape neural activity (Isaacson and Scanziani 2011).
Therefore, the precise relationship between the duration of inte-
grated inhibition and the development of cortical temporal pro-
cessing needs to be clarified by direct evidence in vivo.

Here, we show that temporal response properties in the
developing A1 of rats are cell-type specific with differences in
dynamics. In particular, regular-spiking (RS) neurons demon-
strated weaker stimulus-following ability compared with FS
neurons. In-vivo whole-cell voltage-clamp recordings from RS
neurons in both urethane and light-pentobarbital-anesthetized
animals revealed that inhibitory input is long-lasting early in
the developing A1 and gradually decreases toward adulthood.
The initially longer duration of inhibition led to overlap and
summation of inhibitory inputs evoked by 2 closely following
stimuli. In addition, inhibition in the developing A1 demon-
strated significantly weaker adaptation to repetitive stimuli
than in the adult A1. These 2 inhibitory properties jointly lim-
ited the stimulus-following ability of RS neurons early in the
developing A1. We then show that acoustic experience may
accelerate the maturation of cortical temporal processing via
exposure-induced shortening of inhibitory duration.

Materials and Methods
Animal Preparation

All experimental procedures were approved by the Institutional
Animal Care and Use Committee at Tsinghua University, Beijing,
China. Experiments were performed in a sound-attenuating
chamber (IAC-Acoustics, UK). In experiments requiring anesthe-
sia, Sprague-Dawley rat pups from P12 to P21, juvenile and ado-
lescent rats from P22 to P35 and female adult rats (≥3 months
old) were anaesthetized intraperitoneally with urethane
(Cruikshank and Weinberger 1996; Li et al. 2013) (1.4 g/kg). For
light-pentobarbital recordings in pups, pentobarbital (35mg/kg)
(de Villers-Sidani et al. 2007) was used for sedation and surgery.
An initial injection of pentobarbital was generally sufficient for
rat pups to undergo the surgical process without supplements.
Once surgery was done, recordings were not started until rat
pups demonstrated paw retraction and active whisking. The
interval between pentobarbital injection and whole-cell record-
ing was on average >3h. Craniotomy and durotomy were per-
formed to expose the cortex. The location of A1 in the right
hemisphere was determined by extracellular recordings at
~500 μm below the pial surface using parylene-coated tungsten
electrodes (1MΩ, MicroProbes): A1 neurons fire action potentials
at short latency to the characteristic frequency and are organized
tonotopically from low to high frequency along the posterior–
anterior axis (Polley et al. 2007). Our recordings targeted the
depth range of 450–600 μm, the putative thalamic recipient layer.
The temporal following capacities of cortical neurons were
obtained with a pulsed-noise train (white noise, 5ms duration,
1ms ramp, 5 pulses per train), generated and calibrated by a TDT
System 3 (Tucker-Davis Technologies), pseudorandomly pre-
sented at 5 repetition rates (2, 4, 7, 10, and 12.5 pps). Stimulus
intensity was set at 20 dB above the threshold of each individual
neuron recorded. The spiking threshold decreased from 40–60 dB
at P12 to 20–30 dB in adults. Tones and noise pulses were deliv-
ered through a calibrated free-field speaker positioned contralat-
eral to the recorded hemisphere.
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Housing Condition of Animals

Mother rats and their pups (P11) were purchased from
Weitonglihua Experimental Animal Co., Ltd (Beijing, China) and
subsequently raised in the Laboratory Animal Research Center
of Tsinghua University (SYXK, 2014-0024) with standard tem-
perature, humidity and light/dark cycle conditions. The level of
background noise in animal facility was around 40 dB sound
pressure level (SPL), and no acoustic stimulation with particular
pattern was detected.

In-Vivo Whole-Cell Voltage/Current-Clamp and
Loose-Patch Recordings

In-vivo whole-cell recordings for both rat pups and adults were
obtained from neurons located in the input layer described above.
Cortical pulsations were prevented with 4% agar. Recordings were
made with a MultiClamp 700B amplifier (Molecular Devices). The
patch pipettes contained (in mM): 125 Cs-gluconate, 5 TEACl,
4 MgATP, 0.3 GTP, 10 phosphocreatine, 10 HEPES, 0.5 EGTA, 3.5
QX-314, 2 CsCl, and 1% biocytin (voltage clamp), or 135K-gluco-
nate, 5 NaCl, 5 MgATP, 0.3 GTP, 10 phosphocreatine, 10 HEPES, 0.5
EGTA (current-clamp and loose-patch), with pH 7.2. The imped-
ance of patch pipettes was set to 4–6MΩ for whole-cell recordings
and 10MΩ for loose-patch recordings. Whole-cell and pipette
capacitances were partially or completely compensated and ini-
tial series resistance (Rs) (20–60MΩ) was compensated for 50% to
achieve an effective series resistance of 10–30MΩ. Data were fil-
tered at 5 kHz, digitized at 10 kHz and analyzed with Clampfit10
(Molecular Devices) and Matlab (MathWorks). Cells were excluded
if either the initial resting membrane potential was less negative
than −50mV or Rs changed more than 30% over the entire experi-
ment. To obtain sound-driven synaptic conductance, neurons
were voltage-clamped at −70mV and 0mV, which are around the
reversal potentials for inhibitory and excitatory currents, respect-
ively. With a relatively large pipette tip, whole-cell recordings
almost exclusively targeted pyramidal neurons (Supplementary
Fig. 1A–C), consistent with the report that most excitatory neu-
rons in Layer 4 of the rat ACx are pyramidal (Barbour and
Callaway 2008). However, we did occasionally record from non-
pyramidal neurons (Supplementary Fig. 1D). The morphologies of
the recorded neurons were constructed with the standard histo-
logical procedure of biocytin staining. Voltage-clamp quality was
considered to be reasonably good, based on the linearity of the
current–voltage curves. This was further confirmed by the
absence of significant excitatory currents when the neuron was
clamped at 0mV (Fig. 5A). For current-clamp recordings, similar
glass pipettes were used. Loose-patch recordings were performed
under voltage-clamp mode with pipettes containing the solution
for the current-clamp. After a 100–400MΩ seal was formed, the
spike signal was filtered at 10 kHz and sampled at 20 kHz.
Recordings of spikes evoked by various repetition rates were
repeated 5–10 times for each neuron, and the spike number
evoked by the same repetition rate was averaged.

Cell Type

Cell-type classification was made for spikes recorded in cell-
attached mode. Based on the inspection of the shape of action
potentials and spiking patterns, recorded neurons were cate-
gorized into 2 types. The first type had relatively small upward
peaks and longer trough-to-peak intervals (Fig. 2A,B, insets),
defined as the time interval between the peak of the action
potential and the peak of the after-hyperpolarization. These

neurons usually exhibited single-spike responses when stimu-
lated with a brief stimulus. The second type had larger upward
peaks and shorter trough-to-peak intervals (Fig. 3A,B, insets).
These neurons often demonstrated a train of APs when stimu-
lated. We categorized neurons with trough-to-peak intervals
≥0.45ms as RS (putative pyramidal) neurons and those with
trough-to-peak intervals <0.45ms as FS (putative inhibitory)
neurons (Cardin et al. 2007; Niell and Stryker 2008; Moore and
Wehr 2013). The average trough-to-peak interval for RS and FS
neurons in young animals was 0.96 ± 0.22ms (mean ± SD; n =
30) and 0.27 ± 0.08ms (mean ± SD; n = 6), respectively, and in
adult animals was 0.89 ± 0.19ms (mean ± SD; n = 30) and 0.19 ±
0.04ms (mean ± SD; n = 6), respectively (Fig. 4A). Although the
chance of encountering FS neurons was very low when the
recording pipette had an impedance of <6MΩ (Sun et al. 2013),
we did encounter neurons histologically identified as non-
pyramidal (Supplementary Fig. 1D). Only Layer 4 neurons were
included for data analysis.

Spike Threshold

Spike threshold was calculated as the membrane potential that
corresponded to the maximum of the second derivative of the
membrane voltage between the baseline and peak of the action
potential minus the resting membrane potential.

Spiking Probability

Spiking probability was defined as the number of occurrence of
spike responses to the first pulse in each trial divided by the
total number of trials.

Relative Delay Between Excitation and Inhibition

Relative delay was calculated as the onset latency of inhibitory
synaptic response evoked by the first pulse at 2 pps minus the
excitation onset latency.

Stimulus-Following Ability

To determine the stimulus-following ability for each neuron,
trains of 5 white noise pulses (5ms duration, 1ms ramp, 20 dB
SPL above threshold) were delivered 6 times at each of the
5 repetition rates (2, 4, 7, 10, and 12.5 pps) for whole-cell and
loose-patch recordings. To minimize adaptation effects, repeti-
tion rates were pseudorandomly interleaved. Since the interval
between the onsets of 2 pulse trains was fixed at 6 s, sequential
trains were separated by at least 1.5 s of silence. To minimize
the influence of spontaneous activity to stimulus-evoked
response counting, the estimated number of spontaneous
spikes was subtracted. For loose-patch recordings, the response
magnitude to each noise pulse was quantified as the average
number of spikes activated (7–40ms after stimulus onset for
adults; 20–50ms for rat pups) minus the estimated number of
spontaneous spikes during this period. Spontaneous spiking or
synaptic activity was estimated during the last 1 s of the ~5.7 s
quiet period following each 12.5 pps sweep (Bao et al. 2004). The
average number of spontaneous spikes in young and adult ani-
mals was 0.9 and 3.5 per second, respectively. For whole-cell
recordings, noise-evoked synaptic responses were identified
according to their onset latencies and peak amplitudes. The
response onset latency was identified during the rising phase
of the response trace at the time point where the peak conduct-
ance change was 3-fold of the SD of the baseline fluctuation.
Only synaptic responses with latencies within 7–40ms for
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adults and 20–50ms for the rat pups from the onset of stimulus
were considered. The normalized spike response at each repeti-
tion rate was calculated as the average spike number to the last
4 noise pulses divided by the spike number evoked by the first
noise pulse. The normalized synaptic response at each repeti-
tion rate was calculated as average synaptic response magni-
tude to the last 4 noise pulses divided by the response
magnitude of the first noise pulse. The repetition-rate transfer
function is the normalized cortical response as a function of
the noise-pulse rate. Thus, a normalized response of one indi-
cates that, at the given repetition rate, each of the pulses in the
train, on average, evoked the same number of spikes or had the
same synaptic current amplitude as the first pulse. A response
greater than 1 indicates facilitation, while that less than 1 indi-
cates adaptation.

Conductance

Excitatory synaptic conductance Ge(t) and inhibitory synaptic
conductance Gi(t) at any time point t were derived using:

( ) = ( ( ) − ) + ( )( ( ) − ) + ( )( ( ) − )I t G V t E G t V t E G t V t Er r e e i i

where I(t) is the amplitude of synaptic current, and Ee (0mV)
and Ei (−70mV) are the reversal potentials of the excitatory and
inhibitory synaptic conductance, respectively. In this study, a
corrected clamping voltage was used, instead of the holding
voltage applied (Vh). V(t) was corrected as ( ) = − ×V t V Rh s

( ) ( ) = − × ( )I t V t V R I th s , where Rs is the effective series resist-
ance. Junction potentials were not corrected in the current
study. Resting conductance Gr was derived using ( ) =I Vr h

( − )G V Er h r , where Er is the resting membrane potential. Gr and
Er were 2 unknowns solved by measuring Ir at 2 different Vh. By
holding the voltage at 2 different values, Ge(t) and Gi(t) were cal-
culated at any t. They reflected the strengths of pure excitatory
and inhibitory synaptic inputs, respectively.

Decay Time Constant

The time constant for the decay phase of the postsynaptic
current (PSC) at 2 pps was obtained by fitting the current
between the peak and 500ms after stimulus onset to the func-
tion ( ) = +τ−I t A Ce t/ . All fittings were performed using
Levenberg–Marquardt, nonlinear least-square algorithm in
Clampfit10 (Molecular Devices). In cases where the decay
phase could not be fitted using an exponential function, the
absolute time it took to decrease from the peak to 37% peak
amplitude was used as a measurement for the decay time
constant.

Measurement of Series Resistance and Input Resistance

Following a 3-s equilibration period after the response to a brief
noise pulse of 70 dB (with clamping at 0mV), a 10-mV voltage step
was delivered to calculate series and input resistance. The traces
were repeated 4–6 times before being averaged. After voltage step
injection, the current increases to an initial transient peak

=I V R/peak step series, then falls exponentially with decay constant
τ≈RseriesCm to a steady value of = ( + )I V R R/steady step series input . In
this way, series resistance was computed by dividing the ampli-
tude of the voltage step by the peak current transients, while
input resistance was estimated by subtracting the amplitude of
the voltage step divided by the steady current from t-series
resistance.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism 6 soft-
ware (GraphPad Software, Inc.). The Shapiro–Wilk test was first
applied to examine whether samples had normal distribution.
In the case of normal distribution, t-test or analysis of variance
was applied. Otherwise, a non-parametric test (Mann–Whitney
U or Wilcoxon signed-rank tests) was applied. In multiple com-
parison situations, Bonferroni and Dunn’s were chosen as post-
hoc tests for one-way ANOVA and the Kruskal–Wallis H-test,
respectively. All tests were two-tailed with alpha = 0.05.
Statistical significance is indicated as *P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001, n.s. P > 0.05.

Histology

After at least 5min of whole-cell recordings, some neurons were
histologically recovered to show their cell types and laminar dis-
tribution. Briefly, the recording pipette containing biocytin was
pulled off the cell gently or in a shearing direction (perpendicular
to the direction approaching the cell) to avoid cell damage.
Within 1 h of the completion of labeling, animals were sacrificed
with an overdose of urethane and then perfused with saline and
4% paraformaldehyde in phosphate-buffered saline with 0.2%
picric acid. Brains were postfixed in 4% paraformaldehyde over-
night at 4°C and cryoprotected with 30% sucrose. Coronal sec-
tions (40–50 μm) were cut with a freezing cryostat (Leica CR 1900)
and then reacted with cyanine 3 (Cy3)-streptavidin (1:500, Jackson
ImmunoResearch). Images of fluorescently labeled cells were
acquired by a confocal microscope (Carl Zeiss LSM 510 Meta)
using 10× air, 40× water, or 60× oil-immersion objective and pro-
cessed by Adobe Photoshop software. Under the experimental
conditions, ~50% of recovered cells exhibited adequate intracellu-
lar filling with Biocytin, as evidenced by relatively complete som-
atic and dendritic morphologies in Supplementary Figure 1.

Results
Temporal Processing Capacity in the Developing A1
is Cell-Type Specific

We examined the stimulus-following ability of neurons in the
developing (postnatal day (P) 12–21; P12, hearing onset; n = 36) and
mature (≥3 months, n = 36) rat A1 using in-vivo loose-patch
recordings (Fig. 1A). Animals were anesthetized with urethane. Our
recordings targeted the depth range of 450–600 μm, the putative
thalamic recipient Layer 4. To avoid potential bias due to imma-
ture thalamocortical connectivity (Zhao et al. 2009; Barkat et al.
2011; Hackett et al. 2015), we constrained our recordings to the A1
area that showed reliable tonal-driven responses with short
latency. Trains of 5 white-noise pulses presented at repetition
rates commonly found in natural animal vocalizations (Kim and
Bao 2009) were used to probe the temporal resolution of cortical
responses (Fig. 1B). Considering the potential influences of variance
in response threshold, stimulus intensity was set at 20dB above
the minimum threshold of each individual neuron recorded.

Based on the shape of action potentials and spiking pat-
terns, recorded neurons were categorized into 2 types. The first
type had relatively small upward peaks and longer peak-to-
peak intervals (Fig. 2A,B, insets), defined as the time interval
between the peak of the action potential and the peak of the
after-hyperpolarization. These “RS” neurons usually exhibited
single-spike responses when stimulated with a brief stimulus.
The second type had larger upward peaks and shorter trough-
to-peak intervals (Fig. 3A,B, insets). These “fast-spiking”
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neurons often demonstrated a train of APs when stimulated.
We categorized neurons with trough-to-peak intervals >0.45ms
as RS neurons (putative pyramidal; pup, n = 30; adult, n = 30)
and those with trough-to-peak intervals ≤0.45ms as FS neu-
rons (putative inhibitory; pup, n = 6; adult, n = 6), consistent
with other studies (Cardin et al. 2007; Niell and Stryker 2008;
Moore and Wehr 2013). The average trough-to-peak interval for
RS and FS neurons in young animals was 0.96 ± 0.22 and 0.27 ±
0.08ms, respectively, and in adult animals 0.89 ± 0.19 and
0.19 ± 0.04ms (Fig. 4A). FS neurons, as identified here, are most

likely GABAergic interneurons although some non-GABAergic
neurons fire narrow spikes as well (Dykes et al. 1988; Gray and
McCormick 1996).

RS neurons in the developing A1 adapted strongly to repeti-
tive stimuli and demonstrated much weaker stimulus-
following ability than those in adults (Fig. 2A–D). This was fur-
ther confirmed by the normalized spike response (Bao et al.
2004; Chang et al. 2005; Imaizumi et al. 2010), defined as the
average spike count to the last 4 noise pulses divided by the
count for the first noise pulse (Fig. 4B, left). Interestingly, there
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was no significant difference between the 2 age groups in spik-
ing probability, calculated as the number of occurrence of spike
responses to the first pulse in each trial divided by the total
number of trials (Fig. 4B, right). In contrast, FS neurons faith-
fully followed repetitive stimuli equally for both age groups
(young, n = 6; adult, n = 6; Figs 3A–D and 4C). RS neurons in the
developing A1 fired fewer spikes than those in the adult A1
(Fig. 2E), while there was no significant difference for FS neu-
rons (Fig. 3E). Given the well-characterized feed-forward thala-
mocortical projection system (Isaacson and Scanziani 2011),
thalamocortical afferents should equally drive FS and RS neu-
rons, yet, their temporal following capacity differed, suggestive
of distinct cellular and/or network effects on the temporal
response of these cell types. Thus, the temporal response prop-
erty in the developing A1 was cell-type specific.

Inhibition Restrains Temporal Processing Capacity
of RS Neurons in the Developing A1

What mechanisms underlie the poor stimulus-following ability
of RS neurons in the developing A1? We performed in-vivo

whole-cell voltage-clamp recordings from Layer 4 A1 neurons
of both age groups (young, n = 48; adult, n = 37) (Fig. 5A, left).
The pipette impedance for whole-cell recording was <6MΩ. To
obtain sound-driven synaptic conductance, neurons were volt-
age clamped at −70 and 0mV, which are around the reversal
potentials for inhibitory and excitatory currents, respectively
(Tan et al. 2004). Voltage-clamp quality was considered to be
reasonably good, based on the linearity of the current–voltage
(I–V) curves (Fig. 5A, right). This was further confirmed by the
absence of significant excitatory currents when the neuron was
clamped at 0mV (Fig. 5A, middle). Eleven of the recorded neu-
rons were labeled with biocytin. Consistent with previous
report (Sun et al. 2013), the whole-cell recordings with large tip
sizes (impedance < 6MΩ) targeted almost exclusively pyram-
idal neurons in Layer 4 (n = 10, 4 neurons with relatively intact
dendritic trees are shown in Fig. 5B and Supplementary Fig. 1A–
C), but we did record from one neuron of non-pyramidal type
(Supplementary Fig. 1D), which was not included in our data
analysis. This does not exclude the possibility that a very
small portion of non-pyramidal neurons was included in the
data analysis.
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We used single stimulus pulses to accurately measure the
decay of inhibition (Supplementary Fig. 2A). Repetitive stimuli
evoked inhibitory inputs with significantly longer time courses
in the developing A1 than in the adult (young, 94 ± 11ms, n =
48; adult, 20 ± 3ms, n = 37; Fig. 5C–E). The inhibitory decay time
recorded in developing A1 in vivo was significantly longer than
that reported in vitro (Kotak et al. 2008; Oswald and Reyes
2011). Data from light-pentobarbital animals will be presented
near the end of the Result section to show that this difference
was not urethane-specific. The prolonged inhibition in rat pups
led to an overlap of inhibitory inputs evoked by 2 closely
spaced, consecutive stimulus pulses (Fig. 5C, inset) for repeti-
tion rates faster than 2 pps. This overlap and summation of
inhibition disrupted the typical temporal sequence between
excitatory and inhibitory synaptic inputs (Wehr and Zador
2003), specifically, significant inhibition from the first pulse
was already present before the arrival of excitation from con-
secutive pulses. This result was further confirmed by the nor-
malized integral area, calculated as the total area under the
curve of synaptic responses divided by the peak conductance
at each repetition rate (Supplementary Fig. 2B). The integrated
inhibition for pups exceeded that in the adult for all repetition
rates. By contrast, excitatory areas were not different between
the 2 groups. The peak conductance of both inhibition and
excitation tended to be larger in the developing A1 than in the
adult A1, yielding a higher I:E ratio. However, these differ-
ences did not reach significance in our sample (Fig. 5F).
Inhibitory decay time decreased gradually between P12 and
P26 (Fig. 6A), while excitatory decay time reached adult levels
already by P18 (Fig. 6B). The decrease of I:E ratio was not sig-
nificant, which is consistent with that reported in 2 earlier in-
vivo studies (Dorrn et al. 2010; Sun et al. 2010) (Fig. 6C). These
observations are compatible with the developmental changes

observed in extracellular following properties obtained for RS
neurons (Fig. 2).

As stated above, we constrained whole-cell recordings to
the A1 area that demonstrated robust tonal-driven responses,
and thalamocortical connectivity in the auditory system of
rodents largely matures at around P14 (Zhao et al. 2009; Barkat
et al. 2011; Hackett et al. 2015). With these 2 constraints, our
data did not show significantly stronger depression of thalamic
inputs to RS neurons in the developing A1 (Fig. 5G). Normalized
synaptic response strength (averaged last 4 pulse responses/
first pulse response) indicated that the excitatory inputs to RS
neurons in both the developing and adult A1 faithfully followed
repeated stimuli. Conversely, we observed significantly stron-
ger adaptation of inhibitory inputs in the adult A1 than in the
developing A1 from 4 to 10 pps (Fig. 5C), indicating that stronger
inhibition is maintained in the developing A1 in response to
repetitive stimuli.

The onset latency of both excitation and inhibition in the
developing A1 was significantly longer than that in the adult A1
(Fig. 5H). It is unlikely that the late onset of excitation (24.48 ±
1.33ms) in the young A1 would have impeded stimulus following
because the smallest interval between consecutive pulses was
80ms at 12.5 pps. In addition, the relative delay between excita-
tion and inhibition was significantly larger in the developing A1
(young, 2.68 ± 0.50ms, n = 22; adult, 0.77 ± 0.47ms, n = 22)
(Fig. 5H), which was generally consistent with that reported in
another in-vivo whole-cell study (Dorrn et al. 2010). Since, theor-
etically, a larger relative delay of inhibition would result in stron-
ger spiking activity, it is unlikely that it contributed to the poor
stimulus-following ability in the developing A1.

Comparison of the intrinsic properties of RS neurons between
the 2 age groups (young, n = 15; adult, n = 10) demonstrated that
the resting membrane potential in the developing A1 was more
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depolarized, which is generally consistent with in-vitro results
(Oswald and Reyes 2008). Firing threshold was not significantly
different between young and adult animals (Fig. 5I). Previous
studies, conducted both in vivo and in vitro, reported a decrease
in input resistance in the ACx of rodents from infancy to adult-
hood (Dorrn et al. 2010; Oswald and Reyes 2011), compatible with
a higher excitability of auditory cortical neurons in young brains
and incompatible with the observed lower responsiveness early
in development. Therefore, intrinsic properties alone may not
account for the limited temporal response resolution of RS neu-
rons in the developing A1.

Our results demonstrate that integrated inhibitory inputs to
single RS neurons in the developing A1 play an essential role in
controlling stimulus-following ability, and verify the influence
of inhibition on the maturation process as hypothesized in pre-
vious studies (Chang et al. 2005; Oswald and Reyes 2011).

Exposure Improves Temporal Processing Capacity and
Shortens Inhibition Duration in the Developing A1

Both human and animal studies have shown that the develop-
ment of auditory cortical temporal processing is experience
dependent (Ponton et al. 1996; Chang and Merzenich 2003). To
determine how sensory experience influences temporal pro-
cessing plasticity in the developing A1, we exposed rat pups at
P15 to noise pulses repeated at 20 pps, approximately at the
high end of the repetition rates of animal vocalizations (Kim
and Bao 2009), for 5min during in-vivo loose-patch or whole-
cell current-clamp recordings. The selection of the time course
of 5min was determined by the fact that most cells could not
be held for more than 15min due to the pulsation of the brain.
Surprisingly, brief exposure was sufficient to improve the tem-
poral response resolution of RS neurons for 4 and 7 pps
(Fig. 7A–D), evidenced by significantly enhanced trial-by-trial
reliability and weakened adaptation (Fig. 7E). In contrast,
exposure did not induce any significant change in the adult A1

(Supplementary Fig. 3). These data suggest a high sensitivity of
temporal processing in the developing A1 to sensory experi-
ence even for such a short and somewhat unnatural exposure.

What mechanisms could account for the temporal process-
ing plasticity rapidly induced by brief sound exposure? We
examined the effect of exposure on synaptic inputs. A few min-
utes of exposure significantly reduced the temporal summation
of inhibition in the developing A1 by shortening inhibition dur-
ation (Fig. 8A, left). In contrast, magnitude and duration of exci-
tatory responses were largely unchanged. Quantitatively, the
decay time constant of inhibition decreased from 108 ± 21 to
63 ± 13ms, whereas that of excitation remained the same
(Fig. 8B). These results were confirmed for inhibition and excita-
tion by the change in normalized integral area induced by
exposure (Fig. 8C). To characterize how long after exposure
plasticity effect could be observed, we recorded from cells
before and at different time points after exposure (n = 26). A
decrease in the inhibitory decay constant after only 5min of
exposure was maintained for at least 1 h (Fig. 8D). Exposure of
pups resulted in no significant change in the peak conductance
of inhibition and in the I:E ratio (Fig. 8E,F). Conversely, exposure
did not induce any significant change in both decay constant
and I:E ratio in the adult A1 (Supplementary Fig. 4).

The 5-min exposure time was necessitated by the limited
holding stability of a neuron in vivo. To assess whether longer
exposure time would impose a more enduring effect on inhib-
ition decay constant and I:E ratio, we first pre-exposed a group
of rat pups to 20 pps stimulation for 30min, then obtained
whole-cell recordings >12 h after exposure. This longer expos-
ure also resulted in a significantly decreased inhibition decay
constant that was maintained for >24 h (Fig. 8G,H) and tended
toward a decrease in I:E ratio, although this difference did not
reach statistical significance (Fig. 8I). These data demonstrate a
strong and long-lasting effect of exposure to temporally modu-
lated stimulus on the duration of inhibition during the matur-
ational period, emphasizing the relevance of proper sound
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statistics during development for achieving full hearing cap-
acity (Kotak et al. 2008; Park et al. 2015; Khavarghazalani et al.
2016).

In addition to synaptic properties, we also examined the
potential effect of exposure during development on cellular
intrinsic properties using current-clamp recordings. Neither rest-
ing membrane potential nor firing threshold of RS neurons in the
developing A1 was significantly changed by exposure (Fig. 9A).
Input and series resistances, measured with a hyperpolarizing
voltage of 10mV and 100ms duration (Fig. 9B), were not altered
by exposure (Fig. 9C). Thus, these results suggest that both excit-
ability of neurons and our recording quality likely did not con-
tribute to the observed exposure-induced improvement of
temporal processing ability in the developing A1.

To assess the potential influence of the type of anesthesia
used in these experiments (urethane), we obtained whole-cell
recordings in lightly pentobarbital-anesthetized rat pups.
Recording commenced more than 3h after the last injection with
the agent, resulting in a nearly waking condition of the animals
(see Materials and Methods). The decay of inhibition in light-
pentobarbital animals was similar to that measured in the

urethane group. Five minutes of sound exposure significantly
shortened the duration of inhibition but not the I:E ratio
(Supplementary Fig. 5). These data confirm that prolonged time
course of inhibition in the developing A1 was not urethane-
specific and was readily shaped by sensory experience. A previ-
ous study in vitro reported that hearing loss, that is, a lack or
reduction of sound exposure during maturation, prevented the
reduction of IPSC duration (Kotak et al. 2008). Our results provide
direct evidence that acoustic experience can alter and, actually,
accelerate maturational changes of IPSC duration in vivo.

Discussion
Sensory cortical networks operate through an equilibrium of
recurrent excitation and inhibition (Monier et al. 2003).
Understanding the developmental processes that govern the
refinement of cortical circuits is essential for identifying devel-
opmental inadequacies that can result in sensory impairments
and disorders. Intracortical inhibition, mediated by GABAergic
interneurons, plays a critical role in timing of cortical matur-
ation (Hensch 2005; Le Magueresse and Monyer 2013). We
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identified a specific role of inhibition in shaping the develop-
mental improvement of temporal processing abilities of auditory
cortical neurons. The role of inhibition in developmental plasti-
city of sensory cortices has been extensively studied (Fagiolini
et al. 2004; Froemke and Jones 2011; Le Magueresse and Monyer
2013). However, those studies focused on cortical frequency map

organization. Temporal features, another fundamental compo-
nent of sensory stimuli, are not clearly topographically processed
in the cortex, and the factors accounting for their developmental
plasticity have remained unclear. Here, we provide direct evi-
dence showing that changes in inhibition are involved in devel-
opmental plasticity of cortical temporal processing.
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Correlated decreases in membrane time constant of the
postsynaptic pyramidal neurons may, in part, contribute to the
significantly longer inhibitory duration in the developing A1.
However, higher expression level of slow GABAA receptor subu-
nits in the cortex may be the main factor (Laurie et al. 1992;
Gingrich et al. 1995; Mody and Pearce 2004; Ing and Poulter
2007; Kotak et al. 2008; Xu et al. 2010). Interestingly, an in-vivo
study reported that the application of GABAA receptor antagon-
ist to the cortex did not have significant effect on the stronger
forward-masking patterns in the developing A1, suggesting
that GABAB receptors might play a role (Chang et al. 2005). An
alternative interpretation for this discrepancy is that Chang
et al. may have blocked GABA broadly and on many neurons,
thus, affecting larger areas of microcircuitry, whereas in-vitro
studies may have affected only the inhibition to a single neu-
ron, relying on their measurements in individual neurons and
the accepted models of how excitation and inhibition interact
to produce membrane potential. We noticed that the duration
of inhibition in in-vitro studies is significantly shorter than
what we observed in the intact developing A1. These differ-
ences may reflect the temporal integration of synaptic inputs
from various subtypes of inhibitory neurons in intact neural
network, but not the activation of postsynaptic GABABRs
because we used cesium and QX-314 in our intracellular solu-
tion to isolate synaptic currents, which largely blocks GABABRs
(Oswald et al. 2009; Takesian et al. 2010). An earlier in-vitro
study has suggested that presynaptic GABABR might play a role
in the maturation of auditory cortical temporal processing
(Takesian et al. 2010). In addition, the mechanisms underlying
exposure-induced shortening of inhibitory duration are also
unknown. To fully address these questions, further in-vivo
pharmacological experiments will be necessary.

It is interesting to find that, compared with RS neurons, the
stimulus-following ability of FS neurons does not change much
during development. RS neurons in the developing cortex are
actually more excitable than FS neurons (Oswald and Reyes 2008,
2011). In addition, given the well-characterized feed-forward tha-
lamocortical projection system, our data suggest that, in the
developing A1, thalamic inputs that evoked reliable temporal
responses in FS neurons are capable of driving faithful temporal
responses in RS neurons as well. Therefore, difference in intracor-
tical inhibitory conductance received by FS and RS neurons may
account for the contrast in temporal responses. Indeed, Pfeffer
et al. (2013) reported that, although FS neurons are also inner-
vated by inhibitory neurons, the overall inhibitory charges
received by FS neurons are less than those received by RS neu-
rons. This could potentially account for the contrast between
temporal properties of FS and RS neurons in the developing A1.

In the developing visual cortex, inhibition is gradually
strengthened to open and close the critical period for ocular
dominance plasticity (Hensch et al. 1998). In intact developing
A1, we did not observe significant developmental change in
the strength of inhibition, which is generally consistent with
previous findings in vivo (Dorrn et al. 2010; Sun et al. 2010).
Nonetheless, we did observe a trend of decrease in the level of
inhibition, which was also reported in a recent in-vitro study
(Oswald and Reyes 2011). The critical period for ocular domin-
ance plasticity in the mouse visual cortex begins at around P28
(Gordon and Stryker 1996), whereas the time point for auditory
temporal processing plasticity begins immediately after hear-
ing onset, P12. This large difference in critical period onset
between the visual and ACx may reflect different expression
levels of GABA receptors throughout the time course of matur-
ation (Laurie et al. 1992; Fritschy et al. 1999).

Our data support the idea that even short periods of sound
exposure in young animals can alter the properties of sound-
evoked responses. It is known that long periods of altered sen-
sory environments affect the development of ACx (Kotak et al.
2008); that the temporal properties of cortical responses can be
altered by sound exposure paired with nucleus basalis stimula-
tion (Kilgard and Merzenich 1998); that even in-vivo very short
periods of sound exposure paired with nucleus basalis stimula-
tion can alter sound-evoked responses (Bakin and Weinberger
1996; Froemke et al. 2007). More recently, Dorrn et al. (2010)
reported that, even without pairing sensory stimuli with
nucleus basalis stimulation, short periods of exposure could
refine the frequency tuning of inhibition and promote the
establishment of E–I balance in the developing A1. In contrast,
Sun et al. (2010) reported that E–I balance is established from
the very beginning of hearing onset. Although the focus of the
present study is not E–I balance and frequency tuning, we
showed that inhibition in the developing A1 is indeed sensitive
to acoustic experience. In the study by Dorrn et al. (2010),
exposure to sound patterns did not result in a significant
decrease in inhibitory duration, in contrast to our observations
here. The reason for this discrepancy may be related to the fas-
ter repetition rate for the exposure used in our study. Overall,
we presented a series of experiments showing that changes in
repetition following ability, inhibitory duration, and membrane
potential can be reliably induced for both short and longer
exposures.

There may be a limitation on generalizing the implication of
our results. In this study, to avoid the potential influences of
variance in response threshold, stimulus intensity was set at
20 dB above the threshold of each individual neuron recorded.
However, we observed a systematic decrease in spiking
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Figure 9. Exposure does not have significant effect on intrinsic properties. (A) Resting membrane potential and firing threshold before and after 20 pps exposure, n = 7.

(B) Measurement of series and input resistances before and after 20pps exposure. Example trace from a P15 neuron, clamped at 0mV, in response to a noise pulse of 70 dB

at 0 s and −10mv voltage pulse injection at 3 s. Green, inhibitory response before exposure; black, inhibitory response after exposure; bottom trace, voltage injection.

(C) Series (Rs) and input resistance (Rm) before and after 20pps exposure. Data are means ± SEM (error bars). Statistical analysis in (B) is the paired t-test (n.s. P > 0.05), and

in (C) is the Wilcoxon matched-pairs signed-rank test (n.s. P > 0.05).
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threshold from 40–60 dB at P12 to 20–30 dB in adults, so the dif-
ference in the duration of inhibition between the 2 age groups
might not be observed if absolute sound levels had been used.
However, Dorrn et al. (2010) did show examples that are in line
with the observed changes in inhibitory duration between
young and adult animals. Furthermore, the observed develop-
mental changes in relative onset latency of inhibition and exci-
tation are compatible with the study by Dorrn et al. (2010).

There is a caveat in the interpretation of our whole-cell
result. We were using single point voltage-clamp recording to
estimate synaptic conductance of cells with extended dendritic
trees. Under this condition, cells may not be well voltage-
clamped beyond the first 20–50 μm of the dendritic tree
(Spruston et al. 1993; Williams and Mitchell 2008). However, our
findings are generally consistent with previous findings
in vitro, and the voltage-clamp quality in our study was reason-
ably good, based on the linearity of the I–V curves. Moreover, so
far, in-vivo whole-cell voltage-clamp recording is still the only
approach that allows a direct measure of synaptic inputs in live
animals, and it has been widely used to study circuitry proper-
ties in sensory systems (Brecht and Sakmann 2002; Wehr and
Zador 2003; Atallah and Scanziani 2009; Dorrn et al. 2010;
London et al. 2010; Poo and Isaacson 2011; Kuo and Wu 2012; Li
et al. 2013). Therefore, this approach may still be valid to shed
some light on the synaptic mechanisms underlying the devel-
opment of auditory cortical temporal processing.
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