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SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR
DATA LOCALITY

MARK F. ADAMS∗, JED BROWN† , MATT KNEPLEY‡ , AND RAVI SAMTANEY§

Abstract. We investigate a domain decomposed multigrid technique, termed segmental refine-
ment, for solving general nonlinear elliptic boundary value problems. We extend the method first
proposed in 1994 by analytically and experimentally investigating its complexity. We confirm that
communication of traditional parallel multigrid is eliminated on fine grids, with modest amounts of
extra work and storage, while maintaining the asymptotic exactness of full multigrid. We observe
an accuracy dependence on the segmental refinement subdomain size, which was not considered in
the original analysis. We present a communication complexity analysis that quantifies the commu-
nication costs ameliorated by segmental refinement and report performance results with up to 64K
cores on a Cray XC30.

Key words. multigrid,parallel multigrid,distributed memory multigrid,segmental refinement

AMS subject classifications. 68Q25, 68R10, 68U05

1. Introduction. Multigrid methods are widely used in practice. They are
important methods to adapt to emerging architectures, however, like many algorithms
their effective use on emerging architectures is a challenge and is likely become more
so in the near future. Full multigrid (FMG) is an asymptotically exact, non-iterative
algebraic equation solver for discretized elliptic partial differential equations (PDEs)
with work complexity of approximately five residual calculations, or what is known
as textbook multigrid efficiency, for the constant coefficient Laplacian [3]. While
textbook multigrid efficiency is only provable for a small class of elliptic problems, it
has been observed experimentally in a range of problems [14, 15, 2], and is applicable
to general nonlinear elliptic equations.

Memory movement, in both intra-node and inter-node communication, and global
data dependencies are the primary drivers of costs, in power and time, for PDE
simulations. Memory movement pressures are not new and have been accumulating for
decades, but the recent prominence of energy costs in powering memory and moving
data is exacerbating this problem. Segmental refinement addresses the challenges
posed by the deep memory hierarchies of modern architectures at a fundamental,
algorithmic level by exploiting the local nature of multigrid processes and a tolerance
for finite algebraic error, which vanishes asymptotically. A segmental refinement data
model or method explicitly decouples subdomain processing, at a level of the memory
hierarchy to improve data locality, to amortize latency costs, and to reduce data
dependencies.

Segmental refinement was proposed in the 1970s [5] §7.5, [8] §8.7, [9] as a low mem-
ory complexity technique for FMG to avoid storage of the entire solution in memory at
any one time, and was recognized for its attractive properties in distributed memory
computing in the 1990s [7]. Indeed, it is inherently asynchronous and highly paral-
lel, with no interprocess communication on fine grids, and it requires only a modest
amount of extra storage and work in buffer cells. This paper extends the develop-
ment of segmental refinement by quantifying its complexity both experimentally and
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analytically. We present multilevel numerical results of a cells centered version of
the original algorithm, present and analyze a new segmental refinement method, and
report performance results with up to 64K cores on a Cray XC30.

2. Differential and discretized problems. We consider general nonlinear el-
liptic problems in an open domain Ω ⊂ Rn with boundary ∂Ω of the form

(1) Lu (x) = f (x) (x ∈ Ω) ,

where f is a known function, u is unknown, and L is a uniformly elliptic operator.
While the methods described herein are generally applicable, we restrict ourselves to

the 3D Poisson operator: x = (x1, x2, x3), L =
(
∂2u
∂x2

1
+ ∂2u

∂x2
2

+ ∂2u
∂x2

3

)
. In addition to

this interior equation, a suitable boundary condition on ∂Ω is assumed.
The discretization of equation (1) can be general but we restrict ourselves to

a cell-centered finite difference method on isotropic Cartesian grids and rectangular
domains. For the grid Ωh with mesh spacing h covering the domain Ω, the equation
is written as

(2) Lhuh(i) = fh(i) (i ∈ Ωh) ,

where i =
(
x− h

2

)
/h is an integer vector, x = ih+ h

2 is a cell center, and the boundary
∂Ω lines up with the cell edges. In 3D i = (i1, i2, i3) is an index for a cell in grid Ωh.
The indexing in equation (2) is dropped and field variables (e.g., uh) are vectors of
scalars.

Multigrid requires an accurate solver on a coarse grid Ω0 and smoothers on a
sequence of finer grids Ω0, Ω1, Ω2,..., ΩM , where Ωk ≡ Ωhk

, hk = hk−1/2, hM = h,
Nk = 2Nk−1, NM = N . We assume Ωh and subsequent subdomains are isotropic and
are expressed as tensor products of 1D grids. In addition, the length of Ωh, in each
dimension, is an integer vector. We simplify the presentation by using the integer N ,
since we assume cubical subdomains.

3. Multigrid background. The antecedents of modern multigrid go back at
least to the 1930s [13], and the early 1960s [10], and others [15]. It was developed in
its modern form in the 1970s [4], as an asymptotically exact solver with work com-
plexity of a few residual calculations – what is known as textbook multigrid efficiency.
The method was applied to complex domains, variable coefficients, and nonlinear
problems [4], and a substantial body of literature, both theoretical and experimental,
demonstrates the efficacy of multigrid on a range of problems [15, 8]. Full Approxi-
mation Scheme (FAS) is also an effective nonlinear solver, with costs similar to those
of a linearized multigrid solve (e.g., [15] §5.3.3, [2]).

3.1. Multigrid algorithm. Multigrid starts with the observation that errors
that are poorly resolved with local processes are often resolved with local processes
on a lower resolution discretization. This lower resolution problem is known as a
coarse grid. A multigrid method applies this process recursively until the problem
size is small enough to be solved inexpensively and exactly. The coarse grid space
is represented algebraically by the columns of the prolongation operator IhH or Ikk−1,
where h is the fine grid mesh spacing and H is the coarse grid mesh spacing. Residuals
are mapped from the fine grid to the coarse grid with the restriction operator IHh .
The coarse grid operator is then formed in one of two ways (with some exceptions),
either algebraically to form Galerkin (or variational) coarse grids, LH = IHh LhI

h
H , or

by creating a new operator on each coarse grid if an explicit coarse grid with boundary
conditions is available.
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So called correction scheme (CS) multigrid, which computes corrections to the
solution, is appropriate for linear problems, but FAS multigrid is more natural for
segmental refinement. FAS is derived by writing the coarse grid residual equation for
equation (2) as

(3) rH = LH(uH)− LH(ûH) = LH(ûH + eH)− LH(ûH),

where uH is the exact solution, ûH is an approximation to IHh uh (which is the full
solution represented on the coarse grid), and e is the error. With an approximate
solution on the fine grid ũh, the coarse grid equation is written as

(4) LH
(
IHh ũh + eH

)
= LH

(
IHh ũh

)
+ IHh (fh − Lhũh) = fH = IHh (fh) + τHh ,

and is solved approximately. Here, τHh is the tau correction, which represents a correc-
tion to the coarse grid from the fine grid. After IHh ũh is subtracted from the IHh ũh+eH
term the correction is applied to the fine grid with the standard prolongation process.
Algorithm 1 is FAS multigrid V (ν1, ν2)–cycle algorithm with nonlinear local process
or smoother u← S(L, u, f). A lower order restriction operator, ÎHh , is used to restrict

Algorithm 1 FAS multigrid V -cycle

function FASMGV (Lk, uk, fk)

if k > 0 then
uk ← Sν1(Lk, uk, fk)
rk ← fk − Lkuk
uk−1 ← Îk−1

k (uk)

rk−1 ← Ik−1
k (rk)

tk−1 ← uk−1

wk−1 ← FASMGV (Lk−1, uk−1, rk−1 + Lk−1uk−1)
uk ← uk + Ikk−1(wk−1 − tk−1)
uk ← Sν2(Lk, uk, fk)

else
uk ← L−1

k fk
end if
return uk

solution values if a higher order IHh is used for the residual, since the approximate
coarse grid solution is subtracted from the update to produce an increment and is
only needed for the nonlinearity of the operator (i.e., ÎHh = 0 recovers CS multigrid).

3.2. Full Multigrid Algorithm. An effective V–cycle reduces the error by a
constant fraction and is thus considered an iterative method, but it is also used to
build an asymptotically exact solver that reduces the algebraic error to the order of the
discretization error. This property, with O(N) work complexity, is termed textbook
multigrid efficiency. FMG starts on the coarsest grid where an inexpensive accurate
solve is available, prolongates the solution to the next finest level, applies a V–cycle,
and continues until a desired resolution is reached. Algorithm 2 is the full multigrid
algorithm, with M coarse grids and α steps of the smoother before each V–cycle,
in an F(α,ν1,ν2) cycle. A higher order interpolator between the level solves, Πh

H , is
required to achieve optimal efficiency of FMG – e.g., if IHh is not of sufficient order
(e.g., Πh

H must be at least linear, for cell-centered 2nd-order accurate discretizations,
whereas IHh can be constant).
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Algorithm 2 Full multigrid with α pre V-cycle smoothing steps

u0 ← L−1
0 f0

for k = 1 to M do
uk ← Πk

k−1uk−1

uk ← Sα(Lk, uk, fk)
uk ← FASMGV (Lk, uk, fk)

end for
return u0

We analyze FMG with an induction hypothesis that the ratio r of the algebraic
error to the discretization error is below some value and assume where the discretiza-
tion error is of the form Chp, where p is the order of accuracy of the discretization.
Further, we assume that the solver on each level – e.g., one V–cycle – reduces the
error by some factor Γ (proven or measured experimentally), to derive the relationship
between Γ and r, where Γ = r

(4r+3) , with p = 2 and a refinement ratio of two. It

is essential to use a sufficiently powerful solver such that Γ < 0.25. In the case of
compressible resistive magnetohydrodynamics problems, two V(2,2)–cycles have been
shown to be sufficient [2].

3.3. Conventional distributed memory multigrid. Domain decomposition
is a natural technique for distributed memory processing of many classes of discretized
PDEs, where each subdomain is placed on a processor or memory partition and the
semantics of the serial algorithm are replicated. This process starts by decomposing
Ωh into P disjoint grids Ωph such that Ωh =

⋃P
p=1 Ωph. We use a rectangular array of

processes of size (P1, P2, P3) and thus P = P1P2P3. In addition, boundary conditions
in equation (2) are implemented with ghost cells, i.e., Ωh is enlarged by one cell in all
directions to form Ω+1

h . Boundary ghost cell values are set with appropriate (linear)
interpolation of interior values before each operator application.

We define the number of cells on each side of a (cube) subdomain Ωph as the
integer Np

k on level k, again using integers for simplicity. The total number of cells
in our problems is thus n = P1P2P3(Np

M )3, where Np
M is the number of cells in

each dimension on the fine grid. A conventional distributed memory full multigrid
algorithm starts with a small coarse grid on a small number of processes (e.g., one
process) and the coarse grid is refined and split into equally sized patches, which
populate more processes. This process continues until all processes are used, forming
an octree in 3D. We continue with simple refinement once all processes are used.

4. Segmental refinement. This section describes a cell-centered segmental re-
finement (SR) data model or method. Segmental refinement begins with a conven-
tional distributed memory FAS-FMG method, which is used as a “coarse” grid solver.
The finest level of this solver is the “transition” level and is given a grid index k = 0,
coarser grids have negative indices. The subsequent K fine grids are defined as SR
grids. Figure 1 shows a 1D example, with two SR levels and four processes.

Non-ghost cells are defined as genuine cells and the genuine region is defined as
pΩVk ≡ Ωpk, where the process superscript is moved to the left. Then, SR adds buffer
cells by growing each local subdomain grid by 2Jk cells in each dimension. We define
the length or depth, in each dimension, of the SR buffer region Jk to be

(5) Jk = J(k) = 2 ·
⌊A+B · (K − k)

2

⌋
,
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Level k 

2 

1 

0 

-1 

-2 

Transition level 

1st SR level 

Severed far cf communications of SR 

SR sub-domains 

Conventional MG 

Processes with relative logical size valid regions 

Fig. 1. 1D SR data model

where A is a constant term and B is a linearly increasing term on coarser grids, as
defined originally [7]. Jk is constrained to even integers to simplify restriction. In the
end, the union of the genuine cells and the Jk buffer cells defines the compute region
pΩCk ≡ pΩV+Jk

k ∩ Ωk. That is, the genuine region grown by Jkhk in all directions
and clipped by the domain. The length of the compute region is generally pNC

k =
pNV

k + 2Jk, where pNV
k is the length of the compute region in grid k.

We define process ghost cells by pΩGk ≡ pΩC+1
k \ pΩCk and subdivide pΩGk into

two sets: pΩGBCk ≡ pΩGk \ Ωk and pΩGSRk ≡ pΩGk ∩ Ωk. Here, the pΩGBCk cell values
are computed with the conventional boundary condition algorithm, while pΩGSRk cells
are set during the I10 prolongation process and are “frozen”, in that they are not
updated with the neighbor exchanges, during the rest of the multigrid process. This
“freezing” is a consequence of the elided communication of SR, pΩGSRk cells are set
with prolongation only. We define the support of the compute region, on grid k , of
grid k + 1 as pΩFk ≡ pΩCk+1, which is the region updated with the simple averaging
restriction operator. Figure 2 shows a 1D example at the edge of the domain with
two processes and two SR levels with the range of prolongation for one process.

A few details to note, the residual is modified to accommodate the lack of an
update in the region pΩCk \pΩFk (lines 5 in Algorithm 4), and the range of prolongation
is pΩC∪pΩGSR is expanded to include the SR domain ghost cells (line 11 in Algorithm
4) that are frozen until the next prolongation operation. Algorithms 3 and 4 are the
SR FAS-FMG algorithm with annotations for the domain of each operation.

5. Experimental observation of parameter requirements. In this section
we investigate the parameters required to maintain an acceptable level of accuracy in
the segmental refinement FMG solver. There are several parameters that define the
SR solver: the number of SR levels K and the total number levels M + 1, A and B
of equation (5), which defines the buffer schedule, and the length of the subdomains
on the transition level pNV

0 .



6 MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

0 

1 

2 
Level 

NGBC = 1 N0
V

 = 2 

1ΩV
0 

2ΩV
0 

Process 1’s prolongation range (requires communication) 

1Ω1
V

 J1 

1Ω1
GSR

 
1Ω1

C
 

1Ω2
V

 

1Ω2
GSR

 

J2 

1Ω2
C

 

1Ω1
F

 

Prolongation range (local) Frozen 
ghost 
cell 

J1 = J2 = 2  

1Ω1
GBC

 

1Ω2
GBC

 

Process 1’s prolongation (P) domain process 2 data 

Fig. 2. 1D 2 process SR, with the number of boundary condition cells NGBC

Algorithm 3 FMG with segmental refinement and α pre V-cycle smoothing steps

u← function FASFMGSR

u0 ← FMG
for k = 1 to K do
uk ← Πk

k−1uk−1 // on grid pΩCk ∪ pΩGSRk

uk ← Sα(Lk, uk, fk) // on grid pΩCk
uk ← FASMGV SR(Lk, uk, fk)

end for
return uK

5.1. Model problem and solver. We use a multigrid refinement ratio of two,
piecewise constant restriction, and linear prolongation for both the FMG and V–
cycle prolongation, with a 2nd-order Chebyshev polynomial pre-smoother and post-
smoother in the V-cycle and a 1st-order Chebyshev polynomial (damped Jacobi) pre
V–cycle smoother (an F(1,2,2) cycle). This is a textbook multigrid efficient solver for

our problem. The solution is prescribed as u =
3∏
i=1

(
x4i −R2

i x
2
i

)
, where R = (2, 1, 1),

for the Laplacian, on a rectangular domain Ω = {x1, x2, x3 ≥ 0, x1 ≤ 2, x2, x3 ≤ 1} ,
and a 4 x 2 x 2 process grid. The problem is imposed with a homogenous Dirichlet
boundary conditions and a 27-point finite volume stencil is used that is 2nd-order
accurate.

5.2. Experiments. We define an acceptable level of error, in the infinity norm,
to be less than about 10% more than the conventional solver error (econv). We sample
the parameter space of K, A, B, pNV

0 , to find the manifold where the solver error
transitions from acceptable to unacceptable. Table 1 shows the ratio (er) of the SR
error (eSR) to econv (er ≡ eSR/econv) with A = 2, 4, 6, 8 (tables), B = 0, 1, 2, 3 (rows),
and log2

pNV
0 and K (columns), and underlines the largest acceptable point in each
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Algorithm 4 FAS V–cycle with segmental refinement

u← function FASMGV SR(Lk, uk, rk)

1: uk ← Sν1(Lk, uk, rk) // on grid pΩCk
2: uk−1 ← Îk−1

k (uk) // on grid pΩFk
3: tk−1 ← uk−1

4: rk−1 ← Ik−1
k (rk − Lkuk) + Lk−1uk−1 // on grid pΩFk

5: rk−1 ← Lk−1uk−1 // on grid pΩCk \ pΩFk
6: if k = 1 then
7: wk−1 ← FASMGV (Lk−1, uk−1, rk−1)
8: else
9: wk−1 ← FASMGV SR(Lk−1, uk−1, rk−1)

10: end if
11: uk ← uk + Ikk−1(wk−1 − tk−1) // on grid pΩCk ∪ pΩGSRk

12: uk ← Sν2(Lk, uk, rk) // on grid pΩCk
13: return uk

column. The total number of multigrid levels can be inferred from pNV
0 and the

log2
pNV

0 (K)

B 4(6) 3(5) 2(4)

0 17 7.2 2.7
1 2.9 2.1 1.2
2 1.5 1.2 NA
3 1.2 1.1 NA

(a) A=2

log2
pNV

0 (K)

B 4(6) 3(5) 2(4)
0 5.7 2.6 1.2
1 2.0 1.4 1.0
2 1.3 1.1 NA
3 1.1 1.0 NA

(b) A=4

log2
pNV

0 (K)

B 4(6) 3(5) 2(4)
0 2.8 1.4 1.0
1 1.5 1.1 NA
2 1.3 1.0 NA
3 1.1 NA NA

(c) A=6

log2
pNV

0 (K)

B 4(6) 3(5) 2(4)
0 1.5 1.1 1.0
1 1.3 1.0 NA
2 1.1 1.0 NA
3 1.0 NA NA

(d) A=8
Table 1

Ratio of SR to conventional multigrid solution error (er) as a function of A, B, K, and pNV
0

process grid (i.e., M = K+log2
pNV

0 +log2 Pz = K+log2
pNV

0 +2). This data shows
that A and B both correlate with increased accuracy, which is expected because they
both increase J . We observe that doubling the length of pNV

0 with K (log2
pNV

0 ∝ K)
and increasing B with K (B ∝ K) appears to maintain an asymptotically exact solver.

To further investigate the effect of pNV
0 on error we fix A = 8, B = 0 (Jk = 8),

and K = 5. The relative error as a function of pNV
0 is shown in Table 2. This data

shows a reduction in the error by a factor of about two with a doubling of pNV
0 .

5.2.1. Maximum segmental refinement buffer schedule. The buffer length
of the coarsest SR grid, J1, is an important parameter because these cells require
communication, since they are the range of prolongation to the coarsest SR level and
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log2
pNV

0 5 4 3 2
N = NK 1024 512 256 128

er 1.02 1.05 1.13 1.28

Table 2
er with A = 8, B = 0,K = 5

the data source for all subsequent finer grid processing. To investigate the relationship
of J1 to accuracy we test with a maximum buffer schedule (MBS), where J1 is a
parameter and rest of the SR buffers completely support grid k = 1: pΩCk = pΩFk for
k < K. This is not a practical buffer schedule, because the number of buffer cells
increases exponentially with refinement. Moreover, the MBS removes one source of
error: the lack of update of the solution and τ correction in pΩCk \ pΩFk . Table 3
shows the error ratio as a function of pNV

0 with fixed K = 4 and J1 = 4 and the
maximum buffer schedule. This data shows slightly less degradation of the solution

log2
pNV

0 6 5 4 3 2 1
N = NK 1024 512 256 128 64 32

er 1.02 1.05 1.11 1.25 1.4 1.9

Table 3
er with maximum buffer schedule, K = 4 and J1 = 4

with increasing pNV
0 than that of Table 2, but we observe a similar doubling of the

error with each halving of pNV
0 . This indicates a dependence of accuracy on pNV

0 ,
which was not recognized in the original analysis [7]. However, we have no theoretical
understanding of this phenomenon. Future work is required to corroborate these
results or refute them, with say a vertex centered method, improve the method if
possible, and obtain a better theoretical understanding of segmental refinement to
explain this phenomenon.

6. A proposed asymptotically exact segmental refinement method. This
section proposes a new segmental refinement data model or method that, given the
observations of §5, would efficiently provide an asymptotically exact solver at the
expense of some loss of parallelism. This method is simple and most like overly
conservative, but it lends itself to simple analysis. We show how a communication
complexity model and corresponding machine memory model can be used to define an
SR data model (SR eliminates a class of communication on fine grids). We conclude
with some general observations on the segmental refinement technique and potential
future work in composing SR methods to generate multilevel segmental refinement
methods.

6.1. A multigrid V–cycle communication model. Segmental refinement
inherits the computational depth of conventional distributed memory multigrid, and
the coarse grid solves are identical, consequently a more refined complexity model is
required to distinguish the communication characteristics of SR from those of conven-
tional multigrid. SR has been analyzed in terms of the communication patterns and
savings and the extra computation costs for a two-level method [12, 11]. In addition,
the memory complexity analysis with a logD term for the SR buffer cells memory
complexity has been studied (§8.7 [6]). This section proposes a new SR data model,
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that we posit is asymptotically exact, and an abstract memory model that resolves
the communication that is eliminated by this new method.

We define two types of multigrid communication: vertical inter-grid (cV ) and hor-
izontal intra-grid (cH) communication. A V (2, 2) cycle requires eight message phases,
or bulk synchronous communication steps: six horizontal phases for the four smooth-
ing steps, the residual, and the τ correction, and two vertical phases for restriction and
prolongation. Our model focuses on these communication phases and the “distance”
of each message phase.

6.2. A memory model. This section defines a natural memory model for our
proposed new SR method. We define a “word” of data as a small patch of cells
(e.g., 2D − 32D cells or a high order finite element) and assume that each “process”
computes on one data word. Consider a two-level memory model with Q words of
fine grid memory, partitioned into

√
Q partitions, each of size

√
Q. We define near

communication as communication between processes within a memory partition and
far communication as communication between memory partitions.

6.3. Proposed asymptotic segmental refinement data model. The obser-
vations in §5 suggest that a data model that increases pNV

0 with the number of levels,
and perhaps adds a quadratic term to equation (5), would be asymptotically exact.
One approach is to keep pNV

0 constant and determine an appropriate buffer schedule,
but this would be less reliable and natural. It is notable that, a non-asymptotic model
is of practical use since, as an example, fixing K = 5 reduced the size of the conven-
tional (full communication) solver by a factor of 32K (2KD), which is a significant
constant.

We propose a data model that provides sufficient accuracy for an asymptotically
exact solver by extending the parallel octree of the coarse grids to the entire multigrid
hierarchy, using

√
Q processes in each SR subdomain and setting the size of the

transition level to fit into one memory partition. With K SR levels, this model has
M = 2K multigrid levels and K+1 conventional levels. Figure 3 shows a 1D example
of this data model with two SR levels, Q = 16, and an SR patch length NV

0 = 4 where
a word is one cell.

6.4. Communication complexity. We use the multigrid V–cycle communi-
cation model of §6.1, the machine model of §6.2, and the SR data model of §6.3
to analyze the communication complexity of the segmental refinement method. We
ignore FMG prolongation because there are M FMG prolongations as opposed to
O(M2) V–cycle restrictions and prolongations. This, FMG processes a V–cycle once
on the finest grid, twice on the first coarse grid with 1/2D as many active processes,

and so on for M + 1 levels and (M + 1) · M2 ≈
M2

2 grid visits total. This leads to a
computation depth of log22 (N) for FMG. There are six cH communication phases and
two cV phases per grid visit with one visit on the finest grid, two on the first coarse
grid, and so on with M visits to the coarsest grid. Correspondingly, there are about
M2/8 = M2/2D visits on the fine (SR) half of the grid hierarchy and 3 ·M2/8 on the
coarse (conventional) half of the grid hierarchy. We ignore vertical data locality and
assume that all vertical communication is far communication in the finest K levels
and that all communication is near communication on the coarsest K + 1 levels.

6.4.1. 3D Bisection bandwidth. Here we consider a four level memory model
generated by bisecting the memory and domain of the current model. The commu-
nication complexity between these two partitions is bisection bandwidth. In the case
of conventional multigrid, the highest order term of bisection bandwidth is from the
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Level k 

2 

1 

0 

-1 

-2 

Transition level 

1st SR level 

Severed far communications of SR 

SR sub-domains 

Conventional MG 

near communication 

near communication 

far  communication  

Processes with one word of data each 

Fig. 3. 1D example of asymptotic data model

ghost cell exchange on the finest grid. As a result, on a 3D cube with N cells in
each dimension, O(N2) cells (the area of the face between the two partitions) times
the length of the ghost region (O(1)) is communicated O(1) times resulting an a
communication complexity of O(N2).

The highest order term in the SR bisection bandwidth complexity is from the
buffer region exchange on the transition level. Assume the number of buffer cells
required is quadratic in K, because our data in §5 suggests this is required for an
asymptotically exact solver. The “area” of data sent in this buffer cell exchange is

O(pN2
0 ) = O(

√
N

2
) = O(N), it has a depth K2 and is executed O(log2N) times.

Thus, the communication complexity is O(N ·K2)O(log2N) = O(N · log3
2N). Seg-

mental refinement reduces the bisection communication requirements from O(N2) to
O(N log3

2N).

6.4.2. Near and far communication complexity. We now compare the near/far
communication complexity of conventional and segmental refinement multigrid. Ta-
ble 4 tabulates the communication complexity of conventional and SR multigrid with
M + 1 levels. The coarsest K + 1 levels of both solvers use the same FMG solver on
one memory partition (Figure 3). There are six cH communication phases and two
cV phases per grid visit. Consequently, The removal of far horizontal communication

Communication type Near Far

Coarse grids 3 · (6cH + 2cV ) 0
Conventional fine grids 6cH 6cH + 2cV
SR fine grids 6cH 2cV

Table 4
Communication phases (× log2

2 N/8) of conventional distributed memory multigrid and segmen-
tal refinement multigrid
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complexity is the distinguishing characteristic of segmental refinement.

6.4.3. Conclusion and future work. Any one segmental refinement data
model removes horizontal communication at some level of the memory hierarchy,
the 6cH term in far communication in Table 4 and at the arrows in Figures 1 and
3. Communication, in some memory model, is used only for the vertical operators
restriction and prolongation, which have tree-like graphs. Tree algorithms are effi-
cient for the global communication required for the solve of an elliptic system. The
critical observation of segmental refinement is that horizontal communication of tra-
ditional parallel multigrid is used for local processes and is not global, hence “far”
communication is potentially not necessary.

We have investigated two segmental refinement data models that are “two level”
in that there is one “transition” level between a conventional coarse grid solver and
decoupled finer grids. An additional step is to compose these two models, by using
the method in this section as the coarse grid solver for the method in §4, and create
a three level SR method. We expect an asymptotically exact “multilevel” segmental
refinement method that starts with the method in this section as a “coarse grid” solver
and reduces the size of pNV

k , by a factor of two on each finer level, resulting in just
one process per SR subdomain on a fine level, thereby recovering more parallelism,
and continuing with the method in §4 on each process. This is a subject for future
work.

7. Timing studies. The main purpose of this paper is to experimentally inves-
tigate the asymptotic mathematical behavior of the segmental refinement technique,
but this section presents some performance data data on Edison, the Cray XC30 at
NERSC with up to 64K cores using the problem in §5.1, which provides some com-
putational context for the methods developed here. We use 8 of the 12 cores on each
socket and thus utilize 96K cores at scale, or about 75% of the machine and inves-
tigate weak scaling with 1283 and 323 cells per core on the fine grid, with four and
three SR levels respectively, and pNV

0 = 8 and 4 respectively. The solver is preloaded
with one solve, which verifies accuracy, followed by 8 timed solves for the 1283 cells
per core case and 512 solves for the 323 cells per core case to normalize times.

Figure 4 plots the infinity norm of the error and residual in the FMG solve
and verifies that our solvers are asymptotically exact and that 2nd-order accuracy is
achieved in the solution and 1st-order in the residual. The residuals for SR are larger
than those of the conventional method but are still 1st-order convergent. Figure 5 plots
the solve times for the SR solver and the conventional multigrid solvers and shows
modest gains in scalability with SR. The solve times for a V–cycle solve with a relative
residual tolerance of 10−4 are also shown. Figure 6 demonstrates the stagnation in
error reduction with a V–cycle solver, converged to a constant residual reduction, and
that SR is maintaining perfect 2nd-order accuracy.

Our parallel multigrid implementation has the capability to compute coarse grids
redundantly, where all processors are active on all levels redundantly computing coarse
grid corrections, or processors can be left idle on coarse grids. Redundant coarse
grid solves result in a “butterfly” communication pattern and the idle processors
result in a tree communication pattern. This approach has the advantage of requiring
no communication in the prolongation phase, hence reducing the number of bulk
synchronous communication steps, at the expense of sending more data with more
messages overall. We observe in Figure 5 that redundant coarse grid solves are slightly
slower, which suggests that larger number of messages cost more than the savings in
the number of bulk synchronous phases, however this effect is small and our code is
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not instrumented to understand this phenomenon effectively. Understanding the use
of redundant coarse grid solves at extreme is the subject of future work and is likely
to be more important on future extremes scale machines (e.g., we only just observe a
difference in our largest runs and Edison as a very good Aries network).

8. Conclusions. We continue the work of [7], with the first published multilevel
numerical results of the segmental refinement multigrid method. We demonstrate
that SR can maintain the semantics of textbook efficient multigrid FMG-FAS with
processing that is more attractive on modern memory-centric architectures than con-
ventional distributed memory multigrid by decoupling fine grid processing, which
improves data locality; amortizes latency costs, and reduces data dependencies. We
have experimentally investigated the asymptotic behavior of SR and have found an
accuracy dependence not previously recognized. We analyzed the communication
complexity, with a two-level memory model, of an SR data model, where we show
that the method removes horizontal communication as defined by the memory model.
The degree to which the memory model, on which any given SR method removes
communication, is a useful performance model for any given machine can be used as
a metric for the potential efficacy of the method. We experimentally verify that our
SR data model is an asymptotically exact solver on 64K cores of a Cray XC30 and
provide timing and scaling data.

We have observed modest improvement in scaling with SR with a simple data
model that supports only a few SR levels. Future work includes developing SR data
models that accommodate more levels of the memory hierarchy, testing on machines
with deeper memory hierarchies and fully exploiting SR’s data locality with, for in-
stance, loop fusion [16]. A vertex-centered discretization and high order I10 prolonga-
tion would be of interest to better understand the asymptotic complexity of SR and



SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR DATA LOCALITY 13

16 128 1024 8192 65536
0

5

10

15

20

25

30

35

cores

Ti
me

1 F- cycl e, V(2, 2), 1283 cel l s/core, 8 sol ves - non- redundant CGS
1 F- cycl e, V(2, 2), 1283 cel l s/core, 8 sol ves - SR, non- redundant CGS
V(2, 2) cycl es, 1283 cel l s, rtol =10. −4 , 8 sol ves, non- redundant CGS
1 F- cycl e, V(2, 2), N=32/core, 512 sol ves - redundant CGS
1 F- cycl e, V(2, 2), N=32/core, 512 sol ves - non- redundant CGS
1 F- cycl e, V(2, 2), N=32/core, 512 sol ves - SR, non- redundant CGS

Fig. 5. Weak scaling: Solve times (8 solves) on Edison, Laplacian u =
(
x4 − L2

i x
2
)
, L =

(2, 1, 1), 1283 cell/core

corroborate the observation of the accuracy dependence on pNV
0 . SR may be particu-

larly sensitive to the order of prolongation because it is used to set the “frozen” ghost
cells in the SR buffer region. Further work involves extending the application of SR to
more domains, such as variable coefficient and nonlinear problems and unstructured
grid problems.

All source code, data, and run and parsing scripts used to produce this paper are
publicly available [1].
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