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Abstract

Adaptive Algorithms for Dynamic Decision-Making: Bridging Online Learning and

Non-Parametric Regression

by

Dheeraj Baby

Making decisions in real-time by learning patterns in an online data-stream is an

important problem in modern machine learning (ML). Applications that fall under this

umbrella include domain adaptation, change-point detection, portfolio-optimization, op-

timally pricing airline tickets based on changing market features etc. The features of

the environment where an ML model is deployed change from time to time. Design-

ing decision-making algorithms that can quickly adapt to these environmental changes

on-the-fly is a topic of great significance.

In this thesis, we will design and analyse information-theoretically optimal algorithms

for online decision-making under non-stationarities. The presentation will also encom-

pass the utilization of these algorithms across a wide spectrum of applications, spanning

time series forecasting, dynamic pricing, non-parametric regression, LQR control and

unsupervised domain adaptation.

A main challenge in the theoretical analysis of the algorithms is to exploit the curved

geometry of loss functions while deriving fast dynamic regret rates. This is attained

by connecting ideas from the domains of locally adaptive non-parametric regression and

strongly adaptive online learning. These fields have been conventionally studied sepa-

rately by researchers. In this thesis we provide new tools to bridge these two domains.

A byproduct of this fusion are novel results that do not require observation models with

stringent stochastic assumptions for non-parametric regression and online convex opti-

viii



mization. Further, the developed algorithms are highly adaptive and do not require prior

knowledge about the degree of non-stationarity in the environment. Our hope is that

this thesis will inspire new collaborations between researchers from the communities of

online learning and non-parametric regression.
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Chapter 1

Introduction

Online learning is a powerful machine learning (ML) paradigm for sequential decision

making. In this framework, a learning agent is faced with a data stream. At each round

of the data stream the agent makes a decision / prediction solely based on the historical

data observed so far. The main goal in online learning is to design algorithms for the agent

that can quickly learn patterns present in the data stream and leverage them to make

high quality predictions. Since a prediction needs to be made in real-time at each round,

online algorithms are attractive only if it has low per-round computational complexity.

On the other-hand the patterns that emerge in the stream are often transient. The

agent needs to quickly detect and learn them for maximizing statistical efficiency of the

predictions. These two challenges make the task of designing online learning algorithms

highly non-trivial.

Numerous real-world ML applications can be cast into the framework of online learn-

ing. Some notable examples include forecasting weather / stock market trends, online

portfolio optimization, pricing of airline tickets based on changing market features, adap-

tively controlling the oxygen flow rate in ICU inhalators based on real-time vital signals

of the patient and recommending products in a retail website based on the constantly
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Introduction Chapter 1

evolving preferences of the customer.

The main focus of this thesis is to develop principled algorithms for online learning

under a non-stationary data stream. i.e, the data generating distribution at each round

in the stream can drift across time. Rigorous proofs for the information-theoretic opti-

mality of the developed algorithms will be presented. Further we will also feature the

utilization of these algorithms for solving various real-world applications. Three main

factors were kept in mind while developing these algorithms: 1) Low computational com-

plexity; 2) Minimal assumptions on the nature of distribution shift across the data stream

and 3) Attaining statistical efficiency without asking the user to tune hyper-parameters

calibrated to the level of non-stationarity in the data stream.

1.1 Outline of the Thesis

Part I: Theory and Algorithms under Stochastic Observation Model

In this part we develop online forecasting algorithms where the observations are as-

sumed to be noisy realisations of ground truth. The noise is taken to be distributed

iid.

• In Chapter 2, we begin with an online denoising problem that inspired all the

subsequent chapters of this thesis. In this problem, we sequentially observe noisy

realisations of an unknown ground truth sequence of bounded total variation (TV).

The noise is assumed to be sampled iid from a sub-gaussian distribution. The task

is to estimate the ground truth sequence value at each round in an online manner.

The quality of the predictions are measured using total squared error (TSE). The

offline version of this problem is well studied in the locally adaptive non-parametric

regression literature [1, 2, 3]. However, the online problem is harder, because unlike

the offline version, the learner has access only to the past observations. Nevertheless

2
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we show that for the online estimation problem, one can attain a minimax TSE rate

that is of similar order as that of the offline problem. A computationally efficient

and minimax optimal online algorithm is designed based on a novel change point

detection scheme that is constructed via building upon the theory of wavelet based

non-parametric estimation [2].

• Chapter 3 is a generalisation of Chapter 2 where we estimate ground truth sequences

with bounded higher order TV in an online fashion. Sequences with continuous

piece-wise linear (or more generally polynomial) trends that are ubiquitously seen

in time series forecasting problems [4] are examples of ground truths with bounded

higher order TV. Sharp minimax estimation rates similar to what is seen in the

offline statistical non-parametric estimation of higher order TV bounded sequences

are obtained. The key ingredient in algorithm design is to adaptively restart online

linear regression with monomial covariates of time. The restart rule is developed

based on change point detection via statistics computed from denoised higher order

wavelet coefficients.

• In Chapter 4, we revisit the same online estimation problem of Chapter 2 and

rethink it via the lens of strongly adaptive (SA) online learning. SA algorithms

have the nice property that their static regret in any continuous time window is

controlled. Informally (under squared errror loss), this means that if we consider

any time interval, the TSE of the online learner is less than or comparable to the

TSE incurred by the mean of the observations within that interval. We show that

SA algorithms can also attain minimax rates of estimating TV bounded sequences

from noisy observations. This is the first time a connection between the fields of

non-parametric regression and strongly adaptive online learning is established in

literature. We observe that the developed algorithm leads to better performance

3
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than existing methods for the task of forecasting COVID-19 hospitalizations trends

based on real-world CDC data. Further the SA algorithm also outperforms the

algorithm developed in Chapter 2 in various simulation studies.

Part II: Theory and Algorithms under Adversarial Observation Model

In this part we develop online forecasting algorithms in a setting where the strin-

gent stochastic assumptions of Part I are lifted. We allow for observations that can be

perturbed from the ground truth in a fully adversarial manner. Consequently, the de-

velopments of this part can handle arbitrarily correlated observations and even allow for

non-stationarities in the noise distribution. This agenda is realised by connecting ideas

from offline convex optimization to online learning.

• Chapter 5 takes a significant step towards generalizing the observation model stud-

ied in Chapter 2. Specifically, we lift all stochastic assumptions on the noise and

allow for a fully adversarial perturbation model. We adopt the performance mea-

sure of dynamic regret where the total loss of the agent is compared against the

loss of a sequence of evolving decisions in hindsight. We show a surprising result

that SA algorithms similar to what is used in Chapter 4 can lead to minimax op-

timal dynamic regret rates in the fully adversarial setting. This result subsumes

the results in Chapters 2 and 4. Further, the result also allows one to perform

non-parametric regression without imposing conventional iid based noise assump-

tions. We further generalise the setting to online convex optimization (OCO) and

show that SA algorithms can yield optimal dynamic regret rates under the general

exp-concave and gradient smooth family of losses. Squared loss, logistic and linear

regression losses are some examples of popular exp-concave and gradient smooth

losses. These losses stand out from usual convex losses through their additional

curved geometry. The problem of attaining minimax optimal dynamic regret rate
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under exp-concave losses was long-standing in the literature dating back at-least to

the 2003 work of [5]. Chapter 5 gives a definitive answer to this open problem.

• In Chapter 6, we address a drawback of Chapter 5. In the setting of proper OCO,

the decisions of the learner need to obey certain prespecified physical constraints.

Such constraints are modelled by requiring the decisions made by the online learner

to belong to a given convex set. The algorithms in Chapter 5 can potentially violate

this constraint making them only suitable for improper OCO. In Chapter 6, we

develop new SA algorithms for proper OCO under strongly convex losses. Further

results for proper OCO under exp-concave losses under a box constrained decision

set (L∞ ball) are also provided. Moreover, we relax the restriction of gradient

smoothness of the losses from Chapter 5.

• Chapter 7 proceeds in a similar vein as in Chapter 5. We develop algorithms for

improper OCO under exp-concave and gradient smooth losses with dynamic regret

rates characterized by the second order TV of the comparator. The developed

algorithm can simultaneously guarantee a rate that is the minimum of optimal

dynamic regret rates that are measured using the number of change points in the

comparator, first order TV and second order TV of the comparator sequence.

Part III: Applications

In this part, we demonstrate the applicability of the theory and algorithms developed

thus far to three problems: unsupervised domain adaptation, dynamic pricing and LQR

controller design.

• A standard assumption in learning theory is that the test distribution is same as

the training distribution. However, this assumption can be violated in practical

settings where the characteristics of the test environment can slowly drift apart

5
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from the training environment as time goes on. Consequently there is a real need

for strategies that can slowly adapt an ML model to the changing test distribution.

Chapter 8 studies the problem of how to systematically adapt a given probabilistic

classifier trained on an offline data set to an online test data stream without seeing

the labels. The test distribution at any time-stamp is assumed to be a label shifted

version of the offline training distribution. An important feature of our solution

that differentiates from prior work is that the proposed algorithm can support

probabilistic classifiers without the need to impose convexity restrictions on the

losses.

• Chapter 9 pushes the results of Chapter 6 one step further. We provide an algorith-

mic way to attain optimal dynamic regret rates under proper OCO with exp-concave

losses that belong to the generalized linear family class. The developed techniques

are applied to solve non-stationary dynamic pricing. Dynamic pricing studies the

problem of optimally allocating prices to commodities based on changing market

features and customer’s internal evaluation of the products. Proper learning is im-

portant in dynamic pricing to satisfy various fairness and legal constraints when

allocating prices.

• Chapter 10 studies the problem of non-stationary LQR controller design. The

controller is expected to stabilize / navigate a linear dynamical system under envi-

ronmental perturbations. Certain constraints are required on the actions taken by

the controller to ensure desirable features of the system such as stability and less

battery usage thereby necessitating proper online learning.

Algorithms that are featured across various chapters have the property of being adap-

tively minimax optimal: i.e, statistical optimality is attained without asking the user to

tune hyper-parameters that are calibrated to the level of the non-staionarity in the world.

6
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We hope that such algorithms can fuel further ML research and downstream applications

without imposing restrictive modelling assumptions that are often unverifiable in prac-

tice.

7



Part I

Theory and Algorithms under

Stochastic Observation Model
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Chapter 2

Online Forecasting of

Total-Variation-bounded Sequences

Nonparametric regression is a fundamental class of problems that has been studied for

more than half a century in statistics and machine learning [6, 7, 8, 2, 9, 10, 11]. It solves

the following problem:

• Let yi = f(ui)+Noise for i = 1, ..., n. How can we estimate a function f using data

points (u1, y1), ..., (un, yn) and the knowledge that f belongs to a function class F?

Function class F typically imposes only weak regularity assumptions on the function f

such as boundedness and smoothness, which makes nonparametric regression widely ap-

plicable to many real-life applications especially those with unknown physical processes.

A recent and successful class of nonparametric regression technique called trend filter-

ing [12, 4, 3, 13] was shown to have the property of local adaptivity [14] in both theory and

practice. We say a nonparametric regression technique is locally adaptive if it can cater

to local differences in smoothness, hence allowing more accurate estimation of functions

with varying smoothness and abrupt changes. For example, for functions with bounded

9
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total variation (when F is a total variation class), standard nonparametric regression

techniques such as kernel smoothing and smoothing splines have a mean square error

(MSE) of O(n−1/2) while trend filtering has the optimal O(n−2/3).

Trend filtering is, however, a batch learning algorithm where one observes the entire

dataset ahead of the time and makes inference about the past. This makes it inappli-

cable to the many time series problems that motivate the study of trend filtering in the

first place [4]. These include influenza forecasting, inventory planning, economic policy-

making, financial market prediction and so on. In particular, it is unclear whether the

advantage of trend filtering methods in estimating functions with heterogeneous smooth-

ness (e.g., sharp changes) would carry over to the online forecasting setting. The focus

of this work is in developing theory and algorithms for locally adaptive online forecasting

which predicts the immediate future value of a function with heterogeneous smoothness

using only noisy observations from the past.

2.1 Setup, Assumptions and Contributions

2.1.1 Problem Setup

We propose a model for nonparametric online forecasting as described in Figure 2.1.

This model can be re-framed in the language of the online convex optimization model

with three differences.

1. We consider only quadratic loss functions of the form ℓt(x) = (x− θt)2.

2. The learner receives independent noisy gradient feedback, rather than the exact

gradient.

10
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1. Fix action time intervals 1, 2, ..., n

2. The player declares a forecasting strategy Ai : Ri−1 → R for i =
1, ..., n.

3. An adversary chooses a sequence θ1:n = [θ1, θ2, . . . , θn]T ∈ Rn.

4. For every time point i = 1, ..., n:

(a) We play xi = Ai(y1, ..., yi−1).

(b) We receive a feedback yi = θi + Zi, where Zi is a zero-mean,
independent subgaussian noise.

5. At the end, the player suffers a cumulative error
∑n

i=1

(
xi − θi

)2
.

Figure 2.1: Nonparametric online forecasting model. The focus of the proposed work
is to design a forecasting strategy that minimizes the expected cumulative square error.
Note that the problem depends a lot on the choice of the sequence θi. Our primary in-
terest is on sequences with bounded total variation (TV) so that

∑n
i=2 |θi−θi−1| ≤ Cn,

but we will also talk about the adaptivity of our method to easier problems such as fore-
casting Sobolev and Holder functions.

3. The criterion of interest is redefined as the dynamic regret [5, 15]:

Rdynamic(A, ℓ1:n) := E

[
n∑

t=1

ℓt(xt)

]
−

n∑

t=1

inf
xt

ℓt(xt). (2.1)

The new criterion is called a dynamic regret because we are now comparing to a stronger

dynamic baseline that chooses an optimal x in every round. Of course in general, the

dynamic regret will be linear in n [16]. To make the problem non-trivial, we restrict

our attention to sequences of ℓ1, ..., ℓn that are regular, which makes it possible to design

algorithms with sublinear dynamic regret. In particular, we borrow ideas from the non-

parametric regression literature and consider sequences [θ1, ..., θn] that are discretizations

of functions in the continuous domain. Regularity assumptions emerge naturally as we

consider canonical functions classes such as the Holder class, Sobolev class and Total

Variation classes (see eg, for a review [17]).
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2.1.2 Assumptions

We consolidate all the assumptions used in this work and provide necessary justifica-

tions for them.

• (A1) The time horizon for the online learner is known to be n.

• (A2) The parameter σ2 of subgaussian noise in the observations is known.

• (A3) The ground truth denoted by θ1:n = [θ1, ..., θn]T has its total variation bounded

by some positive Cn, i.e., we take F to be the total variation class TV(Cn) :=

{θ1:n ∈ Rn : ∥Dθ1:n∥1 ≤ Cn} where D is the discrete difference operator. Here

Dθ1:n = [θ2 − θ1, . . . , θn − θn−1]
T .

• (A4) |θ1| ≤ U .

The knowledge of σ2 in assumption (A2) is primarily used to get the optimal depen-

dence of σ in minimax rate. This assumption can be relaxed in practice by using the

Median Absolute Deviation estimator as described in Section 7.5 of [18] to estimate σ2 ro-

bustly. Assumption (A3) features a samples from a large class of functions with spatially

inhomogeneous degree of smoothness. The functions residing in this class need not even

be continuous. Our goal is to propose a policy that is locally adaptive whose empirical

mean squared error converges at the minimax rate for this function class. We stress that

we do not assume that the learner knows Cn. The problem is open and nontrivial even

when Cn is known. Assumption (A4) is very mild as it puts restriction only to the first

value of the sequence. This assumption controls the inevitable prediction error for the

first point in the sequence.

2.1.3 Our Results

The major contributions of this chapter are summarized below.

12
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• It is known that the minimax MSE for smoothing sequences in the TV class is

Ω̃(n−2/3). This implies a lowerbound of Ω̃(n1/3) for the dynamic regret in our

setting. We present a policy Arrows (Adaptive Restarting Rule for Online av-

eraging using Wavelet Shrinkage) with a nearly minimax dynamic regret Õ(n1/3)

and a run-time complexity of O(n log n).

• We show that a class of forecasting strategies — including the popular Online

Gradient Descent (OGD) with fixed restarts [15], moving averages (MA) [19] —

are fundamentally limited by Ω̃(
√
n) regret.

• We also provide a more refined lower bound that characterized the dependence of

U,Cn and σ, which certifies the adaptive optimality of Arrows in all regimes. The

bound also reveals a subtle price to pay when we move from the smoothing problem

to the forecasting problem, which indicates the separation of the two problems

when Cn/σ ≫ n1/4, a regime where the forecasting problem is strictly harder (See

Figure 2.3).

• Lastly, we consider forecasting sequences in Sobolev classes and Holder classes and

establish that Arrows can automatically adapt to the optimal regret of these

simpler function classes as well, while OGD and MA cannot, unless we change

their tuning parameter (to behave suboptimally on the TV class).

2.2 Related Work

The topic of this chapter sits well in between two amazing bodies of literature: non-

parametric regression and online learning. Our results therefore contribute to both fields

and hopefully will inspire more interplay between the two communities. Throughout this

13
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chapter when we refer Õ(n1/3) as the optimal regret, we assume the parameters of the

problem are such that it is acheivable (see Figure 2.3).

Nonparametric regression. As we mentioned before, our problem — online nonpara-

metric forecasting — is motivated by the idea of using locally adaptive nonparametric

regression for time series forecasting [14, 4, 3]. It is more challenging than standard

nonparametric regression because we do not have access to the data in the future. While

our proof techniques make use of several components (e.g., universal shrinkage) from the

seminal work in wavelet smoothing [20, 2], the way we use them to construct and ana-

lyze our algorithm is new and more generally applicable for converting non-parametric

regression methods to forecasting methods.

Adaptive Online Learning. Our problem is also connected to a growing literature

on adaptive online learning which aims at matching the performance of a stronger time-

varying baseline [5, 21, 15, 22, 16, 23, 24, 25, 26, 27, 28]. Many of these settings are

highly general and we can apply their algorithms directly to our problem, but to the best

of our knowledge, none of them achieves the optimal Õ(n1/3) dynamic regret.

In the remainder of this section, we focus our discussion on how to apply the regret

bounds in non-stationary stochastic optimization [15, 22] to our problem

Regret from Non-Stationary Stochastic Optimization The problem of non-stationary

stochastic optimization is more general than our model because instead of considering

only the quadratic functions, ℓt(x) = (x − θt)2, they work with the more general class

of strongly convex functions and general convex functions. They also consider both

noisy gradient feedbacks (stochastic first order oracle) and noisy function value feed-

backs (stochastic zeroth order oracle).

In particular, [15] define a quantity Vn which captures the total amount of “variation”

of the functions ℓ1:n using Vn :=
∑n−1

i=1 ∥ℓi+1 − ℓi∥∞. 1 [22] generalize the notion to

1The Vn definition in [15] for strongly convex functions are defined a bit differently, the ∥·∥∞ is taken
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Vn(p, q) :=
(∑n−1

i=1 ∥ℓi+1 − ℓi∥qp
)1/q

for any 1 ≤ p, q ≤ +∞ where ∥ · ∥p := (
∫
| · (x)|pdx)1/p

is the standard Lp norm for functions2. Table 2.1 summarizes the known results under

the non-stationary stochastic optimization setting.

Table 2.1: Summary of known minimax dynamic regret in the non-stationary stochas-
tic optimization model. Note that the choice of q does not affect the minimax rate in
any way, but the choice of p does. “-” indicates that the no upper or lower bounds
are known for that setting.

Noisy gradient feedback Noisy function value feedback
Assumptions on ℓ1:n p = +∞ 1 ≤ p < +∞ p = +∞ 1 ≤ p < +∞
Convex & Lipschitz Θ(n2/3V

1/3
n ) O(n

2p+d
3p+dVn(p, q)

p
3p+d ) - -

Strongly convex & Smooth Θ(n1/2V
1/2
n ) Θ(n

2p+d
4p+dVn(p, q)

2p
4p+d ) Θ(n2/3V

1/3
n ) Θ(n

4p+d
6p+dVn(p, q)

2p
6p+d )

Our assumption on the underlying trend θ1:n ∈ F can be used to construct an upper

bound of this quantity of variation Vn or Vn(p, q). As a result, the algorithms in non-

stationary stochastic optimization and their dynamic regret bounds in Table 2.1 will

apply to our problem (modulo additional restrictions on bounded domain). However,

our preliminary investigation suggests that this direct reduction does not, in general,

lead to optimal algorithms. We illustrate this observation in the following example.

Example 1. Let F be the set of all bounded sequences in the total variation class TV (1).

It can be worked out that Vn(p, q) = O(1) for all p, q. Therefore the smallest regret from

[15, 22] is obtained by taking p → +∞, which gives us a regret of O(n1/2). Note that

we expect the optimal regret to be Õ(n1/3) according to the theory of locally adaptive

nonparametric regression.

In Example 1, we have demonstrated that one cannot achieve the optimal dynamic

regret using known results in non-stationary stochastic optimization. We show in section

over the convex hull of minimizers. This creates some subtle confusions regarding our results which we
explain in details in Appendix A.8.

2We define Vn(p, q) to be a factor of n−1/q times bigger than the original scaling presented in [22] so
the results become comparable to that of [15].
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2.3.1 that “Restarting OGD” algorithm has a fundamental lower bound of Ω̃(
√
n) on

dynamic regret in the TV class.

Online nonparametric regression. As we finalize our manuscript, it comes to our

attention that our problem of interest in Figure 2.1 can be cast as a special case of the

“online nonparametric regression” problem [29, 30]. The general result of [29] implies

the existence of an algorithm that enjoys a Õ(n1/3) regret for the TV class without

explicitly constructing one, which shows that n1/3 is the minimax rate when Cn = O(1).

To the best of our knowledge, our proposed algorithm remains the first polynomial time

algorithm with Õ(n1/3) regret and our results reveal more precise (optimal) upper and

lower bounds on all parameters of the problem (see Section 2.3.4).

2.3 Main Results

We are now ready to present our main results.

2.3.1 Limitations of Linear Forecasters

Restarting OGD as discussed in Example 1, fails to achieve the optimal regret in our

setting. A curious question to ask is whether it is the algorithm itself that fails or it

is an artifact of a potentially suboptimal regret analysis. To answer this, let’s consider

the class of linear forecasters — estimators that outputs a fixed linear transformation

of the observations y1:n. The following preliminary result shows that Restarting OGD

is a linear forecaster . By the results of [2], linear smoothers are fundamentally limited

in their ability to estimate functions with heterogeneous smoothness. Since forecasting

is harder than smoothing, this limitation gets directly translated to the setting of linear

forecasters.
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Proposition 2. Online gradient descent with a fixed restart schedule is a linear fore-

caster. Therefore, it has a dynamic regret of at least Ω̃(
√
n).

Proof. First, observe that the stochastic gradient is of form 2(xt−yt) where xt is what the

agent played at time t and yt is the noisy observation θt+Independent noise. By the online

gradient descent strategy with the fixed restart interval and an inductive argument, xt is

a linear combination of y1, ..., yt−1 for any t. Therefore, the entire vector of predictions

x1:t is a fixed linear transformation of y1:t−1. The fundamental lower bound for linear

smoothers from [2] implies that this algorithm will have a regret of at least Ω̃(
√
n).

The proposition implies that we will need fundamentally new nonlinear algorithmic

components to achieve the optimal O(n1/3) regret, if it is achievable at all!

2.3.2 Policy

In this section, we present our policy Arrows (Adaptive Restarting Rule for Online

averaging using Wavelet Shrinkage). The following notations are introduced for describ-

ing the algorithm.

• th denotes start time of the current bin and t be the current time point.

• ȳth:t denotes the average of the y values for time steps indexed from th to t.

• pad0(yth , ..., yt) denotes the vector (yth − ȳth:t, ..., yt− ȳth:t)T zero-padded at the end

till its length is a power of 2. i.e, a re-centered and padded version of observations.

• T (x) where x is a sequence of values, denotes the element-wise soft thresholding of

the sequence with threshold σ
√
β log(n)

• H denotes the orthogonal discrete Haar wavelet transform matrix of proper dimen-

sions

17



Online Forecasting of Total-Variation-bounded Sequences Chapter 2

• Let Hx = α = [α1, α2, ..., αk]T where k being a power of 2 is the length of x. Then

the vector [α2, ..., αk]T can be viewed as a concatenation of log2 k contiguous blocks

represented by α[l], l = 0, ..., log2(k) − 1. Each block α[l] at level l contains 2l

coefficients.

Arrows: inputs - observed y values, time horizon n, std deviation σ,
δ ∈ (0, 1], a hyper-parameter β > 24

1. Initialize th = 1, newBin = 1, y0 = 0

2. For t = 1 to n:

(a) If newBin == 1, predict xtht = yt−1, else predict xtht = ȳth:t−1

(b) set newBin = 0, observe yt and suffer loss (xtht − θt)2

(c) Let ỹ = pad0(yth , ..., yt) and k be the padded length.

(d) Let α̂(th : t) = T (Hỹ)

(e) Restart Rule: If 1√
k

∑log2(k)−1
l=0 2l/2∥α̂(th : t)[l]∥1 > σ√

k
then

i. set newBin = 1

ii. set th = t+ 1

Our policy is the byproduct of following question: How can one lift a batch estimator

that is minimax over the TV class to a minimax online algorithm?

Restarting OGD when applied to our setting with squared error losses reduces to

partitioning the duration of game into fixed size chunks and outputting online averages.

As described in Section 2.3.1, this leads to suboptimal regret. However, the notion of

averaging is still a good idea to keep. If within a time interval, the Total Variation (TV)

is adequately small, then outputting sample averages is reasonable for minimizing the

cumulative squared error. Once we encounter a bump in the variation, a good strategy

is to restart the averaging procedure. Thus we need to adaptively detect intervals with

low TV. For accomplishing this, we communicate with an oracle estimator whose output

can be used to construct a lowerbound of TV within an interval. The decision to restart
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online averaging is based on the estimate of TV computed using this oracle. Such a

decision rule introduces non-linearity and hence breaks free of the suboptimal world of

linear forecasters.

The oracle estimator we consider here is a slightly modified version of the soft thresh-

olding estimator from [31]. We capture the high level intuition behind steps (d) and (e)

as follows. Computation of Haar coefficients involves smoothing adjacent regions of a

signal and taking difference between them. So we can expect to construct a lowerbound

of the total variation ∥Dθ1:n∥1 from these coeffcients. The extra thresholding step T (.)

in (d) is done to denoise the Haar coefficients computed from noisy data. In step (e),

a weighted L1 norm of denoised coefficients is used to lowerbound the total variation of

the true signal. The multiplicative factors 2l/2 are introduced to make the lowerbound

tighter. We restart online averaging once we detect a large enough variation. The first

coefficient α̂(th : t)1 is zero due to the re-centering caused by pad0 operation. The hyper-

parameter β controls the degree to which we shrink the noisy wavelet coefficients. For

sufficiently small β, It is almost equivalent to the universal soft-thresholding of [31]. The

optimal selection of β is described in Theorem 3.

We refer to the duration between two consecutive restarts inclusive of the first restart

but exclusive of the second as a bin. The policy identifies several bins across time, whose

width is adaptively chosen.

2.3.3 Dynamic Regret of Arrows

In this section, we provide bounds for non-stationary regret and run-time of the policy.

Theorem 3. Let the feedback be yt = θt + Zt, t = 1, . . . , n and Zt be independent, σ-

subgaussian random variables. If β = 24 + 8 log(8/δ)
log(n)

, then with probability at least 1 − δ,

Arrows achieves a dynamic regret of Õ(n1/3∥Dθ1:n∥2/31 σ4/3+|θ1|2+∥Dθ1:n∥22+σ2) where
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Figure 2.2: An illustration of Arrows on a sequence with heterogeneous smoothness.
We compare qualitatively (on the left) and quantitatively (on the right) to two popular
baselines: (a) restarting online gradient descent [15]; (b) the moving averages [19]
with optimal parameter choices. As we can see, Arrows achieves the optimal Õ(n1/3)
regret while the baselines are both suboptimal.

Õ hides a logarithmic factor in n and 1/δ.

Proof Sketch. Our policy is similar in spirit to restarting OGD but with an adaptive

restart schedule. The key idea we used is to reduce the dynamic regret of our policy in

probability roughly to a sum of squared error of a soft thresholding estimator and number

of restarts. This was accomplished by using a Follow The Leader (FTL) reduction.

For bounding the squared error part of the sum we modified the threshold value for

the estimator in [31] and proved high probability guarantees for the convergence of its

empirical mean. To bound the number of times we restart, we first establish a connection

between Haar coefficients and total variation. This is intuitive since computation of Haar

coefficients can be viewed as smoothing the adjacent regions of a signal and taking their

difference. Then we exploit a special condition called “uniform shrinkage” of the soft-

thresholding estimator which helps to optimally bound the number of restarts with high

probability.

Theorem 3 provides an upper bound of the minimax dynamic regret for forecasting

the TV class.
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Corollary 4. Suppose the ground truth θ1:n ∈ TV (Cn) and |θ1| ≤ U . Then ∥Dθ1:n∥1 ≤

Cn. By noting that ∥Dθ1:n∥2 ≤ ∥Dθ1:n∥1, under the setup in Theorem 3 Arrows achieves

a dynamic regret of Õ(n1/3C
2/3
n σ4/3 + U2 + C2

n + σ2) with probability at-least 1− δ.

Remark 5 (Adaptivity to unknown parameters.). Observe that Arrows does not re-

quire the knowledge of Cn.It adapts optimally to the unknown TV radius Cn := ∥Dθ1:n∥1
of the ground truth θ1:n. The adaptivity to n can be achieved by a standard doubling

trick. σ, if unknown, can be robustly estimated from the first few observations by a

Median Absolute Deviation estimator (eg. Section 7.5 of [18]), thanks to the sparsity of

wavelet coefficients of TV bounded functions.

2.3.4 A lower bound on the minimax regret

We now give a matching lower bound of the expected regret, which establishes that

Arrows is adaptively minimax.

Proposition 6. Assume min{U,Cn} > 2πσ and n > 3, there is a universal constant c

such that

inf
x1:n

sup
θ1:n∈TV(Cn)

E

[
n∑

t=1

(
xt(y1:t−1)− θt

)2
]
≥ c(U2 + C2

n + σ2 log n+ n1/3C2/3
n σ4/3).

The proof is deferred to the Appendix A.8. The result shows that our result in

Theorem 3 is optimal up to a logarithmic term in n and 1/δ for almost all regimes

(modulo trivial cases of extremely small min{U,Cn}/σ and n)3.

3When both U and Cn are moderately small relative to σ, the lower bound will depend on σ a little
differently because the estimation error goes to 0 faster than 1/

√
n. We know the minimax risk exactly

for that case as well but it is somewhat messy [32]. When they are both much smaller than σ, e.g., when
min{U,Cn} ≤ σ/

√
n, then outputting 0 when we do not have enough information will be better than

doing online averages.
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Remark 7 (The price of forecasting). The result also shows that forecasting is strictly

harder than smoothing. Observe that a term with C2
n is required even if σ = 0, whereas

in the case of a one-step look-ahead oracle (or the smoothing algorithm that sees all n

observations) does not have this term. This implies that the total amount of variation that

any algorithm can handle while producing a sublinear regret has dropped from Cn = o(n)

to Cn = o(
√
n). Moreover, the regime where the n1/3C

2/3
n σ4/3 term is meaningful only

when Cn = o(n1/4). For the region where σn1/4 ≪ Cn ≪ σn1/2, the minimax regret is

essentially proportional to C2
n. This is illustrated in Figure 2.3.

Figure 2.3: An illustration of the minimax (dynamic) regret of forecasters and
smoothers as a function of Cn. The non-trivial regime for forecasting is when Cn lies

between σ

√
log(n)

n and σ n1/4 where forecasting is just as hard as smoothing. When

Cn > σ n1/4, forecasting is harder than smoothing. The yellow region indicates the
extra loss incurred by any minimax forecaster. The green region marks the extra loss
incurred by a linear forecaster compared to minimax forecasting strategy. The figure
demonstrates that linear forecasters are sub-optimal even in the non-trivial regime.
When Cn > σ n1/2, it is impossible to design a forecasting strategy with sub-linear
regret. For Cn > σ n, identity function is optimal estimator for smoothing and when

when Cn < σ

√
log(n)

n , online averaging is optimal for both problems.

We note that in much of the online learning literature, it is conventional to consider a

slightly more restrictive setting with bounded domain, which could reduce the minimax

regret. The following remark summarizes a variant of our results in this setting.
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Remark 8 (Minimax regret in bounded domain). If we consider predicting sequences

from a subset of the TV (Cn) ball having an extra boundedness condition |θi| ≤ B for

i = 1 . . . n, it can be shown that (see Appendix A.8) minimax regret is

Ω̃
(

min{nB2, nσ2, n1/3C
2/3
n σ4/3}+B2 + min{nB2, BCn}+ σ2

)
. In particular, forecast-

ing is still strictly harder than smoothing due to the min{nB2, BCn} term in the bound.

The discussion in Appendix A.8, shows a way of using Arrows whose regret can match

this lower bound.

2.3.5 The adaptivity of Arrows to Sobolev and Holder classes

It turns out that Arrows is also adaptively optimal in forecasting sequences in the

discrete Sobolev classes and the discrete Holder classes, which are defined as

S(C ′
n) = {θ1:n : ∥Dθ1:n∥2 ≤ C ′

n}, H(B′
n) = {θ1:n : ∥Dθ1:n∥∞ ≤ B′

n}. (2.2)

These classes feature sequences that are more spatially homogeneous than those in the

TV class. The minimax cumulative error of nonparametric estimation in the discrete

Sobolev class is Θ(n2/3[C ′
n]2/3σ4/3) [33].

Corollary 9. Let the feedback be yt = θt +Zt where Zt is an independent, σ-subgaussian

random variable. Let θ1:n ∈ S(C ′
n) and |θ1| ≤ U . If β = 24+ 8 log(8/δ)

log(n)
, then with probability

at least 1− δ, Arrows achieves a dynamic regret of Õ(n2/3[C ′
n]2/3σ4/3 +U2 + [C ′

n]2 +σ2)

where Õ hides a logarithmic factor in n and 1/δ.

Thus despite the fact that Arrows is designed for total variation class, it adapts

to the optimal rates of forecasting sequences that are spatially regular. To gain some

intuition, let’s minimally expand the Sobolev ball to a TV ball of radius Cn =
√
nC ′

n.

The chosen scaling of Cn activates the embedding S(C ′
n) ⊂ TV (Cn) (see the illustration
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Table 2.2: Minimax rates for cumulative error
∑n

i=1(θ̂i − θ)2 in various settings and
policies that achieve those rates. Arrows is adaptively minimax across all of the
described function classes while linear forecasters fail to perform optimally over the
TV class. For simplicity, we assume U is small and hide a log n factors in all the
forecasting rates.

Class
Minimax rate for
Forecasting

Minimax rate for
Smoothing

Minimax rate for
Linear Forecasting

TV ∥Dθ1:n∥1 ≤ Cn n1/3C
2/3
n σ4/3 + C2

n + σ2 n1/3C
2/3
n σ4/3 + σ2 n1/2Cnσ + C2

n + σ2

Sobolev ∥Dθ1:n∥2 ≤ C ′
n n2/3[C ′

n]2/3σ4/3 + [C ′
n]2 + σ2 n2/3[C ′

n]2/3σ4/3 + σ2 n2/3[C ′
n]2/3σ4/3 + [C ′

n]2 + σ2

Holder ∥Dθ1:n∥∞ ≤ Ln nL
2/3
n σ4/3 + nL2

n + σ2 nL
2/3
n σ4/3 + σ2 nL

2/3
n σ4/3 + nL2

n + σ2

Minimax Algorithm Arrows
Wavelet Smoothing

Trend Filtering
Restarting OGD
Moving Averages

Holder class
<latexit sha1_base64="LN7O5UbXN9o4/Pag4si6CtiFtPo=">AAAB/HicbZDNSgMxFIUz9a/Wv9Eu3QSL4KrMiKDLopsuK9hWaEvJpHfa0ExmSO6IZaiv4saFIm59EHe+jem0C229EPg4597k5gSJFAY979sprK1vbG4Vt0s7u3v7B+7hUcvEqebQ5LGM9X3ADEihoIkCJdwnGlgUSGgH45uZ334AbUSs7nCSQC9iQyVCwRlaqe+WuwiPmNVjOQBNuWTGTPtuxat6edFV8BdQIYtq9N2v7iDmaQQK8xs6vpdgL2MaBZcwLXVTAwnjYzaEjkXFIjC9LF9+Sk+tMqBhrO1RSHP190TGImMmUWA7I4Yjs+zNxP+8TorhVS8TKkkRFJ8/FKaSYkxnSdCB0MBRTiwwroXdlfIR04yjzatkQ/CXv7wKrfOqb/n2olK7XsRRJMfkhJwRn1ySGqmTBmkSTibkmbySN+fJeXHenY95a8FZzJTJn3I+fwAp+JUW</latexit><latexit sha1_base64="LN7O5UbXN9o4/Pag4si6CtiFtPo=">AAAB/HicbZDNSgMxFIUz9a/Wv9Eu3QSL4KrMiKDLopsuK9hWaEvJpHfa0ExmSO6IZaiv4saFIm59EHe+jem0C229EPg4597k5gSJFAY979sprK1vbG4Vt0s7u3v7B+7hUcvEqebQ5LGM9X3ADEihoIkCJdwnGlgUSGgH45uZ334AbUSs7nCSQC9iQyVCwRlaqe+WuwiPmNVjOQBNuWTGTPtuxat6edFV8BdQIYtq9N2v7iDmaQQK8xs6vpdgL2MaBZcwLXVTAwnjYzaEjkXFIjC9LF9+Sk+tMqBhrO1RSHP190TGImMmUWA7I4Yjs+zNxP+8TorhVS8TKkkRFJ8/FKaSYkxnSdCB0MBRTiwwroXdlfIR04yjzatkQ/CXv7wKrfOqb/n2olK7XsRRJMfkhJwRn1ySGqmTBmkSTibkmbySN+fJeXHenY95a8FZzJTJn3I+fwAp+JUW</latexit><latexit sha1_base64="LN7O5UbXN9o4/Pag4si6CtiFtPo=">AAAB/HicbZDNSgMxFIUz9a/Wv9Eu3QSL4KrMiKDLopsuK9hWaEvJpHfa0ExmSO6IZaiv4saFIm59EHe+jem0C229EPg4597k5gSJFAY979sprK1vbG4Vt0s7u3v7B+7hUcvEqebQ5LGM9X3ADEihoIkCJdwnGlgUSGgH45uZ334AbUSs7nCSQC9iQyVCwRlaqe+WuwiPmNVjOQBNuWTGTPtuxat6edFV8BdQIYtq9N2v7iDmaQQK8xs6vpdgL2MaBZcwLXVTAwnjYzaEjkXFIjC9LF9+Sk+tMqBhrO1RSHP190TGImMmUWA7I4Yjs+zNxP+8TorhVS8TKkkRFJ8/FKaSYkxnSdCB0MBRTiwwroXdlfIR04yjzatkQ/CXv7wKrfOqb/n2olK7XsRRJMfkhJwRn1ySGqmTBmkSTibkmbySN+fJeXHenY95a8FZzJTJn3I+fwAp+JUW</latexit><latexit sha1_base64="LN7O5UbXN9o4/Pag4si6CtiFtPo=">AAAB/HicbZDNSgMxFIUz9a/Wv9Eu3QSL4KrMiKDLopsuK9hWaEvJpHfa0ExmSO6IZaiv4saFIm59EHe+jem0C229EPg4597k5gSJFAY979sprK1vbG4Vt0s7u3v7B+7hUcvEqebQ5LGM9X3ADEihoIkCJdwnGlgUSGgH45uZ334AbUSs7nCSQC9iQyVCwRlaqe+WuwiPmNVjOQBNuWTGTPtuxat6edFV8BdQIYtq9N2v7iDmaQQK8xs6vpdgL2MaBZcwLXVTAwnjYzaEjkXFIjC9LF9+Sk+tMqBhrO1RSHP190TGImMmUWA7I4Yjs+zNxP+8TorhVS8TKkkRFJ8/FKaSYkxnSdCB0MBRTiwwroXdlfIR04yjzatkQ/CXv7wKrfOqb/n2olK7XsRRJMfkhJwRn1ySGqmTBmkSTibkmbySN+fJeXHenY95a8FZzJTJn3I+fwAp+JUW</latexit>

Holder class
<latexit sha1_base64="0nL9NX74S0Uxvw8i8fw2PcQ4Isk=">AAAB/XicdVDJSgNBEO1xN25xuXlpDIKnMIsavYlePEYwCyQh9PTUxMaehe4aMQ7BX/HiQRGv/oc3/8bOIqjog4LHe1XdVc9PpdBo2x/W1PTM7Nz8wmJhaXllda24vlHXSaY41HgiE9X0mQYpYqihQAnNVAGLfAkN//ps6DduQGmRxJfYT6ETsV4sQsEZGqlb3Goj3GJ+nsgAFOWSaT0odIslu+xVDr2DCrXLh+6x5zqGuPsVzz2gTtkeoUQmqHaL7+0g4VkEMY6eaDl2ip2cKRRcwqDQzjSkjF+zHrQMjVkEupOPth/QXaMENEyUqRjpSP0+kbNI637km86I4ZX+7Q3Fv7xWhuFRJxdxmiHEfPxRmEmKCR1GQQOhgKPsG8K4EmZXyq+YYhxNYMMQvi6l/5O6W3YMv9gvnZxO4lgg22SH7BGHVMgJOSdVUiOc3JEH8kSerXvr0XqxXsetU9ZkZpP8gPX2CdW0lXc=</latexit><latexit sha1_base64="0nL9NX74S0Uxvw8i8fw2PcQ4Isk=">AAAB/XicdVDJSgNBEO1xN25xuXlpDIKnMIsavYlePEYwCyQh9PTUxMaehe4aMQ7BX/HiQRGv/oc3/8bOIqjog4LHe1XdVc9PpdBo2x/W1PTM7Nz8wmJhaXllda24vlHXSaY41HgiE9X0mQYpYqihQAnNVAGLfAkN//ps6DduQGmRxJfYT6ETsV4sQsEZGqlb3Goj3GJ+nsgAFOWSaT0odIslu+xVDr2DCrXLh+6x5zqGuPsVzz2gTtkeoUQmqHaL7+0g4VkEMY6eaDl2ip2cKRRcwqDQzjSkjF+zHrQMjVkEupOPth/QXaMENEyUqRjpSP0+kbNI637km86I4ZX+7Q3Fv7xWhuFRJxdxmiHEfPxRmEmKCR1GQQOhgKPsG8K4EmZXyq+YYhxNYMMQvi6l/5O6W3YMv9gvnZxO4lgg22SH7BGHVMgJOSdVUiOc3JEH8kSerXvr0XqxXsetU9ZkZpP8gPX2CdW0lXc=</latexit><latexit sha1_base64="0nL9NX74S0Uxvw8i8fw2PcQ4Isk=">AAAB/XicdVDJSgNBEO1xN25xuXlpDIKnMIsavYlePEYwCyQh9PTUxMaehe4aMQ7BX/HiQRGv/oc3/8bOIqjog4LHe1XdVc9PpdBo2x/W1PTM7Nz8wmJhaXllda24vlHXSaY41HgiE9X0mQYpYqihQAnNVAGLfAkN//ps6DduQGmRxJfYT6ETsV4sQsEZGqlb3Goj3GJ+nsgAFOWSaT0odIslu+xVDr2DCrXLh+6x5zqGuPsVzz2gTtkeoUQmqHaL7+0g4VkEMY6eaDl2ip2cKRRcwqDQzjSkjF+zHrQMjVkEupOPth/QXaMENEyUqRjpSP0+kbNI637km86I4ZX+7Q3Fv7xWhuFRJxdxmiHEfPxRmEmKCR1GQQOhgKPsG8K4EmZXyq+YYhxNYMMQvi6l/5O6W3YMv9gvnZxO4lgg22SH7BGHVMgJOSdVUiOc3JEH8kSerXvr0XqxXsetU9ZkZpP8gPX2CdW0lXc=</latexit><latexit sha1_base64="0nL9NX74S0Uxvw8i8fw2PcQ4Isk=">AAAB/XicdVDJSgNBEO1xN25xuXlpDIKnMIsavYlePEYwCyQh9PTUxMaehe4aMQ7BX/HiQRGv/oc3/8bOIqjog4LHe1XdVc9PpdBo2x/W1PTM7Nz8wmJhaXllda24vlHXSaY41HgiE9X0mQYpYqihQAnNVAGLfAkN//ps6DduQGmRxJfYT6ETsV4sQsEZGqlb3Goj3GJ+nsgAFOWSaT0odIslu+xVDr2DCrXLh+6x5zqGuPsVzz2gTtkeoUQmqHaL7+0g4VkEMY6eaDl2ip2cKRRcwqDQzjSkjF+zHrQMjVkEupOPth/QXaMENEyUqRjpSP0+kbNI637km86I4ZX+7Q3Fv7xWhuFRJxdxmiHEfPxRmEmKCR1GQQOhgKPsG8K4EmZXyq+YYhxNYMMQvi6l/5O6W3YMv9gvnZxO4lgg22SH7BGHVMgJOSdVUiOc3JEH8kSerXvr0XqxXsetU9ZkZpP8gPX2CdW0lXc=</latexit>

�
f
�� |f(x)� f(y)|  |x� y|

 
<latexit sha1_base64="PFmmii6qAwPnsJTeDYeqiF0NNWc="></latexit><latexit sha1_base64="PFmmii6qAwPnsJTeDYeqiF0NNWc="></latexit><latexit sha1_base64="PFmmii6qAwPnsJTeDYeqiF0NNWc="></latexit><latexit sha1_base64="PFmmii6qAwPnsJTeDYeqiF0NNWc="></latexit>

kD✓k1 
1

n
<latexit sha1_base64="aQxeA7UOax7zF5bp6lGAZ3bsTTA=">AAACDHicdVDLSgMxFM34rPVVdekmWARXZWaqVndFXbhUsCp0Ssmkd2wwkxmTO0IZ+wFu/BU3LhRx6we4829MawUVPRA4nHMuN/eEqRQGXffdGRufmJyaLswUZ+fmFxZLS8unJsk0hwZPZKLPQ2ZACgUNFCjhPNXA4lDCWXi5P/DPrkEbkagT7KXQitmFEpHgDK3ULpWDm4MAu4AsuGkHQkXYo4GEKxpEmvHc6+eqb1NupVrbrm7VqFvZ9nervmeJv1mr+lvUq7hDlMkIR+3SW9BJeBaDQi6ZMU3PTbGVM42CS+gXg8xAyvglu4CmpYrFYFr58Jg+XbdKh0aJtk8hHarfJ3IWG9OLQ5uMGXbNb28g/uU1M4x2WrlQaYag+OeiKJMUEzpohnaEBo6yZwnjWti/Ut5ltgW0/RVtCV+X0v/JqV/xLD/eLNf3RnUUyCpZIxvEIzVSJ4fkiDQIJ7fknjySJ+fOeXCenZfP6JgzmlkhP+C8fgCscJwG</latexit><latexit sha1_base64="aQxeA7UOax7zF5bp6lGAZ3bsTTA="></latexit><latexit sha1_base64="aQxeA7UOax7zF5bp6lGAZ3bsTTA="></latexit><latexit sha1_base64="aQxeA7UOax7zF5bp6lGAZ3bsTTA="></latexit>

kD✓k2 
1p
n

<latexit sha1_base64="jbXw7gPVVzF721BXtLO6GEn6bGo="></latexit><latexit sha1_base64="jbXw7gPVVzF721BXtLO6GEn6bGo="></latexit><latexit sha1_base64="jbXw7gPVVzF721BXtLO6GEn6bGo="></latexit><latexit sha1_base64="jbXw7gPVVzF721BXtLO6GEn6bGo="></latexit>

Z 1

0

(f 0(x))2dx  1
<latexit sha1_base64="reTkaROGHYsWGPk4ljFRben8RN4="></latexit><latexit sha1_base64="reTkaROGHYsWGPk4ljFRben8RN4="></latexit><latexit sha1_base64="reTkaROGHYsWGPk4ljFRben8RN4="></latexit><latexit sha1_base64="reTkaROGHYsWGPk4ljFRben8RN4=">AAACBnicdVDLSgMxFM34rPVVdSlCsIjtpmTGttpd0Y3LCvYBfZFJM21oJjMmGWkpXbnxV9y4UMSt3+DOvzF9CCp64MLhnHu59x435ExphD6shcWl5ZXV2Fp8fWNzazuxs1tRQSQJLZOAB7LmYkU5E7Ssmea0FkqKfZfTqtu/mPjVWyoVC8S1Hoa06eOuYB4jWBupnThoMKHbqGXDlHecGqTTLQfCzgA2OL2BdjuRRBkHFeysA1HmJFdAKG9IvlDI5xC0M2iKJJij1E68NzoBiXwqNOFYqbqNQt0cYakZ4XQcb0SKhpj0cZfWDRXYp6o5mr4xhkdG6UAvkKaEhlP1+8QI+0oNfdd0+lj31G9vIv7l1SPtnTVHTISRpoLMFnkRhzqAk0xgh0lKNB8agolk5lZIelhiok1ycRPC16fwf1JxMrbhV9lk8XweRwzsg0OQAjY4BUVwCUqgDAi4Aw/gCTxb99aj9WK9zloXrPnMHvgB6+0TJ5uWYA==</latexit>

Sobolev class
<latexit sha1_base64="t+wKjaxSRJRm1e5P9fZiN4PLo3k=">AAAB/XicdVBNSwMxEM3W7/pVP25egkXwVLK1rfYmevGoaFVoS8mmUxua3SzJrFiX4l/x4kERr/4Pb/4b01pBRR8MPN6bSWZeECtpkbF3LzMxOTU9MzuXnV9YXFrOrayeW50YATWhlTaXAbegZAQ1lKjgMjbAw0DBRdA7HPoX12Cs1NEZ9mNohvwqkh0pODqplVtvINxgeqoDreCaCsWtHbRyeVYosqpfKlJW2ClXGas4UqlWK2VG/QIbIU/GOG7l3hptLZIQIhy9UPdZjM2UG5RCwSDbSCzEXPT4FdQdjXgItpmOth/QLae0aUcbVxHSkfp9IuWhtf0wcJ0hx6797Q3Fv7x6gp29ZiqjOEGIxOdHnURR1HQYBW1LAwJV3xEujHS7UtHlhgt0gWVdCF+X0v/JebHgO35Syu8fjOOYJRtkk2wTn+ySfXJEjkmNCHJL7skjefLuvAfv2Xv5bM1445k18gPe6weBNpXo</latexit><latexit sha1_base64="t+wKjaxSRJRm1e5P9fZiN4PLo3k=">AAAB/XicdVBNSwMxEM3W7/pVP25egkXwVLK1rfYmevGoaFVoS8mmUxua3SzJrFiX4l/x4kERr/4Pb/4b01pBRR8MPN6bSWZeECtpkbF3LzMxOTU9MzuXnV9YXFrOrayeW50YATWhlTaXAbegZAQ1lKjgMjbAw0DBRdA7HPoX12Cs1NEZ9mNohvwqkh0pODqplVtvINxgeqoDreCaCsWtHbRyeVYosqpfKlJW2ClXGas4UqlWK2VG/QIbIU/GOG7l3hptLZIQIhy9UPdZjM2UG5RCwSDbSCzEXPT4FdQdjXgItpmOth/QLae0aUcbVxHSkfp9IuWhtf0wcJ0hx6797Q3Fv7x6gp29ZiqjOEGIxOdHnURR1HQYBW1LAwJV3xEujHS7UtHlhgt0gWVdCF+X0v/JebHgO35Syu8fjOOYJRtkk2wTn+ySfXJEjkmNCHJL7skjefLuvAfv2Xv5bM1445k18gPe6weBNpXo</latexit><latexit sha1_base64="t+wKjaxSRJRm1e5P9fZiN4PLo3k=">AAAB/XicdVBNSwMxEM3W7/pVP25egkXwVLK1rfYmevGoaFVoS8mmUxua3SzJrFiX4l/x4kERr/4Pb/4b01pBRR8MPN6bSWZeECtpkbF3LzMxOTU9MzuXnV9YXFrOrayeW50YATWhlTaXAbegZAQ1lKjgMjbAw0DBRdA7HPoX12Cs1NEZ9mNohvwqkh0pODqplVtvINxgeqoDreCaCsWtHbRyeVYosqpfKlJW2ClXGas4UqlWK2VG/QIbIU/GOG7l3hptLZIQIhy9UPdZjM2UG5RCwSDbSCzEXPT4FdQdjXgItpmOth/QLae0aUcbVxHSkfp9IuWhtf0wcJ0hx6797Q3Fv7x6gp29ZiqjOEGIxOdHnURR1HQYBW1LAwJV3xEujHS7UtHlhgt0gWVdCF+X0v/JebHgO35Syu8fjOOYJRtkk2wTn+ySfXJEjkmNCHJL7skjefLuvAfv2Xv5bM1445k18gPe6weBNpXo</latexit><latexit sha1_base64="t+wKjaxSRJRm1e5P9fZiN4PLo3k=">AAAB/XicdVBNSwMxEM3W7/pVP25egkXwVLK1rfYmevGoaFVoS8mmUxua3SzJrFiX4l/x4kERr/4Pb/4b01pBRR8MPN6bSWZeECtpkbF3LzMxOTU9MzuXnV9YXFrOrayeW50YATWhlTaXAbegZAQ1lKjgMjbAw0DBRdA7HPoX12Cs1NEZ9mNohvwqkh0pODqplVtvINxgeqoDreCaCsWtHbRyeVYosqpfKlJW2ClXGas4UqlWK2VG/QIbIU/GOG7l3hptLZIQIhy9UPdZjM2UG5RCwSDbSCzEXPT4FdQdjXgItpmOth/QLae0aUcbVxHSkfp9IuWhtf0wcJ0hx6797Q3Fv7x6gp29ZiqjOEGIxOdHnURR1HQYBW1LAwJV3xEujHS7UtHlhgt0gWVdCF+X0v/JebHgO35Syu8fjOOYJRtkk2wTn+ySfXJEjkmNCHJL7skjefLuvAfv2Xv5bM1445k18gPe6weBNpXo</latexit>

TV class
<latexit sha1_base64="goXcrjHVFO0qA7dLAhmKLjMsaJU=">AAAB+HicbZDLSgMxFIbP1Futl466dBMsgqsyI4Iui25cVuhFaIeSSTNtaOZCckasQ5/EjQtF3Poo7nwb0+kstPVA4OP/z0lOfj+RQqPjfFultfWNza3ydmVnd2+/ah8cdnScKsbbLJaxuvep5lJEvI0CJb9PFKehL3nXn9zM/e4DV1rEUQunCfdCOopEIBhFIw3sah/5I2atDmGSaj0b2DWn7uRFVsEtoAZFNQf2V38YszTkEeY39FwnQS+jCgWTfFbpp5onlE3oiPcMRjTk2svyxWfk1ChDEsTKnAhJrv6eyGio9TT0TWdIcayXvbn4n9dLMbjyMhElKfKILR4KUkkwJvMUyFAozlBODVCmhNmVsDFVlKHJqmJCcJe/vAqd87pr+O6i1rgu4ijDMZzAGbhwCQ24hSa0gUEKz/AKb9aT9WK9Wx+L1pJVzBzBn7I+fwDkx5M6</latexit><latexit sha1_base64="goXcrjHVFO0qA7dLAhmKLjMsaJU=">AAAB+HicbZDLSgMxFIbP1Futl466dBMsgqsyI4Iui25cVuhFaIeSSTNtaOZCckasQ5/EjQtF3Poo7nwb0+kstPVA4OP/z0lOfj+RQqPjfFultfWNza3ydmVnd2+/ah8cdnScKsbbLJaxuvep5lJEvI0CJb9PFKehL3nXn9zM/e4DV1rEUQunCfdCOopEIBhFIw3sah/5I2atDmGSaj0b2DWn7uRFVsEtoAZFNQf2V38YszTkEeY39FwnQS+jCgWTfFbpp5onlE3oiPcMRjTk2svyxWfk1ChDEsTKnAhJrv6eyGio9TT0TWdIcayXvbn4n9dLMbjyMhElKfKILR4KUkkwJvMUyFAozlBODVCmhNmVsDFVlKHJqmJCcJe/vAqd87pr+O6i1rgu4ijDMZzAGbhwCQ24hSa0gUEKz/AKb9aT9WK9Wx+L1pJVzBzBn7I+fwDkx5M6</latexit><latexit sha1_base64="goXcrjHVFO0qA7dLAhmKLjMsaJU=">AAAB+HicbZDLSgMxFIbP1Futl466dBMsgqsyI4Iui25cVuhFaIeSSTNtaOZCckasQ5/EjQtF3Poo7nwb0+kstPVA4OP/z0lOfj+RQqPjfFultfWNza3ydmVnd2+/ah8cdnScKsbbLJaxuvep5lJEvI0CJb9PFKehL3nXn9zM/e4DV1rEUQunCfdCOopEIBhFIw3sah/5I2atDmGSaj0b2DWn7uRFVsEtoAZFNQf2V38YszTkEeY39FwnQS+jCgWTfFbpp5onlE3oiPcMRjTk2svyxWfk1ChDEsTKnAhJrv6eyGio9TT0TWdIcayXvbn4n9dLMbjyMhElKfKILR4KUkkwJvMUyFAozlBODVCmhNmVsDFVlKHJqmJCcJe/vAqd87pr+O6i1rgu4ijDMZzAGbhwCQ24hSa0gUEKz/AKb9aT9WK9Wx+L1pJVzBzBn7I+fwDkx5M6</latexit><latexit sha1_base64="goXcrjHVFO0qA7dLAhmKLjMsaJU=">AAAB+HicbZDLSgMxFIbP1Futl466dBMsgqsyI4Iui25cVuhFaIeSSTNtaOZCckasQ5/EjQtF3Poo7nwb0+kstPVA4OP/z0lOfj+RQqPjfFultfWNza3ydmVnd2+/ah8cdnScKsbbLJaxuvep5lJEvI0CJb9PFKehL3nXn9zM/e4DV1rEUQunCfdCOopEIBhFIw3sah/5I2atDmGSaj0b2DWn7uRFVsEtoAZFNQf2V38YszTkEeY39FwnQS+jCgWTfFbpp5onlE3oiPcMRjTk2svyxWfk1ChDEsTKnAhJrv6eyGio9TT0TWdIcayXvbn4n9dLMbjyMhElKfKILR4KUkkwJvMUyFAozlBODVCmhNmVsDFVlKHJqmJCcJe/vAqd87pr+O6i1rgu4ijDMZzAGbhwCQ24hSa0gUEKz/AKb9aT9WK9Wx+L1pJVzBzBn7I+fwDkx5M6</latexit>

kD✓k1  1
<latexit sha1_base64="H/FjkNQsLNtFjMCwdAFadT8Vmt0=">AAAB/HicbZDLSgNBEEV7fMb4imbppjEIrsKMCLoM6sJlBPOAzDD0dCpJk56H3TVCmMRfceNCEbd+iDv/xk4yC0280HC4VUVV3yCRQqNtf1srq2vrG5uFreL2zu7efungsKnjVHFo8FjGqh0wDVJE0ECBEtqJAhYGElrB8Hpabz2C0iKO7nGUgBeyfiR6gjM0ll8qu+MbFweAzB37jivhgTp+qWJX7ZnoMjg5VEiuul/6crsxT0OIkEumdcexE/QyplBwCZOim2pIGB+yPnQMRiwE7WWz4yf0xDhd2ouVeRHSmft7ImOh1qMwMJ0hw4FerE3N/2qdFHuXXiaiJEWI+HxRL5UUYzpNgnaFAo5yZIBxJcytlA+YYhxNXkUTgrP45WVonlUdw3fnldpVHkeBHJFjckocckFq5JbUSYNwMiLP5JW8WU/Wi/VufcxbV6x8pkz+yPr8AfeflE4=</latexit><latexit sha1_base64="H/FjkNQsLNtFjMCwdAFadT8Vmt0=">AAAB/HicbZDLSgNBEEV7fMb4imbppjEIrsKMCLoM6sJlBPOAzDD0dCpJk56H3TVCmMRfceNCEbd+iDv/xk4yC0280HC4VUVV3yCRQqNtf1srq2vrG5uFreL2zu7efungsKnjVHFo8FjGqh0wDVJE0ECBEtqJAhYGElrB8Hpabz2C0iKO7nGUgBeyfiR6gjM0ll8qu+MbFweAzB37jivhgTp+qWJX7ZnoMjg5VEiuul/6crsxT0OIkEumdcexE/QyplBwCZOim2pIGB+yPnQMRiwE7WWz4yf0xDhd2ouVeRHSmft7ImOh1qMwMJ0hw4FerE3N/2qdFHuXXiaiJEWI+HxRL5UUYzpNgnaFAo5yZIBxJcytlA+YYhxNXkUTgrP45WVonlUdw3fnldpVHkeBHJFjckocckFq5JbUSYNwMiLP5JW8WU/Wi/VufcxbV6x8pkz+yPr8AfeflE4=</latexit><latexit sha1_base64="H/FjkNQsLNtFjMCwdAFadT8Vmt0=">AAAB/HicbZDLSgNBEEV7fMb4imbppjEIrsKMCLoM6sJlBPOAzDD0dCpJk56H3TVCmMRfceNCEbd+iDv/xk4yC0280HC4VUVV3yCRQqNtf1srq2vrG5uFreL2zu7efungsKnjVHFo8FjGqh0wDVJE0ECBEtqJAhYGElrB8Hpabz2C0iKO7nGUgBeyfiR6gjM0ll8qu+MbFweAzB37jivhgTp+qWJX7ZnoMjg5VEiuul/6crsxT0OIkEumdcexE/QyplBwCZOim2pIGB+yPnQMRiwE7WWz4yf0xDhd2ouVeRHSmft7ImOh1qMwMJ0hw4FerE3N/2qdFHuXXiaiJEWI+HxRL5UUYzpNgnaFAo5yZIBxJcytlA+YYhxNXkUTgrP45WVonlUdw3fnldpVHkeBHJFjckocckFq5JbUSYNwMiLP5JW8WU/Wi/VufcxbV6x8pkz+yPr8AfeflE4=</latexit><latexit sha1_base64="H/FjkNQsLNtFjMCwdAFadT8Vmt0=">AAAB/HicbZDLSgNBEEV7fMb4imbppjEIrsKMCLoM6sJlBPOAzDD0dCpJk56H3TVCmMRfceNCEbd+iDv/xk4yC0280HC4VUVV3yCRQqNtf1srq2vrG5uFreL2zu7efungsKnjVHFo8FjGqh0wDVJE0ECBEtqJAhYGElrB8Hpabz2C0iKO7nGUgBeyfiR6gjM0ll8qu+MbFweAzB37jivhgTp+qWJX7ZnoMjg5VEiuul/6crsxT0OIkEumdcexE/QyplBwCZOim2pIGB+yPnQMRiwE7WWz4yf0xDhd2ouVeRHSmft7ImOh1qMwMJ0hw4FerE3N/2qdFHuXXiaiJEWI+HxRL5UUYzpNgnaFAo5yZIBxJcytlA+YYhxNXkUTgrP45WVonlUdw3fnldpVHkeBHJFjckocckFq5JbUSYNwMiLP5JW8WU/Wi/VufcxbV6x8pkz+yPr8AfeflE4=</latexit>

sup
n2N+

0x1<...<xn1

nX

i=0

|f(xi+1)� f(xi)|  1

<latexit sha1_base64="kjndIXIK4IvbmQL5TLTFn/I2oo8=">AAACUXicbVFBT9swFH7NYGMpG9123MWimgRCi2KEtB2YVG0XTggkSpGaLnJch1o4TmY7Uys3f3GH7bT/wYUDCCfNgcGeZOt733uf/N7npBBcmzD82/Gera0/f7Hx0u9uvnq91Xvz9lznpaJsSHORq4uEaCa4ZEPDjWAXhWIkSwQbJVff6vroJ1Oa5/LMLAo2ycil5CmnxDgq7s0iXRaxdXeiDaFX1pcRlyjKiJkliT2u4j0/ivwQRYL9QPMYHwZBcDiPZZPjqnLKLLb8S1h9t7Japjtzl+3havdjDfnucqXEca8fBmET6CnALehDGydx73c0zWmZMWmoIFqPcViYiSXKcCpY5UelZoWbmFyysYOSZExPbONIhT44ZorSXLkjDWrYhwpLMq0XWeI6603141pN/q82Lk36eWK5LErDJF09lJYCmRzV9qIpV4wasXCAUMXdrIjOiCLUuE/wnQn48cpPwfl+gB0+PegPvrZ2bMB72IYdwPAJBnAEJzAECr/gGm7hrvOnc+OB561avU6reQf/hNe9BwPJshI=</latexit><latexit sha1_base64="kjndIXIK4IvbmQL5TLTFn/I2oo8="></latexit><latexit sha1_base64="kjndIXIK4IvbmQL5TLTFn/I2oo8="></latexit><latexit sha1_base64="kjndIXIK4IvbmQL5TLTFn/I2oo8="></latexit>

Canonical Scalinga Forecasting Smoothing Linear Forecasting

TV Cn ≍ 1 n1/3 n1/3 n1/2

Sobolev C ′
n ≍ 1/

√
n n1/3 n1/3 n1/3

Holder Ln ≍ 1/n n1/3 n1/3 n1/3

aThe “canonical scaling” are obtained by discretizing functions in
canonical function classes. Under the canonical scaling, Holder class ⊂
Sobolev class ⊂ TV class, as shown in the figure on the left. Arrows
is optimal for the Sobolev and Holder classes inscribed in the TV class.
MA and Restarting OGD on the other hand require different parameters
and prior knowledge of variational budget (i.e Cn or C ′

n) to achieve the
minimax linear rates for the TV class and the Sobolev/Holder class.
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in Table 2.2) with both classes having same minimax rate in the batch setting. This

implies that dynamic regret of Arrows is simultaneously minimax optimal over S(C ′
n)

and TV (Cn) wrt the term containing n. It can be shown that Arrows is optimal wrt to

the additive [C ′
n]2, U2, σ2 terms as well. Minimaxity in Sobolev class implies minimaxity

in Holder class since it is known that a Holder ball is sandwiched between two Sobolev

balls having the same minimax rate [34]. A proof of the Corollary and related experiments

are presented in Appendix A.5 and A.9.

2.3.6 Fast computation

Last but not least, we remark that there is a fast implementation of Arrows that

reduces the overall time-complexity for n step from O(n2) to O(n log n).

Proposition 10. The run time of Arrows is O(n log(n)), where n is the time horizon.

The proof exploits the sequential structure of our policy and sparsity in wavelet

transforms, which allows us to have O(log n) incremental updates in all but O(log n)

steps. See Appendix A.6 for details.

2.3.7 Experimental Results

To empirically validate our results, we conducted a number of numerical simulations

that compares the regret of Arrows, (Restarting) OGD and MA. Figure 2.2 shows the

results on a function with heterogeneous smoothness (see the exact details and more

experiments in Appendix A.1) with the hyperparameters selected according to their the-

oretical optimal choice for the TV class (See Theorem 112, 113 for OGD and MA

in Appendix A.2). The left panel illustrates that Arrows is locally adaptive to het-

erogeneous smoothness of the ground truth. Red peaks in the figure signifies restarts.

During the initial and final duration, the signal varies smoothly and Arrows chooses
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a larger window size for online averaging. In the middle, signal varies rather abruptly.

Consequently Arrows chooses a smaller window size. On the other hand, the linear

smoothers OGD and MA use a constant width and cannot adapt to the different regions

of the space. This differences are also reflected in the quantitative evaluation on the right,

which clearly shows that OGD and MA has a suboptimal Õ(
√
n) regret while Arrows

attains the Õ(n1/3) minimax regret!

2.4 Concluding Discussion

In this chapter, we studied the problem of online nonparametric forecasting of bounded

variation sequences. We proposed a new forecasting policy Arrows and proved that it

achieves a cumulative square error (or dynamic regret) of Õ(n1/3C
2/3
n σ4/3 +σ2 +U2 +C2

n)

with total runtime of O(n log n). We also derived a lower bound for forecasting sequences

with bounded total variation which matches the upper bound up to a logarithmic term

which certifies the optimality of Arrows in all parameters. Through connection to lin-

ear estimation theory, we assert that no linear forecaster can achieve the optimal rate.

Arrows is highly adaptive and has essentially no tuning parameters. We show that

it is adaptively minimax (up to a logarithmic factor) simultaneously for all discrete TV

classes, Sobolev classes and Holder classes with unknown radius.
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Chapter 3

Adaptive Online Estimation of

Piecewise Polynomial Trends

In time series analysis, estimating and removing the trend are often the first steps taken

to make the sequence “stationary”. The non-parametric assumption that the underlying

trend is a piecewise polynomial or a spline [35], is one of the most popular choices,

especially when we do not know where the “change points” are and how many of them

are appropriate. The higher order Total Variation (see Assumption A3) of the trend can

capture in some sense both the sparsity and intensity of changes in underlying dynamics.

A non-parametric regression method that penalizes this quantity — trend filtering [3] —

enjoys a superior local adaptivity over traditional methods such as the Hodrick-Prescott

Filter [36]. However, Trend Filtering is an offline algorithm which limits its applicability

for the inherently online time series forecasting problem. In this chapter, we are interested

in designing an online forecasting strategy that can essentially match the performance of

the offline methods for trend estimation, hence allowing us to apply time series models

forecasting on-the-fly. In particular, our problem setup (see Figure 3.1) and algorithm

are applicable to all online variants of trend filtering problem such as predicting stock
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prices, server payloads, sales etc.

3.1 Setup, Assumptions and Contributions

3.1.1 Setup

Let’s describe the notations that will be used throughout the chapter. All vectors

and matrices will be written in bold face letters. For a vector x ∈ Rm, x[i] or xi denotes

its value at the ith coordinate. x[a : b] or xa:b is the vector [x[a], . . . ,x[b]]. ∥ · ∥p denotes

finite dimensional Lp norms. ∥x∥0 is the number of non-zero coordinates of a vector x.

[n] represents the set {1, . . . , n}. Di ∈ R(n−i)×n denotes the discrete difference operator

of order i defined as in [3] and reproduced below.

D1 =




−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

...

0 0 0 . . . −1 1



∈ R(n−1)×n, (3.1)

and Di = D̃
1 ·Di−1 ∀i ≥ 2 where D̃

1
is the (n− i)× (n− i+ 1) truncation of D1.

The theme of this chapter builds on the non-parametric online forecasting model

developed in [37]. We consider a sequential n step interaction process between an agent

and an adversary as shown in Figure 3.1.

A forecasting strategy S is defined as an algorithm that outputs a prediction S(t)

at time t only based on the information available after the completion of time t − 1.

Random variables ϵt for t ∈ [n] are independent and subgaussian with parameter σ2. This

sequential game can be regarded as an online version of the non-parametric regression

setup well studied in statistics community.
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1. Fix a time horizon n.

2. Agent declares a forecasting strategy S

3. Adversary chooses a sequence θ1:n

4. For t = 1, . . . , n:

(a) Agent outputs a prediction S(t).

(b) Adversary reveals yt = θ1:n[t] + ϵt

5. After n steps, agent suffers a cumulative loss
∑n

i=1

(
S(i)−θ1:n[i]

)2
.

Figure 3.1: Interaction protocol

In this chapter, we consider the problem of forecasting sequences that obey nk∥Dk+1θ1:n∥1 ≤

Cn, k ≥ 0 and ∥θ1:n∥∞ ≤ B. The constraint nk∥Dk+1θ1:n∥1 ≤ Cn has been widely used

in the rich literature of non-parametric regression. For example, the offline problem of

estimating sequences obeying such higher order difference constraint from noisy labels

under squared error loss is studied in [14, 2, 3, 38, 33, 39] to cite a few. We aim to design

forecasters whose predictions are only based on past history and still perform as good as

a batch estimator that sees the entire observations ahead of time.

Scaling of nk. The family {θ1:n | nk∥Dk+1θ1:n∥1 ≤ Cn} may appear to be alarmingly

restrictive for a constant Cn due to the scaling factor nk, but let us argue why this is

actually a natural construct. The continuous TV k distance of a function f : [0, 1] → R

is defined as
∫ 1

0
|f (k+1)(x)|dx, where f (k+1) is the (k + 1)th order (weak) derivative. A

sequence can be obtained by sampling the function at xi = i/n, i ∈ [n]. Discretizing

the integral yields the TV k distance of this sequence to be nk∥Dk+1θ1:n∥1. Thus, the

nk∥Dk+1θ1:n∥1 term can be interpreted as the discrete approximation to continuous higher

order TV distance of a function. See Figure 3.2 for an illustration for the case k = 1.

Non-stationary Stochastic Optimization. The setting above can also be viewed

under the framework of non-stationary stochastic optimization as studied in [15, 22]
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with squared error loss and noisy gradient feedback. At each time step, the adversary

chooses a loss function ft(x) = (x − θt)
2. Since ∇ft(x) = 2(x − θt), the feedback

∇̃ft(x) = 2(x − yt) constitutes an unbiased estimate of the gradient ∇ft(x). [15, 22]

quantifies the performance of a forecasting strategy S in terms of dynamic regret as

follows.

Rdynamic(S,θ1:n) := E

[
n∑

t=1

ft (S(t))

]
−

n∑

t=1

inf
xt

ft(xt),= E

[
n∑

t=1

(S(t)− θ1:n[t])2
]
, (3.2)

where the last equality follows from the fact that when ft(x) = (x − θ1:n[t])2, infx(x −

θ1:n[t])2 = 0. The expectation above is taken over the randomness in the noisy gradient

feedback and that of the agent’s forecasting strategy. It is impossible to achieve sublinear

dynamic regret against arbitrary ground truth sequences. However if the sequence of

minimizers of loss functions ft(x) = (x − θt)2 obey a path variational constraint, then

we can parameterize the dynamic regret as a function of the path length, which could be

sublinear when the path-length is sublinear. Typical variational constraints considered in

the existing work includes
∑

t |θt−θt−1|,
∑

t |θt−θt−1|2, (
∑

t ∥ft−ft−1∥qp)1/q [37]. These

are all useful in their respective contexts, but do not capture higher order smoothness.

The purpose of this work is to connect ideas from batch non-parametric regression to

the framework of online stochastic optimization and define a natural family of higher or-

der variational functionals of the form ∥Dk+1θ1:n∥1 to track a comparator sequence with

piecewise polynomial structure. To the best of our knowledge such higher order path

variationals for k ≥ 1 are vastly unexplored in the domain of non-stationary stochas-

tic optimization. In this work, we take the first steps in introducing such variational

constraints to online non-stationary stochastic optimization and exploiting them to get

sub-linear dynamic regret.
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Figure 3.2: A TV 1 bounded comparator sequence θ1:n can be obtained by sampling the
continuous piecewise linear function on the left at points i/n, i ∈ [n]. On the right,
we plot the TV 1 distance (which is equal to n∥D2θ1:n∥1 by definition) of the generated
sequence for various sequence lengths n. As n increases the discrete TV 1 distance
converges to a constant value given by the continous TV 1 distance of the function on
left panel.

3.1.2 Assumptions

(A1) The time horizon is known to be n.

(A2) The parameter σ2 of subgaussian noise in the observations is a known fixed positive

constant.

(A3) The ground truth denoted by θ1:n has its kth order total variation bounded by some

positive Cn, i.e., we consider ground truth sequences that belongs to the class

TVk(Cn) := {θ1:n ∈ Rn : nk∥Dk+1θ1:n∥1 ≤ Cn}

We refer to nk∥Dk+1θ1:n∥1 as TV k distance of the sequence θ1:n. To avoid trivial

cases, we assume Cn = Ω(1).

(A4) The TV order k is a known fixed positive constant.

(A5) ∥θ1:n∥∞ ≤ B for a known fixed positive constant B.
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Though we require the time horizon to be known in advance in assumption (A1),

this can be easily lifted using standard doubling trick arguments. The knowledge of time

horizon helps us to present the policy in a most transparent way. If standard deviation

of sub-gaussian noise is unknown, contrary to assumption (A2), then it can be robustly

estimated by a Median Absolute Deviation estimator using first few observations, see for

eg. [18]. This is indeed facilitated by the sparsity of wavelet coefficients of TV k bounded

sequences. Assumption (A3) characterizes the ground truth sequences whose forecasting

is the main theme of this chapter. The TVk(Cn) class features a rich family of sequences

that can potentially exhibit spatially non-homogeneous smoothness. For example it can

capture sequences that are piecewise polynomials of degree at most k. This poses a

challenge to design forecasters that are locally adaptive and can efficiently detect and

make predictions under the presence of the non-homogeneous trends. Though knowledge

of the TV order k is required in assumption (A4), most of the practical interest is often

limited to the lower orders k = 0, 1, 2, 3, see for eg. [4, 3] and we present (in Appendix

B.3) a meta-policy based on exponential weighted averages [40] to adapt to these lower

orders. Finally assumption (A5) is standard in the online learning literature.

3.1.3 Contributions

• When the revealed labels are noisy realizations of sequences that belong to TV k(Cn)

we propose a polynomial time policy called Ada-VAW (Adaptive Vovk Azoury

Warmuth forecaster) that achieves the nearly minimax optimal rate of Õ

(
n

1
2k+3C

2
2k+3
n

)

for Rdynamic with high probability. The proposed policy optimally adapts to the un-

known radius Cn.

• We show that the proposed policy achieves optimal Rdynamic when revealed labels

are noisy realizations of sequences residing in higher order discrete Holder and
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discrete Sobolev classes.

• When the revealed labels are noisy realizations of sequences that obey ∥Dkθ1:n∥0 ≤

Jn, ∥θ1:n∥∞ ≤ B, we show that the same policy achieves the minimax optimal Õ(Jn)

rate for for Rdynamic with high probability. The policy optimally adapts to unknown

Jn.

Notes on key novelties. It is known that the VAW forecaster is an optimal algorithm

for online polynomial regression with squared error losses [40]. With the side information

of change points where the underlying ground truth switches from one polynomial to

another, we can run a VAW forecaster on each of the stable polynomial sections to

control the cumulative squared error of the policy. We use the machinery of wavelets to

mimic an oracle that can provide side information of the change points. For detecting

change points, a restart rule is formulated by exploiting connections between wavelet

coefficients and locally adaptive regression splines. This is a more general strategy than

that used in [37]. To the best of our knowledge, this is the first time an interplay between

VAW forecaster and theory of wavelets along with its adaptive minimaxity [2] has been

used in the literature.

Wavelet computations require the length of underlying data whose wavelet transform

needs to be computed has to be a power of 2. In practice this is achieved by a padding

strategy in cases where original data length is not a power of 2. We show that most

commonly used padding strategies – eg. zero padding as in [37] – are not useful for the

current problem and propose a novel packing strategy that alleviates the need to pad.

This will be useful to many applications that use wavelets which can be well beyond the

scope of the current chapter.

Our proof techniques for bounding regret use properties of the CDJV wavelet con-

struction [41]. To the best of our knowledge, this is the first time we witness the ideas
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from a general CDJV construction scheme implying useful results in an online learning

paradigm. Optimally controlling the bias of VAW demands to carefully bound the ℓ2

norm of coefficients computed by polynomial regression. This is done by using ideas

from number theory and symbolic determinant evaluation of polynomial matrices. This

could be of independent interest in both offline and online polynomial regression.

3.2 Main results

We present below the main results of the chapter. All proofs are deferred to the

appendix.

3.2.1 Limitations of linear forecasters

We exhibit a lower-bound on the dynamic regret that is implied by [2] in batch

regression setting.

Proposition 11 (Minimax Regret). Let yt = θ1:n[t] + ϵt for t = 1, . . . , n where θ1:n ∈

TV (k)(Cn), |θ1:n[t]| ≤ B and ϵt are iid σ2 subgaussian random variables. Let AF be the

class of all forecasting strategies whose prediction at time t only depends on y1, . . . , yt−1.

Let st denote the prediction at time t for a strategy s ∈ AF . Then,

inf
s∈AF

sup
θ1:n∈TV (k)(Cn)

n∑

t=1

E
[
(st − θ1:n[t])2

]
= Ω

(
min{n, n 1

2k+3C
2

2k+3
n }

)
, (3.3)

where the expectation is taken wrt to randomness in the strategy of the player and ϵt.

We define linear forecasters to be strategies that predict a fixed linear function of the

history. This includes a large family of polices including the ARIMA family, Exponential

Smoothers for Time Series forecasting, Restarting OGD etc. However in the presence of
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spatially inhomogeneous smoothness – which is the case with TV bounded sequences –

these policies are doomed to perform sub-optimally. This can be made precise by provid-

ing a lower-bound on the minimax regret for linear forecasters. Since the offline problem

of smoothing is easier than that of forecasting, a lower-bound on the minimax MSE

of linear smoother will directly imply a lower-bound on the regret of linear forecasting

strategies. By the results of [2], we have the following proposition:

Proposition 12 (Minimax regret for linear forecasters). Linear forecasters will suffer a

dynamic regret of at least Ω(n1/(2k+2)) for forecasting sequences that belong to TV k(1).

Thus we must look in the space of policies that are non-linear functions of past labels

to achieve a minimax dynamic regret that can potentially match the lower-bound in

Proposition 11.

3.2.2 Policy

In this section, we present our policy and capture the intuition behind its design.

First, we introduce the following notations.

• The policy works by partitioning the time horizon into several bins. th denotes

start time of the current bin and t be the current time point.

• W denotes the orthonormal Discrete Wavelet Transform (DWT) matrix obtained

from a CDJV wavelet construction [41] using wavelets of regularity k + 1.

• T (y) denotes the vector obtained by elementwise soft-thresholding of y at level

σ
√
β log l where l is the length of input vector.

• xt ∈ R(k+1) denotes the vector [1, t− th + k + 1, . . . , (t− th + k + 1)k]T .

• At = I +
∑t

s=th−k xsxs
T
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• recenter(y[s : e]) function first computes the Ordinary Least Square (OLS) poly-

nomial fit with features xs, . . . ,xe. It then outputs the residual vector obtained by

subtracting the best polynomial fit from the input vector y[s : e].

• Let L be the length of a vector u1:t. pack(u) first computes l = ⌊log2 L⌋. It then

returns the pair

(u1:2l ,ut−2l+1:t). We call elements of this pair as segments of u.

Ada-VAW: inputs - observed y values, TV order k, time horizon n, sub-
gaussian parameter σ, hyper-parameter β > 24 and δ ∈ (0, 1]

1. For t = 1 to k − 1, predict 0

2. Initialize th = k

3. For t = k to n:

(a) Predict ŷt = ⟨xt, A
−1
t

∑t−1
s=th−k ysxs⟩

(b) Observe yt and suffer loss (ŷt − θ1:n[t])2

(c) Let yr =recenter(y[th − k : t]) and L be its length

(d) Let (y1,y2) = pack(yr)

(e) Let (α̂1, α̂2) = (T (Wy1), T (Wy2))

(f) Restart Rule: If ∥α̂1∥2 + ∥α̂2∥2 > σ then

i. set th = t+ 1

The basic idea behind the policy is to adaptively detect intervals that have low TV k

distance. If the TV k distance within an interval is guaranteed to be low enough, then

outputting a polynomial fit can suffice to obtain low prediction errors. Here we use the

polynomial fit from VAW [42] forecaster in step 3(a) to make predictions in such low

TV k intervals. Step 3(e) computes denoised wavelets coefficients. It can be shown that

the expression on the LHS of the inequality in step 3(f) can be used to lower bound
√
L

times the TV k distance of the underlying ground truth with high probability. Informally

speaking, this is expected as the wavelet coefficents for a CDJV system with regularity k
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are computed using higher order differences of the underlying signal. A restart is triggered

when the scaled TV k lower-bound within a bin exceeds the threshold of σ. Thus we use

the energy of denoised wavelet coefficients as a device to detect low TV k intervals. In

Appendix B.4 we show that popular padding strategies such as zero padding, greatly

inflate the TV k distance of the recentered sequence for k ≥ 1. This hurts the dynamic

regret of our policy. To obviate the necessity to pad for performing the DWT, we employ

a packing strategy as described in the policy.

3.2.3 Performance Guarantees

Theorem 13. Consider the the feedback model yt = θ1:n[t] + ϵt t = 1, . . . , n where ϵt are

independent σ2 subguassian noise and |θ1:n[t]| ≤ B. If β = 24+ 8 log(8/δ)
log(n)

, then with proba-

bility at least 1−δ, Ada-VAW achieves a dynamic regret of Õ
(
n

1
2k+3

(
nk∥Dk+1θ1:n∥1

) 2
2k+3

)

where Õ hides poly-logarithmic factors of n, 1/δ and constants k,σ,B that do not depend

on n.

Proof Sketch. Our proof strategy falls through the following steps.

1. Obtain a high probability bound of bias variance decomposition type on the total

squared error incurred by the policy within a bin.

2. Bound the variance by optimally bounding the number of bins spawned.

3. Bound the squared bias using the restart criterion.

Step 1 is achieved by using the subgaussian behaviour of revealed labels yt. For step

2, we first connect the wavelet coefficients of a recentered signal to its TV k distance

using ideas from theory of Regression Splines. Then we invoke the “uniform shrinkage”

property of soft thresholding estimator to construct a lowerbound of the TV k distance

within a bin. Such a lowerbound when summed across all bins leads to an upperbound on
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the number of bins spawned. Finally for step 3, we use a reduction from the squared bias

within a bin to the regret of VAW forecaster and exploit the restart criterion and adpative

minimaxity of soft thresholding estimator [2] that uses a CDJV wavelet system.

Corollary 14. Consider the setup of Theorem 13. For the problem of forecasting se-

quences θ1:n with nk∥Dk+1θ1:n∥1 ≤ Cn and ∥θ1:n∥∞ ≤ B, Ada-VAW when run with

β = 24 + 8 log(8/δ)
log(n)

yields a dynamic regret of Õ
(
n

1
2k+3 (Cn)

2
2k+3

)
with probability atleast

1− δ.

Remark 15. (Adaptive Optimality) By combining with trivial regret bound of O(n), we

see that dynamic regret of Ada-VAW matches the lower-bound provided in Proposition

11. Ada-VAW optimally adapts to the variational budget Cn. Adaptivity to time horizon

n can be achieved by the standard doubling trick.

Remark 16. (Extension to higher dimensions) Let the ground truth θ1:n[t] ∈ Rd and

let vi = [θ1:n[1][i], . . . ,θ1:n[n][i]],∆i = nk∥Dk+1vi∥1 for each i ∈ [d]. Let
∑d

i=1 ∆i ≤ Cn.

Then by running d instances of Ada-VAW in parallel where instance i predicts ground truth

sequence along co-ordinate i, a regret bound of Õ

(
d

2k+1
2k+3n

1
2k+3C

2
2k+3
n

)
can be achieved.

Remark 17. (Generalization to other losses) Consider the protocol in Figure 3.1. In-

stead of squared error losses in step (5), suppose we use loss functions ft(x) such that

argmin ft(x) = θ1:n[t] and f ′
t(x) is γ-Lipschitz. Under this setting, Ada-VAW yields a

dynamic regret of Õ

(
γn

1
2k+3C

2
2k+3
n

)
with probability at least 1− δ. Concrete examples

include (but not limited to):

1. Huber loss, f
(ω)
t (x) =





0.5(x− θ[1:n][t])
2 |x− θ[1:n][t]| ≤ ω

ω(|x− θ[1:n][t]| − ω/2) otherwise

is 1-Lipschitz in

gradient.

2. Log-Cosh loss, ft(x) = log(cosh(x− θ[1:n][t])) is 1-Lipschitz in gradient.
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3. ϵ-insensitive logistic loss [43], f
(ϵ)
t (x) = log(1+ex−θ[1:n][t]−ϵ)+log(1+e−x+θ[1:n][t]−ϵ)−

2 log(1 + e−ϵ) is 1/2-Lipschitz in gradient.

The rationale behind both Remark 16 and Remark 17 is described at the end of

Appendix B.2.2

Proposition 18. There exist an O (((k + 1)n)2) run-time implementation of Ada-VAW.

The run-time of O(n2) is larger than the O(n log n) run-time of the more specialized

algorithm of [37] for k = 0. This is due to the more complex structure of higher or-

der CDJV wavelets which invalidates their trick that updates the Haar wavelets in an

amortized O(1) time.

3.3 Extensions

In this section, we discuss the potential applications of the proposed algorithm which

broadens its generalizability to several interesting use cases.

3.3.1 Optimality for Higher Order Sobolev and Holder Classes

So far we have been dealing with total variation classes, which can be thought of

as ℓ1-norm of the (k + 1)th order derivatives. An interesting question to ask is “how

does Ada-VAW behave under smoothness metric defined in other norms, e.g., ℓ2-norm and

ℓ∞-norm?” Following [3], we define the higher order discrete Sobolev class Sk+1(C ′
n) and

discrete Holder class Hk+1(L′
n) as follows.

Sk+1(C ′
n) = {θ1:n : nk∥Dk+1θ1:n∥2 ≤ C ′

n}, (3.4)

Hk+1(L′
n) = {θ1:n : nk∥Dk+1θ1:n∥∞ ≤ L′

n}, (3.5)
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where k ≥ 0. These classes feature sequences that are spatially more regular in compar-

ison to the higher order TV k class. It is well known that (see for eg. [44]) the following

embedding holds true:

Hk+1

(
Cn

n

)
⊆ Sk+1

(
Cn√
n

)
⊆ TV k(Cn). (3.6)

Here Cn√
n

and Cn

n
are respectively the maximal radius of a Sobolev ball and Holder ball

enclosed within a TV k(Cn) ball. Hence we have the following Corollary.

Corollary 19. Assume the observation model of Theorem 13 and that θ1:n ∈ Sk+1(C ′
n).

If β = 24 + 8 log(8/δ)
log(n)

, then with probability at least 1 − δ, Ada-VAW achieves a dynamic

regret of Õ
(
n

2
2k+3 [C ′

n]
2

2k+3

)
.

It turns out that this is the optimal rate for the Sobolev classes, even in the easier,

offline non-parametric regression setting [44]. Since a Holder class can be sandwiched

between two Sobolev balls of same minimax rates [44], this also implies the adaptive

optimality for the Holder class. We emphasize that Ada-VAW does not need to know the

Cn, C
′
n or L′

n parameters, which implies that it will achieve the smallest error permitted

by the right norm that captures the smoothness structure of the unknown sequence θ1:n.

3.3.2 Optimality for the case of Exact Sparsity

Next, we consider the performance of Ada-VAW on sequences satisfying an ℓ0-(pseudo)norm

measure of the smoothness, defined as

Ek+1(Jn) = {θ1:n : ∥Dk+1θ1:n∥0 ≤ Jn, ∥θ1:n∥∞ ≤ B}. (3.7)

This class captures sequences that has at most Jn jumps in its (k+ 1)th order difference,

which covers (modulo the boundedness) kth order discrete splines [45] with exactly Jn
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knots, and arbitrary piecewise polynomials with O(Jn/k) polynomial pieces.

The techniques we developed in this chapter allows us to establish the following

performance guarantee for Ada-VAW, when applied to sequences in this family.

Theorem 20. Let yt = θ1:n[t] + ϵt, for t = 1, . . . , n where ϵt are iid sub-gaussian with

parameter σ2 and ∥Dk+1θ1:n∥0 ≤ Jn with |θ1:n[t]| ≤ B and Jn ≥ 1. If β = 24 + 8 log(8/δ)
log(n)

,

then with probability at least 1 − δ, Ada-VAW achieves a dynamic regret of Õ (Jn) where

Õ hides polynmial factors of log(n) and log(1/δ).

We also establish an information-theoretic lower bound that applies to all algorithms.

Proposition 21. Under the interaction model in Figure 3.1, the minimax dynamic regret

for forecasting sequences in Ek+1(Jn) is Ω(Jn).

Remark 22. Theorem 20 and Proposition 21 imply that Ada-VAW is optimal (up to

logarithmic factors) for the sequence family Ek(Jn). It is noteworthy that the Ada-VAW is

adaptive in Jn, so it is essentially performing as well as an oracle that knows how many

knots are enough to represent the input sequence as a discrete spline and where they are

in advance (which leaves only the Jn polynomials to be fitted).

3.4 Concluding Discussion

In this chapter, we considered the problem of forecasting TV k bounded sequences

and proposed the first efficient algorithm – Ada-VAW– that is adaptively minimax opti-

mal. We also discussed the adaptive optimality of Ada-VAW in various parameters and

other function classes. In establishing strong connections between the locally adaptive

nonparametric regression literature to the adaptive online learning literature in a con-

crete problem, this chapter could serve as a stepping stone for future exchanges of ideas
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between the research communities, and hopefully spark new theory and practical algo-

rithms.

42



Chapter 4

An Optimal Reduction of

TV-Denoising to Adaptive Online

Learning

Total variation (TV) denoising [46] is a classical algorithm originated in the signal pro-

cessing community which removes noise from a noisy signal y by solving the following

regularized optimization problem

min
f
∥f − y∥22 + λTV(f). (4.1)

where TV(·) denotes the total variation functional which is equivalent to
∫
|f ′(x)|dx for

weakly differentiable functions. In discrete time, TV denoising is known as “fused lasso”

in the statistics literature [47, 48], which solves

min
θ∈Rn

n∑

i=1

(θi − yi)2 + λ

n∑

i=2

|θi − θi−1|. (4.2)
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where θi is the element at index i of the vector θ. Unlike their L2-counterpart, the TV

regularization functional is designed to promote sparsity in the number of change points,

hence inducing a “piecewise constant” structure in the solution.

Over the three decades since the advent of TV denoising, it has seen many influ-

ential applications. Algorithms that use TV-regularization has been deployed in every

cellphone, digital camera and medical imaging devices. More recently, TV denoising is

recognized as a pivotal component in generating the first image of a super massive black

hole [49]. Moreover, the idea of TV regularization has inspired a myriad of extensions to

other tasks such as image debluring, super-resolution, inpainting, compression, rendering,

stylization (we refer readers to a recent book [50] and the references therein) as well as

other tasks beyond the context of images such as change-point detection, semisupervised

learning and graph partitioning.

In this chapter, we focus on the non-parametric statistical estimation problem behind

TV-denoising which aims to estimate a function f : [0, 1]→ R using observations of the

following form:

yi = f(xi) + ϵi, i ∈ [n] := {1, . . . , n}, (4.3)

where ϵi are iid N(0, σ2) and the function f belongs to some fixed non-parametric function

class F . The exogenous variables xi belongs to some subset X of R. Similar to Chapter

2, we take F to be the Total Variation class: {f |TV(f) ≤ Cn} or its discrete counterpart

F(Cn) :=

{
f

∣∣∣∣
n∑

t=2

|f(xt)− f(xt−1)| ≤ Cn

}
.

We are interested in finding algorithms that generate estimates ŷt, t ∈ [n] such that
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the total square error

Rn(ŷ, f) :=
n∑

t=1

E[(ŷt − f(xt))
2], (4.4)

is minimized. Throughout this chapter, when we refer to rate, we mean the growth

rate of Rn as a function of n and Cn. The family F(Cn) we consider here features a

rich class of functions that exhibit spatially heterogeneous smoothness behavior. These

functions can be very smoothly varying in certain regions of space, while in other regions,

it can exhibit fast variations (see for eg. Fig. 4.5) or abrupt changes that may even be

discontinuous. A good estimator should be able to detect such local fluctuations (which

can be short lived) and adjust the amount of “smoothing” to apply according to the level

of smoothness of the functions in each local neighborhood. Such estimators are referred

as locally adaptive estimators by Donoho [2].

We are interested in algorithms that achieve the minimax optimal rates for estimating

functions in F(Cn) defined as:

R∗
n(Cn) = inf

{ŷt}nt=1

sup
f∈F(Cn)

Rn(ŷ, f),

which is known to be Θ(n1/3C
2/3
n )[20, 51].

There is a body of work in Strongly Adaptive online learning that focuses on designing

online algorithms such that its regret in any local time window is controlled [24]. Hence

the notion of local adaptivity is built into such algorithms. This makes the problem of

estimating TV bounded functions, a natural candidate to be amenable to techniques from

Strongly Adaptive online learning. However, it is not clear that whether using Strongly

Adaptive algorithms can lead to minimax optimal estimation rates. By formalizing the

intuition above, we answer it affirmatively in this work.
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We reserve the phrase adaptive estimation to describe the act of estimating TV

bounded functions such that Rn of the estimator/algorithm can be bounded by a function

of n and Cn without any prior knowledge of Cn. An adaptively optimal estimator ŷ is

able to estimate an arbitrary function f with an error

Rn(ŷ, f) = Õ
(

inf
Cn such that f∈F(Cn)

R∗
n(Cn)

)
.

A TV bounded function will be referred as a Bounded Variation (BV) function henceforth

for brevity.The notation Õ(·) hides poly-logarithmic factors of n.

It is well known that all linear estimators that output a linear transformation of

the observations attain a suboptimal Ω(
√
nCn) rate [20]. This covers a large family of

algorithms including the popular methods based on smoothing kernels, splines and local

polynomials, as well as methods such as online gradient descent [37]. Wavelet smoothing

[2] is known to attain the near minimax optimal rate of Õ(n1/3C
2/3
n ) for Rn without

any prior information about Cn. Recently the same rate is shown to be achievable for

the online forecasting setting by adding a wavelets-based adaptive restarting schedule to

OGD [37].

In this chapter, we provide an alternative to wavelet smoothing by a novel reduction to

a strongly adaptive regret minimization problem from the online learning literature. We

show that the resulting algorithm achieves the same adaptive optimal rate of Õ(n1/3C
2/3
n ).

The algorithm is more versatile than wavelet smoothing for three reasons:

1. Our algorithm is based on aggregating experts that performs local predictions. The

experts we use perform online averaging. However, one may use more advanced

algorithms such as kernel/spline smoothing, polynomial regression or even deep

learning approaches as experts that can potentially lead to better performance in

practice. Hence our algorithm is highly configurable.
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2. Our algorithm accepts a learning rate parameter that can be set without prior

knowledge of Cn to obtain the near optimal rate of Õ(n1/3C
2/3
n ) (see Theorem 27).

However, this learning rate can also be tuned using heuristics that can lead to

better practical performance (see Section 4.5).

3. It can also handle a more challenging setting where the data are streamed sequen-

tially in an online fashion.

To the best of our knowledge, we are the first to formalize the connection between

strongly adaptive online learning and the problem of local-adaptivity in nonparametric

regression. By establishing this new perspective, we hope to encourage further collabo-

ration between these two communities.

4.1 Setup, Assumptions and Contributions

4.1.1 Problem Setup

Though we are primarily motivated to solve the offline/batch estimation problem, our

starting point is to consider a significant generalization of the batch problem as shown

in Fig. 4.1. Any adaptively optimal algorithm to this online game immediately implies

adaptive optimality in the batch/offline setting. For example, to solve the batch problem,

adversary can be thought of as revealing the indices isotonically, i.e it = t. However, note

that in the online game, adversary can even query the same index multiple times. The

term “forecasting strategy” in step 1 of Fig. 4.1, is used to mean an algorithm that makes

a prediction at current time point only based on the historical data.

Solving the online problem has an added advantage that the resulting algorithm can

be applied to various instances of time series forecasting like financial markets, spread of

contagious disease etc.
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1. Player (we) declares a forecasting strategy

2. Adversary chooses an X = {x1 < x2 < . . . < xn} and reveals it to the
player.

3. Adversary chooses f(x1), . . . , f(xn) such that
∑n

t=2 |f(xt) − f(xt−1)| ≤
Cn.

4. Adversary fixes an ordered set {i1, . . . , in} where each ij ∈ [n].

5. For every time point t = 1, ..., n:

(a) Adversary reveals it.

(b) We play ŷt.

(c) We receive a feedback
yt = f(xit) + ϵt,
where ϵt is N(0, σ2).

(d) We suffer loss (ŷt − yt)2

6. Our goal is to minimize∑n
t=1 E[(ŷt − f(xit))

2].

Figure 4.1: Online interaction protocol

Assumption 1 |f(xi)| ≤ B, ∀i ∈ [n] for some known B.

Though this constraint is considered to be mild and natural, we note that standard

non-parametric regression algorithms do not make this assumption.

4.1.2 Notes on novelty and contributions

To the best of our knowledge, in non-parametric regression literature, only wavelet

smoothing 1 [2] is able to provably attain a near optimal Õ(n1/3C
2/3
n ) rate for estimating

BV functions in batch setting without knowing the value of Cn. There are model-selection

techniques based on information-criterion, which often either incurs significant practical

overhead or comes with no optimal rate guarantees.

The contribution of this work is mainly theoretical. Our primary result is a novel

1Though [37] proposes a minimax policy for forecasting TV bounded sequences online, they heavily
rely on the adaptive minimaxity of wavelet smoothing.
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reduction from the problem of estimating BV functions to Strongly Adaptive online

learning [24]. This reduction approach results in the development of a new O(n log n)

time algorithm that is: 1) minimax optimal (modulo log factors) 2) adaptive to Cn and

3) can be used to tackle both online and offline estimation problems thereby providing

new insights. To elaborate slightly, this is facilitated by few fundamentally different

viewpoints than those adopted in the wavelet literature. In particular, we exhibit a

specific partitioning of TV bounded function into consecutive chunks that incurs low

total variation such that total number of chunks is O(n1/3C
2/3
n ). Then by designing

a strongly adaptive online learner, we ensure an Õ(1) cumulative squared error in each

chunk of that partition. This immediately implies an estimation error rate of Õ(n1/3C
2/3
n )

when summed across all chunks. To the best of our knowledge, this is the first time a

connection between strongly adaptive online learning and estimating BV functions has

been exploited in literature.

Experimental results (see Section 4.5) indicate that our algorithm can outperform

wavelet smoothing in terms of its cumulative squared error incurred in practice. We

demonstrate that the proposed algorithm can be used without any hyper-parameter tun-

ing and incurs very low computational overhead in comparison to model selection based

approaches for the fused lasso problem (see Eq. (4.2)).

Before closing this section, we remind the reader that this work shouldn’t be viewed

only as providing yet another solution to a classical problem but rather one that provides

a fundamentally new set of tools that adds new insight to this decades-old problem that

might have a profound impact in many extensions of the basic setting we consider and

other downstream tasks such as estimating higher-dimensional BV functions, fused lasso

on graphs, image deblurring, trend filtering and so on.
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4.2 Preliminaries

In this section, we briefly review the elements from online learning literature that are

crucial to the development of our algorithm.

4.2.1 Geometric Cover

Geometric Cover (GC) proposed in [24] is a collection of intervals that belong to N

defined below. In what follows [a, b] denotes the set of natural numbers lie between a

and b, both inclusive.

I =
⋃

k∈N∪{0}

Ik, (4.5)

where ∀k ∈ N ∪ {0}, and Ik = {[i · 2k, (i + 1) · 2k − 1] : i ∈ N}. Define AWAKE(t) :=

{I ∈ I : t ∈ I}.By the construction of Geometric Cover I, it holds that

|AWAKE(t)| = ⌊log t⌋+ 1. (4.6)

Let’s denote I|J := {I ∈ I : I ⊆ J} for an interval J ⊆ N. The GC has a very nice

property recorded in the following Proposition.

Proposition 23. [24] Let I = [q, s] ⊆ N. Then the interval I can be partitioned into two

finite sequences of disjoint consecutive intervals (I−k, . . . , I0) ⊆ I|I and (I1, . . . , Ip) ⊆ I|I
such that,

|I−i|
|I−i+1|

≤ 1

2
,∀i ≥ 1 and

|Ii|
|Ii−1|

≤ 1

2
,∀i ≥ 2.
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4.2.2 Sleeping Experts and Specialist Aggregation Algorithm

(SAA)

In the problem of learning from expert advice with outcome space O and action space

A, there are K experts who provide a list of actions at,: = [at,1, ..., at,K ] ∈ AK at time

t = 1, ..., n. The learner is supposed to takes an action at ∈ A based on the expert

advice2 before the outcome ot ∈ O is revealed by an adversary. The player then incurs a

loss given by ℓ(at, ot), where ℓ is a loss function.

In the most basic setting, A,O are discrete sets, ℓ can be described by a table, and

we assign one constant expert to each a ∈ A, then this becomes an online version of

Von Neumann’s linear matrix game. More generally, A can be a convex set, describing

parameters of a classifier, o ∈ O could denote a feature-label pair in which case the loss

could be a square loss or logistic loss that measures the performance of each classifier.

Our result leverages a variant of the learning from expert advice problem which

assumes an arbitrary subset of K experts might be sleeping at time t and the learner

needs to compete against an expert only during its awake duration. The learner chooses

a distribution wt over the awake experts and plays a weighted average over the actions

of those awake experts. It then incurs a surrogate-loss called “MixLoss” which is a

measure of how good the distribution wt is. (See Figure 4.2 for details.) This setting

is different from the classical prediction with experts advice problem in two aspects: 1)

The adversary is endowed with more power of selecting an awake expert set in addition

to the actual outcome ot at each round. 2) Instead of the loss ℓ(at, ot), the learner is

incurred a surrogate loss on the distribution chosen by the learner at time t.

Consider the protocol of learning with sleeping experts shown in Fig. 4.2. Assume

an expert pool of size K.

2Could be at,k for some k ∈ [K] or any other points in A
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For t = 1, . . . , n

1. Adversary picks a subset At ⊂ [K] of awake experts.

2. Learner choose a distribution wt over At.

3. Adversary reveals loss of all awake experts,
ℓt ∈ (−∞,∞]|At|.

4. Learner suffers MixLoss:
− log(

∑
k∈At

wt,ke
−ℓt,k).

Figure 4.2: Interaction protocol with sleeping experts. The expert pool size is K.

Initialize u1,k = 1/|S| for all k in an index set S used to
index the expert pool.
For t = 1, . . . , n

1. Adversary reveals At ⊆ S.

2. Play weighted average action wrt distribution:

wt,k =
ut,k1{k∈At}∑

j∈At
ut,j

.

3. Broadcast the weights wt,k.

4. Receive losses ℓt,k for all k ∈ At.

5. Update:

• ut+1,k =
ut,ke

−ℓt,k∑
j∈At

ut,je
−ℓt,j

∑
j∈At

ut,j

if k ∈ At.

• ut+1,k = ut,k if k /∈ At.

Figure 4.3: Specialist Aggregation Algorithm (SAA).

Lemma 24. [52] Regret Rj
n of SAA (Fig. 4.3) w.r.t. any fixed expert j ∈ [K] satisfies,

Rj
n :=

∑

t∈[n]

1{j ∈ At}
(
− log(

∑

k∈At

wt,ke
−ℓt,k)− ℓt,j

)
≤ logK,

where 1{·} is the indicator function, ℓt,k := L(at,k, ot) and at,k is the action taken by

expert k at time t.
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Note that ℓt,j = MixLoss(ej) where ej selects j with probability 1. The regret mea-

sures the performance of the learner against any fixed expert in terms of the MixLoss in

the sub-sequence where she is awake.

Definition 25. L(a, x) is η exp-concave in a for each x if
∑K

k=1wke
−ηL(ak,x) ≤ e−ηL(

∑K
k=1 wkak,x),

for wk ≥ 0 and
∑K

k=1wk = 1.

A MixLoss regret bound is useful because it implies a regret bound on any exp-

concave losses for learners playing the weighted average action at =
∑

k∈At
wt,kat,k. To

see this, let L′(a, o) be η exp-concave in its first argument a ∈ A. By the definition of

exp-concavity it follows that if SAA is run with losses L(a, o) = ηL′(a, o), then,

∑

t∈[n]:j∈At


ηL′


∑

k∈At

wt,kat,k , ot


− ηL′(at,j , ot)


 ≤ Rj

n,

where at,k is the action taken by expert k at time t.

We refer to Chapter 3 of [40] and [52] for further details on SAA.

4.3 Main Results

In this section, we present our algorithm and its performance guarantees.

4.3.1 Algorithm

Our goal is to explore the possibility that a Strongly Adaptive online learner can lead

to minimax optimal estimation rate. Consequently the algorithm that we present is a

fairly standard Strongly Adaptive online learner that can guarantee logarithmic regret

in any interval.

Our algorithm Aligator (Aggregation of onLIne averaGes using A geomeTric

cOveR) defined in Fig.4.4 can be used to tackle both online and batch estimation prob-
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lems. The policy is based on learning with sleeping experts where expert pool is defined

as follows.

Definition 26. The expert pool is E = {AI : I ∈ I|[n]}, where I|[n] is as defined in

Section 4.2.1 and AI is an algorithm that perform online averaging in interval I. Let

AI(t) denote the prediction of the expert AI at time t, if I ∈ AWAKE(t).

Due to relation (4.6), we have |E| ≤ n log n. Our policy basically performs SAA over

E .

Aligator:Inputs - time horizon n, learning rate η

1. Initialize SAA weights u1,I = 1/|E|, ∀I ∈ I|[n].

2. For t = 1 to n:

(a) Adversary reveals an arbitrary xit ∈ X .

(b) Let At = AWAKE(it). Pass At to SAA.

(c) Receive wt,I from SAA for each I ∈ At.

(d) Predict ŷt =
∑

I∈At
wt,IAI(t).

(e) Receive yt = f(xit) + ϵt.

(f) Pass losses ℓt,I = η(yt −AI(t))
2,

for each I ∈ At to the SAA.

Figure 4.4: The Aligator algorithm

The precise definition of AI(t) used in our algorithm is

AI(t) =





∑t−1
s=1 ys1{is∈I}∑t−1
s=1 1{is∈I}

if
∑t−1

s=1 1{is ∈ I} > 0

0 otherwise

(4.7)

where is is the index of the exogenous variable xis in step 2(a) of Fig. 4.4. This par-

ticular choice of experts is motivated by the fact that performing online averages lead

to logarithmic static regret under quadratic losses. As shown later, this property when

combined with the SAA scheme leads to logarithmic regret in any interval of [n].
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4.3.2 Performance Guarantees

Theorem 27. Consider the online game in Fig. 4.1. Let θt := f(xit). Under As-

sumption 1, with probability atleast 1 − δ, Aligator forecasts ŷt obtained by setting

η = 1

8
(
B+σ
√

log(2n/δ)
)2 , incurs a cumulative error

n∑

t=1

(ŷt − θt)2 = Õ(n1/3C2/3
n ),

where Õ(·) hides the dependency of constants B, σ and poly-logarithmic factors of n and

δ.

Proof Sketch. We first show that Aligator suffers logarithmic regret against any expert

in the pool E during its awake period. Then we exhibit a particular partition of the un-

derlying TV bounded function such that number of chunks in the partition is O(n1/3C
2/3
n )

(Lemma 157 in Appendix C.1). Following this, we cover each chunk with atmost log n

experts and show that each expert in the cover suffers a Õ(1) estimation error. The

Theorem then follows by summing the estimation error across all chunks of the partition.

In summary, the delicate interplay between Strongly Adaptive regret bounds and proper-

ties of the partition we exhibit leads to the adaptively minimax optimal estimation rate

for Aligator. We emphasize that existence of such partitions is a highly non-trivial

matter.

Remark 28. We note that under the above setting, Aligator is minimax optimal in

n and Cn, and adaptive to unknown Cn.

Remark 29. If the noise level σ is unknown, it can be robustly estimated from the

wavelet coefficients of the observed data by a Median Absolute Deviation estimator [18].

This is facilitated by the sparsity of wavelet coefficients of BV functions .
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Remark 30. In the offline problem where we have access to all observations ahead of

time, the choice of η = 1/(8ν̂2) where ν̂ = max{|y1|, . . . , |yn|} results in the same near

optimal rate for Rn as in Theorem 27. This is due to the fact that B + σ
√

log(2n/δ)

is nothing but a high probability bound on each |yt|. Hence we don’t require the prior

knowledge of B and σ for the offline problem.

Remark 31. The authors of [2] use the error metric given by the L2 function norm in a

compact interval [0, 1] defined as
∫ 1

0

(
f̂(x)− f(x)

)2
dx in an offline setting, where f̂(x)

is the estimated function. A common observation model for non-parametric regression

considers xit = t/n [3]. When xit = t/n, Aligator guarantees that the empirical norm

1
n

∑n
t=1 (ŷt − f(t/n))2 decays at the rate of Õ

(
n−2/3C

2/3
n

)
. For the TV class, it can be

shown that the empirical norm and the function norm are close enough such that the

estimation rates do not change (see Section 15.5 of [18]).

Remark 32. Note that conditioned on the past observations, the prediction of Aliga-

tor is deterministic in each round. So in the online setting, we can compete with an

adversary who chooses the underlying ground truth in an adaptive manner based on the

learner’s past moves. With such an adaptive adversary, it becomes important to reveal

the set of covariates X ahead of time. Otherwise there exists a strategy for the adversary

to choose the covariates xit that can enforce a linear growth in the cumulative squared

error. We refer the readers to [53] for more details about such adversarial strategy.

Proposition 33. The overall run-time of Aligator is O(n log n).

Proof. On each round |AWAKE(t)| is O(log n) by (4.6). So we only need to aggregate

and update the weights of O(log n) experts per round which can be done in O(log n)

time.
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4.4 Extensions

Motivated from a practical perspective, we discus two direct extensions to Aligator

below. These extensions highlight the versatility of Aligator in adapting to each

application.

Hedged Aligator. In our theoretical results, we found that choosing learning rate

η conservatively according to Theorem 27 or Remark 30 ensures the minimax rates. In

practice, however, one could use larger learning rates to adapt to the structure of every

input sequence.

We propose to use a hedged Aligator scheme that aggregates the predictions of

Aligator instantiated with different learning rates. In particular, we run different

instances of Aligator in parallel where an instance corresponds to a learning rate in the

exponential grid [η, 2η, . . . ,max{η, log2 n}] which has a size of O (log ((B2 + σ2) log n)).

Here η is chosen as in Theorem 27 or Remark 30. Then we aggregate each of these

instances by the Exponential Weighted Averages (EWA) algorithm [40]. The learning

rate of this outer EWA layer is set according to the theoretical value.By exp-concavity of

squared error losses, this strategy helps to match the performance of the best Aligator

instance. Since the theoretical choice of learning rate is included in the exponential

grid, the strategy can also guarantee optimal minimax rate. We emphasize that Hedged

Aligator is adaptive to Cn and requires no hyper-parameter tuning.

Aligator with polynomial regression experts. This extension is motivated by

the problem of identifying trends in time series. Though in Section 4.3.1 we use online

averaging as experts, in practice one can consider using other algorithms. For example,

if the trends in a time series are piecewise-linear, then experts based on online averaging

can lead to poor practical performance because the TV budget Cn of piecewise linear

signals can be very large. To alleviate this, in this extension, we propose to use Online
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Polynomial Regression as experts where a polynomial of a fixed degree d is fitted to the

data with time points as its exogenous variables. This is similar to the idea adopted in

[54] where they construct a policy that performs restarted online polynomial regression

where the restart schedule is adaptively chosen via wavelet based methods. They show

that such a scheme can guarantee estimation rates that grow with (a scaled) L1 norm

of higher order differences of the underlying trend which can be much smaller than its

TV budget Cn. This extension can be viewed as a variant to the scheme in [54] where

the “hard” restarts are replaced by “soft restarts” via maintaining distributions over the

sleeping experts.

4.5 Experimental Results
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Figure 4.5: Fitted signals for Doppler function with noise level σ= 0.25

For empirical evaluation, we consider online and offline vesrions of the problems sep-

arately.

Description of policies. We begin by a description of each algorithm whose error

curve is plotted in the figures.

Aligator (hedged): This is the extension described in Section 4.4

Aligator (heuristics): For this hueristics strategy, we divide the loss of each expert

by 2(σ2+σ2/m) where m is the number of samples whose running average is compued by
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(a) Offline experiments

(b) Online experiments

Figure 4.6: Cumulative squared error rate of various algorithms on offline setting
and online setting. Aligator achieves the optimal Õ(n1/3) rate while performing
better than wavelet based methods. In particular, in the offline setting, it achieves a
performance closer to that of dof based fused lasso while only incurring a cheap Õ(n)
run-time overhead.

Feb-01
Feb-21

Mar-12
Apr-01

Apr-21
May-11

May-31
Jun-20

Jul-10
Jul-30

Aug-19
Sep-08

Sep-28
Oct-1

4

0

5000

10000

15000

20000

re
po

rte
d 

ca
se

s

Daily COVID cases in Florida
ground truth
holt es
aligator(hedged)

Figure 4.7: A demo on forecasting COVID cases based on real world data. We display
the two weeks forecasts of hedged Aligator and Holt ES, starting from the time
points identified by the dotted lines. Both the algorithms are trained on a 2 month
data prior to each dotted line. We see that hedged Aligator detects changes in trends
more quickly than Holt ES. Further, hedged Aligator attains a 20% reduction in the
average RMSE from that of Holt ES (see Section 4.5).
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the expert. This loss is proportional to the notion of (squared) z-score used in hypothesis

testing. Intuitively, lower (squared) z-score corresponds to better experts. The multiplier

2 in the previous expression is found to provide good performnace across all signals we

consider.

arrows: This is the the policy presented in [37], which runs online averaging with an

adaptive restarting rule based on wavelet denoising results.

wavelets: This is the universal soft thresholding estimator from [2] based on Haar

wavelets which is known to be minimax optimal for estimating BV functions.

oracle fused lasso: This estimator is obtained by solving (4.2) whose hyper-parameter

is tuned by assuming access to an oracle that can compute the mean squared error wrt ac-

tual ground truth. The exact ranges used in the hyper-parameter grid search is described

in Appendix C.2. Note that the oracle fused lasso estimator is purely hypothetical due

to absence of such oracles described before in reality and is ultimately impractical. It is

used here to facilitate meaningful comparisons.

fused lasso (dof): In this experiment, we maintain a list of λ for the fused lasso

problem (Eq. (4.2)). Then we compute the Stein’s Unbiased Risk estimator for the

expected squared error incurred by each λ by estimating its degree of freedom (dof) [55]

and select the λ with minimum estimated error.

Experiments on synthetic data. For the ground truth signal, we use the Doppler

function of [56] whose waveform is depicted in Fig. 4.5. The observed data are generated

by adding iid noise to the ground truth. For offline setting, we have access to all observa-

tions ahead of time. So we run Arrows and both versions of Aligator two times on the

same data, once in isotonic order (i.e it = t in Fig. 4.1) and other in reverse isotonic order

and average the predictions to get estimates of the ground truth. For online setting such a

forward-backward averaging is not performed. This process of generating the noisy data

and computing estimates are repeated for 5 trials and the average cumulative error is
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plotted. As we can see from Fig.4.6 (a), Aligator versions attains the Õ(n1/3) rate and

incurs much lower error than wavelet smoothing. Further, performance of hedged and

heuristics versions of Aligator is in the vicinity to that of the hypothetical fusedlasso

estimator while the policies arrows and wavelets violate this property by a large margin.

Even though the dof based fused lasso comes very close to the oracle counterpart, we

emphasize that this strategy is not known to provide theoretical guarantees for its rate

and requires heavy computational bottleneck since it requires to solve the fused lasso

(Eq. 4.2) for many different values of λ.

For the online version of the problem, we consider the policy Arrows as the benchmark.

This policy has been established to be minimax optimal for online forecasting of TV

bounded sequences in [37]. We see from Fig.4.6 (b) that all the policies attains an

Õ(n1/3) rate while Aligator variants enjoy lower cumulative errors.

Experiments on real data. Next we consider the task of forecasting COVID cases

using the extension of Aligator with polynomial regression experts as in Section 4.4. The

data are obtained from the CDC website ([57]).

We address a very relevant problem as follows: Given access to the historical data,

forecast the evolution of COVID cases for the next 2 weeks. We compare the performance

of hedged Aligator and Holt Exponential Smoothing (Holt ES), on this problem, where

the later is a common algorithm used in Time Series forecasting to detect underlying

trends. For Aligator, we use Online Linear Regression as experts where a polynomial

of degree one is fitted to the data with time points as its exogenous variables. For

each time point t in [Apr 20, Sep 27], we train both hedged Aligator and Holt ES

on a training window of past 2 months. Then we calculate a 2 week forecast for both

algorithms. For Aligator this is achieved by linearly extrapolating the predictions of

experts awake at time t and aggregating them. Following this, we compute the Root

Mean Squared Error (RMSE) in the interval [t, t+14) for both algorithms. These RMSE
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are then averaged across all t in [Apr 20, Sep 27].

We choose data from the state of Florida, USA, as an illustrative example. We

obtained an average RMSE of 1330.12 for hedged Aligator and 1671.77 for Holt ES.

Thus hedged Aligator attains a 20% reduction in forecast error from that of Holt ES.

A qualitative comparison of the forecasts is illustrated in Fig. 4.7. As we can see, the

time series is non-stationary and has a varying degree of smoothness. Aligator is able

to adapt to the local changes quickly, while Holt ES fails to do so despite having a more

sophisticated training phase. Similar experimental results for some of the other states

are reported in Appendix C.2.

The training step of hedged Aligator involves learning the weights of all experts

by an online interaction protocol as shown in Fig. 4.1 with it = t. It is remarkable that

no hyper-parameter tuning is required by Aligator for its training phase. The slowest

learning rate to be used in the grid for hedged Aligator is computed as follows. First

we calculate the maximum loss incurred by each expert for a one step ahead forecast in

its awake duration. Then we take the maximum of this quantity across all experts in the

pool. Let this quantity be β. The slowest learning rate in the grid is then set as 1/(2β).

The learning rate of the outer layer of EWA is also set the same. This is justifiable

because the quantity 4
(
B + σ

√
log(2n/δ)

)
in the denominator of the learning rate in

Theorem 27 is a high probability bound on the loss incurred by any expert for a one step

ahead forecast.

We defer further experimental results to Appendix C.2.

An important caveat for practitioners. Though Aligator is able to detect non-

stationary trends in the COVID data efficiently, we do not advocate using Aligator as

is for pandemic forecasting, which is a substantially more complex problem that requires

input from domain experts.

However, Aligator could have a role in this problem, and other online forecasting
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tasks. Estimating (and removing) trend is an important first step in many time series

methods (e.g., Box-Jenkins method). Most trend estimation methods only apply to

offline problems (e.g., Hodrick-Prescott filter or L1 Trend Filter) [4], while Holt ES is a

common method used for online trend estimation. For instance, Holt ES is being used

as a subroutine for trend estimation in a state-of-the-art forecasting method [58] for

COVID cases that CDC is currently using. We expect that using Aligator instead in

such models that use Holt ES will lead to more accurate forecasting, but that is beyond

the scope of this chapter.

4.6 Concluding Discussion

In this work, we presented a novel reduction from estimating BV functions to Strongly

Adaptive online learning. The reduction gives rise to a new algorithm Aligator that

attains the near minimax optimal rate of Õ(n1/3C
2/3
n ) in O(n log n) run-time. The re-

sults form a parallel to wavelet smoothing in terms of optimal adaptivity to unknown

variational budget Cn. However, our algorithm is more versatile than wavelets in terms

of its configurability and practical performance. Further, for offline estimation, Aliga-

tor variants achieves a performance closer (than wavelets) to an oracle fused lasso while

incurring only an Õ(n) run-time with no hyper parameter tuning. This is in contrast to

degree of freedom based approaches of tuning the fused lasso hyper parameter that re-

quires significantly more computational overhead and is not known to provide guarantees

on its rate.

63



Part II

Theory and Algorithms under

Adversarial Observation Model

64



Chapter 5

Optimal Dynamic Regret in

Exp-Concave Online Learning

We consider a generic online learning framework which is modelled as an interactive n

step game between a learner and adversary. At each time step t, the learner predicts a

pt ∈ D ⊆ Rd. Then the adversary reveals a loss function ft : Rd → R. The objective of

the learner is to minimise its regret against a predefined set of strategiesW that is known

to the learner before the start of the game. We call a learning algorithm to be proper

when D =W . Further when D =W are convex sets and the losses ft are convex in D, the

generic learning framework reduces to the one studied in Online Convex Optimization

(OCO) [59]. On the other hand, we call the learning algorithm to be improper when

D ⊃ W . A commonly used metric to measure the performance of the learner is its static

regret defined as

Rn =
n∑

t=1

ft(pt)− inf
w∈W

n∑

t=1

ft(w). (5.1)
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A sub-linear static regret implies that the average loss incurred by the learner converges

to that of the best comparator strategy in hindsight.

A canonical example of an improper algorithm can be found in an online linear re-

gression setting where ft(u) = (yt−xT
t u)2 with |yt| ≤ 1, ∥xt∥2 ≤ 1 and we are interested

in controlling the static regret against against a set of linear predictors with bounded

norm, W = {w ∈ Rd : ∥w∥2 ≤ 1}. One popular learning algorithm in this framework is

the Vovk-Azoury-Warmuth (VAW) forecaster [60, 61] (or see Section 11.8 in [40]). The

VAW forecaster attains an O(d log n) static regret against W . However predictions of

VAW at time t denoted by ut may not necessarily satisfy ∥ut∥2 ≤ 1 hence making it an

improper algorithm.

The notion of static regret is not befitting for non-stationary environments – such as

financial markets – where it could be inappropriate to compete against a fixed comparator

due to the changes in the dynamics of the environment. The work of [5] introduces the

notion of dynamic regret defined as

Rn
w1,...,wn

:=
n∑

t=1

ft(pt)− ft(wt), (5.2)

for any sequence of comparators wt in W . The dynamic regret bounds are usually

expressed in literature as a function of number of time steps and some path variation

metric that captures the degree of non-stationarity in the comparator sequence. In this

chapter, we study the following path variation:

TV (w1, . . . ,wn) :=
n∑

t=2

∥wt −wt−1∥1.

The maximum dynamic regret against all comparator sequences whose path variation is
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bounded by a number Cn can then be defined as

Rn(Cn) := sup
w1,...,wn

TV (w1,...,wn)≤Cn

Rn
w1,...,wn

. (5.3)

There is a complementary body of work on Strongly Adaptive (SA) algorithms [24]

where the static regret in any sub-interval of [n] := {1, . . . , n} is controlled. Hence SA

algorithms have the nice property of being globally and locally optimal. The work of

[27] exploits this property of SA algorithms to control their dynamic regret in terms of a

variational metric that measures how much the losses ft change over time. In particular,

whenever the losses have extra curvature properties such as strong convexity or exp-

concavity, they show that one can get fast dynamic regret rates. However, it was unclear

if SA methods can lead to optimal dynamic regret guarantees in terms of the path length

of the comparator sequence — an open question raised in [27].

The works of [26] and [62] attains a dynamic regret ofO∗(
√
n(1 + Cn)) andO∗(

√
nCn∨

log n) respectively, whereO∗(·) hides dependence on the dimension and (a∨b) = max{a, b}.

However, we show a lower bound of Ω∗(n1/3C
2/3
n ∨log n) in Proposition 44 applicable to the

case when losses are strongly convex / exp-concave. Hence, there is a large gap between

this lower bound and existing upper bounds. In this work, we show that whenever im-

proper learning is allowed and when the loss functions are strongly convex / exp-concave,

one can leverage SA algorithms to attain the sharp rate of Õ∗(n1/3C
2/3
n ∨log n) for Rn(Cn)

where Õ∗(·) hides dependence in the dimension and factors of log n (see section 5.2 for

formal statements and complete list of assumptions). Further, the SA algorithms need

not require the apriori knowledge of Cn to attain this rate.

As a concrete use case, we show that our results have interesting implications to the

problem of online Total Variation (TV) denoising. The offline version of TV-denoising

problem has seen many influential applications in the signal processing community. For
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example, algorithms that use TV-regularization has been deployed in every cellphone,

digital camera and medical imaging devices (we refer readers to the book [50] and the

references therein) as well as other tasks beyond the context of images such as change-

point detection, semisupervised learning and graph partitioning.

We proceed to formally introduce the non-paramteric regression problem behind TV-

denoising. Define a non-parametric class of TV bounded sequences as

T V(Cn) :=

{
(w1, . . . , wn) :

n∑

t=2

|wt − wt−1| ≤ Cn

}
,

where
∑n

t=2 |wt − wt−1| is termed as the TV of the sequence w1:n := (w1, . . . , wn). In

the offline TV-denoising problem we are given n observations of the form yt = wt + ϵt

where ϵt are iid zero mean subgaussian noise, t ∈ [n] and w1:n is an unknown sequence

in T V(Cn). We are interested in coming up with estimates ŵt such that RT V(Cn) :=

E [
∑n

t=1(ŵt − wt)
2] is controlled. Several non-parametric regression algorithms such as

Trend Filtering [3] are known to achieve a near minimax optimal rate of Õ(n1/3C
2/3
n ) for

RT V(Cn) where Õ(·) hides dependence on factors of log n.

We can instantiate an online version of the above non-parametric regression problem

behind TV-denoising into our learning framework with slight modifications. We consider

a TV class with bounded sequences

T VB(Cn) :=

{
w1:n :

n∑

t=2

|wt − wt−1| ≤ Cn, |wt| ≤ B ∀t ∈ [n]

}
. (5.4)

When viewed through our online learning framework, we take ft(x) = (yt − x)2 where

|yt| ≤ B, D =W = [−B,B]. Labels y1:n is a fixed sequence in contrast to the stochastic

noise setting discussed earlier, and we are hoping to compete with the best approximation

from sequences in T VB(Cn) for all Cn ≥ 0 at the same time. We remark that to compete
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with the entire T V(Cn) class it is sufficient to compete with T VB(Cn) due to the property

|yt| ≤ B. We show in Section 5.1 that by using appropriate SA algorithms, one can

attain a dynamic regret of Rn(Cn) = Õ(n1/3C
2/3
n ). This in turn implies the minimax

estimation rate in the iid stochastic setting. Further our results have the added advantage

of providing an oracle inequality. We conclude this section by summarizing our key

contributions below.

• We show that Follow-the-Leading-History (FLH) algorithm [23] with Follow The

Leader (FTL) as base learners can achieve the optimal minimax regret (modulo

log n factors) of Õ(n1/3C
2/3
n B4/3∨B2 log n) for the problem of online non-parametric

regression with TV bounded sequences – T VB(Cn) – as the reference class. The

policy is adaptive to the TV budget Cn. Further, we demonstrate that the same

policy is minimax optimal for smoother non-parametric sequence classes such as

Sobolev class or Holder class.

• When improper learning is allowed and when the loss functions revealed by the

adversary are exp-concave, strongly smooth and Lipschitz on a box that encloses

the set of comparators W , (see Section 5.2) we show that FLH with ONS as base

learners attains a dynamic regret of Õ
(
d3.5(n1/3C

2/3
n ∨ 1)

)
when Cn ≥ 1/n and

O(d1.5 log n) otherwise, without prior knowledge of Cn – the path variation of the

comparator sequence. This rate is shown to be minimax optimal modulo polynomial

factors of log n and d.

• The proof of the regret bound is facilitated by exploiting a number of distinct

structures of primal and dual variables in KKT conditions of the optimization

problem solved by the offline oracle. We believe that this style of analysis can be

useful in bounding the regret of online algorithms in a broader context.
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5.1 Performance guarantees for squared error losses

In this section, we focus on the online TV-denoising problem which is a special case

of our online learning framework with squared error losses. This will help to build

the intuitions behind the analysis for general exp-concave losses as well. All unspecified

proofs of this section are deferred to Appendix D.2. We consider the following interaction

protocol.

• At time t ∈ [n] learner predicts xt ∈ D = [−B,B].

• Adversary reveals a label yt ∈ [−B,B].

• Learner suffers loss (yt − xt)2.

We define the comparator class as the set of TV bounded sequences that takes values

inW = [−B,B] as in Eq.(5.4). The performance of the learner is measured using dynamic

regret against the sequences that belongs to T VB(Cn), for all Cn > 0 simultaneously.

The main SA method that we will be relying on throughout this chapter is the FLH

algorithm from [23]. We provide a description of this algorithm in Appendix D.1 for

completeness. We have the following regret guarantee for FLH with Follow-the-Leader

(FTL) as base learners (in this case, FTL is equivalent to simple online averaging).

Theorem 34. Let xt be the prediction at time t of FLH with learning rate ζ = 1/(8B2)

and base learners as FTL. Then for any compararator (w1, . . . , wn) ∈ T VB(Cn)

n∑

t=1

(yt − xt)2 − (yt − wt)
2 = Õ

(
n1/3C2/3

n B4/3 ∨B2
)
, (5.5)

where the labels obey |yt| ≤ B, Õ(·) hides dependence on logarithmic factors of horizon

n and a ∨ b := max{a, b}.
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Remark 35 (Adaptivity to Cn and (non-stochastic) oracle inequality). We remark that

FLH-FTL does not require Cn as an input thus Theorem 34 implies the following oracle

inequality

n∑

t=1

(yt − xt)2 ≤ min
w1,...,wn

n∑

t=1

(yt − wt)
2 + Õ

(
n1/3TV(w1:n)2/3B4/3 ∨B2

)
.

Such result is not known for any algorithm even in the offline case when y1, ..., yn is

known. Notice that wt does not need to be constrained because −B ≤ yt ≤ B.

The strongest oracle inequality for TV-denoising to our knowledge is that of [39, 63],

which shows that the fused-lasso estimator with tuning parameter λ obeys
∑n

t=1(yt −

xt)
2 ≤ minw1,...,wn

∑n
t=1(yt − wt)

2 + O (λTV(w1:n)) , under additional stochastic assump-

tions of yt. Our results eliminate the need to choose hyperparameter λ all together and

achieve the same rate achievable by the optimal choice of λ.

For the sake of clarity we next present the strategy we adopt for proving Theorem 34.

We also highlight the main technical challenges that are needed to be overcome along the

way. This is followed by some useful lemmas and proof of the main theorem in Section

5.1.2.

5.1.1 Proof strategy for Theorem 34

Let u1, . . . , un be the offline optimal sequence (see Lemma 36) in T VB(Cn) which

attains the minimum cumulative squared error loss. Note that this offline optimal can

depend on the entire sequence of labels y1, . . . , yn chosen by the adversary.

Consider a partitioning of [n] into M sub-intervals {[is, it]}Mi=1. We will also use

the number i to refer to the interval [is, it]. For the interval i, define the quantities:

ni = it − is + 1, ȳi = 1
ni

∑it
j=is

yj, ūi = 1
ni

∑it
j=is

uj.
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We start by the following regret decomposition.

Rn =
M∑

i=1

it∑

j=is

(xj − yj)
2 − (yj − ȳi)

2

︸ ︷︷ ︸
T1,i

+
M∑

i=1

it∑

j=is

(yj − ȳi)
2 − (yj − ūi)

2

︸ ︷︷ ︸
T2,i

+
M∑

i=1

it∑

j=is

(yj − ūi)
2 − (yj − uj)

2

︸ ︷︷ ︸
T3,i

(5.6)

Now the task of bounding Rn reduces to bounding T1,i, T2,i, T3,i for each bin and

adding them up across all M bins. Let Ci be the TV within bin i incurred by the offline

optimal. In Lemma 38, we exhibit a partitioning P of [n] into M = O(n1/3C
2/3
n B−2/3)

bins such that Ci ≤ B/
√
ni for each bin.

Due to strong adaptivity of FLH, the term T1,i = O(B2 log n) since it is the static

regret against the fixed comparator ȳi. Hence adding them across all bins in the partition

P yields
∑M

i=1 T1,i = Õ(n1/3C
2/3
n B4/3).

By exploiting the KKT conditions satisfied by the offline optimal and using strong

smoothness, we show in Lemma 42 that T3,i can be at-most O(niC
2
i + λCi) in general.

Here λ ≥ 0 is the optimal dual variable arising from the KKT conditions (Lemma 36).

Since Ci = O(B/
√
ni) for bins in the partition P , we have niC

2
i = O(B2). However, it is

not possible to bound λCi = O(1) since λ can be even Θ(n) in some cases (See Example

167 in Appendix D.2).

This is where the term T2,i plays a crucial role. Note that since ȳi is the minimizer

of g(x) =
∑it

j=is
(yj − x)2, we conclude that T2,i ≤ 0. For simplicity of exposition, let’s

assume that T2,i < 0, deferring formal arguments for the general case to Section 5.1.2.

We show that this negative term diminishes the λCi arising from the bound on T3,i

to a quantity that is O(1). Specifically, T2,i + T3,i = O(B2) even though individually

|T2,i|, |T3,i| can be very large. The desired regret bound now follows by summing it across

all M = O(n1/3C
2/3
n B−2/3) bins in P .
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5.1.2 Regret Analysis

Define the sign function as sign(x) = 1 if x > 0; −1 if x < 0; and some u ∈

[−1, 1] if x = 0. For a vector x ∈ Rd, sign(x) ∈ Rd is defined by the coordinate-wise

application of this rule. We start by presenting a sequence of useful lemmas.

Lemma 36. (characterization of offline optimal) Consider the following convex

optimization problem (where z̃1, ..., z̃n−1 are introduced as dummy variables)

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

1

2

n∑

t=1

(yt − ũt)2 (5.7a)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1], (5.7b)

n−1∑

t=1

|z̃t| ≤ Cn (5.7c)

Let u1, . . . , un, z1, . . . , zn−1 be the optimal primal variables and let λ ≥ 0 be the optimal

dual variable corresponding to the last constraint (5.7c). By the KKT conditions, we have

• stationarity: yt = ut−λ(st−st−1), where st ∈ ∂|zt| (a subgradient). Specifically,

st = sign(ut+1−ut) if |ut+1−ut| > 0 and st is some value in [−1, 1] otherwise. For

convenience of notations later, we also define sn = s0 = 0.

• complementary slackness: λ (
∑n

t=2 |ut − ut−1| − Cn) = 0.

Remark 37. We enumerate some elementary observations about the optimal primal

variables in Lemma 36 that will be used throughout.

P1 For any time point t, if the optimal solution ut+1 > ut, then st = 1. Similarly

st = −1 whenever ut+1 < ut. If ut = ut+1, the st can be any number in [−1, 1].

P2 Consider a sub-interval [a, b] with 2 ≤ a ≤ n − 1 such that the optimal solution

jumps at both the end points. i.e uk ̸= uk−1 for k ∈ {b + 1, a}. Define ∆sa→b :=
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sb − sa−1. Then either |∆sa→b| = 0 or |∆sa→b| = 2 since sa−1 ∈ {−1, 1} and

sb ∈ {−1, 1}.

P3 Consider a sub-interval [1, b] with b < n such that ub+1 ̸= ub. Then |∆s1→b| = 1

since s0 = 0 by convention (Lemma 36). Similarly for a sub-interval [a, n] with

a > 1, such that ua−1 ̸= ua, we have |∆sa→n| = 1.

Terminology. We will refer to the optimal primal variables u1, . . . , un in Lemma 36 as

the offline optimal sequence in this section.

Next, we exhibit a useful partitioning scheme of the interval [n].

Lemma 38. (key partition) Initialize Q ← Φ. Starting from time 1, spawn a new bin

[is, it] whenever
∑it+1

j=is+1 |uj − uj−1| > B/
√
ni, where ni = it − is + 2. Add the spawned

bin [is, it] to Q. Consider the following post processing routine.

1. Initialize P ← Φ.

2. For i ∈ [|Q|]:

• if uit = uit+1:

(a) Let p be the largest time point with up:it being constant and let q be the

smallest time point with uit+1:q being constant.

(b) Add bin [is, p− 1] to P.

(c) If (i+ 1)t > q then add [p, q] to P and set (i+ 1)s ← q + 1.

(d) Goto Step 2.

• Add [is, it] to P. Goto Step 2.

Let M := |P|. We have M = O
(

1 ∨ n1/3C
2/3
n B−2/3

)
. Further for any bin [is, it] ∈ P,

it holds that
∑it

j=is+1 |uj − uj−1| ≤ B/
√
ni where ni = it − is + 1.
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Remark 39. Consider a bin [is, it] ∈ P . Let ∆si := sit − sis−1. By virtue of the post

processing routine of Lemma 38, the bin [is, it] will conform to either of the cases P2 or

P3 in Remark 37. So we have |∆si| > 0 implies |∆si| ≥ 1.

We emphasize that the bins [is, it] we consider in Eq. (5.6) belong to the partition

P of Lemma 38. We proceed to bound T1,i, T2,i and T3,i in the regret decomposition of

Eq.(5.6).

Lemma 40. (bounding T1,i) Assume that we run FLH with the settings described in

Theorem 34. For any bin i we have T1,i = O (B2 log n)

Lemma 41. (bounding T2,i) Define Ci :=
∑it

j=is+1 |uj − uj−1|, the TV within bin i

incurred by the offline optimal solution. Let ∆si := sit − sis−1 and ni := it − is + 1. We

have T2,i ≤ −λ2(∆si)
2

ni
.

Lemma 42. (bounding T3,i) Let Ci and ∆si be as in Lemma 41.

Case(a) If |∆si| > 0 then T3,i ≤ B2 + 6λCi.

Case(b) If ∆si = 0 with sis−1 = sit = 1 and the offline optimal u is non-decreasing

within bin i, then T3,i ≤ B2.

Case(c) If ∆si = 0 with sis−1 = sit = −1 and the offline optimal u is non-increasing

within bin i, then T3,i ≤ B2.

Proof. of Theorem 34 Tree diagrams that represent the flow of arguments in the proof

is displayed in Fig.D.2 and D.3 in Appendix D.2. We start from the regret decomposition

in Eq. (5.6).
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Case (a) in Lemma 42. First we handle case(a) in Lemma 42 where |∆si| > 0. Define

Ti := T1,i + T2,i + T3,i. From Lemmas 40, 41 and 42 we have

Ti ≤ O
(
B2 log n

)
− λ2(∆si)

2

ni

+B2 + 6λCi (5.8)

≤ O
(
B2 log n

)
− λ2(∆si)

2

ni

+ 6λCi (5.9)

≤(a) O
(
B2 log n

)
+

9niC
2
i

(∆si)2
−
(
λ∆si√
ni

− 3Ci
√
ni

∆si

)2

(5.10)

≤(b) O(B2 log n) + 9B2 (5.11)

≤ O(B2 log n), (5.12)

where line (a) is obtained by completing the square. For line (b) we dropped the negative

term used Remark 39 to conclude |∆si| ≥ 1. Further niC
2
i ≤ B2 for bins in the partition

P of Lemma 38.

Case (b) and (c) in Lemma 42. To handle case (b) and case (c) in Lemma 42 where

∆si = 0 and monotonic, we have T1,i = O(B2 log n) due to Lemma 40, T2,i ≤ 0 due to

Lemma 41 and T3,i ≤ B2 due to Lemma 42. So Ti ≤ O (B2 log n) +B2 ≤ O(B2 log n).

Other cases:

(A1) Consider the case when ∆si = 0 with sis−1 = sit = −1 and the offline optimal u

is non-decreasing within bin i. If the sequence is constant within the bin, then trivially we

have Ti = O (B2 log n) due to Strongly Adaptivity of FLH. Otherwise, we the split the

original bin into two sub-bins [is, k] and [k + 1, it] such that sk = 1 with uk+1 > uk. See

config (a) in Fig.5.1 for an illustration. Then the two sub-bins falls into the category of

case (a) in Lemma 42. By bounding the regret within each sub-bin separately by following

the previous arguments for case (a) and adding them up, we can get Ti ≤ O (B2 log n)

regret for the original bin. The arguments for the case when ∆si = 0 with sis−1 = sit = 1

and the offline optimal u is non-increasing within bin i are similar.
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(A2) To handle the case when ∆si = 0 and the optimal sequence is not monotonic, we

split the bin into two parts. Consider the case sit = sis−1 = 1. We can split uis:it as uis:k

and uk+1:it such that the sequence uis:k is non-decreasing and sk = −1 with uk > uk+1.

See config (b) in Fig.5.1 for an illustration. Notice that both the sub-bins uis:k and

uk+1:it now falls into the category of case(a) in Lemma 42. Adding the bounds within

these sub-bins by following the treatment for case (a) above yields Ti ≤ O (B2 log n).

The arguments for the scenario sit = sis−1 = −1 are similar.

Now the theorem follows by summing
∑M

i=1 Ti for the M = O
(

1 ∨ n1/3C
2/3
n B−2/3

)

bins in the partition P of Lemma 38.

is k it

config (a)

sis−1 = −1, sit = −1,∆si = 0

is k it

config (b)

sis−1 = 1, sit = 1,∆si = 0

Figure 5.1: Examples of configurations referred in the proof of Theorem 34. The blue
dots corresponds to the offline optimal sequence.

The previous results generalize to online TV-denoising framework in higher dimen-

sions.

Proposition 43. (Extension to higher dimensions) Consider a protocol where at

each time the learner predicts a vector xt ∈ Rd after which the adversary reveals yt

such that ∥yt∥∞ ≤ B. Consider a comparator sequence of vectors w1, . . . ,wn such that

TV (w1:n) :=
∑n

t=2 ∥wt −wt−1∥1 ≤ Cn. By running d instances of FLH with learning

rate ζ = 1/(8B2) and FTL as base learners, where instance i, i ∈ [d], predicts xt[i] at
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time t, we have

Rn(w1:n) :=
n∑

j=1

∥yt − xt∥22 − ∥yt −wt∥22 = Õ
(
dB2 log n ∨ d1/3n1/3C2/3

n B4/3
)
.

Proposition 44. (Lower bound) Assume the protocol and notations of Proposition 43.

For any algorithm, we have

sup
w1:n:TV (w1:n)≤Cn

Rn(w1:n) = Ω
(
dB2 log n ∨ d1/3n1/3C2/3

n B4/3
)
. (5.13)

By comparing the upper and lower bounds, we conclude that the FLH-FTL strategy

in Proposition 43 is minimax optimal (modulo log factors) wrt all parameters d, n,B and

Cn.

Remark 45. Several other non-parametric sequence classes such as the Holder ball

HB(B′
n) = {w1:n : ∥Dw1:n∥∞ ≤ B′

n, ∥w1:n∥∞ ≤ B} and Sobolev ball SB(C ′
n) = {w1:n :

∥Dw1:n∥2 ≤ C ′
n, ∥w1:n∥∞ ≤ B} can be shown to embedded inside a T VB(Cn) ball for

appropriate choices of Cn, Bn and B′
n (see [37]) with all classes having the same minimax

rates of estimation in the iid setting. So the minimax optimality on TV ball for FLH with

FTL as base learners implies minimax optimality on the embedded Holder and Sobolev

balls as well.

5.2 Performance guarantees for exp-concave losses

We begin by listing all the assumptions we make about the loss functions.

EC-1 Without loss of generality, we assume 0 ∈ W . Let B := supx∈W ∥x∥∞. Define

D− := {x ∈ Rd : ∥x∥∞ ≤ B}. The loss functions ft(x) : Rd → R are G Lipschitz

in D−.
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EC-2 The loss functions are β strongly smooth in D = {x ∈ Rd : ∥x∥∞ ≤ B + G}. i.e

ft(y) ≤ ft(x) + (y−x)T∇ft(x) + β
2
∥x−y∥22, for all x,y ∈ D. We assume without

loss of generality that β ≥ 1.

EC-3 The loss functions are α exp-concave in D. i.e ft(y) ≥ ft(x) + (y − x)T∇ft(x) +

α
2

(
(y − x)T∇ft(x)

)2
for all x,y ∈ D.

EC-4 The loss functions ft(x) : Rd → R are G† Lipschitz in D.

Below, we give an example of a family of loss functions that satisfy the above as-

sumptions.

Example 46 (Generalized linear models). Let ft(x) = g(vT
t x), where g : R → R is

a convex function and vt is a feature vector. Let ∥vt∥2 ≤ R. Assume that for all

x ∈ D− we have |g′t(vT
t x)| ≤ a. Further for all x ∈ D, let |g′t(vT

t x)| ≤ a+, g′′t (vT
t x) ≤ b,

g′′t (vT
t x) ≥ c > 0. Then Assumptions EC 1-5 are satisfied by by the losses ft with

G = aR, β = bR2, α = c/((a+)2) and G† = Ra+.

We are interested in characterizing the maximum dynamic regret

R+
n (Cn) := sup

w1,...,wn∈D−∑n
t=2 ∥wt−wt−1∥1≤Cn

n∑

t=1

ft(xt)− ft(wt), (5.14)

where xt are the predictions of the learner. Since W ⊆ D−, the dynamic regret against

comparators in D− trivially upperbounds the dynamic regret againstW . The algorithms

that we study throughout this section are improper in the sense that the predictions of

the algorithms belong to D ⊃ W .

Before diving into the details, we remark that our main focus is to get optimal de-

pendence on n and Cn. The dimension d is considered as a constant problem parameter

and we do not try to optimize its polynomial dependence. All unspecified proofs of this

section are given in Appendix D.3.
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We have the following regret guarantee for exp-concave losses.

Theorem 47. By using the base learner as ONS with parameter ζ = min
{

1
4G†(2B

√
d+2G/β)

, α
}
,

decision set D and choosing learning rate η = α, FLH obeys R+
n (Cn) = Õ

(
d3.5(n1/3C

2/3
n ∨ 1)

)

if Cn > 1/n and O(d1.5 log n) otherwise. Here a ∨ b := max{a, b} and Õ(·) hides depen-

dence on the constants B,G,G†, α and factors of log n.

proof sketch. Let u1, . . . ,un be the offline optimal sequence such that
∑n

t=1 ft(ut) is

minimum across all sequences that obeys: (a)
∑n

t=2 ∥ut − ut−1∥1 ≤ Cn; (b) ut ∈ D− for

all t ∈ [n] (see Lemma 175 in Appendix D.3 for more details).

Let P be a partition of [n] into M = O∗(n1/3C
2/3
n ) bins obtained by a similar scheme

in Lemma 38 where within each bin, we have
∑it

j=is+1 ∥uj − uj−1∥1 ≤ B/
√
ni. Let

[is, it] denote the ith bin in P and let ni be its length. Define ūi = 1
ni

∑it
j=is

uj and

u̇i = ūi− 1
niβ

∑it
j=is
∇fj(ūi) where β is as in Assumption EC-2. Let xj be the prediction

made by FLH at time j. We start with following regret decomposition.

R+
n (Cn) ≤

M∑

i=1

it∑

j=is

fj(xj)− fj(u̇i)

︸ ︷︷ ︸
T1,i

+
M∑

i=1

it∑

j=is

fj(u̇i)− fj(ūi)

︸ ︷︷ ︸
T2,i

+
M∑

i=1

it∑

j=is

fj(ūi)− fj(uj)

︸ ︷︷ ︸
T3,i

(5.15)

Unlike the squared error case, for the term T1,i, we do not compete with the minimizer

of g(x) :=
∑it

j=is
fj(x). Instead we compete with u̇i which is obtained by a one-step

gradient descent of g(x) from the point ūi where the step size is set as 1/(niβ).

Recall that the purpose of ȳi in Eq. (5.6) was to make T2,i non-positive thereby

facilitating potential cancellation of terms arising from the bound on T3,i. Since g(x) is

niβ strongly smooth, by the well known descent lemma in first order optimization (eg.

see Eq. 3.5 in [64]), we can bound T2,i in Eq. (5.15) with a “sufficiently negative” term
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− 1
2niβ
∥∇g(ūi)∥2 as well. Also, observe that

∥u̇∥∞ ≤ ∥ūi∥∞ +

∑it
j=is
∥∇fj(ū)∥∞
niβ

≤ B +G, (5.16)

where in the last line we used the fact ūi ∈ D− and the Lipschitzness assumption in EC-1

along with β > 1 by assumption EC-2. So in T1,i the comparator term u̇i ∈ D. The base

learners of the FLH produce predictions in D to compete with such a comparator hence

making the overall algorithm improper. We do not project u̇ to the setW , because doing

so appears to make T2,i not negative enough to adequately diminish the terms arising

from T3,i.

Rest of the proof proceeds by introducing lemmas analogous to the squared error case,

carefully bounding T1,i + T2,i + T3,i for each bin in P and summing them up across all

bins. However, we remark that the analysis is significantly more involved in comparison

to that of squared error case due to dual variables introduced by the additional constraint

that ut ∈ D−.

We first present the proof for the 1D-exp-concave case in Appendix D.3.1, which illus-

trates how boundedness constraints are handled by the structures in the KKT-conditions

(Lemma 169) and by discussing various combinations (see Fig. D.5-D.7). Then we present

the full proof for the higher-dimensional exp-concave losses in Appendix D.3.2, where the

structure becomes too complex for us to enumerate all combinations. We address this

by constructing an iterative algorithm that generates bins and prove that the algorithm

is guaranteed to find a partition with cardinality O∗(n1/3C
2/3
n ) that satisfies a number of

additional properties that give rise to the regret bound we claim.

Proposition 48. For strongly convex losses, the regret bound can be improved to

Õ
(
d2(n1/3C

2/3
n ∨ 1)

)
if Cn > 1/n and O(log n) otherwise by using OGD as base learners
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in the FLH procedure. See Appendix D.3.2 for a proof.

By comparing with the lower bound in Proposition 44 we conclude that the dynamic

regret bound of Theorem 47 is minimax optimal (up to log n factors) in n and Cn.

Remark 49 (Implications in statistical methodology.). Example 46 and Theorem 47

extends the locally-adaptive nonparametric regression theory that are typically studied

for square loss to an arbitrary strongly convex / exp-concave loss while allowing covari-

ates (exogenous variables) to be modeled. Moreover, the method enjoys strong oracle

inequalities (e.g. Remark 35) that certifies the predictive performance in a fully agnostic

/ model-misspecified setting with no stochastic assumptions. In addition, the method

does not introduce additional tuning parameters at all.

5.3 Concluding Discussion

In this chapter, we considered the problem of dynamic regret minimization with exp-

concave losses and showed that SA methods are minimax optimal (modulo factors of log n

and d) in a setting where improper learning is allowed. To the best of our knowledge this is

the first work that attains optimal dynamic regret rates under this setting. The resulting

algorithms are adaptive to the path variation of the comparator sequence. Further, our

results have far reaching consequences in locally adaptive non-parametric regression as

mentioned in Remark 49.
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Chapter 6

Optimal Dynamic Regret in Proper

Online Learning with Strongly

Convex Losses and Beyond

A question that was left open in the previous chapter was whether improper learning

is strictly necessary to achieve the optimal rates for exp-concave optimization. In this

chapter, we answer this in the negative by showing that a proper version of the SA algo-

rithms can attain the optimal (modulo log factors and dimension dependencies) dynamic

regret rates whenever the losses are strongly convex.

We summarize our main contributions of this chapter below.

• We provide a new analysis that extends the results of [65] to proper strongly convex

online learning to attain the near optimal dynamic regret rate of Õ(d1/3n1/3C
2/3
n ∨d)

for Strongly Adaptive methods (see Corollary 54). In contrast to [65], our results

imply an important conclusion that improper learning is not strictly necessary for

attaining such fast rates with general strongly convex losses. To the best of our

knowledge, this is the first result that achieves near optimal dynamic regret in a
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setting of proper learning under strongly convex losses.

• For exp-concave losses, we prove an analogous result that Strongly Adaptive al-

gorithms can attain a near optimal dynamic regret of Õ∗((n1/3C
2/3
n ∨ 1)) in the

special case of L∞ (box) constrained decision set, D = {x ∈ Rd : ∥x∥∞ ≤ B} (see

Theorem 59).

• To facilitate these results we discover and exploit a number of new structures im-

posed by the KKT conditions that were not considered in [65], which could be of

independent interest.

Notes on scope and relevance. Under exp-concave or strongly convex losses, the

important question of finding an optimal (wrt universal dynamic regret) and proper al-

gorithm has remained resistant to attacks in the non-stationary online learning literature

for almost two decades since the work of [5]. In this work, we take the first steps in

addressing this question by showing optimality of proper SA learner in proper learning

settings. The fact that a proper version of Strongly Adaptive algorithms can lead to op-

timal rates was highly unclear from the analysis of [65]. Further, by lifting the gradient

smoothness assumption for the revealed losses, we modestly enlarge the applicability of

the results when compared to [65]. Though our proof techniques bear some semblance

with that of [65] in terms of the usage of KKT conditions, this similarity is only superfi-

cial and we introduce several new non-trivial ideas in the analysis for attaining the new

results (see Sections 6.2.2 and 6.4.1).

6.1 Related Work

In this section, we compare and contrast our work with several existing lines of re-

search.
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Dynamic regret minimization in non-stationary online learning. Apart from

[65], our work fits into the broad literature of dynamic regret minimization in online

learning such as [5, 15, 16, 25, 66, 22, 26, 27, 62, 67, 37, 68, 69, 54, 70, 71, 72, 73, 74].

However, to the best of our knowledge none of these works are known to attain the

optimal dynamic regret rate for our setting in terms of path length of the arbitrary

comparator sequence.

Adaptive online learning. There is a complementary body of work on Strongly

Adaptive regret minimization such as [24, 75, 69, 76] and Adaptive regret minimization

such as [23, 52] (which are in fact Strongly Adaptive wrt exp-concave losses) that aims at

controlling the static regret in any local time interval. This work focuses on developing

new guarantees for algorithms that are Strongly Adaptive (SA) wrt strongly convex

/ exp-concave losses. The base learners we use for SA methods are the static regret

minimizing algorithms from [77].

Locally adaptive non-parametric regression. Our work is closely related to lo-

cally adaptive non-parametric regression literature from the statistics community such

as [51, 1, 2, 4, 3, 13, 38, 39, 63]. This work supplements them by removing the statisti-

cal assumptions and enabling to go beyond squared error losses for the non-parametric

function class of TV bounded functions.

Online non-parametric regression. The results of [29] certifies that the minimax

rate for competing against a reference class of TV bounded functions with squared error

losses is O(n1/3). However this bound doesn’t capture the correct dependence on Cn and

is arrived via non-constructive arguments. On the other hand we arrive at the optimal

dependence on both n and Cn via an efficient algorithm. Further, our results with squared

error losses in Section 6.2 are more general than that of [65] (see Remark 51). Results on

online non-parametric regression against reference class of Lipschitz functions, Sobolev

functions and isotonic functions can be found in [30, 78, 53] respectively. However as
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noted in [37], these classes feature functions that are more regular than TV bounded

functions. In fact they can be embedded inside a TV bounded function class. So the

minimax optimally for TV class implies minimax optimality for the smoother function

classes as well.

We refer the reader to [65] and references therein for a more elaborate survey on

existing literature.

6.2 A gentle start: Squared loss games

To start with, we consider the following squared loss game which will later play a

pivotal role in the generalization to strongly convex losses.

• At time t ∈ [n] := {1, . . . , n}, player predicts xt ∈ [−B,B].

• Adversary reveals a label yt ∈ [−G,G]

• Player suffers loss (yt − xt)2.

We make the following assumption.

Assumption A1: We assume that [−B,B] ⊆ [−G,G] with B ≥ 1 without loss of

generality.

Define a class of comparators as:

T VB(Cn) :=

{
w1:n

∣∣∣∣∣TV(w1:n) :=
n∑

t=2

|wt − wt−1| ≤ Cn, |wt| ≤ B ∀t ∈ [n]

}
. (6.1)

We are interested in simultaneously controlling the dynamic regret against all se-

quences in T VB(Cn). The main algorithm we use for this task is the Follow-the-Leading-

History (FLH) from [23] with Online Gradient Descent (OGD) run on the decision set
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[−B,B] as base learners. This algorithm will be referred as FLH-OGD strategy hence-

forth. We have the following performance guarantee.

Theorem 50. Suppose the labels yt generated by the adversary belong to [−G,G]. Let xt

be the prediction at time t of FLH with learning rate ζ = 1/(2(G+B)2), base learners as

OGD with step sizes 1/(2t) and decision set [−B,B]. Then for any comparator sequence

(w1, . . . , wn) ∈ T VB(Cn)

n∑

t=1

(yt − xt)2 − (yt − wt)
2 = Õ

(
n1/3C2/3

n ∨ 1
)
, (6.2)

where Õ(·) hides dependence on logarithmic factors of horizon n,G,B and a ∨ b :=

max{a, b}.

Remark 51 (Adaptivity to Cn and safe (non-stochastic) oracle inequality). The

FLH-OGD strategy does not require Cn as an input. Further, Theorem 50 has implica-

tions in non-parametric regression under safety constraints. When the non-parametric

estimator for the T VB sequence class is required to obey a safety constraint that the

estimator’s outputs xt must also lie in [−B,B], Theorem 50 implies the following oracle

inequality:

n∑

t=1

(yt − xt)2 + g(xt) ≤ min
w1:n

n∑

t=1

(yt − wt)
2 + g(wt) + Õ

(
n1/3TV(w1:n)2/3 ∨ 1

)
, (6.3)

where g(x) is a safety constraint such that g(x) = ∞ when |x| > B and zero otherwise.

This is a strict generalization of Remark 2 in [65].

6.2.1 Key insight behind the proof of Theorem 50

The insight we used in deriving regret rate in Theorem 50 for a proper learning setup

is based on the following idea: Suppose that we need to compete against a comparator
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sequence that incurs a Total Variation (TV) of Cn. We observe that, this comparator

sequence of decisions in hindsight requires to obey the TV constraint while the decisions

of the Strongly Adaptive (SA) learner need not obey any such constraints. Consider a

time interval I where the comparator sequence assumes a constant value (say v1) in an

arbitrary convex decision set D. There could be some other point in D (say v2) which

can incur better cumulative loss within that interval. Note that the comparator sequence

may not assume the value v2 in the interval I due to the global TV constraint. Due to

the strongly adaptive property, the regret (against v1) of the SA learner in interval I is

then bounded by the regret (against v1) of the static point v2, which is less than or equal

to zero, plus an extra log term. The presence of such non-positive terms can delicately

offset the effect of the positive log terms when summed across all such intervals to get

favorable dynamic regret rates. How small the non-positive terms are, when summed

across all intervals, depends on the magnitude of Cn (and indirectly on n).

6.2.2 Detailed road map for the proof of Theorem 50

In this section, we focus on conveying the main ideas of our proof deferring the formal

details to Appendix E.1. We start by briefly reviewing the proof strategy of [65] and then

intuitively capture the points of similarities and differences in our analysis. Throughout

the proof we use the shorthand [a, b] := {a, a+ 1, . . . , b} for two natural numbers a < b.

We start by characterizing the offline optimal. Define the sign function as sign(x) =

1 if x > 0; −1 if x < 0; and some v ∈ [−1, 1] if x = 0.

Lemma 52. (characterization of offline optimal) Consider the following convex
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optimization problem (where z̃1, ..., z̃n−1 are introduced as dummy variables)

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

1

2

n∑

t=1

(yt − ũt)2 (6.4a)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1], (6.4b)

n−1∑

t=1

|z̃t| ≤ Cn, (6.4c)

−B ≤ ũt ∀t ∈ [n], (6.4d)

ũt ≤ B ∀t ∈ [n], (6.4e)

Let u1, . . . , un, z1, . . . , zn−1 be the optimal primal variables and let λ ≥ 0 be the optimal

dual variable corresponding to the constraint (6.4c). Further, let γ−t ≥ 0, γ+t ≥ 0 be the

optimal dual variables that correspond to constraints (6.4d) and (6.4e) respectively for

all t ∈ [n]. By the KKT conditions, we have

• stationarity: ut− yt = λ (st − st−1) + γ−t − γ+t , where st ∈ ∂|zt| (a subgradient).

Specifically, st = sign(ut+1 − ut) if |ut+1 − ut| > 0 and st is some value in [−1, 1]

otherwise. For convenience of notations later, we also define sn = s0 = 0.

• complementary slackness: (a) λ (
∑n

t=2 |ut − ut−1| − Cn) = 0; (b) γ−t (ut +

B) = 0 and γ+t (ut −B) = 0 for all t ∈ [n]

Let the optimal solution constructed by the offline oracle be denoted by u1:n (termed

as offline optimal henceforth). In [65], a partition P = {[is, it], i ∈ [M ]} of [n] is formed

with cardinality |P| = M = O(n1/3C
2/3
n ∨ 1). The partition has an additional property

that within each bin [is, it] ∈ P , we have Ci :=
∑it

j=is+1 |uj − uj−1| ≤ B/
√
it − is + 1

(see Lemma 184). Then for each bin, a three term regret decomposition is employed as
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follows:

it∑

j=is

(yj − xj)2 − (yj − ȳi)2

︸ ︷︷ ︸
T1,i

+
it∑

j=is

(yj − ȳi)2 − (yj − ūi)2

︸ ︷︷ ︸
T2,i

+
it∑

j=is

(yj − ūi)2 − (yj − uj)2,
︸ ︷︷ ︸

T3,i

(6.5)

where ūi =
∑it

j=is
uj/(it− is +1) and ȳi =

∑it
j=is

yj/(it− is +1) and xj are the predictions

of the learner. They use online averaging as base learners for FLH. By strong adaptivity,

they show T1,i = O(log n). They show that T3,i can be O(λCi) in general where λ is the

dual variable arising from the KKT conditions (see Lemma 52) which can be even Θ(n)

in the worst case. Since ȳi is the static minimizer of g(x) =
∑it

j=is
(yj − x)2, they bound

T2,i by a non-positive term which when added to T3,i can diminish into an O(1) quantity.

Thus regret within the bin [is, it] is T1,i + T2,i + T3,i = O(log n). This regret bound is

added across all O(n1/3C
2/3
n ∨ 1) bins of P to yield an Õ(n1/3C

2/3
n ∨ 1) dynamic regret.

In our protocol of squared loss games, the labels yt ∈ [−G,G] ⊇ [−B,B]. So we can’t

use online averages as base learner for constructing a proper learning algorithm. So in

this work we use projected OGD as base learners with decision set [−B,B]. With such

an algorithm, we may attempt to work with a slightly modified version of the three term

regret decomposition of (6.5) as:

it∑

j=is

(yj − xj)2 − (yj − Π(ȳi))
2

︸ ︷︷ ︸
T ′
1,i

+
it∑

j=is

(yj − Π(ȳi))
2 − (yj − ūi)2

︸ ︷︷ ︸
T ′
2,i

+
it∑

j=is

(yj − ūi)2 − (yj − uj)2

︸ ︷︷ ︸
T ′
3,i

,

(6.6)

where Π(x) is the projection of x ∈ R to the interval [−B,B]. Unfortunately while
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doing so, the term T ′
2,i can be not negative enough to diminish T ′

3,i to an O(1) quantity.

We provide an empirical demonstration of this phenomenon in Fig.6.1. At this point,

we hope that we have made a clear case on why the analysis of [65] cannot be directly

extended to handle proper learning.

To get around this issue, we first identify two regimes for the dual variable λ. We

show that when λ = O(n1/3/C
1/3
n ), one can still work with the same partitioning P of [65]

(see Lemma 184) and use a decomposition similar to Eq.(6.6) to get the desired regret

bound (see Lemma 186).

Before explaining the details of the regime λ = Ω(n1/3/C
1/3
n ), we introduce the fol-

lowing definitions for convenience:

Definition 53.

• For a bin [a, b] ⊆ {2, . . . , n − 1}, the offline optimal solution is said to assume

Structure 1 if uj = ua ∈ (−B,B) for all j ∈ [a, b] and ub > ub+1 and ua > ua−1.

• For a bin [a, b] ⊆ {2, . . . , n − 1}, the offline optimal solution is said to assume

Structure 2 if uj = ua ∈ (−B,B) for all j ∈ [a, b] and ub < ub+1 and ua < ua−1.

• For a bin [a, b], we define gapmin(β, [a, b]) := minj∈[a,b] |uj − β| where β ∈ R.

Consider the following two conditions.

Condition 1: For a bin [is, it] ∈ P , the offline optimal satisfies gapmin(−B, [is, it]) ≥

gapmin(B, [is, it]) and within at-least one sub-interval [r, s] ⊆ [is, it], the offline optimal

assumes the form of Structure 2.

Condition 2: For a bin [is, it] ∈ P , the offline optimal satisfies gapmin(−B, [is, it]) <

gapmin(B, [is, it]) and within at-least one sub-interval [r, s] ⊆ [is, it], the offline optimal

assumes the form of Structure 1.

Define:
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Q := {[is, it] ∈ P : the offline optimal satisfies Condition 1 or 2 in [is, it]}.

We refine a bin [is, it] ∈ Q that satisfy Condition 1 into smaller sub-intervals as

shown in Fig.6.2, such that: for a style U sub-interval, the offline optimal takes the form

of Structure 2 and for a style V sub-interval, the offline optimal has a non-decreasing

section followed by an optional decreasing section. A similar refinement is also performed

for bins in Q that satisfy Condition 2.

Our strategy is to bound:

regret in style U sub-intervals = O(log n) + a negative term. (6.7)

This is accomplished by a two term regret decomposition. Suppose [a, b] is a style U

sub-interval. We use the decomposition:

b∑

j=a

(yj − xj)2 − (yj − w)2

︸ ︷︷ ︸
T1

+
b∑

j=a

(yj − w)2 − (yj − uj)2,
︸ ︷︷ ︸

T2

(6.8)

with w = Π
(∑b

j=a yj/(b− a+ 1)
)

.

Next, we bound

regret in style V sub-intervals = O(log n), (6.9)

using a similar two term regret decomposition as in Eq.(6.8) with w replaced by a

carefully chosen wj ∈ [(ua ∧ . . .∧ ub), (ua ∨ . . .∨ ub)] such that
∑b

j=a+1 I{wj ̸= wj−1} ≤ 6

where I{·} is the indicator function taking values in {0, 1}. We use the notation x∧ y =
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Figure 6.1: Plot of T ′
2,2+T ′

3,2 (see Eq.(6.6) with i = 2) for the Example 182 in Appendix
E.1. In this example, Cn = O(1/

√
n) and the partitioning procedure of [65] creates

a partition P of [n] containing two bins. We see that T ′
2,2 + T ′

3,2 in the second bin

grows roughly as O(n1/4). However for applying the analysis of [65], we require this
quantity for each bin in P to grow as O(1). This makes the direct extension of the
techniques in [65] with ȳi replaced by Π(ȳi) as in Eq.(6.6) inapplicable for the proper
learning setting we study.

min{x, y}

We perform this task of refinement for every interval [is, it] in Q. Then we bound

the regret in the resulting sub-intervals (as per Eq.(6.7) or (6.9)) and add the regret

bounds across all such sub-intervals. Note that the total number of sub-intervals after

refinement can be much larger than |P| = O(n1/3C
2/3
n ∨ 1). So if the bound in Eq.(6.7) is

not tight enough, then there is a possibility that the resulting regret bound can be highly

sub-optimal. This poses a major challenge in contrast to the analysis of [65] where they

only need to work with a partition of size O(n1/3C
2/3
n ∨ 1) and bound the regret in each

interval of the partition by an Õ(1) quantity.

To address this issue, we form tight bounds for Eq.(6.7) by exploiting certain struc-

tures in the KKT conditions that were previously unexplored in [65] via Lemmas 183, 189,

190 and 191. Of particular interest is Lemma 183 which highlights a fundamental way in

which the adversary is constrained. Then we prove that if every bin [is, it] ∈ Q satisfies

gapmin(−B, [is, it]) ∨ gapmin(B, [is, it]) ≥ µth where µth is as defined in Lemma 190, then
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the culmination of the negative terms in Eq.(6.7) can gracefully offset the effect of the

positive O(log n) terms in Eq.(6.7) and Eq.(6.9) when summed across all refined intervals

to obtain an O(n1/3C
2/3
n ∨ 1) bound overall for

∑
[is,it]∈Q

∑it
j=is

(yj −xj)2− (yj −uj)2 (see

proof of Lemma 191).

Further we show in Lemma 190 that when λ = Ω(n1/3/C
1/3
n ) and Cn = Õ(n), the

criterion gapmin(−B, [is, it]) ∨ gapmin(B, [is, it]) ≥ µth is always satisfied for every bin

[is, it] ∈ Q. This can be seen informally as follows. Recall that the TV of the offline

optimal within the bin [is, it] is a “small” quantity that is at-most (B/
√
it − is + 1) ≤ B.

So if gapmin(−B, [is, it]) is small, then due to this small TV constraint, we expect the

quantity gapmin(B, [is, it]) to be sufficiently large and vice versa.

Finally, for each bin in R := P \ Q we show (by using Lemma 187) that its regret

contribution can be bounded by O(log n). Since |R| = O(n1/3C
2/3
n ∨ 1), such regret

bounds lead to Õ(n1/3C
2/3
n ∨ 1) bound overall when summed across all bins in R.

Before closing this section, we capture the intuition behind the importance of the

criterion gapmin(−B, [is, it]) ∨ gapmin(B, [is, it]) ≥ µth and why it can produce a suffi-

ciently negative term in Eq.(6.7). Let’s consider a style U sub-interval [a, b] obtained by

refining a bin [is, it] ∈ Q which satisfy Condition 1. Since [a, b] is style U sub-interval,

the offline optimal takes the form of Structure 2 in [a, b]. Suppose that |B + ua| ≥

gapmin(−B, [is, it]) ≥ gapmin(B, [is, it]) ≥ µth. Here the first inequality holds by the defi-

nition of gapmin(−B, [is, it]). Also, note that uj = ua for all j ∈ [a, b] by the definition of

Structure 2. Let ȳa→b :=
∑b

j=a yj/(b− a+ 1). From the KKT conditions it can be shown

that ȳa→b < ua. We provide intuitive explanation for the case Π(ȳa→b) = −B. This can

happen only when ȳa→b ≤ −B. Qualitatively in such a scenario, we expect the decision

−B to be much better than playing the decision ua which is bigger than −B. Whenever

there is sufficient gap (more formally a gap of at-least µth) between −B and ua, one can

expect that ua can be very sub-optimal in comparison to −B (= Π(ȳa→b)) which makes
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the term T2 in Eq.(6.8) (with w = −B and uj = ua) sufficiently negative.

When ȳa→b ∈ (−B,B), T2 with w = ȳa→b can be shown to be sufficiently negative

using the arguments of [65]. However, the interplay of this negative term with the sum of

regret bounds in all refined intervals is more delicate as described in the proof of Lemma

191.

is it

−B

B
U V U V U V

Figure 6.2: Refinement of a bin [is, it] ∈ P that satisfy Condition 1 in Section 6.2.2
into smaller style U and style V sub-intervals. Blue dots represent the optimal sequence

6.3 Performance guarantees for strongly convex losses

In this section, we extend the results on squared error losses to general strongly convex

losses.

6.3.1 Strongly convex losses and box decision set

In this section, we show that the style of analysis presented for squared error losses

directly generalizes to strongly convex losses in multi-dimensions whenever the decision

set is an L∞ norm ball. The main idea is to provide a reduction to the uni-variate

squared loss games via standard surrogate loss tricks [77] and instantiate FLH-OGD

appropriately. All unspecified proofs for this section are deferred to Appendix E.2. We

consider the following protocol:
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• At time t ∈ [n] learner predicts xt ∈ Rd with ∥xt∥∞ ≤ B.

• Adversary reveals loss ft.

• Learner suffers loss ft(xt).

We have the following Corollary due to Theorem 50.

Corollary 54. Let the loss functions ft be H strongly convex in L2 norm across the (box)

domain D = {x ∈ Rd : ∥x∥∞ ≤ B}. i.e, ft(y) ≥ ft(x) +∇ft(x)T (y − x) + H
2
∥y − x∥22

for all x,y ∈ D. Suppose ∥∇ft(x)∥∞ ≤ G∞ for all x ∈ D. For each i ∈ [d], construct

surrogate losses ℓ
(i)
t : R → R as ℓ

(i)
t (x) = (x− (xt[i]−∇ft(xt)[i]/H))2 where xt is the

prediction of the learner at time t. By running d instances of uni-variate FLH-OGD with

decision set [−B,B] and learning rate ζ = 1/(2(2B+G∞/H)2) where instance i predicts

xt[i] at time t and suffers losses ℓ
(i)
t , we have

n∑

t=1

ft(xt)− ft(wt) = Õ
(
d1/3n1/3C2/3

n ∨ d
)
, (6.10)

for any comparator sequence w1:n with TV (w1:n) :=
∑n

t=2 ∥wt − wt−1∥1 ≤ Cn. Õ(·)

hides the dependence on factors of log n,B,H,G∞.

When compared with the information theoretic lower bound of [65] (Proposition 11

there), we see that the rate of Theorem 50 is optimal (modulo log factors) wrt to n,Cn

and d. The dependence of Õ(d) for low Cn regimes is due to the fact that we only assume

∥∇ft(x)∥∞ = O(1) as opposed to assuming ∥∇ft(x)∥2 = O(1).

Remark 55. (relaxed assumptions & improvements) Unlike [65], we do not assume

gradient Lipschitzness of the losses ft. Further, for the box decision set, our results attain

an optimal O(d1/3) dimension dependence on regret in the non-trivial regime of Cn ≥ 1/n

in comparison to the O(d2) dependence of [65] for strongly convex losses.
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Remark 56. We emphasize that the theory developed in Section 6.2 is vital for extending

the results with the surrogate losses as in Corollary 54. Consider squared losses ℓt(x) =

(x−yt)2 with labels yt such that |yt| ≤ Y for all t. [65] requires that the predictions xt obey

xt ∈ [−Y, Y ]. In our use case with surrogate losses ℓ
(i)
t (x) = (x− (xt[i]−∇ft(xt)[i]/H))2

such a requirement can be not well defined. Here the labels can be regarded yt =

xt[i] − ∇ft(xt)[i]/H which depends on xt[i]. As per the setup of Corollary 54, the

ith FLH-OGD instance uses losses ℓ
(i)
t , t ∈ [n] and its prediction at time t is xt[i]. So

constructing a uniform bound Y to contain the predictions xt[i] requires a uniform bound

on the predictions xt[i] itself for all t which is self conflicting. Hence the strategy of [65]

for squared error losses is incompatible for using the surrogate losses ℓ
(i)
t .

6.3.2 Strongly convex losses and general convex decision sets

In this section, we show how to convert an optimal algorithm described in Section 6.3

for the box decision set to an optimal (modulo factors of log n and dimensions depen-

dencies) algorithm for any convex decision set via a black box reduction. This reduction

is essentially due to the seminal work of [79].

We have the following guarantee for the scheme in Fig. 6.3.

Theorem 57. Assume the notations in Fig. 6.3. Let the input decision set be W. Let

the losses be H strongly convex in L2 norm across D and satisfy ∥∇ft(x)∥∞ ≤ G for all

x ∈ D. Then the reduction scheme in Fig. 6.3 guarantees that

n∑

t=1

ft(x̂t)− ft(wt) = Õ
(
d1/3n1/3C2/3

n ∨ d
)
, (6.11)

for any comparator sequence w1:n ∈ W with TV (w1:n) :=
∑n

t=2 ∥wt−wt−1∥1 ≤ Cn. Õ(·)

hides the dependence on factors of log n,H,G∞.

97



Optimal Dynamic Regret in Proper Online Learning with Strongly Convex Losses and Beyond
Chapter 6

Box to general convex set reduction: Inputs - Decision setW , G > 0

1. Let D be the tightest box that circumscribes W . i.e, D =
{x ∈ Rd : ∥x∥∞ ≤ supw∈W ∥w∥∞}.

2. Let A be the algorithm attaining the guarantee in Corollary
54 with decision set D and G∞ = 2G.

3. At round t, get iterate xt from A.

4. Play x̂t = ΠW(xt) := argminy∈W ∥xt − y∥1.

5. Get loss ft.

6. Construct surrogate loss ℓt(x) = ft(x) + G · S(x), where
S(x) := ∥x− ΠW(x)∥1.

7. Send ℓt(x) to A.

Figure 6.3: Black box reduction from box to arbitrary convex decision set. This
technique is due to [79].

Proof. We start by listing several observations. First, note that the function S(x) is

convex and 1-Lipschitz across Rd. (Proposition 1 in [79]).

Also, the sub-gradient ∂S(x) = {y ∈ Rd : y[j] = sign (x[j]− ΠW(x)[j]) j ∈ [d]} (due

to Theorem 4 in [79]). Here sign(a) = a/|a| if |a| > 0 and any number between [−1, 1]

otherwise.

Finally the surrogate losses ℓt are H strongly convex in L2 norm across D, as adding

a convex function to strongly convex function preserves strong convexity. However, ℓt

are not gradient Lipschitz due to the component G∥x− ΠW(x)∥1 being not smooth.

We have that for any x ∈ D,

∥∇ℓt(x)∥∞ ≤ ∥∇ft(x)∥∞ +G∥∂S(x)∥∞ (6.12)

≤ 2G, (6.13)

where the last line is due to the assumption that ∥∇ft(x)∥∞ ≤ G and ∂S(x) is just a
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vector of signs as established before.

Hence we have that the losses ℓt sent to algorithmA satisfy the conditions of Corollary

54 with G∞ = 2G. Hence we have that

n∑

t=1

ℓt(xt)− ℓt(wt) = Õ
(
d1/3n1/3C2/3

n ∨ d
)
, (6.14)

where w1:n is as mentioned in the theorem statement.

By Taylor’s theorem, we have that for some z in the line segment joining xt and x̂t

ft(x̂t) = ft(xt) +∇ft(z)T (x̂t − xt) (6.15)

≤ ft(xt) +G∥x̂t − xt∥1 (6.16)

= ℓt(xt) (6.17)

where the inequality is due to Holder’s inequality and the assumption that ∥∇ft(x)∥∞ ≤

G for all x ∈ D.

Further for any wt ∈ W , we have that ft(wt) = ℓt(wt). Thus overall we obtain,

n∑

t=1

ft(x̂t)− ft(wt) ≤
n∑

t=1

ℓt(xt)− ℓt(wt). (6.18)

Combining Eq.(6.14) and (6.18) now yeilds the theorem.

Remark 58. We emphasize that the removal of gradient smoothness assumption for

strongly convex losses (from [65]) as done in the current work was important to apply

the reduction scheme of Fig.6.3 as the losses ℓt are not gradient smooth.
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6.4 Performance guarantees for exp-concave losses

In this section, we control the dynamic regret with exp-concave and gradient smooth

losses when the decision set is an L∞ ball. All unspecified lemma statements and proofs

are deferred to Appendix E.3. We make the following assumptions:

Assumption B1: The loss functions ℓt are α exp-concave in the box decision set

D = {x ∈ Rd : ∥x∥∞ ≤ B} .ie, ℓt(y) ≥ ℓt(x) +∇ℓt(x)T (y − x) + α
2

(
∇ℓt(x)T (y − x)

)2

for all x,y ∈ D.

Assumption B2: The loss functions ℓt satisfy ∥∇ℓt(x)∥2 ≤ G and ∥∇ℓt(x)∥∞ ≤ G∞

for all x ∈ D. Without loss of generality, we let G∧G∞∧B ≥ 1, where a∧b := min{a, b}.

We consider the following protocol:

• At time t ∈ [n] learner predicts xt ∈ Rd with ∥xt∥∞ ≤ B.

• Adversary reveals the loss function ℓt.

In view of Assumption B1, following [77], one can define the surrogate losses:

ft(x) =
(√

α/2∇ℓt(xt)
T (x− xt) + 1/

√
2α
)2
. (6.19)

It follows that

n∑

t=1

ℓt(xt)− ℓt(wt) ≤
n∑

t=1

ft(xt)− ft(wt), (6.20)

where xt,wt ∈ D.

Further, we make two useful observations about surrogate losses ft.

First for x ∈ D, since
∣∣∣
√
α/2∇ℓt(xt)

T (x− xt) + 1/
√

2α
∣∣∣ ≤ 2GB

√
αd/2 + 1/

√
2α :=

γ, we have that ft are 1/(2γ2) exp-concave over D (see Section 3.3 in [40]).
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Second, since ∇2ft(x) = ∇ℓt(xt)∇ℓt(xt)
T ≼ G2I, we have that the losses ft are G2

gradient Lipschitz over D.

We are interested in controlling the regret:

Rn(Cn) := sup
w1,...,wn∈D∑n

t=2 ∥wt−wt−1∥1≤Cn

n∑

t=1

ℓt(xt)− ℓt(wt), (6.21)

where xt is the decisions of the algorithm.

We have the following performance guarantee when the losses are exp-concave.

Theorem 59. Suppose Assumptions B1-B2 are satisfied. Define γ := 2GB
√
αd/2 +

1/
√

2α. By using the base learner as ONS with parameter ζ = min
{

1
16GB

√
d
, 1/(4γ2)

}
,

decision set D, loss at time t to be ft and choosing learning rate of FLH as η = 1/(2γ2),

FLH-ONS obeys

Rn(Cn) ≤ sup
w1,...,wn∈D∑n

t=2 ∥wt−wt−1∥1≤Cn

n∑

t=1

ft(xt)− ft(wt) (6.22)

= Õ
(
140d2(8G2B2αd+G2B2 + 1/α)(n1/3C2/3

n ∨ 1)
)
I{Cn > 1/n} (6.23)

+ Õ
(
d(8G2B2αd+ 1/α

)
I{Cn ≤ 1/n}, (6.24)

where xt is the decision of the algorithm at time t and Õ(·) hides polynomial factors of

log n. I{·} is the boolean indicator function assuming values in {0, 1}.

Remark 60. (relaxed assumptions & improvements) In [65], it is assumed that the

losses are gradient Lipschitz and exp-concave over an enlarged set D† = {x : ∥x∥∞ ≤

B +G} where B and G are as in Assumptions B1-B2. While our proper learning results

doesn’t require gradient Lipschitzness and require exp-concavity to hold in the smaller

constraint set D as in Assumption B1. Further [65] attains a worse dependence of O(d3.5)

in the non-trivial regime Cn ≥ 1/n.
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Further, we show in Appendix E.4 that when the decision set is a polytope satisfying

certain conditions, we can reparametrize the original problem into the framework of box

constrained online learning with exp-concave losses.

6.4.1 Road map for the proof of Theorem 59

The proof of Theorem 59 is facilitated by generalising the arguments used for proving

Theorem 50. We first form a coarse partition of [n] namely P in Lemma 193 by a direct

extension of Lemma 184. For the regime where dual varaible λ = O(d1.25n1/3/C
1/3
n ), we

employ a two term regret decomposition for each bin [is, it] ∈ P as follows:

it∑

j=is

fj(xj)− fj(ǔi)

︸ ︷︷ ︸
T1,i

+
it∑

j=is

fj(ǔi)− fj(uj)

︸ ︷︷ ︸
T2,i

, (6.25)

where xj is the prediction of the FLH-ONS algorithm and u1:n is the offline optimal

sequence in Lemma 192. We exhibit a choice of ǔi ∈ D in Lemma 196 so that T1,i + T2,i

when summed across all bins [is, it] ∈ P yield a total regret of Õ∗(n1/3C
2/3
n ∨ 1).

For handling the alternate regime λ = Ω(d1.25n1/3/C
1/3
n ), we provide a refinement

scheme fineSplit in Fig.E.4 in Appendix E.3. Specifically let R be the set of all

intervals in P that satisfy the prerequisite of fineSplit procedure. Let S := P \ R.

For each interval in R, we invoke fineSplit. This refinement scheme splits the

original interval into sub-bins that satisfy either the properties in Lemma 203 (which can

be regarded as a generalization of style U sub-bins in Section 6.2.2) or Lemma 204 (which

can be regarded as a generalization of style V sub-bins in Section 6.2.2). Sub-bins that

satisfy condition in Lemma 203 is termed as style U+ sub-bins and those that satisfy

condition in Lemma 204 is termed as style V+ sub-bins henceforth for brevity. Sub-bins

satisfying conditions of both Lemmas 203 and 204 are regarded as style U+ sub-bins. For
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each such sub-bin [a, b], we employ a two term regret decomposition as follows:

b∑

j=a

fj(xj)− fj(ǔj)

︸ ︷︷ ︸
T1

+
b∑

j=a

fj(ǔj)− fj(uj)

︸ ︷︷ ︸
T2

. (6.26)

We term the sequence ǔa:b as the ghost sequence as they are fictitious intermediate

comparator sequence introduced solely for the purpose of analysis. We provide a mechan-

ical way of generating an appropriate ghost sequence in the generateGhostSequence

procedure in Fig.E.3 which satisfies the properties stated in Lemma 198. Of particular

interest is how we choose the ghost sequence for style U+ sub-bins. Suppose for a style

U+ sub-bin [a, b], let k ∈ [d] be the coordinate where the offline optimal takes the form

of Structure 1 or Structure 2 (see Definition 200). Then we set for all j ∈ [a, b]:

ǔj[k] = Π

(
ua[k]− 1

(b− a+ 1)β

b∑

j=a

∇fj(uj)[k]

)
, (6.27)

where Π(·) is the projection to [−B,B] and β := G2. This choice is very different from

the unprojected gradient descent update used in [65]. It can be viewed as a lazy projected

gradient descent like update (with step size 1/((b−a+ 1)β)) where the update operation

is performed only across coordinate k. Note that it is not exactly gradient descent

across coordinate k since in the second term above we are using ∇fj(uj)[k] instead of

∇fj(ua)[k].

The choice of ǔj[k
′] for k′ ̸= k is more involved and is accomplished by carefully

selecting a sequence that switches only O(1) times and assumes values in [(ua[k
′]∧ . . .∧

ub[k
′]), (ua[k

′] ∨ . . . ∨ ub[k
′])] as mentioned in generateGhostSequence procedure in

Fig.E.3 in Appendix E.3.
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Next, by using similar gap criteria used in Section 6.2.2 and exploiting gradient Lips-

chitzness, we show that T1+T2 in Eq.(6.26) can be bounded byO∗(log n)+ a negative term

for each style U+ sub-bin obtained by refining bins in R. For each style V+ sub-bin, the

regret is bounded by O∗(log n) (see Lemma 199). When such bounds are added for all

sub-bins generated by invoking fineSplit on every interval in R, we show that the

negative terms gracefully offset the culmination of O∗(log n) terms to result in a regret

bound of Õ∗(n1/3C
2/3
n ∨ 1) (see Proof of Lemma 207).

The regret contribution from all bins in S is bounded by Õ∗(n1/3C
2/3
n ∨ 1) using

Lemma 199. Finally summing the regret contributions from bins in R and S yield the

theorem.

6.5 Concluding Discussion

In this work we presented a new analysis that extends the results of [65] and showed

near optimal universal dynamic regret in a proper learning setting for strongly convex

losses. Results on the special case of exp-concave losses and box decision set are also

derived. Further we relaxed the gradient Lipschitzness assumption for losses revealed

and derived regret rates with improved dependence on d.

An important open problem is to extend these results for exp-concave losses with

general convex decision sets.
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Chapter 7

Second Order Path Variationals in

Non-Stationary Online Learning

In this chapter, we generalize the setting of Chapter 3 to the framework of OCO. We

focus on the case of T V(1 class.

We recall the definition of discrete TV sequence class.

T V(k)(Cn) :=

{
w1:n

∣∣∣∣∣n
k∥Dk+1w1:n∥1 ≤ Cn where each wt ∈ W

}
. (7.1)

As noted in [54], this class features sequences such that along any coordinate j ∈ [d], the

sequence w1[j], . . . ,wn[j] is obtained via sampling a function fj(x) ∈ Fk(Cn,j) at points

x = i/n for i ∈ [n] with the property that
∑d

j=1Cn,j = Cn.

Why is this useful? In this chapter, we focus on comparators that reside in the

T V(1)(Cn) class. Our goal will be to bound the dynamic regret against w1:n ∈ T V(1)(Cn)

as a function of n and Cn. We emphasize that our algorithm does not take Cn as an

input and can simultaneously compete with the TV1 family described by any Cn > 0. As
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discussed earlier, comparators in T V(1)(Cn) class exhibits a piece-wise linear structure

across each coordinate (see Definition 61). The points where the sequence transition

from one linear structure to other can be interpreted as abrupt changes or events in

the underlying comparator dynamics. Many real world time series data are known to

contain piece-wise linear trends. See for example Fig.7.2 or [4] for more examples. Hence

controlling the dynamic regret against comparators from T V(1)(Cn) class has significant

practical value.

T V(0)(κCn)

Õ∗(n1/3C
2/3
n )

[BW21]

T V(1)(Cn)

Õ∗(n1/5C
2/5
n )

(This work)

Figure 7.1: Hierarchy of TV classes for the comparator sequence and the corresponding
optimal dynamic regret rates under exp-concave and gradient smooth losses. Here Õ∗

hides dependencies on d and log n. κ is a constant independent of n and Cn. We
assume Cn = Ω(1). BW21 refers to the work of [65].

Fast rate phenomenon. Sequence classes of the form T V(1)(Cn) or more generally

T V(k)(Cn) have gained significant attention and have been the subject of extensive study

in the non-parametric regression community for over two decades [1, 2, 4, 80, 38]. These

works aim to estimate an unknown scalar (i.e d = 1) sequence θ1:n ∈ T V(k)(Cn) from n

noisy observations yt = θt +N (0, σ2) in an offline setting. They propose algorithms that

produce estimates θ̂t, t ∈ [n] such that the expected total squared error
∑n

t=1E[(θ̂t−θt)2]

is controlled. In particular, for the case when θ1:n ∈ T V(1)(Cn) a (near) optimal estima-

tion rate of Õ(n1/5C
2/5
n ) is shown to be attainable for the squared loss (Õ(·) hides poly-

logarithmic factors of n). This rate is faster than the typical O(
√
nCn) or Õ(n1/3C

2/3
n ) dy-

namic regret rates found in non-stationary online learning literature (see for eg. [26, 65]).
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Central question and summary of results. A natural question that we ask here is:

Can we attain a universal dynamic regret of Õ∗(n1/5C
2/5
n ) when the comparators

w1:n ∈ T V(1)(Cn) and the losses being exp-concave?

Here O∗ hides dimension dependencies. A starting point in answering this question is

to exploit the piece-wise linear structure of sequences in T V(1)(Cn) across each coordinate.

A sequence that is linear across each coordinate within some interval can be perfectly

described using a fixed vector u ∈ R2d where u[2k − 1 : 2k] ∈ R2 specifies the slope

and intercept along coordinate k ∈ [d]. We will call such u to be a linear predictor. If

an algorithm guarantees that its static regret against fixed linear predictors within any

interval is controlled, one can hope to perform nearly as well as the comparator sequence

w1:n ∈ T V(1)(Cn). This is precisely an application of Strongly Adaptive algorithms

[23, 24, 52, 81] which aim to control their static regret in any interval and hence we can

use them off-the-shelf to achieve our goal. We refer the reader to Section 7.1 for more

details. Below, we briefly summarize our contributions:

• We show that by using appropriate Strongly Adaptive algorithms, one can attain

the (near) optimal universal dynamic regret rate of Õ(d2n1/5C
2/5
n ∨ d2) (Theorem

63; a ∨ b = max{a, b}) whenever the comparators w1:n ∈ T V(1)(Cn) and the losses

are exp-concave and gradient smooth (see Section 7.2 for the list of Assumptions

and associated definitions). Further this rate is attained without prior knowledge

of Cn.

• To the best of our knowledge, we are the first to introduce path variationals based

on second order differences to the setting of adversarial online learning. We show

how to import the fast rate phenomenon observed in stochastic non-parametric

regression problem under squared loss into the problem of controlling universal

dynamic regret under general exp-concave losses with no stochastic assumptions.
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(a) S&P500

(b) Daily COVID cases

Figure 7.2: Fig.(a) displays S&P500 stock price data and Fig.(b) displays Daily
COVID cases reported in the state of New Mexico, USA. In both scenarios we can see
that the underlying trend (obtained via an L1 Trend Filter [4]) exhibits a weakly dif-
ferentiable piece-wise linear structure (orange) which belongs to an appropriate T V(1)
class.

7.1 The Algorithm

In this section, we formally describe the main algorithm FLH-SIONS (Follow the

Leading History-Scale Invariant Online Newton Step) in Fig.7.3 and provide intuition on

why it can favorably control the dynamic regret against comparators from T V(1) class.
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FLH-SIONS: inputs: exp-concavity factor σ and n SIONS base learners
E1, . . . , En initialized with parameters ϵ = 2, η = σ and C = 20. (see
Fig. 7.4)

1. For each t, vt = (v
(1)
t , . . . , v

(t)
t ) is a probability vector in Rt. Initial-

ize v
(1)
1 = 1.

2. For any SIONS expert Ej with j ≤ t, define x
(t)
j = [1, t− j+ 1]T to

be given to Ej at time t before making its prediction Ej(t) ∈ Rd.

3. In round t, set ∀j ≤ t, yj
t ← Ej(t) (the prediction of the jth base

learner at time t). Play pt =
∑t

j=1 v
(j)
t y

(j)
t .

4. After receiving ft, set v̂
(t+1)
t+1 = 0 and perform update for 1 ≤ i ≤ t:

v̂
(i)
t+1 =

v
(i)
t e

−σft(x
(i)
t )

∑t
j=1 v

(j)
t e−σft(x

(j)
t )

(7.2)

5. Addition step - Set v
(t+1)
t+1 to 1/(t+ 1) and for i ̸= t+ 1:

v
(i)
t+1 = (1− (t+ 1)−1)v̂

(i)
t+1 (7.3)

Figure 7.3: FLH algorithm of [23] with SIONS (see Fig.7.4) base experts

For the sake of simplicity, we capture the intuition in a uni-variate setting where the

comparators wt ∈ W ⊂ R for all t ∈ [n].

Definition 61. Within an interval [a, b], we say that the comparator wa:b is a linear

signal or assumes a linear structure if the slope wt+1−wt is constant for all t ∈ [a, b− 1].

As described before, we are interested in competing against comparator sequences

w1:n that have a piece-wise linear structure (across each coordinate in multi-dimensions).

The durations / intervals of [n] where the comparator is a fixed linear signal is unknown

to the learner. Suppose that an ideal oracle provides us with the exact locations of these

intervals of [n]. Consider an interval [a, b] provided by the oracle where the comparator

has a fixed linear structure given by wt = µTx
(t)
a for the co-variates x

(t)
a := [1, t− a+ 1]T
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SIONS: inputs: exp-concavity factor η, ϵ > 0 and C > 0.

1. For any round t, we define f̃t(v) = fj(x
T
t v[1 : 2],xT

t v[3 :
4], . . . ,xT

t v[2k − 1 : 2k]) for any vector v ∈ R2d.

2. At round t+ 1:

(a) Receive co-variate xt+1 ∈ R2.

(b) Let Kt+1 = {w ∈ R2d : |xT
t+1w[2k − 1 : 2k]| ≤ C for all k ∈

[d]}.
(c) Let At = ϵI2d + η

∑t
j=1∇f̃j(vj)∇f̃j(vj)

T .

(d) Let ut+1 = vt −A−1
t ∇f̃t(vt).

(e) Let vt+1 = argminw∈Kt+1
∥w − ut+1∥At .

(f) Play wt+1 ∈ Rd such that wt+1[k] = xT
t+1vt+1[2k − 1 : 2k] for

all k ∈ [d].

Figure 7.4: An instance of SIONS algorithm from [82].

and µ such that |wt| is O(1) bounded for all t ∈ [a, b]. An effective strategy for the

learner is to deploy an online algorithm Ea that starts from time a such that within the

interval [a, b] its regret:

R[a,b](µ) :=
b∑

t=a

ft (Ea(t))− ft(µTx(t)
a ) (7.4)

is controlled. Here Ea(t) is the predictions of the algorithm Ea at time t. Under exp-

concave losses, an O(log n) bound on the above regret can be achieved by the SIONS

algorithm (Fig.7.4) from ([82], Theorem 2) run with co-variates x
(t)
a .

In practice, the locations of such ideal intervals are unknown to us. So we maintain

a pool of n base SIONS experts in Fig.7.3 where the expert Eτ starts at time τ with the

monomial co-variate x
(t)
τ = [1, t− τ + 1]T for all t ≥ τ . The adaptive regret guarantee of

FLH with exp-concave losses (due to [23], Theorem 3.2) keeps the regret wrt any base
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expert to be small. In particular, FLH-SIONS satisfies that

j∑

t=τ

ft(pt)− ft (Eτ (t)) = O(log n), (7.5)

where pt are the predictions of FLH-SIONS and j ≥ τ for any τ ∈ [n]. Hence for the

interval [a, b] given by the ideal oracle, it follows that

b∑

t=a

ft(pt)− ft(µTx(t)
a ) ≤

b∑

t=a

ft (Ea(t))− ft(µTx(t)
a ) +O(log n) (7.6)

= R[a,b](µ) +O(log n) = O(log n), (7.7)

where in the last equation, we appealed to the logarithmic static regret of SIONS from

[82]. As a minor technical remark, we note that the original results of [82] assume that

the losses are of the form f̃j(w) = fj(x
T
j w) for a uni-variate function fj. However, we

show in Lemma 222 (in Appendix) that their regret bounds can be straightforwardly

extended to handle multivariate losses fjas in Line 1 of Fig.7.4 which is useful in our

multi-dimensional setup.

Thus ultimately, the regret of the FLH-SIONS procedure is well controlled within

each interval provided by the ideal oracle, thus allowing us to be competent against the

piece-wise linear comparator sequence from a T V1 class. We remark that while both

FLH and SIONS are well-known existing algorithms, our use of them with monomial

co-variates is new. Our dynamic regret analysis is new too, which uncovers previously

unknown properties of a particular combination of these existing algorithmic components

using novel proof techniques.
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7.2 Main Results

In this section, we explain the assumptions used and the main results of this chapter.

Then we provide the proof summary for Theorem 63 in a uni-variate setting highlighting

the technical challenges overcome along the way. Following which we explain how to

handle multiple dimensions by constructing suitable reductions that will allow us to re-

use much of the analytical machinery developed for the case of uni-variate setting. The

following are the assumptions made.

A1. For all t ∈ [n], the comparators wt belongs to a given benchmark space W ⊂ Rd.

Further we have W ⊆ [−1, 1]d.

A2. The loss function ft : Rd → R revealed at time t is 1-Lipschitz in ∥ · ∥2 norm over

the interval [−20, 20]d.

A3. The losses ft are 1-gradient Lipschitz over the interval [−20, 20]d. This implies that

ft(y) ≤ ft(x) +∇ft(x)T (y − x) + L
2
∥(y − x)∥22 for all x,y ∈ [−20, 20]d.

A4. The losses ft are σ exp-concave over [−20, 20]d. This implies that ft(y) ≥ ft(x) +

∇ft(x)T (y − x) + σ
2

(
∇ft(x)T (y − x)

)2
for all x,y ∈ [−20, 20]d.

Assumptions A3 and A4 ensure the smoothness and curvature of the losses which

we crucially rely to derive fast regret rates. Assumptions about Lipschitzness as in A2

are usually standard in online learning. In assumption A1 we consider comparators that

belong to an interval that is smaller than the intervals in other assumptions. This is due

to the fact that we allow our algorithms to be improper in the sense that the decisions

of the algorithm may lie outside the benchmark space W .

We start with a lower bound on the dynamic regret which is obtained by adapting the

arguments in [2] to the case of bounded sequences as in Assumption A1. See Appendix

F.3 for a proof.
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Proposition 62. Under Assumptions A1-A4, any online algorithm necessarily suffers

supw1:n∈T V(1)(Cn)
Rn(w1:n) = Ω(d3/5n1/5C

2/5
n ∨ d).

We have the following guarantee for FLH-SIONS.

Theorem 63. Let pt be the predictions of FLH-SIONS algorithm with parameters ϵ = 2,

C = 20 and exp-concavity factor σ. Under Assumptions A1-A4, we have that,

n∑

t=1

ft(pt)− ft(wt) = Õ(d2n1/5C2/5
n ∨ d2),

for any Cn > 0 and any comparator sequence w1:n ∈ T V(1)(Cn). Here Õ hides poly-

logarithmic factors of n and a ∨ b = max{a, b}.

Remark 64. Compared with the lower bound in Proposition 62, we conclude that the

regret rate of the above theorem is optimal modulo factors of d and log n. We note that

the guarantee of Theorem 63 is truly universal as no apriori knowledge of Cn is required.

Proposition 65. It can be shown that the same algorithm FLH-SIONS under the setting

of Theorem 220 enjoys optimal rates against comparators from the T V0(Cn) class as

well. When combined with Theorem 63 we conclude that under Assumptions A1-A4,

FLH-SIONS attains an adaptive guarantee of

n∑

t=1

ft(pt)− ft(wt) = Õ(d2 min{n1/3∥Dw1:n∥2/31 , n1/5(n∥D2w1:n∥1)2/5} ∨ d2),

for any comparator sequence w1:n. Here Õ hides poly-logarithmic factors of n and a∨b =

max{a, b}. See Appendix F.2 for a proof.

Remark 66. One may ask if a simpler algorithm such as carefully tuned online gradient

descend (OGD) can enjoy these fast rates too. However, Proposition 2 of [54] implies

that properly tuned OGD algorithm which is optimal against comparators in T V (0)
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class under convex losses, necessarily suffers a slower dynamic regret of Ω(n1/4) against

comparators in T V(1)(1) class under exp-concave losses [83].

7.2.1 Proof Summary of Theorem 63 for one dimension

In what follows, we present several useful lemmas and provide a running sketch on

how to chain them to arrive at Theorem 63 in a uni-variate setting (i.e d = 1). Detailed

proofs are deferred to Appendix F.1.1.

Suppose that we need to compete against comparators whose TV1 distance (i.e

n∥D2w1:n∥1) is bounded by some number Cn. This quantity could be unknown to the

algorithm. Consider the offline oracle who has access to the entire sequence of loss

functions f1, . . . , fn and the TV1 bound Cn. It may then solve for the strongest pos-

sible comparator respecting the TV1 bound through the following convex optimization

problem.

min
ũ1, . . . , ũn

n∑

t=1

ft(ũt) (7.8a)

s.t. ∥D2ũ1:n∥1 ≤ Cn/n, (7.8b)

− 1 ≤ ũt ∀t ∈ [n], (7.8c)

ũt ≤ 1 ∀t ∈ [n], (7.8d)

Let u1, . . . , un be the optimal solution of the above problem. This sequence will be

referred as offline optimal hence-forth. Clearly we have that the regret against any

comparator sequence w1:n ∈ T V1(Cn) obeys

n∑

t=1

ft(pt)− ft(wt) ≤
n∑

t=1

ft(pt)− ft(ut), (7.9)
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and hence it suffices to bound the right side of the above inequality.

Lemma 67. (KKT conditions) Let u1, . . . , un be the optimal primal variables and let

λ ≥ 0 be the optimal dual variable corresponding to the constraint (7.8b). Further, let

γ−t ≥ 0, γ+t ≥ 0 be the optimal dual variables that correspond to constraints (7.8c) and

(7.8d) respectively for all t ∈ [n]. By the KKT conditions, we have

• stationarity: ∇ft(ut) = λ ((st−1 − st)− (st−2 − st−1)) + γ−t − γ+t , where st =

sign((ut+2 − ut+1)− (ut+1 − ut)). Here sign(x) = x/|x| if |x| > 0 and any value in

[−1, 1] otherwise. For convenience of notations, we also define s−1 = s0 = sn−1 =

sn = 0.

• complementary slackness: (a) λ (∥D2u1:n∥1 − Cn/n) = 0; (b) γ−t (ut + 1) = 0

and γ+t (ut − 1) = 0 for all t ∈ [n]

Next, we provide a partition of the horizon with certain useful properties.

Lemma 68. (key partition) For some interval [a, b] ∈ [n], define ℓa→b := b − a + 1.

There exists a partitioning of the time horizon P := {[1s, 1t], . . . , [is, it], . . . [Ms,Mt]}

where M = |P| such that for any bin [is, it] ∈ P we have: 1) ∥D2uis:it∥1 ≤ 1/ℓ
3/2
is→it

; 2)

∥D2uis:it+1∥1 > 1/ℓ
3/2
is→it+1 and 3) M = O

(
n1/5C

2/5
n ∨ 1

)
.

Going forward, the idea is to bound the dynamic regret within each bin in P by an

Õ(1) quantity. Then we can add them up across all bins to arrive at the guarantee of

Theorem 63 (with d = 1). We pause to remark that even-though this high-level idea

resembles to that of [65], the underlying details of our analysis to materialize this idea

requires highly non-trivial deviations from the path followed by [65].

First, we need some definitions. Consider a bin [is, it] ∈ P with length at-least 2.

Let’s define a co-variate xj := [1, j − is + 1]T . Let XT := [xis , . . . ,xit ] be the matrix of
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co-variates and uis:it := [uis , . . . , uit ]
T . Let β =

(
XTX

)−1
XTuis:it be the least square fit

coefficient computed with co-variates xj and labels uj. Define a second moment matrix

A =
∑it

j=is
xjx

T
j . Let α := β −A−1∑it

j=is
∇fj(βTxj)xj. (A−1 is guaranteed to exist

when length of the bin is at-least 2). We remind the reader that ∇fj(βTxj) is a scalar

as we consider uni-variate fj in this section.

We connect these quantities via a key regret decomposition as follows:

it∑

j=is

fj(pj)− fj(uj) =
it∑

j=is

fj(pj)− fj(αTxj)

︸ ︷︷ ︸
T1

+
it∑

j=is

fj(α
Txj)− fj(βTxj)

︸ ︷︷ ︸
T2

+
it∑

j=is

fj(β
Txj)− fj(uj)

︸ ︷︷ ︸
T3

(7.10)

It can be shown that |αTxj| ≤ 20 = O(1). Hence the term T1 can be controlled

by an O(log n) bound due to Strong Adaptivity of FLH-SIONS as described in Section

7.1, Eq.(7.7). The quantity α is obtained via moving in a direction reminiscent to

that of Newton method. This is in sharp contrast to the one step gradient descent

update used in [65]. More precisely, consider the function F (β) =
∑it

j=is
fj(β

Txj). Then

α = β−A−1∇F (β). By exploiting gradient Lipschitzness of fj, the correction matrix A

can be shown to satisfy the Hessian dominance ∇2F (β) ≼ A. This Newton style update

is shown to keep the term T2 to be negative through the following generalized descent

lemma:

Lemma 69. We have that T2 ≤ −1
2
∥∇F (β)∥2A−1.

The negative descent term displayed in the above Lemma is similar to the standard

(squared) Newton decrement [84] in the sense that it is also influenced by the local

geometry through the norm induced by the inverse correction matrix A−1.

We then proceed to show that the negative T2 can diminish the effect of T3 by keeping

T2 + T3 to be an O(1) quantity. Thus the dynamic regret within the bin [is, it] ∈ P is
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controlled to Õ(1). Adding the bound across all bins in P from Lemma 68 yields Theorem

63 in one dimension. However, the high level idea is that the smoothness of T V1 sequence

class enables us to keep the regret within each bin to be Õ(1) despite its larger width

thus leading to faster rates when summed across a fewer number of bins.

A major challenge in the analysis is to prove that the term T2 + T3 = O(1) without

imposing restrictive assumptions such as Self-Concordance or Hessian Lipschitnzess as in

the classical analysis of Newton method (see for eg.[84]). In the rest of this section, we

outline the arguments leading to this result.

Lemma 70. We have that T2 + T3 = O(1) where T2 and T3 are as defined in Eq.(7.10)

Proof Sketch. Here the main idea is T2 + T3 = O(1) even-though |T2| and |T3| can be

very large individually. Even-though this is the same observation as that in [65], our

regret decomposition and the associated proof is more subtle and interesting as it wasn’t

apriori clear that T2+T3 can be possibly bound by O(1) for the current problem. The key

novelty is that we bound T2 + T3 by introducing an auxiliary function that is concave in

its arguments which allows us to systematically explore the properties of its maximizers.

We proceed to expand upon this proof summary further.

For the sake of explaining ideas, we consider a case where the offline optimal within

a bin [is, it] ∈ P doesn’t touch the boundary 1 but may touch boundary −1 at multiple

time points. (In the full proof, we show that the partition P can be slightly modified so

that in non-trivial cases, the offline optimal can only touch one of the boundaries due to

the TV1 constraint within the bins described in Lemma 68.) Then by complementary

slackness of Lemma 67 we conclude that γ+j = 0 for all j ∈ [is, it]. Our analysis starts by

considering a scenario where the offline optimal touches boundary −1 at precisely two

points r, w ∈ [is, it] with r < w (see Fig.7.5). Again via complementary slackness, only

γ−r and γ−w can be potentially non-zero in this case. Through certain careful bounding
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is r w it

−1

1

A bin [is, it] touchingboundary -1at twopoints

Figure 7.5: A configuration referred in the proof sketch of Lemma 70. The blue dots
represent the offline optimal sequence.

steps, we show that:

T2 + T3 ≤ −B(λ, γ−r , γ
−
w ; r, w), (7.11)

where B is a function jointly convex in its arguments λ, γ−r , γ
−
w . We treat r and w to be

fixed parameters. The exact form of the function B is present at Eq.(F.142) in Appendix.

Then we consider the following convex optimization procedure:

min
λ, γ−r , γ

−
w

B(λ, γ−r , γ
−
w ; r, w) (7.12a)

s.t. λ ≥ 0 (7.12b)

First, we perform a partial minimization wrt γ−r and γ−w keeping λ fixed. Note that

even-though γ−r ≥ 0 and γ−w ≥ 0 via Lemma 67, we choose to perform an unconstrained

minimization wrt these variables as doing so can only increase the bound on T2 + T3.

Let the optimal solutions of the partial minimization procedure be denoted by γ̂−r

118



Second Order Path Variationals in Non-Stationary Online Learning Chapter 7

and γ̂−w . We find that:

B(λ, γ̂−r , γ̂
−
w ; r, w) = L(λ), (7.13)

where L(λ) is a linear function of λ that doesn’t depend on r or w (Eq.(F.149) in Ap-

pendix). The constrained minimum of this linear function is then found to be attained

at λ = 0 and we show that

−B(0, γ̂−r , γ̂
−
w ; r, w) = O(1) (7.14)

This leaves us with an important question on how to handle more than two boundary

touches at −1 where many of γ−j , j ∈ [is, it] can potentially be non-zero. One could

perform a similar unconstrained optimization as earlier wrt all γ−j . However, deriving

the closed form expressions for the optimal γ̂−j becomes very cumbersome as it involves

solving for a complex system of linear equations. In the following, we argue that this

general case can be handled via a reduction to the previous setting where only two dual

variables γ−r and γ−w can be potentially non-zero. Specifically we show that the same

auxiliary function B as in Eq.(7.11) can be used to obtain

T2 + T3 ≤ −B(λ, γ̃−r , γ̃
−
w ; r̃, w̃), (7.15)

where r̃, w̃, γ̃−r and γ−w can be computed from the sequence of dual variables γ−is:it . Now we

can proceed to optimize similarly as in Eq.(7.12a) with the optimization variables being

λ, γ̃−r , γ̃
−
w and use the same arguments as earlier to bound T2+T3 = O(1). We remark that

while doing so, it is an extremely fortunate fact that the partially minimized objective

in Eq.(7.13) does not depend on the parameter values r and w. This fact in hindsight

is what permitted us to fully eliminate the dependence of all γ−j where j ∈ [is, it] on the
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bound via the method of reduction to the case of two non-zero dual variables considered

earlier.

7.2.2 Proof summary for Theorem 63 in multi-dimensions

In rest of this section, we focus on outlining the analysis ideas that facilitated the main

result Theorem 63. The high-level idea is to construct a reduction that helps us to re-use

much of the machinery developed in Section 7.2.1. We emphasize that this reduction

happens only in the analysis, and we do not run d uni-variate FLH-SIONS algorithms

for handling multi-dimensions. Following Lemma serves a key role in materializing the

desired reduction.

Lemma 71. Let Xj ∈ Rd×2d be as defined as:

XT
j =




xj[1 : 2] 0 . . . 0

0 xj[3 : 4] . . . 0

...
. . .

...

0 . . . xj[2d− 1 : 2d]



, (7.16)

where 0 = [0, 0]T and xj ∈ R2d. The entries xj[2k − 1 : 2k] ∈ R2 for k ∈ [d]. Let

f̃j(v) = fj(Xjv) for some v ∈ R2d and let Σ := XT
j Xj ∈ R2d×2d which is a block

diagonal matrix. We have that

∇2f̃j(v) ≼ Σ. (7.17)

In multi-dimensions also we form a partition P of the offline optimal similar to Lemma
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68. Then we consider following regret decomposition for any bin [is, it] ∈ P .

it∑

j=is

fj(pj)− fj(uj) =
it∑

j=is

fj(pj)− fj(Xjαj)

︸ ︷︷ ︸
T1

+
it∑

j=is

fj(Xjαj)− fj(Xjβj)

︸ ︷︷ ︸
T2

+
it∑

j=is

fj(Xjβj)− fj(uj)

︸ ︷︷ ︸
T3

,

(7.18)

where we shall shortly describe how to construct the quantities Xj ∈ Rd×2d,αj ∈ R2d

and βj ∈ R2d. For compactness of notations later, let’s define αj,k = αj[2k−1 : 2k] ∈ R2,

βj,k = βj[2k − 1 : 2k] ∈ R2 and yj,k = xj[2k − 1 : 2k] ∈ R2 for some xj ∈ R2d as in

lemma 71. The Hessian dominance in Lemma 71 leads to:

f̃j(αj)− f̃j(βj) ≤
d∑

k=1

⟨∇fj(Xjβj)[k]yj,k,αj,k − βj,k⟩+
1

2

d∑

k=1

∥αj,k − βj,k∥2yj,ky
T
j,k

(7.19)

:=
d∑

k=1

t2,j,k. (7.20)

Further, due to gradient Lipschitzness of fj,

f̃j(βj)− fj(uj) ≤
d∑

k=1

∇fj(uj)[k] ·
(
βT

j,kyj,k − uj[k]
)

+
d∑

k=1

1

2
∥βT

j,kyj,k − uj[k]∥22 (7.21)

:=
d∑

k=1

t3,j,k (7.22)

Combining Eq.(7.20) and (7.22), we see that T2 + T3 in any bin [is, it] can be bounded

coordinate-wise:

T2 + T3 ≤
d∑

k=1

it∑

j=is

t2,j,k + t3,j,k.
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This form allows one to bound
∑it

j=is
t2,j,k + t3,j,k = O(1) separately for each coordinate

by constructing αj,k,βj,k and yj,k similar to Section 7.2.1. We then sum across all

coordinates to bound T2 + T3 = O(d). We remark that the situation is a bit more subtle

here because in-order to handle certain combinatorial structures imposed by the KKT

conditions, we had to use a sequence of comparators αis , . . . ,αit (for linear predictors in

Eq.(7.18)) that switches at-most O(d) times . Finally by appealing to strong adaptivity

of FLH-SIONS, we show that T1 = Õ(d2) for each bin [is, it] ∈ P and Theorem 63 then

follows by adding the Õ(d2) regret across all O(n1/5C
2/5
n ∨ 1) bins in P .

7.3 Concluding Discussion

In this chapter, we derived universal dynamic regret rate parametrized by a novel

second-order path variational of the comparators. Such a path variational naturally

captures the piecewise linear structures of the comparators and can be used to flexibly

model many practical non-stationarities in the environment. Our results for the exp-

concave losses achieved an adaptive universal dynamic regret of Õ(d2n1/5C
2/5
n ∨d2) which

matches our minimax lower bound up to a factor that depends on d and log n. This is the

first result of such kind in the adversarial setting and the first that works with general

exp-concave family of losses. We conjecture that a similar algorithm as in Fig.7.3 based

on degree k monomial co-variates [1, t, . . . , tk] can lead to optimal dynamic regret for

comparators from T V(k) class.
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Chapter 8

Online Unsupervised Domain

Adaptation under Label Shift

Supervised machine learning algorithms are typically developed assuming independent

and identically distributed (iid) data. However, real-world environments evolve dynami-

cally [85, 86, 87, 88]. Absent further assumptions on the nature of the shift, such problems

are intractable. One line of research has explored causal structures such as covariate shift

[89], label shift [90, 91], and missingness shift [92], for which the optimal target predictor

is identified from labeled source and unlabeled target data. Let’s denote the feature-label

pair of an example by (x, y). Label shift addresses the setting where the label marginal

distribution Q(y) may change but the conditional distribution Q(x|y) remains fixed.

Most prior work addresses the batch setting for unsupervised adaptation, where a single

shift occurs between a source and target population [90, 91, 93, 94, 93, 95]. However, in

the real world, shifts are more likely to occur continually and unpredictably, with data

arriving in an online fashion. A nascent line of research tackles online distribution shift,

typically in settings where labeled data is available in real time [65], seeking to minimize

the dynamic regret.
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```offline data

model

Nature

Figure 8.1: UOLS and SOLS setup. Dashed (double) arrows are exclusive to UOLS
(SOLS) settings. Other objects are common to both setups. Central question: how
to adapt the model in real-time to drifting label marginals based on all the available
data so far?

Researchers have only begun to explore the role that structures like label shift might

play in such online settings. Initial attempts to learn under unsupervised online label

shifts were made by [96] and [97], both of which rely on reductions to Online Convex

Optimization (OCO) [59, 98]. This line of research aims in updating a classification

model based on online data so that the overall regret is controlled. However, [96] only

control for static regret against a fixed classifier (or model) in hindsight and makes the

assumption of the convexity (of losses), which is often violated in practice. In the face of

online label shift, where the class marginals can vary across rounds, a more fitting notion

is to control the dynamic regret against a sequence of models in hindsight. Motivated by

this observation, [97] control for the dynamic regret. However, their approach is based

on updating model parameters (of the classifier) with online gradient descent and relying

on convex losses limits the applicability of their methods (e.g. algorithms in [97] can not

be employed with decision tree classifiers).

In this chapter, we study the problem of learning classifiers under Online Label Shift

(OLS) in both supervised and unsupervised settings (Fig.8.1). In both these settings, the

distribution shifts are an online process that respects the label shift assumption. Our

primary goal is to develop algorithms that side-step convexity assumptions and at the

same time optimally adapt to the non-stationarity in the label drift. In the Unsupervised

Online Label Shift (UOLS) problem, the learner is provided with a pool of labeled offline
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data sampled iid from the distribution Q0(x, y) to train an initial model f0. Afterwards,

at every online round t, few unlabeled data points sampled from Qt(x) are presented.

The goal is to adapt f0 to the non-stationary target distributions Qt(x, y) so that we can

accurately classify the unlabelled data. By contrast, in Supervised Online Label Shift

(SOLS), our goal is to learn classifiers from only the (labeled) samples that arrive in

an online fashion from Qt(x, y) at each time step, while simultaneously adapting to the

non-stationarity induced due to changing label proportions. While SOLS is similar to

online learning under non-stationarity, UOLS differs from classical online learning as the

test label is not seen during online adaptation. Below are the list of contributions of this

chapter.

• Unsupervised adaptation. For the UOLS problem, we provide a reduction to

online regression (see Defn. 72), and develop algorithms for adapting the initial

classifier f0 in a computationally efficient way leading to minimax optimal dynamic

regret. Our approach achieves the best-of-both worlds of [96, 97] by controlling the

dynamic regret while allowing us to use expressive black-box models for classifica-

tion (Sec. 8.2).

• Supervised adaptation. We develop algorithms for SOLS problem that lead to

minimax optimal dynamic regret without assuming convexity of losses (Sec. 8.3).

Our theoretically optimal solution is based on weighted Empirical Risk Minimiza-

tion (wERM) with weights tracked by online regression. Motivated by our theory,

we also propose a simple continual learning baseline which achieves empirical per-

formance competitive to the wERM from scratch at each time step across several

semi-synthetic SOLS problems while being 15× more efficient in computation cost.

• Low switching regressors. We propose a black-box reduction method to convert

an optimal online regression algorithm into another algorithm that switches deci-

126



Online Unsupervised Domain Adaptation under Label Shift Chapter 8

sions sparingly while maintaining minimax optimality. This method is relevant for

online change point detection. We demonstrate its application in developing SOLS

algorithms to train models only when significant distribution drift is detected, while

maintaining statistical optimality (App. G.2 and Algorithm 8).

• Extensive empirical study. We corroborate our theoretical findings with exper-

iments across numerous simulated and real-world OLS scenarios spanning vision

and language datasets (Sec. 8.4). Our proposed algorithms often improve over the

best alternatives in terms of both final accuracy and label marginal estimation.

This advantage is particularly prominent with limited initial holdout data (in the

UOLS problem) highlighting the sample efficiency of our approach.

Notes on technical novelties. Even-though online regression is a well studied

technique, to the best of our knowledge, it is not used before to address the problem of

online label shift. It is precisely the usage of regression which lead to tractable adaptation

algorithms while side-stepping convexity assumptions thereby allowing us to use very

flexible models for classification. This is in stark contrast to OCO based reductions in [96]

and [97]. We propose new theoretical frameworks and identify the right set of assumptions

for materializing the reduction to online regression. It was not evident initially that this

link would lead to minimax optimal dynamic regret rates as well as consistent empirical

improvement over prior works. Proof of the lower bounds requires adapting the ideas

from non-stationary stochastic optimization [15] in a non-trivial manner. Further, none

of the proposed methods require the prior knowledge of the extent of distribution drift.

The material of this chapter closely follows [99].
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8.1 Problem Setup

Let X ⊆ Rd be the input space and Y = [K] := {1, 2, . . . , K} be the output space.

Let Q be a distribution over X ×Y and let q(·) denotes the corresponding label marginal.

∆K is the K-dimensional simplex. For a vector v ∈ RK , v[i] is its ith coordinate. We

assume that we have a hypothesis class H. For a function f ∈ H : X → ∆K , we also

use f(i|x) to indicate f(x)[i]. With ℓ(f(x), y), we denote the loss of making a prediction

with the classifier f on (x, y). L denotes the expected loss, i.e., L = E(x,y)∼Q [ℓ(f(x), y)].

Õ(·) hides dependencies in absolute constants and poly-logarithmic factors of horizon

and failure probabilities.

In this work, we study online learning under distribution shift, where the distribution

Qt(x, y) may continuously change with time. Throughout the chapter, we focus on the

label shift assumption where the distribution over label proportions qt(y) can change

arbitrarily but the distribution of the covariate conditioned on a label value (i.e., Qt(x|y))

is assumed to be invariant across all time steps. We refer to this setting as Online Label

Shift (OLS). Here, we consider settings of unsupervised and supervised OLS settings

captured in Frameworks 1 and 3 respectively. In both settings, at round t a sample

(xt, yt) is drawn from a distribution with density Qt(xt, yt). In the UOLS setting, the

label is not revealed to the learner. However, we assume access to offline labeled data

sampled iid from Q0 which we use to train an initial classifier f0. The goal is to adapt

the initial classifier f0 to drifting label distributions. In contrast, for the SOLS setting,

the label is revealed to the learner after making a prediction and the goal is to learn a

classifier ft ∈ H for each time step.

Next, we formally define the concept of online regression which will be central to our

discussions. Simply put, an online regression algorithm tracks a ground truth sequence

from noisy observations.
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Definition 72 (online regression). Fix any T > 0. The following interaction scheme is

defined to be the online regression protocol.

• At round t ∈ [T ], an algorithm predicts θ̂t ∈ RK .

• A noisy version of ground truth zt = θt + ϵt is revealed where θt, ϵt ∈ RK , and

∥ϵt∥2, ∥θt∥2 ≤ B. Further the noise ϵt are independent across time with E[ϵt] = 0

and Var(ϵt[i]) ≤ σ2 ∀i ∈ [K].

An online regression algorithm aims to control
∑T

t=1 ∥θ̂t − θt∥22. Moreover, the re-

gression algorithm is defined to be adaptively minimax optimal if with probability at

least 1 − δ,
∑n

t=1 ∥θ̂t − θt∥22 = Õ(T 1/3V
2/3
T ) without knowing VT ahead of time. Here

VT :=
∑T

t=2 ∥θt − θt−1∥1 is termed as the Total Variation (TV) of the sequence θ1:T .

8.2 Unsupervised Online Label Shift

In this section, we develop a framework for handling the UOLS problem. We sum-

marize the setup in Framework 1. Since in practice, we may need to work with classifiers

such as deep neural networks or decision trees, we do not impose convexity assumptions

on the (population) loss of the classifier as a function of the model parameters. Despite

the absence of such simplifying assumptions, we provide performance guarantees for our

label shift adaption techniques so that they are certified to be fail-safe.

Under the label shift assumption, we have Qt(y|x) as a re-weighted version of Q0(y|x):

Qt(y|x) =
Qt(y)

Qt(x)
Qt(x|y) =

Qt(y)

Qt(x)
Q0(x|y) =

Qt(y)Q0(x)

Qt(x)Q0(y)
Q0(y|x) ∝ Qt(y)

Q0(y)
Q0(y|x),

(8.1)

where the second equality is due to the label shift assumption. Hence, a reasonable

strategy is to re-weight the initial classifier f0 with label proportions (estimate) at the
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Framework 1 Unsupervised Online Label
Shift (UOLS) protocol

Input: Initial classifier f0 : X → ∆K

trained on offline labeled dataset
{(xi, yi)}Ni=1 sampled iid from
Q0;

1: f1 = f0
2: for each round t ∈ [T ] do
3: Nature samples xt ∈ X and yt ∈ Y ,

with (xt, yt) ∼ Qt; Only xt is revealed
to the learner.

4: Learner predicts a label i ∼ ft(xt) ∈
∆K .

5: ft+1 = A(f0, x1:t), where A is strategy
to adapt the classifier based on past
data.

6: end for

Algorithm 2 RegressAndReweight to
handle UOLS
Input: i) Online regression oracle ALG;
ii) Initial classifier f0; iii) The confu-
sion matrix C; iv) The label marginal
q0 ∈ D of the training distribu-
tion;

1: At round t, get the classifier covariate
xt.

2: Let q̂t = ΠD (ALG(s1:t−1)), where
ΠD(x) = argminy∈D ∥y − x∥2.

3: Sample a label i with probability ∝
q̂t(i)
q0(i)

f0(i|xt).
4: Let st = C−1f0(xt).
5: Update the online regression oracle

with the estimate st.

current step, since we only have to correct the label distribution shift. This re-weighting

technique is widely used for offline label shift correction [91, 94, 93] and for learning

under label imbalance [100, 101, 102].

Our starting point in developing a framework is inspired by [96, 97] . For self-

containedness, we briefly recap their arguments next. We refer interested readers to

their chapters for more details. [96] considers a hypothesis class of re-weighted initial

classifier f0. The loss of a hypothesis is parameterised by the re-weighting vector. They

use tools from OCO to optimise the loss and converge to a best fixed classifier. However

as noted in [96], the losses are not convex with respect to the re-weight vector in practice.

Hence usage of OCO techniques is not fully satisfactory in their problem formulation.

In a complementary direction, [97] abandons the idea of re-weighting. Instead, they

update the parameters of a model at each round using online gradient descent and a loss

function whose expected value is assumed to be convex with respect to model parameters.

They provide dynamic regret guarantees against a sequence of changing model parameters
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in hindsight, and connects it to the variation of the true label marginals. More precisely,

they provide algorithms with
∑T

t=1 Lt(wt)−Lt(w
∗
t ) to be well controlled where w∗

t is the

best model parameter to be used at round t and Lt is a (population level) loss function.

However, there are some scopes for improvement in this direction as well. For example,

the convexity assumption can be easily violated when working with interpretable models

based on decision trees, or if we want to retrain few final layers of a deep classifier

based on new data. Further as noted in the experiments (Sec. 8.4), their methods based

on retraining the classifier require more data than re-weighting based methods. Our

experiments also indicate that re-weighting can be computationally cheaper than re-

training without sacrificing the classifier accuracy.

Thus, on the one hand, the work of [96] allows us to use the power of expressive

initial classifiers while only controlling the static regret against a fixed hypothesis. On

the other hand, the work of [97] allows controlling the dynamic regret while limiting the

flexibility of deployed models. We next provide our framework for handling label shifts

that achieves the best of both worlds by controlling the dynamic regret while allowing

the use of expressive blackbox models.

In summary, we estimate the sequence of online label marginals and leverage the idea

of re-weighting an initial classifier as in [96]. In particular, given an estimate q̂t(y) of

the true label marginal at round t, we compute the output of the re-weighted classi-

fier ft as
q̂t(y)
q0(y)

f0(y|x)/Z where Z =
∑

y
q̂t(y)
q0(y)

f0(y|x). However, to get around the issue of

non-convexity, we separate out the process of estimating the re-weighting vectors via a

reduction to online regression which is a well-defined and convex problem with computa-

tionally efficient off-the-shelf algorithms readily available. Second, and more importantly,

[96] competes with the best fixed re-weighted hypothesis. However, in the problem set-

ting of label shift, the true label marginals are in fact changing. Hence, we control the

dynamic regret against a sequence of re-weighted hypotheses in hindsight. All proofs for
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the next sub-section are deferred to App. G.1.

8.2.1 Proposed algorithm and performance guarantees

We start by presenting our assumptions. This is followed by the main algorithm for

UOLS and its performance guarantees. Similar to the treatment in [97], we assume the

following.

Assumption 1. Assume access to the true label marginals q0 ∈ ∆K of the offline training

data and the true confusion matrix C ∈ RK×K with Cij = Ex∼Q0(·|y=j),f0(i|x). Further

the minimum singular value σmin(C) = Ω(1) is bounded away from zero.

As noted in prior work [91, 95], the invertibility of the confusion matrix holds when-

ever the classifier f0 has good accuracy and the true label marginal q0 assigns a non-zero

probability to each label. Though we assume perfect knowledge of the label marginals of

the training data and the associated confusion matrix, this restriction can be easily re-

laxed to their empirical counterparts computable from the training data. The finite sam-

ple error between the empirical and population quantities can be bounded by O(1/
√
N)

where N is the number of initial training data samples. To this end, we operate in the

regime where the time horizon obeys T = O(
√
N). However, similar to [97], we make

this assumption mainly to simplify presentation without trivializing any aspect of the

OLS problem.

Next, we present our assumptions on the loss function. Let p ∈ ∆K . Consider a

classifier that predicts a label ŷ(x), by sampling ŷ(x) according to the distribution that

assigns a weight p(i)
q0(i)

f0(i|x) to the label i. Define Lt(p) to be any non-negative loss that

ascertains the quality of the marginal p. For example, Lt(p) = E[ℓ(ŷ(x), y)] where the

expectation is taken wrt the randomness in the draw (x, y) ∼ Qt and in sampling ŷ(x).

Here ℓ is any classification loss (e.g. 0-1, cross-entropy).
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Assumption 2 (Lipschitzness of loss functions). LetD be a compact and convex domain.

Assume that Lt(p) is G Lipschitz with p ∈ D ⊆ ∆K , i.e, Lt(p1) − Lt(p2) ≤ G∥p1 − p2∥2
for any p1, p2 ∈ D. The constant G need not be known ahead of time.

We show in Lemmas 229 and 230 that the above assumption is satisfied under mild

regularity conditions. Furthermore, the prior works such as [96] and [97] also require that

losses are Lipschitz with a known Lipschitz constant apriori to set the step sizes for their

OGD based methods.

The main goal here is to design appropriate re-weighting estimates such that the

dynamic regret :

Rdynamic(T ) =
T∑

t=1

Lt(q̂t)− Lt(qt) ≤
T∑

t=1

G∥q̂t − qt∥2 (8.2)

is controlled where q̂t ∈ ∆K is the estimate of the true label marginal qt. Thus we have

reduced the problem of handling OLS to the problem of online estimation of the true

label marginals.

Under label shift, we can get an unbiased estimate of the true marginals at any round

via the techniques in [91, 94, 93]. More precisely, st = C−1f0(xt) has the property that

E[st] = qt (see Lemma 233). Further, the variance of the estimate st is bounded by

1/σ2
min(C). Unfortunately, these unbiased estimates can not be directly used to track

the moving marginals qt. This is because the total squared error
∑T

t=1E[∥st − qt∥22]

grows linearly in T as the sum of the variance of the point-wise estimates accumulates

unfavorably over time.

To get around these issues, one can use online regression algorithms such as FLH

[23] with online averaging base learners or the Aligator algorithm [71]. These algorithms

use ensemble methods to (roughly) output running averages of st where the variation

in the true label marginals is small enough. The averaging within intervals where the
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true marginals change slowly helps to reduce the overall variance while injecting only

a small bias. We use such online regression oracles to track the moving marginals and

re-calibrate the initial classifier. Overall, Algorithm 2 summarizes our method which has

the following performance guarantee.

Theorem 73. Suppose we run Algorithm 2 with the online regression oracle ALG as

FLH-FTL (App. G.4) or Aligator [71]. Then under Assumptions 1 and 2, we have

E[Rdynamic(T )] = Õ

(
K1/6T 2/3V

1/3
T

σ
2/3
min(C)

+

√
KT

σmin(C)

)
, (8.3)

where VT :=
∑T

t=2 ∥qt− qt−1∥1 and the expectation is taken with respect to randomness in

the revealed co-variates. Further, this result is attained without prior knowledge of VT .

Remark 74. We emphasize that any valid online regression oracle ALG can be plugged

into Algorithm 2. This implies that one can even use transformer-based time series

models to track the moving marginals qt. Further, we have the flexibility of choosing the

initial classifier to be any black-box model that outputs a distribution over the labels.

Remark 75. Unlike prior works such as [96, 97], we do not need a pre-specified bound

on the gradient of the losses. Consequently Eq.(8.2) holds for the smallest value of the

Lipschitzness coefficient G, leading to tight regret bounds. Further, the projection step in

Line 2 of Algorithm 2 is done only to safeguard our theory against pathological scenarios

with unbounded Lipschitz constant for losses. In our experiments, we do not perform

such projections.

We next show that the performance guarantee in Theorem 73 is optimal (modulo

factors of log T ) in a minimax sense.

Theorem 76. Let VT ≤ 64T . There exists a loss function, a domain D (in Assumption

2), and a choice of adversarial strategy for generating the data such that for any algorithm,
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Framework 3 Supervised Online
Label Shift (SOLS) protocol

Input: A hypothesis class H.

1: for each round t ∈ [T ] do
2: Nature samples N iid data

points xt,1:N ∈ X and yt,1:N ∈
Y , with each (xt,i, yt,i) ∼
Qt; xt,1:N is revealed to the
learner.

3: For each i ∈ [N ], learner pre-
dicts a label ft(xt,i).

4: The label yt,i ∈ Y for each
i ∈ [N ] is revealed.

5: ft+1 =
A(ft, {x1:t,1:N , y1:t,1:N})
where algorithm A updates
the classifier with past data.

6: end for

Algorithm 4 TrainByWeights to handle SOLS

Input: Online regression oracle ALG, hypothesis
class H
1: At round t ∈ [T ], get estimated label marginal
q̂t from ALG(s1:t−1).

2: Update the hypothesis with weighted ERM:

ft = argmin
f∈H

t−1∑

i=1

N∑

j=1

q̂t(yi,j)

q̂i(yi,j)
ℓ(f(xi,j), yi,j)

(8.4)

3: Get co-variates xt,1:N and make predictions
with ft

4: Get labels yt,1:N
5: Compute st[i] = 1

N

∑N
j=1 I{yt,j = i} for all i ∈

[K].
6: Update ALG with the empirical label

marginals st.

we have
∑T

t=1E([Lt(q̂t)]−Lt(qt)) = Ω
(

max{T 2/3V
1/3
T ,
√
T}
)
, where q̂t ∈ D is the weight

estimated by the algorithm and qt ∈ D is the label marginal at round t chosen by the

adversary. Here the expectation is taken with respect to the randomness in the algorithm

and the adversary.

8.3 Supervised Online Label Shift

In this section, we focus on the SOLS problem where the labels are revealed to

the learner after it makes decisions. Framework 3 summarizes our setup. Let f ∗
t :=

argminf∈H Lt(f) be the population minimiser. We aim to control the dynamic regret

against the best sequence of hypotheses in hindsight:

RH
dynamic(T ) =:

T∑

t=1

Lt(ft)− Lt(f
∗
t ) . (8.5)

135



Online Unsupervised Domain Adaptation under Label Shift Chapter 8

If the SOLS problem is convex, it reduces to OCO [59, 98] and existing works provide

Õ(T 2/3V
1/3
T ) dynamic regret guarantees [27]. However, in practice, since loss functions

are seldom convex with respect to model parameters in modern machine learning, the

performance bounds of OCO algorithms cease to hold true. In our work, we extend

the generalization guarantees of ERM from statistical learning theory [103] to the SOLS

problem. All proofs of next sub-section are deferred to App. G.3.

8.3.1 Proposed algorithms and performance guarantees

We start by providing a simple initial algorithm whose computational complexity and

flexibility will be improved later. Note that due to the label shift assumption, for any

j, t ∈ [T ], we have E(x,y)∼Qt [ℓ(f(x), y)] = E(x,y)∼Qj

[
qt(y)
qj(y)

ℓ(f(x), y)
]

. Here we assume that

the true label marginals qt(y) > 0 for all t ∈ [T ] and all y ∈ [K]. Based on this, we propose

a simple weighted ERM approach (Algorithm 4) where we use an online regression oracle

to estimate the label marginals from the (noisy) empirical label marginals computed with

observed labeled data. With weighted ERM and plug-in estimates of importance weights,

we can obtain our classifier ft. One can expect that by adequately choosing the online

regression oracle ALG, the risk of the hypothesis ft computed will be close to that of f ∗
t .

Here the degree of closeness will also depend on the number of data points seen thus far.

Consequently, Algorithm 4 controls the dynamic regret (Eq.(8.5)) in a graceful manner.

We have the following performance guarantee:

Theorem 77. Suppose the true label marginal satisfies mint,k qt(k) ≥ µ > 0. Choose

the online regression oracle in Algorithm 4 as FLH-FTL (App. G.4) or Aligator from

[71] with its predictions clipped such that q̂t[k] ≥ µ. Then with probability at least 1− δ,

Algorithm 4 produces hypotheses with RH
dynamic = Õ

(
T 2/3V

1/3
T +

√
T log(|H|/δ)

)
, where

VT =
∑T

t=2 ∥qt − qt−1∥1. Further, this result is attained without any prior knowledge of
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the variation budget VT .

The above rate contains the sum of two terms. The second term is the familiar rate

seen in the supervised statistical learning theory literature under iid data [103]. The first

term reflects the price we pay for adapting to distributional drift in the label marginals.

While we prove this result for finite hypothesis sets, the extension to infinite sets is direct

by standard covering net arguments [104].

Remark 78. Theorem 77 requires that the estimates of the label marginals to be clipped

from below by µ. This is done only to facilitate theoretical guarantees by enforcing that

the importance weights used in Eq.(8.4) do not become unbounded. However, note that

only the labels we actually observe enters the objective in Eq.(8.4). In particular, if a

label has very low probability of getting sampled at a round, then it is unlikely that it

enters the objective. Due to this reason, in our experiments, we haven’t used the clipping

operation (see Section 8.4 and Appendix G.4 for more details).

The proof of the theorem uses concentration arguments to establish that the risk of the

hypothesis ft is close to the risk of the optimal f ∗
t . However, unlike the standard offline

supervised setting with iid data, for any fixed hypothesis, the terms in the summation of

Eq.(8.4) are correlated through the estimates of the online regression oracle. We handle

it by introducing uncorrelated surrogate random variables and bounding the associated

discrepancy. Next, we show (near) minimax optimality of the guarantee in Theorem 77.

Theorem 79. Let VT ≤ T/8. There exists a choice of hypothesis class, loss function, and

adversarial strategy of generating the data such that RH
dynamic = Ω

(
T 2/3V

1/3
T +

√
T log(|H|)

)
,

where the expectation is taken with respect to randomness in the algorithm and adversary.

Remark 80. Though the rates in Theorems 76 and 79 are similar, we note that the

corresponding regret definitions are different. Hence the minimax rates are not directly

comparable between the supervised and unsupervised settings.
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Even-though Algorithm 4 has attractive performance guarantees, it requires retrain-

ing with weighted ERM at every round. This can be computationally expensive. To

alleviate this issue, we design a new online change point detection algorithm (Algorithm

7 in App. G.2) that can adaptively discover time intervals where the label marginals

change slow enough. We show that the new online change point detection algorithm can

be used to significantly reduce the number of retraining steps without sacrificing statisti-

cal efficiency (up to constants). We defer the exact details to App. G.2. We remark that

our change point detection algorithm is applicable to general online regression problems

and hence can be of independent interest to online learning community.

Remark 81. Algorithm 7 helps to reduce the run-time complexity. However, both

Algorithms 4 and 7 have the drawback of storing all data points accumulated over the

online rounds. This is reminiscent to FTL / FTRL type algorithms from online learning.

We leave the task of deriving theoretical guarantees with reduced storage complexity

under non-convex losses as an important future direction.

8.4 Experiments

Code is publicly available at https://github.com/Anon-djiwh/OnlineLabelShift.

8.4.1 UOLS Setup and Results

Setup Following the dataset setup of [97], we conducted experiments on synthetic

and common benchmark data such as MNIST [105], CIFAR-10 [106], Fashion [107],

EuroSAT [108], Arxiv [109], and SHL [110, 111]. For each dataset, the original data is

split into labeled data available during offline training and validation, and the unlabeled

data that we observe during online learning. We experiment with varying sizes of holdout

offline data which is used to obtain the confusion matrix and update the model parameters
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Figure 8.2: Results on the UOLS problem. (a) and (b): Ablation on CIFAR10
with monotone shift over sizes of holdout data used to update model parameters
and compute confusion matrix, with amount of training data held fixed. FLH-FTL
(ours) outperforms all other alternatives throughout in classification error and mean
square error in label marginal estimation. Unlike the alternatives, the performance
of FLH-FTL (ours) is unaffected by the decrease in amount of holdout data. (c):
CIFAR10 results with monotone shift using varying amount of training data, with the
remaining labeled data used as holdout (total number of samples fixed to 50k). The
performance of FLH-FTL is minimally impacted by the reduction in the quantity of
holdout data, thus yielding the greatest advantage from utilizing a larger volume of
training data.

to adapt to OLS to probe the sample efficiency of all the methods. In contrast to previous

works [97, 96], we have chosen to use a smaller amount of holdout offline data for our

main experiments. We made this decision because the standard practice for deployment

involves training and validating models on training and holdout splits, respectively (e.g.,

with k-fold cross-validation). Then, the final model is deployed by training on all available

data (i.e., the union of train and holdout) with the identified hyperparameters. However,

to employ UOLS techniques in practice, practitioners must hold out data that was not

seen during training to update the model during online adaptation. Therefore, methods

that are efficient with respect to the amount of offline holdout data required might be

preferable.

For all datasets except SHL, we simulate online label shifts with four types of shifts

studied in [97]: monotone shift, square shift, sinusoidal shift, and Bernoulli shift. For SHL

locomotion, we use the real-world shift occurring over time. For architectures, we use
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Methods Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

Base 8.6±0.2 8.2±0.3 4.9±0.4 3.9±0.0 16±0 16±0 13±0 13±0 15±0 15±0 23±1 19±0

OFC 6.4±0.6 5.5±0.2 4.4±0.5 3.2±0.3 12±1 11±0 11±1 10±1 7.9±0.1 7.1±0.1 20±2 15±0

Oracle 3.7±0.8 3.9±0.2 2.5±0.5 1.5±0.1 5.4±0.5 5.8±0.1 3.9±0.3 4.1±0.1 3.7±0.2 3.6±0.1 7.7±1.0 5.1±0.1

FTH 6.5±0.6 5.7±0.3 4.5±0.6 3.3±0.2 11±0 11±0 10±0 9.6±0.0 8.5±0.3 6.9±0.4 20±1 14±0

FTFWH 6.6±0.5 5.7±0.3 4.5±0.6 3.3±0.2 11±1 11±0 9.8±0.4 9.6±0.1 8.2±0.6 6.9±0.4 20±1 14±0

ROGD 7.9±0.3 7.2±0.6 6.2±2.8 4.4±1.5 16±3 13±0 14±1 13±1 10±1 8.2±0.7 23±2 17±1

UOGD 8.1±0.6 7.5±0.6 5.4±0.6 4.0±0.0 14±0 14±1 10±1 9.8±0.7 11±2 11±2 21±1 17±1

ATLAS 8.0±1.0 7.5±0.6 5.2±0.6 3.7±0.2 13±0 13±1 10±1 9.9±0.7 12±2 12±2 21±1 16±0

FLH-FTL (ours) 5.4±0.7 5.4±0.4 4.4±0.7 3.3±0.2 10±0 11±0 9.2±0.4 9.6±0.1 7.7±0.4 7.0±0.0 19±1 14±0

Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

FTH 0.19±0.01 0.10±0.00 0.27±0.00 0.14±0.00 0.27±0.01 0.14±0.00 0.27±0.00 0.14±0.00 0.29±0.01 0.14±0.01 0.29±0.01 0.15±0.00

FTFWH 0.19±0.02 0.09±0.00 0.26±0.02 0.13±0.00 0.25±0.02 0.13±0.00 0.25±0.01 0.13±0.00 0.25±0.04 0.14±0.01 0.27±0.02 0.15±0.00

ROGD 0.29±0.03 0.24±0.01 0.41±0.08 0.37±0.06 0.39±0.04 0.30±0.05 0.43±0.04 0.35±0.03 0.37±0.02 0.30±0.01 0.34±0.03 0.28±0.01

FLH-FTL
(ours)

0.10±0.01 0.08±0.00 0.15±0.01 0.12±0.00 0.17±0.01 0.13±0.00 0.16±0.01 0.13±0.00 0.18±0.02 0.14±0.01 0.23±0.01 0.15±0.00

Table 8.1: Results for UOLS problems under sinusoidal (Sin) and Bernoulli (Ber)
shifts. Top: Classification Error. Bottom: Mean-squared error in estimating label
marginal. For both, lower is better. Across all datasets, we observe that FLH-FTL
(ours) often improves over best alternatives.

an MLP for Fashion, SHL and MNIST, Resnets [112] for EuroSAT, CINIC, and CIFAR,

and DistilBERT [113, 114] based models for arXiv. For alternate approaches, along with

a base classifier (which does no adaptation) and oracle classifier (which reweight using

the true label marginals), we make comparisons with adaptation algorithms proposed

in prior works [96, 97]. In particular, we compare with ROGD, FTH, FTFWH from

[96] and UOGD, ATLAS from [97]. For brevity, we refer to our method as FLH-FTL

(though strictly speaking, our methods are based on FLH from [23] with online averages

as base learners). We run all the online label shift experiments with the time horizon

T = 1000 and at each step 10 samples are revealed. We repeat all experiments with

3 seeds to obtain means and standard deviations of the results. For other methods
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that perform re-weighting correction on softmax predictions, we use the labeled holdout

data to calibrate the model with temperature scaling, which tunes one temperature

parameter [115]. We provide exact details about the datasets, label shift simulations,

models, and prior methods in App. G.4.

Results Overall, across all datasets, we observe that our method FLH-FTL performs

better than alternative approaches in terms of both classification error and mean squared

error for estimating the label marginal. Note that methods that directly update the model

parameters (i.e., UOGD, ATLAS) do not provide any estimate of the label marginal

(Table 8.1). UOGD and ATLAS also require offline holdout labeled data (i.e., from time

step 0) to make online updates to the model parameters. For this purpose, we use the

same labeled data that we use to compute the confusion matrix.

As we increase the holdout offline labeled dataset size for updating the model pa-

rameters (and to compute the confusion matrix), we observe that classification error and

MSE with FLH-FTL stay (relatively) constant whereas the classification errors of other

alternatives improve (Fig. 8.2). This highlights that FLH-FTL can be much more sample

efficient with respect to the size of the hold-out offline labeled data. Motivated by this

observation, we perform an additional experiment in which we increase the offline train-

ing data and observe that we can overall improve the classification accuracy significantly

with FLH-FTL (Fig. 8.2). We present results on SHL dataset with similar findings on

semi-synthetic datasets in App. G.5.5. Finally, we also experiment with a random forest

model on the MNIST dataset. Note methods that update model parameters (e.g., UOGD

and ATLAS) with OGD are not applicable here. Here, we also observe that we improve

over existing applicable alternatives (Table 8.2).
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Base Oracle ROGD FTH FTFWH
FLH-FTL
(ours)

Cl Err 18±1 6.3±1.3 19±3 14±2 14±2 13±2

MSE NA 0.0±0.0 0.3±0.0 0.3±0.0 0.3±0.0 0.2±0.0

Table 8.2: Results with a Random For-
est classifier on MNIST dataset. Note
that methods that update model pa-
rameters are not applicable here. FL-
H-FTL outperforms existing alternatives
for both accuracy and label marginal es-
timation.

CT
(base)

CT-RS (ours)
w FTH

CT-RS (ours)
w FLH-FTL

w-ERM
(oracle)

Cl Err 20.0±0.5 18.38±0.4 17.12±0.8 16.32±0.7

MSE NA 0.18±0.01 0.12±0.01 NA

Table 8.3: Results on SOLS setup on CI-
FAR10 SOLS with Bernoulli shift. CT
with RS improves over the base model
(CT) and achieves competitive perfor-
mance with respect to weighted ERM
oracle. MNIST results are similar (see
App. G.4).

8.4.2 SOLS setup and results

Setup For the supervised problem, we experiment with MNIST and CIFAR datasets.

We simulate a time horizon of T = 200. For each dataset, at each step, we observe 50

samples with Bernoulli shift. Motivated by our theoretical results with weighted ERM,

we propose a simple baseline which continually trains the model at every step instead

of starting ERM from scratch every time. We maintain a pool of all the labeled data

received till that time step, and at every step, we randomly sample a batch with uniform

label marginal to update the model. Finally, we re-weight the updated softmax outputs

with estimated label marginal. We call this method Continual Training via Re-Sampling

(CT-RS). Its relation as a close variant of weighted ERM is elaborated in App. G.4.1.

To estimate the label marginal, we try FTH and ours FLH-FTL.

Results On both datasets, we observe that empirical performance with CT-RS

improves over the naive continual training baseline. Additionally, CT-RS results are

competitive with weighted ERM while being 5–15× faster in terms of computation cost

(we include the exact computational cost in App. G.4.1). Moreover, as in UOLS setup,

we observe that FLH-FTL improves over FTH for both target label marginal estimation

and classification.
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8.5 Concluding Discussion

In this work, we focused on unsupervised and supervised online label shift settings.

For both settings, we developed algorithms with minimax optimal dynamic regret. Ex-

perimental results on both real and semi-synthetic datasets substantiate that our methods

improve over prior works both in terms of accuracy and target label marginal estimation.

In future work, we aim to expand our experiments to more real-world label shift

datasets. This chapter also motivates future work in exploiting other causal structures

(e.g. covariate shift) for online distribution shift problems.
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Chapter 9

Non-Stationary Contextual Pricing

with Safety Constraints

In this Chapter we push the development of Chapter 6. We design algorithms for proper

non-stationary OCO when the exp-concave loss belong to the generalized linear family.

Examples of such losses include linear and logistic regression. The main results are

featured via its applications to dynamic pricing.

9.1 Introduction

Feature-based dynamic pricing, or contextual pricing, is a problem where the seller

sets prices for different products based on their features and aims to maximize revenue.

In general, a customer will make her decision based on a comparison between the price

and her own valuation of the product. Formally, many existing works [116, 117, 118, 119]

adopt the following linear-feature valuation model:
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Contextual pricing. For t = 1, 2, ..., T :

1. A context xt ∈ Rd is revealed that describes a sales session (product, customer and

context).

2. The customer valuates the product as yt = x⊤t θ
∗
t +Nt using xt.

3. The seller proposes a price vt > 0 concurrently (according to xt and historical sales

records).

4. The transaction is successful if vt ≤ yt, i.e., the seller gets a reward (payment) of

rt = vt · I(vt ≤ yt).

Here T is the unknown time horizon, xt’s are adversarial features (which can be

stochastic or non-stochastic series), θ∗t ’s are hidden parameters mapping features to val-

uations linearly, and Nt’s are i.i.d. noises drawn from a known distribution D. Denote

It := I(vt ≤ yt) as the Boolean-censored feedback that equals 1 if vt ≤ yt and 0 otherwise,

and we only observe It instead of the realized yt at each round. Our goal is to maximize

the cumulative expected reward, and the regret is defined as the difference of expected

rewards between vt and the best price at each round.

Time-variant Behavior and Dynamic Regret. Comparing with existing linear con-

textual pricing problem settings [116, 117, 118] where the linear valuation parameter θ∗t

is fixed as the same θ∗ over all t, in this work we allow moderate changing of customers’

valuations: i.e. θ∗t ’s can vary over time, and the total variation
∑T−1

t=1 ∥θ∗t − θ∗t+1∥1 is

upper bounded by some CT (which could be unknown to the seller). Here we adopt the

L1-norm bound because it is a reasonable metric for capturing the non-stationarity of

the valuation mechanism: For instance, suppose each element of xt indicates the amount

of one component of this product, and therefore each element of θ∗t indicates the unit

price of this component. In this example, ∥θ∗t − θ∗t+1∥1 reflects the general price fluctu-

ations on the market, i.e., the sum of market-wise price changes over all components.
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To characterize the performance of a pricing scheme under this non-stationary setting,

we adopt the concept of dynamic regret. In this notion, we compare the performance of

vt we propose with that of the optimal pricing policy that knows the sequence of θ∗t in

advance. A rigorous definition of this dynamic regret will be presented in Section 9.2.3.

Proper Learning. Usually, the actions/strategies we are allowed to adopt are restricted

in some specific safe domains. Taking any action/strategy outside this domain would

probably cause risky, illegal or inconsistent outcomes. Our algorithm works by maintain-

ing an estimate, θt, for the true valuation parameter θ∗t at each round t, and we in turn

take θt as a parametric strategy for proposing the price vt according to a greedy policy

(see Section 9.2.3 for more details). In this work, we require that the estimate θt must

fall in a specific convex and closed domain Dt at each round t. Here Dt can be chosen

adversarially with the constraint imposed by Assumption 82. As will be explained in

Section 9.2.4, this is to address the fact that pricing strategies must conform to hard

constraints due to safety restrictions.

Universal Dynamic Regret and Proper OCO with co-variates. Next, we take a

digression and describe a general Online Convex Optimization (OCO) setting which will

play a pivotal role in solving the contextual pricing problem.
Proper OCO with co-variates. For t = 1, 2, ..., T :

1. Adversary reveals a co-variate xt ∈ Rd.

2. Learner makes a decision θ̂t in a convex domain Dt ⊂ Rd.

3. Adversary reveals a convex loss function ℓt(θ) = gt(θ
Txt).

This setting embodies OCO under a wide range of loss functions from the generalized

linear model (GLM) family for appropriate choices of gt. The co-variates xt can be

thought of as a feature that encodes valuable information about the context in round

t which can be used by the learner to make its predictions. Examples of this setting
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include (but are not limited to) linear regression and logistic regression.

The goal of the learner is to control its universal dynamic regret:

R(w1:T ) :=
T∑

t=1

ℓt(θ̂t)− ℓt(wt), (9.1)

where w1:T = {w1, w2, . . . , wT} is any comparator sequence satisfying wt ∈ Dt for all

t ∈ [T ]. This is known to be a good metric in characterizing the performance of a

learner in non-stationary environments [5]. Dynamic regret bounds are usually expressed

in literature as functions of the time horizon T and a path length that captures the

smoothness of the comparator sequence such as CT =
∑T−1

t=1 ∥wt − wt+1∥1.

9.1.1 Summary of Contributions

Our main contributions are given below.

1. We present an algorithm ProDR (Algorithm 5) that attains an optimal Õ(d3(T
1
3C

2
3
T ∨

1)) dynamic regret (modulo dependencies in d and log T ) for the setting of proper

OCO with co-variates under exp-concave losses (see Section 9.3.1).

2. We construct an algorithm PDRP (Algorithm 6) with a base learner ProDR, which

solves the non-stationary contextual pricing problem with strictly log-concave noise.

We define the dynamic regret of contextual pricing as Eq.(9.5) and show that PDRP

achieves a Õ(d3(T
1
3C

2
3
T ∨ 1)) dynamic regret guarantee (see Section 9.3.2).

3. We show that any algorithm must incur a dynamic regret of Ω(T
1
3C

2
3
T ∨ 1) in the

contextual pricing problem, which says that PDRP is minimax optimal up to d and

log T factors (see Section 9.3.3).

Novelty. Owing to the reduction of [118], the non-stationary contextual pricing problem

can be reduced to an OCO problem with co-variates and exp-concave losses. The key
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subroutine we developed — ProDR — is the first to achieve an optimal universal dynamic

regret with exp-concave losses in the proper OCO with covariate setting. ProDR makes

considerable progress towards addressing the open problem posed by [65] on the more

general version of the above problem with general exp-concave losses (rather than GLM

with known covariates) . The only existing attempt to this open problem requires the

decision set to be an L∞ ball [120], which cannot be used to handle arbitrary convex

decision sets as we do.

Summary of techniques. The key technique in deriving ProDR is a novel “transfer

theorem” which takes the algorithm of [120] (L∞ ball decision set) and converts it to

an optimal algorithm for the setting of proper OCO with co-variates under arbitrary

convex decision sets. This idea is similar in spirit to the improper-proper reduction in

the work of [121] where they consider general convex losses. However, a direct application

of their reduction scheme cannot give fast rates for exp-concave losses. To circumvent

this issue, we propose new reduction schemes that carefully take the curvature of the

losses into account thereby allowing us to derive fast and optimal dynamic regret rates

under exp-concave losses (see Section 9.3.1 for a list of technical challenges). Such a

“transfer theorem” could be of independent interest and impactful in the general context

of non-stationary online learning. That the non-stationary dynamic pricing problem can

be optimally solved using ProDR is a testament to this fact. The material of this chapter

closely follows [122].

9.2 Notations and Problem Setup

In this section, we specify necessary mathematical symbols and notations, and define

functions for algorithm design and regret analysis. We also present three examples to

illustrate the concept of proper learning in contextual pricing.
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9.2.1 Symbols and Notations.

The pricing process consists of T rounds. xt, θ
∗
t ∈ Rd, yt ∈ R, vt ∈ R+ and Nt ∈ R

denote the feature vector, the linear valuation parameter, the customer’s valuation, the

seller’s price and the noise at time t, sequentially. At each round, we receive a payoff

(reward) rt = vt · It, where the binary variable It indicates the customer’s decision, i.e.,

It = 1(vt ≤ yt).

9.2.2 Technical Assumptions

Denote a norm-bounded domain family DB
p = {θ ∈ Rd, ∥θ∥p ≤ B}. We firstly present

assumptions on domain constraints of xt and θ∗t :

Assumption 82 (Domain Constraints). Assume xt ∈ Dx where Dx ⊆ D1
2 is convex and

closed, and θ∗t ∈ Dt where every Dt ⊆ DB
2 ⊂ DB

∞ is also convex and closed. Each Dt can

be chosen adversarially and is known to the learner before time t.

Here we want the customers’ valuations to be bounded. Equivalently, we may also

assume that Dx ⊆ DB1
2 and Dt ⊆ DB/B1

2 for any B1 > 0. With these assumptions, we

know that |x⊤t θ| ≤ B, ∀θ ∈ DB
2 , t = 1, 2, . . . , T . Next, we make a reasonable assumption

on customers’ expected valuations:

Assumption 83 (Non-Negative Expected Valuation). For a customer’s valuation yt =

x⊤t θ
∗
t , we assume the expected valuation x⊤t θ

∗
t ≥ 0, t = 1, 2, . . . , T .

Now we make assumptions on the distribution of noise Nt. We firstly present the def-

initions of log-concavity and strict log-concavity on 1-dimensional distributions according

to [123].

Definition 84 (Log-concavity and strict log-concavity). A probability measure P defined

on R is said to be log-concave if and only if for any pair A,B ⊂ R of intervals, it holds
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that

P (λA+ (1− λ)B) ≥ {P (A)}λ{P (B)}1−λ,∀λ ∈ (0, 1). (9.2)

Here ”+” denotes Minkowski addition. Also, P is strictly log-concave if and only if for

any pair A,B ⊂ R of intervals, A ̸= B, it holds that

P (λA+ (1− λ)B) > {P (A)}λ{P (B)}1−λ,∀λ ∈ (0, 1). (9.3)

Then we make the following assumption:

Assumption 85 (Valuation noise distribution). At each time t = 1, 2, . . . , T , the noise

Nt is independently and identically sampled from a fixed strictly log-concave distribution

D with a twice continuously differentiable cumulative distribution function (CDF) F .

Furthermore, the first and second derivatives of the CDF, denoted as f and f ′, respec-

tively are bounded by two finite constants Bf := supω∈R f(ω) and Bf ′ := supω∈R |f ′(ω)|.

According to Definition 84, let (i)A = (−∞, x], B = (−∞, y] and (ii)A = (x,+∞), B =

(y,+∞) respectively, and we have F and (1−F ) are both strictly log-concave functions.

Existing works on contextual pricing also adopt log-concavity assumptions [117]. For a

detailed discussion on log-concave distributions, we kindly refer the audience to [124].

All of those three assumptions are supposed to hold throughout the section.

9.2.3 Functions and Key Quantities

Greedily Pricing. Here we adopt two functions defined by [118] and also make use of

their properties. Firstly, we introduce an expected reward function g(v, u) := E[rt|vt =

v, x⊤t θ
∗ = u] = v · (1 − F (v − u)) that is unimodal w.r.t. v. Secondly, we introduce

a greedily pricing function J(u) := argmaxv∈Rg(v, u). J(u) has two important proper-
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ties: On the one hand, J(u) is strictly monotonically increasing, with J ′(u) ∈ (0, 1).

Therefore, J(u) and J−1(v) are bijections, ∀u ∈ R, v > 0. On the other hand, we have

∥∇θJ(x⊤θ)∥2 = |J ′(x⊤θ)| · ∥x∥2 ≤ 1, which guarantees a low price-changing rate while

modifying parameter θ.

Restrictions on Actions/Parametric Strategies. When we take an action by pre-

senting a price vt, there always exists an θt ∈ Rd such that x⊤t θt = J−1(vt). Therefore, for

any price vt > 0, it is equivalent to firstly propose a corresponding parametric strategy θt

(satisfying x⊤t θt = J−1(vt)) and then set the price as J(x⊤t θt). Since we are approaching

the optimal price (which is J(x⊤t θ
∗)) and that θ∗t ∈ Dt, we may restrict the strategy θt

to be taken within Dt at each time t. We will explain more on the motivation of the

restrictions in Section 9.2.4.

Negative Log-likelihood. We define

ℓt(θ) = −It · log
(
1− F (vt − x⊤t θ)

)
− (1− It) log

(
F (vt − x⊤t θ)

)
(9.4)

as a negative log-likelihood function at round t. Also, we define an expected log-likelihood

function Lt := ENt [ℓt(θ)|xt, θ∗t ]. For the simplicity of notations in the following sections,

we denote ht(θ) := ∂ℓt(θ)

∂x⊤
t θ
∈ R, and we show a property of ht(θ):

Lemma 86. For θ ∈ DB
2 , there exist constants 0 < hmin ≤ hmax < +∞ such that

hmax = sup
θ∈DB

2

|ht(θ)|, hmin = inf
θ∈DB

2

|ht(θ)|,∀t = 1, 2, . . . , T.

We prove this by noticing that h(θ) is continuous and DB
2 is closed, and the details are

in Appendix H.1.1. With this lemma, we may know that ℓt(θ) is Lipschitz (see Lemma

97).
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Dynamic Regret. Finally, we define the cumulative dynamic regret :

RegT =
T∑

t=1

g(J(x⊤t θ
∗
t ), x⊤t θ

∗
t )− g(vt, x

⊤
t θ

∗
t ). (9.5)

We usually measure the regret as a function of T, d and the total variation CT :=
∑T−1

t=1 ∥θ∗t − θ∗t+1∥1.

9.2.4 Examples

Here we present three examples where the nature requires the strategies to lie in a

“safe domain”, regarding risk-taking, legal or consistency concerns.

Risk Control Adopting strategies outside a pre-defined and protected decision set can be

very risky in general. Concerning our contextual pricing problem, an extremely low price

would lead to significant loss of profit. Therefore, we have to set a lower pricing bar for

each item. At each time t, suppose the lower bar is ct > 0, and therefore our parametric

strategy θt should satisfy ct ≤ J(x⊤t θt). Since J(u) is monotonically increasing, we have

x⊤t θt ≥ J−1(ct). By intersecting {θ ∈ Rd|x⊤t θ ≥ J−1(ct)} with the L2-norm ball DB
2 , we

get a convex and compact set Dt, in which any parametric strategy θ satisfies the norm

bound and will lead to a price not less than ct given the J(x⊤t θ) greedy pricing policy.

Legal Concern There exist laws or regulations regarding the highest price of some

specific products. For each item with feature xt, suppose that we cannot set a price

exceeding ct > 0. Equivalently, the parametric strategy θt we take must satisfy vt =

J(x⊤t θt) ≤ ct. Since J(u) is monotonically increasing, this is further equivalent to x⊤t θt ≤

J−1(ct). Therefore, the restricted strategy space Dt is the intersection of {θ|x⊤t θ ≤

J−1(ct)} with the L2-norm ball DB
2 , which is a convex and compact set. Any parametric

strategy falling out of Dt would lead to either vt > ct or ∥θ∥ > B.

Price Consistency It is important for the seller to be consistent on setting prices, or
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Algorithm 5 Proper Dynamic Regret minimization (ProDR)

1: Input: Base algorithm A, barrier multiplier G′ > 0, exp-concavity factor β.
2: for t = 1, 2, . . . , T : do
3: Get iterate θ̃t from A.
4: Feature xt and proper domain Dt are revealed
5: Output θ̂t = argminθ∈Dt

|x⊤t (θ − θ̃t)|.
6: Loss ℓt is revealed.
7: Construct ℓ̂t(θ) as in Eq.(9.7) and set

ft(θ) = ℓ̂t(θ) +G′ · St(θ),

where St(θ) = minη∈Dt |∇ℓ̂t(θ̂t)⊤(η − θ)|;
8: Send ft(θ) to A as loss at time t.
9: end for

otherwise it might cause pricing discrimination. Specifically, if two identical items with

feature x occur at time t and t+1, then their prices must be close to each other. In other

words, we require |J(x⊤θt) − J(x⊤θt+1)| ≤ C, ∀x ∈ Dx ⊂ D1
2 for some constant C > 0.

For each x ∈ Dx, we may solve it and get

J−1(J(x⊤θt)− C) ≤ x⊤θt+1 ≤ J−1(C + J(x⊤θt)).

Denote this set as St(x), and we have Dt+1 ⊆ ∩x∈DxSt(x). Since θt ∈ St(x),∀x, the

intersection is non-empty.

9.3 Main Results

In this section, we present and analyse our algorithms. In Section 9.3.1, we first

study the more general problem of universal dynamic regret (Eq.(9.1)) minimization in

a proper OCO setting. Results of Section 9.3.1 will be applied in Section 9.3.2 to derive

an optimal algorithm for the non-stationary pricing problem. All omitted proofs in this

section are deferred to Appendix H.1.
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9.3.1 Dynamic Regret of ProDR

In this section, we study the Proper Dynamic Regret minimization (ProDR) algo-

rithm (Algorithm 5). We consider the protocol of proper OCO with co-variates intro-

duced in Section 9.1.

The goal of this section is to control the universal dynamic regret as defined in

Eq.(9.1). We start by listing out the assumptions we made for the OCO problem.

Assumption 87. A constant B > 0 is known such that maxθ∈Dt ∥θ∥∞ ≤ B for all t ∈ [n].

Assumption 88. The losses ℓt obey ∥∇ℓt(θ)∥2 ≤ G for all t ∈ [n] and θ ∈ Dt (recall

that Dt ⊆ DB
2 from Section 9.2.2).

Assumption 89. The losses are α exp-concave. i.e ℓt(y) ≥ ℓt(x) + ∇ℓt(x)⊤(y − x) +

α
2

(
ℓt(x)⊤(y − x)

)2
, for α > 0 and for all x, y ∈ DB

2 .

Assumption 87 puts a relatively mild constraint that a box enclosing all the decision

sets is known ahead of time. Lipschitzness assumptions like Assumption 88 are standard

in online learning. Assumption 89 states that the loss ℓt exhibits a strong curvature in

the direction of its gradients [77]. We will exploit this curvature to derive fast regret

rates.

Qualitative description of ProDR. The base algorithm A in ProDR is expected

to optimally control the dynamic regret under exp-concave losses and when the decision

set is a box: DB
∞ = {x ∈ Rd : ∥x∥∞ ≤ B}, where B is as in Assumption 87. The idea is

to perform a black-box reduction that can convert the base algorithm A to an algorithm

that attains good dynamic regret guarantee on the domains Dt. Though similar ideas

have been already explored in the work of [121], our way of constructing such reductions

for the current problem is new and interesting in its own right in the context of exp-

concave online learning. Next, we expand upon this matter highlighting the differences
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from [121]. We construct losses ft in Line 7 of ProDR where the St(θ) term acts as a

regularizer that penalizes A for predicting points outside Dt. We would like the losses

ft to be exp-concave as the base algorithm A expects. However, a direct application of

the techniques of [121] does not satisfy this property. We address this issue by carefully

constructing ft as in Line 7 of Algorithm 5 such that: 1) gradients of both ℓ̂t(θ) and St(θ)

lie in the span of co-variate xt and 2) ℓ̂t(θ) is exp-concave, meaning that it exhibits strong

curvature along the direction of xt. Now, 1 and 2 together implies that the surrogate

losses ft still remains exp-concave as it exhibits strong curvature along the direction of

its gradient (which is spanned by xt). The particular choice of ℓ̂t(θ) is found to be crucial

in preventing the exp-concavity factor of losses ft from collapsing to zero. We will show

that the dynamic regret of ProDR w.r.t. losses ℓ̂t is upper bounded by the dynamic

regret of the base algorithm A wrt losses ft which is well controlled.

We next describe the dynamic regret guarantees of Algorithm 5. We inherit all the

notations used in the algorithm description.

Theorem 90. Let β = min{α/2, 1/(8GB
√
d)} and γ = 1

4(2GB
√
dβ+1/(2

√
β))

2 and G′ =

1 + 2GBβ
√
d. Let A in ProDR algorithm be FLH-ONS instantiated with parameters

ζ = 2γ/25, G = GG′ and ϕ = B. Then ProDR (Algorithm 5) satisfes

T∑

t=1

ℓt(θ̂t)− ℓt(wt) = Õ

(
(d3γ +

d2

γ
)(T 1/3C

2/3
T ∨ 1)

)
, (9.6)

where CT :=
∑T

t=2 ∥wt−wt−1∥1 with wt ∈ Dt. a∨b := max{a, b} and Õ hides dependence

of constants G,B, α and poly-logarithmic factors of T .

Remark 91 (Adaptivity to CT ). In light of the Ω(dB2 log T ∨ d1/3T 1/3C
2/3
T B4/3) lower

bound [65], we see that the ProDR algorithm adapts optimally to the path variation CT

of the comparator sequence, which may not be known ahead of time.
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Proof. Due to the α exp-concavity of losses ℓt over the domain DB
2 and β ≤ α

2
we have

that:

ℓt(θ) ≥ ℓt(θ̂t) +∇ℓt(θ̂t)⊤(θ − θ̂t) + β
(
∇ℓt(θ̂t))⊤(θ − θ̂t)

)2
,

for any θ ∈ DB
2 . Hence following [77], we consider the linear-regression-type surrogate

losses:

ℓ̂t(θ) :=

(
∇ℓt(θ̂t)⊤(θ − θ̂t)

√
β +

1

2
√
β

)2

. (9.7)

Hence for any θ ∈ DB
2 we have that

ℓt(θ̂t)− ℓt(θ) ≤
1

4β
− ℓ̂t(θ) = ℓ̂t(θ̂t)− ℓ̂t(θ). (9.8)

where we used the fact that ℓ̂t(θ̂t) = 1
4β

.

Given that St(θ
∗
t ) = St(θ̂t) = 0 since θ∗t , θ̂t ∈ Dt, we have

ft(θ
∗
t ) = ℓ̂t(θ

∗
t ), ft(θ̂t) = ℓ̂t(θ̂t). (9.9)

Let us denote ∇ℓt(θ) = ht(θ)xt where ht(θ) = g′t(x
⊤
t θ). Now, according to the defini-
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tion of St(θ) and θ̂t, we have:

ft(θ̃t) =ℓ̂t(θ̃t) +G′ · St(θ̃t)

=ℓ̂t(θ̃t) +G′ · min
η∈Dt

|∇ℓt(θ̂t)⊤(η − θ̃t)|

=ℓ̂t(θ̃t) +G′ · min
η∈Dt

|ht(θ̂t)||x⊤t (η − θ̃t)|

=ℓ̂t(θ̃t) +G′ · |ht(θ̂t)||x⊤t (θ̂t − θ̃t)|

=ℓ̂t(θ̃t) +G′ · |∇ℓt(θ̂t)⊤(θ̂t − θ̃t)|.

(9.10)

Next we proceed to upper bound the regret w.r.t. losses ℓ̂t by the regret w.r.t. losses

ft. We need the following lemma.

Lemma 92. Under the assumptions of Theorem 90, we have that

|ℓ̂t(θ)− ℓ̂t(θ̂t)| ≤ G′|∇ℓt(θ̂t)⊤(θ − θ̂t)|, (9.11)

for any θ ∈ DB
∞ where G′ := (1 + 2GBβ

√
d).

The proof is shown in Appendix H.1.2. With this lemma, we have

ℓ̂t(θ̂t) ≤ ℓ̂t(θ̃t) +G′ · |∇ℓt(θ̂t)⊤(θ̂t − θ̃t)| = ft(θ̃t). (9.12)

Combining the above inequality with Eq.(9.9) we obtain

ℓ̂t(θ̂t)− ℓ̂t(θ∗t ) ≤ ft(θ̃t)− ft(θ∗t ). (9.13)
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Now using Eq.(9.8) along with the previous relation yields that

T∑

t=1

ℓt(θ̂t)− ℓt(θ∗t ) ≤
T∑

t=1

ft(θ̃t)− ft(θ∗t ). (9.14)

The following lemma specifies how to compute the sub-gradient of the regularizer

term St(θ) in Line 7 of Algorithm 5. Further it highlights an important property that a

sub-gradient of St(θ) lies in the span of covariate xt (recall that ∇ℓt(θ) = h(θ)xt). This

is also useful for proving the joint exp-concavity of the losses ft.

Lemma 93. The function St(θ) is convex across Rd. Denote ηt(θ) := argminη |x⊤t (η−θ)|.

When ∇ℓt(θ̂t)⊤(ηt(θ)− θ) ̸= 0, we have:

∇St(θ) =




∇ℓt(θ̂t), if ∇ℓt(θ̂t)⊤(ηt(θ)− θ) < 0

−∇ℓt(θ̂t), if ∇ℓt(θ̂t)⊤(ηt(θ)− θ) > 0.

When ∇ℓt(θ̂t)⊤(ηt(θ)− θ) = 0, we have 0 ∈ ∂St(θ).

The proof of Lemma 93 is in Appendix H.1.3. In the next lemma, we show that the

losses ft remain exp-concave with appropriate exp-concavity factor bounded away from

zero. This is the key lemma that helps to control the regret of ProDR.

Lemma 94. Define γ := 1

4(2GB
√
dβ+1/(2

√
β))

2 . We have that the surrogate losses ft are

2γ/25 exp-concave and 2GG′ Lipschitz in L2 norm across DB
∞.

As is stated earlier in this section, the intuition of this lemma comes from two facts:

(1) both ∇ℓ̂t(θ) and ∇St(θ) are in the span of xt, and (2) ℓ̂t(θ) is exp-concave. As a

result, the strong curvature of ℓ̂t(θ) along the xt direction “absorbs” the plain convexity of

St(θ) and therefore guarantees the exp-concavity of ft(θ). We defer the detailed proof to

Appendix H.1.4. Hence from [120] , FLH-ONS algorithm run with parameters ζ = 2γ/25,
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Algorithm 6 Proper Dynamic Regret Pricing (PDRP)

1: Input: Noise distribution D (including its CDF F and PDF f).
ProDR algorithm A instantiated as in Theorem 90.

2: for t = 1, 2, . . . , T : do
3: Feature xt and proper domain Dt are revealed and sent to A.
4: Get θ̂t ∈ Dt from A.
5: Seller proposes vt = J(x⊤t θ̂t) and receive It.
6: Send loss ℓt(θ) defined in Eq.(9.4) to A.
7: end for

G = GG′ and ϕ = B can be used to control

T∑

t=1

ft(θ̃t)− ft(θ
∗
t ) =Õ

(
d2(G2(G′)2B2γd+G2(G′)2B2 +

1

γ
)(T 1/3C

2/3
T ∨ 1)

)

=Õ
(
d3(T 1/3C

2/3
T ∨ 1)

)
, (9.15)

where the last line is got by plugging in the values of γ and G′ and upper bounding

further.

9.3.2 Dynamic regret of PDRP

In this section, we present our main algorithm for controlling the dynamic regret on

contextual pricing problem, the Proper Dynamic Regret Pricing (PDRP) (Algorithm

6).

Qualitative description of PDRP. [118] observes that the pricing problem can

be reduced to the setting of proper OCO with co-variates and exp-concave losses. This

observation, armed with the ProDR algorithm, naturally lends itself to the algorithm

PDRP for controlling dynamic regret of the pricing problem.

We are now ready to present regret guarantees for the non-stationary pricing problem.

Theorem 95. Consider the linear noisy contextual pricing problem defined in Section

9.1. Assume that we know the noise distribution D exactly. By properly initializing β, γ
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and G′ with pre-knowledge, PDRP (Algorithm 6) obeys RegT = Õ(d3(T
1
3C

2
3
T ∨1)), where

RegT is as defined in Eq.(9.5), Õ hides poly-logarithmic factors of T and (a ∨ b) =

max{a, b}.

Proof. We start with the lemmas that help us leverage the OCO framework of Section

9.3.1.

Lemma 96. [118] Under the assumptions in Theorem 95, for θ ∈ DB
2 , we have:

g(J(x⊤t θ
∗
t ), x⊤t θ

∗
t )− g(J(x⊤t θ), x

⊤
t θ

∗
t ) ≤ 2C

Cdown

(E[ℓt(θ)− ℓt(θ∗t )]) , (9.16)

where ℓt is defined in Eq.(9.4), C = 2Bf + (B + J(0))Bf ′ and

Cdown := inf
ω∈[−B,B+J(0)]

min

{
d2 log(1− F (ω))

dω2
,
d2 log(F (ω))

dω2

}
> 0.

So we have

RegT ≤
2C

Cdown

E[ℓt(θ̂t)− ℓt(θ∗t )]. (9.17)

Next, we record the curvature and smoothness properties of losses ℓt.

Lemma 97. Let G = hmax defined in Lemma 86. Under the assumptions in Theorem

95, for θ ∈ Dt, we have: (1) ℓt(θ) is G-Lipschitz in ∥ · ∥2 norm, and (2) ℓt(θ)
Cdown

Cexp
-

exp-concave. Here Cexp := supω∈[−B,B+J(0)] max
{

f(ω)2

F (ω)2
, f(ω)2

(1−F (ω))2

}
and Cdown is defined in

Lemma 96 .

This lemma is derived from [118] Lemma 7, and we defer the proof to Appendix

H.1.5. The lemma above implies that the losses satisfy Assumption 88 in Section 9.3.1.
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Further they satisfy Assumption 89 with exp-concavity factor of Cdown/Cexp. So we

can use the ProDR algorithm (Algorithm 5) to control the dynamic regret wrt losses

ℓt. Let β = min{Cdown/(2Cexp), 1/(8GB
√
d)} and γ = 1

4(2GB
√
dβ+1/(2

√
β))

2 and G′ =

1 +GB
√
dCdown/Cexp. Hence continuing from Eq.(9.17), we apply Theorem 90 to obtain

RegT ≤ Õ
(
d3(T 1/3C

2/3
T ∨ 1)

)
. (9.18)

This completes the proof of the theorem.

Remark 98. Although noise distributions are known as we assumed, the coefficient of

our regret upper bound depends highly on the distribution. As is indicated by [118], when

the noise Nt is an i.i.d. Gaussian noise with zero mean and σ standard deviation, this

coefficient is exponentially large w.r.t. 1
σ

as σ approaches 0, which is counter-intuitive.

9.3.3 Lower Bound on Dynamic Pricing Regret

So far, we have developed a ProDR algorithm that is suitable for domain-constraint

optimization of generalized linear model, and have constructed a PDRP algorithm to

solve the linear contextual pricing problem where PDRP achieves a Õ(d3(T
1
3C

2
3
T ∨ 1))

dynamic regret. This upper regret bound is optimal for online exp-concave optimization

as is shown by [65], but is it still optimal for our feature-based dynamic pricing setting

in specific? The answer is Yes. This dynamic regret is near-optimal up to d and log T

factors, and here we present the following theorem.

Theorem 99 (Lower dynamic regret bound). Let d = 1 in the contextual pricing problem

we consider. For any algorithm A, there exists a specific problem setting where A has to

suffer an Ω(T
1
3C

2
3
T ∨ 1) expected dynamic regret.

With this theorem, we may claim that our PDRP algorithm is near-optimal. We here
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show a proof sketch and defer the full proof to Appendix H.1.6.

Proof Sketch. The proof is developed in three steps: Firstly, we construct a hypothesis

set Θ in which there are N different {θ∗t }Tt=1 series whose total variations are upper

bounded by CT . For any pair of two different series {θ∗t }Tt=1’s in Θ, they are identical for

T/3 out of T rounds in total, and are different by some small δ for the rest 2T/3 rounds.

Secondly, we show that their corresponding feedback distributions are also “similar” to

each other under the metric of KL-divergence. Therefore, according to Fano’s Inequality,

any algorithm can hardly distinguish among these distributions. Finally, we show that

a failure of correctly distinguish the underlying distribution (i.e., the real {θ∗t }Tt=1 series)

will result in an Ω(T
1
3C

2
3
T ∨ 1) regret.

9.4 Concluding Discussion

In this work, we studied the non-stationary contextual pricing problem under safety

constraints. We first presented the ProDR algorithm for minimizing universal dynamic

regret in the framework of proper OCO with co-variates and exp-concave losses. This

contribution could be of independent interest in the context of non-stationary online

learning. As a concrete application, we constructed our pricing algorithm, PDRP, by

making use of ProDR as the base learner. We showed that PDRP attains a Õ(d3(T
1
3C

2
3
T ∨

1)) dynamic regret in our pricing problem setting. Finally, we proved that this rate is

information-theoretically optimal (modulo dependencies on d and log T ).
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Chapter 10

Optimal Dynamic Regret in LQR

Control

This chapter studies the linear quadratic regulator (LQR) control problem which is a

specific instantiation of the more general RL framework where the evolution of states

follows a predefined linear dynamics. At each round t ∈ [n] := {1, . . . , n}, the agent is at

state xt ∈ Rdx . Based on the state, the agent select a control input ut ∈ Rdu . The next

state evolves according to the law:

xt+1 = Axt +But + wt, (10.1)

where A and B are system matrices known to the agent. wt ∈ Rdx is a disturbance

term that can be selected by a potentially adaptive adversary. We assume that ∥wt∥2 ≤ 1.

This disturbance term reflects the perturbation from the ideal linear state transition

arising due to environmental factors that could be difficult to model. The loss suffered by

playing the control u at state x is given by ℓ(x, u) := xTRxx+uTRuu, where Rx, Ru ≽ 0,

that are apriori fixed and known.
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Recently there has been a surge of interest in viewing this classical LQR problem

under the lens of online learning [59]. The work of [125] places regret of the agent

against a set of benchmark policies as the central notion to evaluate learner’s performance.

Following [125, 126] we adopt the class of disturbance action policies (DAP) as our

benchmark class:

Definition 100. (Disturbance action policies, [126]). Let M = (M [i])mi=1 denote a se-

quence of matricesM [i] ∈ Rdu×dx . We define the corresponding disturbance action policies

(DAP) πM as:

πM
t (xt) = −K∞xt − qM(w1:t−1), (10.2)

where qM(w1:t−1) =
∑m

i=1M
[i]wt−i and K∞ as in Eq.(10.6). We are interested in DAPs

for which the sequence M belongs to the set:

M(m,R, γ) := {M = (M [i])mi=1 : ∥M [i]∥op ≤ Rγi−1}, (10.3)

where m,R and γ are algorithm parameters.

This class is known to be sufficiently rich to approximate many linear controllers. A

policy takes in the past history and current state as input and produces a control signal

as output. Let’s denote M1:n := (M1, . . . ,Mn) to be a sequence of DAP policies such

that at time t, the control signal is selected using the policy parameterized by Mt (see

Eq.(10.2)). We denote xM1:n
t to be the state reached at round t by playing the sequence

of policies defined by parameters M1:t−1 in the past. Similarly uM1:n
t is used to denote the

control signal produced by the policy Mt. The universal dynamic regret of the learner
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against the policy sequence M1:n is defined as:

R (M1:n) =
n∑

t=1

ℓ(xalgt , ualgt )− ℓ(xM1:n
t , uM1:n

t ), (10.4)

where (xalgt , ualgt ) denotes the state and control signal of the learner at round t. Note that

the policy sequence M1:n can be any valid sequence of DAP polices. The main focus of

this section is to design algorithms that can control the dynamic regret against a sequence

of reference policies as a function of the time horizon n and the a path variation of the

DAP parameters of the comparator M1:n. We remark that the comparator polices M1:n

can be chosen in hindsight and potentially unknown to the learner.

Whenever M1:n = (M, . . . ,M) for a fixed parameter M , we recover the notion of

static regret. However the notion of static regret is not befitting for non-stationary

environments. For example consider the scenario of controlling a drone. Suppose during

the initial half of the trajectory there is heavy wind eastwards and in the second half,

wind blows westwards. For best performance, a controller has to choose different policies

that can counter-act the wind and guide the motion properly in each half. Hence, we

aim to control the dynamic regret which allows us to be competent against a sequence

of potentially time-varying polices chosen in hindsight. We remark that our algorithm

automatically adapts to the level of non-stationarity in the hindsight sequence of policies.

Next, we take a digression and discuss a desirable property for the design of algorithms

for LQR control.

Proper learning in LQR control. Proper learning is an online learning paradigm

where the decisions of the learner are required to obey some user specified physical

limits. On the other hand, improper learning framework allows the learner to disregard

such constraints. The paradigm of improper learning may not be attractive in certain

applications where safety is a paramount concern. Improper algorithms can possibly
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take the system through trajectories that are deemed to be risky. It is desirable to

avoid such behaviours in physical systems such as self driving cars, control of medical

ventilators, robotic control [127] and cooling data centers [128]. A policy selects a control

signal ut depending on the current state xt. Given the value of current state, there

can be physical constraints on the allowable control actions. For example, imagine the

situation where we want to maintain the velocity of a drone. Depending on the current

position and other system and environmental factors (the state), one can only apply a

range of allowable torque (the control action) to the blades. Not respecting this torque

range can drain the battery quickly or can lead to catastrophic damages such as burnt

rotors. In our framework, we model this set of allowable control actions at a state as

Ft := {ut|ut = πM
t (xt) for some M ∈ M(m,R, γ)} (see Definition 100). So to ensure

safety, at each round the learner plays a control signal from the feasible set Ft thus

necessitating the need for proper learning.

Below are our contributions:

• We develop an optimal universal dynamic regret minimization algorithm for the

general mini-batch linear regression problem (see Theorem 104).

• Applying the reduction of [126] from LQR problem to online linear regression,

the above result lends itself to an algorithm for controlling the dynamic regret of

the LQR problem (Eq.(10.4)) to be Õ∗(n1/3[T V(M1:n)]2/3), where T V denotes the

total variation incurred by the sequence of DAP policy parameters in hindsight (see

Corollary 109). O∗ hides the dependencies in dimensions and system parameters.

• We show that the aforementioned dynamic regret guarantee is minimax optimal

modulo dimensions and factors of log n (see Theorem 110).

• The resulting algorithm is also strongly adaptive, in the sense that the static regret
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against a DAP policy in any local time window is O∗(log n).

Notes on novelty and impact. As discussed before, the reduction of [126] casts

LQR problem to an instance of proper online linear regression. In the context of regres-

sion, proper learning means that the decisions of the learner belongs to a user specified

convex domain. The main challenge in developing aforementioned contributions rests

on the design of an optimal universal dynamic regret minimization algorithm for online

linear regression under the setting of proper learning. We are not aware of any such

algorithms in the literature to-date and the problem remains open. However, there exists

an improper algorithm from [65] for controlling the desired dynamic regret. Given this

fact, the design of our algorithm is facilitated by coming up with new black-box reduc-

tions (see Section 10.2) that can convert an improper algorithm for non-stationary online

linear regression to a proper one. There are improper to proper black-box reduction

schemes given in the influential work of [79]. However, they are developed to support

general convex or strongly convex (see Definition 103) losses. The linear regression losses

arising in our setting are exp-concave (see Definition 102) which enjoy strong curvature

only in the direction of the gradients as opposed to uniformly curved strongly convex

losses. Hence the reduction scheme of [79] is inadequate to provide fast regret rates

in our setting. In contrast, we develop novel reduction schemes that carefully take the

non-uniform curvature of the linear regression losses into account so as to facilitate fast

dynamic regret rates (see Section 10.2.2). We remark that the algorithm ProDR.control

developed in Section 10.2 can be impactful in general online learning literature. That the

non-stationary LQR problem can be optimally solved using ProDR.control is a testament

to this fact. Further our algorithm is out-of-the-box applicable to more general settings

such as non-stationary multi-task linear regression, which is beyond the current scope.

The lower bound we provide in Theorem 110 is also applicable to the more general
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problem of online non-parametric regression against a Besov space / class of Total Vari-

ation bounded functions [29] (see Section 10.3 for more details). The main contribution

here is that we provide a new lower bounding strategy that characterizes the correct

rate wrt both n and the radius (or path-variation) of the non-parametric function class.

This is in contrast with [29] who establish the correct dependency only wrt n. Deriving

dependencies wrt both n and the radius / path-variation is imperative in implying a

dynamic regret lower bound for the LQR problem. The material of this chapter closely

follows [129].

10.1 Preliminaries

We start with a brief overview of the LQR problem for the sake of completeness. The

material of this section closely follows [126]. The definitions and notations introduced in

this section will be used throughout the section.

A linear control law is given by ut = −Kxt for a controller K ∈ Rdu×dx . A linear

controller K is said to be stabilizing if ρ(A−BK) < 1 where ρ(A−BK) is the maximum

of the absolute values of the eigenvalues of A − BK. We assume that there exists a

stabilizing controller for the system (A,B). For such systems, there exists a unique

matrix P∞ which is the solution to the equation:

P = ATPA+Rx − ATPB(Ru +BTPB)−1BTPA. (10.5)

The solution P∞ is called the infinite horizon Lyapunov matrix. It is an intrinsic

property of the system (A,B) and characterizes the optimal infinite horizon cost for
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control in the absence of noise [130]. We also define the optimal state feedback controller

K∞ := (Ru +BTP∞B)−1BTP∞A, (10.6)

the steady state covariance matrix:

Σ∞ := Ru +BTP∞B, (10.7)

and the closed loop dynamics matrix: Acl,∞ := A−BK∞.

[126] shows that the problem of controlling the regret in the LQR problem can be

reduced to online linear regression problem with delays. Specifically we have the following

fundamental result due to [126].

Proposition 101. Suppose the learner plays policy of the form πalg
t (x) = −K∞x +

qM
alg
t (w1:t−1). Let the comparator policies take the form πt(x) = −K∞x+ qMt(w1:t−1) for

a sequence of matrices M1:n chosen in hindsight. Then the dynamic regret against the

policies π := (π1, . . . , πn) satisfies:

Rn(π) ≤ O(1) +
n∑

t=1

Ât(M
alg
t , wt:t+h)− Ât(Mt, wt:t+h), (10.8)

where the parameters involved in the inequality are defined as below: Ât(M,wt:t+h) :=

∥qM(w1:t−1) − q∞;h(wt:t+h)∥2Σ∞. q∞;h(wt:h+t) :=
∑t+h

i=t+1 Σ−1
∞ BT (Acl,∞)i−1−tP∞wi. h :=

2(1−γ∞)−1 log(κ2∞β
2
∗Ψ∗Γ

2
∗n

2). γ∞ := ∥I−P+∞−1/2RxP
1/2
∞ ∥1/2op . κ∞ := ∥P 1/2

∞ ∥op∥P−1/2
∞ ∥op.

β∗ := max{1, λ−1
min(Ru), λ−1

min(rx)}.

Ψ∗ = max{1, ∥A∥op, ∥B∥op, ∥Rx∥op, ∥Ru∥op}. Γ∗ := max{1, ∥P∞∥op}

Observe that the losses Ât(M,wt:t+h) := ∥qM(w1:t−1)−q∞;h(wt:t+h)∥2Σ∞ = Ât(M,wt:t+h) :=

∥Σ1/2
∞ qM(w1:t−1)−Σ

1/2
∞ q∞;h(wt:t+h)∥22 are essentially linear regression losses. The quantity
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Σ
1/2
∞ qM(w1:t−1) is a linear map from the matrix sequence M to Rdu . However, there is

one caveat in that the bias vector at round t given by Σ
1/2
∞ q∞;h(wt:t+h) is only available

at round t + h = t + O(log n). This issue of delayed feedback can be directly handled

using the delayed to non-delayed online learning reduction from [131].

10.2 Non-stationary “mini-batch” linear regression

In view of Proposition 101, the losses of interest are linear regression type losses. So

we take a digression in this section and study the problem of controlling dynamic regret

in a general linear regression setting.

10.2.1 Linear regression framework

Consider the following linear regression protocol.

• At round t, nature reveals a co-variate matrix At ∈ Rp×d.

• Learner plays zt ∈ D ⊂ Rd.

• Nature reveals the loss ft(z) = ∥Atz − bt∥22.

Under the above regression framework, we are interested in controlling the universal

dynamic regret against an arbitrary sequence of predictors u1, . . . , un ∈ D (abbreviated

as u1:n) :

Rn(u1:n) =
n∑

t=1

ft(zt)− ft(ut). (10.9)

Dynamic regret is usually expressed as a function of n and a path variational that captures

the smoothness of the comparator sequence. We will focus on the path variational defined
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by:

T V(u1:n) =
n∑

t=2

∥ut − ut−1∥1. (10.10)

Below are the list of assumptions made:

Assumption 1. Let at,i ∈ Rd be the ith row vector of At. We assume that ∥at,i∥1 ≤ α

for all t ∈ [n] and i ∈ [p]. Further ∥bt∥1 ≤ σ for all t.

Assumption 2. For any x ∈ D, ∥x∥1 ≤ χ and ∥x∥∞ ≤ R̃.

We refer this setting as mini-batch linear regression since the loss at round t can be

written as a sum of a batch of quadratic losses: ft(z) =
∑p

i=1

(
zTat,i − bt[i]

)2
.

Terminology. For a convex loss function f , we abuse the notation and take ∇f(x)

to be a sub-gradient of f at x. We denote D∞(R̃) := {x ∈ Rd : ∥x∥∞ ≤ R̃}.

Linear regression losses belong to a broad family of convex loss functions called exp-

concave losses:

Definition 102. A convex function f is α exp-concave in a domain D if for all x, y ∈ D

we have f(y) ≥ f(x) +∇f(x)T (x− y) + α
2
(∇f(x)T (x− y))2.

The losses ft(z) = ∥Atz − bt∥22 are (2R)−1 exp-concave if f(z) ≤ R for all z ∈ D (see

Lemma 2.3 in [126]).

Definition 103. A convex function f is σ strongly convex wrt ∥ · ∥2 norm in a domain

D if for all x, y ∈ D we have f(y) ≥ f(x) +∇f(x)T (x− y) + σ
2
∥x− y∥22.

We note that if the matrix At is rank deficient, then the losses ft(z) cannot be strongly

convex. Moving forward we do not impose any restrictive assumptions on the rank of

At. As mentioned in Remark 111, the covariate matrix that arise in the reduction of the

LQR problem to linear regression is not in general full rank. So we target a solution that

can handle general covariate matrices irrespective of their rank.
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10.2.2 The Algorithm

ProDR.control: Inputs - Decision set D, G > 0

1. At round t, receive wt from A.

2. Receive co-variate matrix At := [at,1, . . . , at,p]
T .

3. Play ŵt ∈ argminx∈D maxi=1,...,p |aTt,i(x− wt)|.

4. Let ℓt(w) = ft(w) +G ·St(w), where ft(w) = ∥Atw− bt∥22 and
St(w) = minx∈D maxi=1,...,p |aTt,i(x− w)|.

5. Send ℓt(w) to A.

Figure 10.1: ProDR.control: An algorithm for non-stationary and proper linear regression.

Starting point of our algorithm design is the work of [120]. They provide an algorithm

that attains optimal dynamic regret when the losses are exp-concave. However, their

setting works only in a very restrictive setup where the decision set is an L∞ constrained

box. Consequently, we cannot directly apply their results to the linear regression problem

of Section 10.2 whenever the decision set D is a general convex set.

An online learner is termed proper if the decisions of the learner are guaranteed to

lie within the feasibility set D. Otherwise it is called improper. A recent seminal work

of [79] proposes neat reductions that can convert an improper online learner to a proper

one, whenever the losses are convex. Following this line of research, we can aim to convert

the algorithm of [120] that works exclusively on box decision set to one that can support

arbitrary convex decision sets by coming up with suitable reduction schemes. How-

ever, the specific reduction scheme proposed in [79] is inadequate to yield fast dynamic

rates for exp-concave losses. Our algorithm ProDR.control (Fig.10.1, Proper Dynamic

Regret.control) is a by-product of constructing new reduction schemes to circumvent the

aforementioned problem for the case of linear regression losses. We expand upon these

details below.
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In ProDR.control, we maintain a surrogate algorithm A, which is chosen to be the

algorithm of [120] that produces iterates wt in an L∞ norm ball (box), D∞, that encloses

the actual decision set D. Since wt can be infeasible, we play ŵt obtained via a special

type of projection of wt onto D which is formulated as a min-max problem in Line 3 of

Fig.10.1. In Line 4, we construct surrogate losses ℓt to be passed to the algorithm A. The

surrogate loss penalises A for making predictions outside D. We will show (see Lemma

245 in Appendix) that the instantaneous regret satisfies ft(ŵt)− ft(ut) ≤ ℓt(wt)− ℓt(ut),

where ut ∈ D is the comparator at round t. Thus the dynamic regret of the proper

iterates ŵt wrt linear regression losses is upper bounded by the dynamic regret of the

surrogate algorithm A on the losses ℓt and box decision set.

The design of the min-max barrier St(w) is driven to ensure exp-concavity of the

surrogate losses ℓt(w) = ft(w) +G · St(w). We capture its intuition as follows. We start

by observing that since ∇2ft(w) = 2AT
t At, the linear regression losses ft exhibits strong

curvature along the row-space of At, denoted by row(At). Further we have ∇ft(w) =

2AT
t (Atw − bt) ∈ row(At). So the loss ft exhibits strong curvature along the direction

of its gradient too. This is the fundamental reason behind the exp-concavity of ft. The

min-max barrier St(w) is designed such that its gradient is guaranteed to lie in the

row(At) (see Lemma 246 in Appendix for a formal statement). So the overall gradient

∇ℓt(w) also lies in the row(At). Since the function ft already exhibits strong curvature

along row(At), we conclude that the sum ℓt(w) = ft(w) + G · St(w) exhibits strong

curvature along its gradient ∇ℓt(w). This maintains the exp-concavity of the losses ℓt

over D∞ (see Lemma 247 in Appendix). Such curvature considerations along with the

fact that St(w) has to be sufficiently large to facilitate the instantaneous regret bound

ft(ŵt)−ft(ut) ≤ ℓt(wt)− ℓt(ut) results in functional form for St(w) displayed in Fig.10.1.

Consequently the fast dynamic regret rates derived in [120] becomes directly appli-

cable. The reduction scheme used by [79] for producing proper iterates ŵt and their
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accompanying surrogate loss design ℓt also allows one to upper bound the regret wrt lin-

ear regression losses ft by the regret of the algorithm A wrt surrogate losses ℓt. However,

the surrogate loss ℓt they construct is not guaranteed to be exp-concave and consequently

not amenable to fast dynamic regret rates.

10.2.3 Main Results

We have the following guarantee for ProDR.control:

Theorem 104. Let u1:n ∈ D be any comparator sequence. In Fig.10.1, choose G

such that supw1,w2∈D∞(R̃),t∈[n] ∥At(w1 + w2) − 2bt∥1 ≤ G. Let α be as in Assumption 2.

Let L be such that supw∈D∞(R̃),j∈[p] 2∥Atw − bt∥22 + 2G2 ≤ L for all t ∈ [n]. Choose

A as the algorithm from [120] with parameters γ = 2GαR̃
√
d/8L +

√
2L and ζ =

min{ 1
16GαR̃

√
d
, 1/(4γ2)} and decision set D∞(R̃). Under Assumptions 1 and 2, a valid

of assignment of G and L are 2pχ+ 2σ and 6(pχ+ σ)2 respectively.

Then the algorithm ProDR.control yields a dynamic regret rate of

n∑

t=1

ft(ŵt)− ft(ut) = Õ(d3n1/3[T V(u1:n)]2/3 ∨ 1), (10.11)

where (a ∨ b) := max{a, b}.

Remark 105. In view of Proposition 10 in [65], the dynamic regret guarantee in Theorem

104 is optimal modulo dependencies in d and log n. Further the algorithm does not require

apriori knowledge of the path length T V(u1:n).

Proof sketch for Theorem 104. First step is to show that ft(ŵt) ≤ ℓt(wt). This

is accomplished by Lipschitzness type arguments. For any u ∈ D, one observes that

ℓt(u) = ft(u). So the instantaneous regret of ProDR.control, ft(ŵt) − ft(ut), is upper

bounded by the instantaneous regret, ℓt(wt)− ℓt(ut) of the surrogate algorithm A. The

174



Optimal Dynamic Regret in LQR Control Chapter 10

crucial step is to show the exp-concavity of the losses ℓt across D∞(R̃). For this, we

prove that there is a sub-gradient ∇St(w) that is aligned with at,j for some j ∈ [p].

This observation followed by few algebraic manipulations (see proof of Lemma 247 in

Appendix) allows us to show the exp-concavity of ℓt over D∞(R̃). Now the overall regret

can be controlled if the surrogate algorithm A provides optimal dynamic regret under

exp-concave losses and box decision sets, D∞(R̃). This is accomplished by choosing A

as the algorithm in [120] which is also strongly adaptive.

Since the surrogate algorithm A we used in Theorem 104 is strongly adaptive, we

also have the following performance guarantee in terms of static regret:

Proposition 106. Consider the instantiation of ProDR.control in Theorem 104. Then

for any time window [a, b] ⊆ [n] we have that:
∑b

t=a ft(ŵt) − infu∈D
∑b

t=a ft(u) =

Õ(d1.5 log n).

Remark 107. Theorem 104 and Proposition 106 together makes the algorithm ProDR.control

a good candidate for performing proper online linear regression in non-stationary envi-

ronments.

10.2.4 Linear regression with delayed feedback

In this section, we consider a linear regression protocol with feedback delayed by τ

time steps.

• At round t, nature reveals a co-variate matrix At ∈ Rp×d.

• Learner plays zt ∈ D ⊂ Rd.

• Nature reveals the loss ft−τ+1(z) = ∥At−τ+1z − bt−τ+1∥22.
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This delayed setting can be handled by the framework developed in [131]. Although

these authors focus on bounding the regret as a function of time horizon n, the extension

to dynamic regret bounds expressed in terms of both n and T V(u1:n) can be handled

straight-forwardly in the analysis. We include the analysis in Appendix I.1 for the sake

of completeness. The entire algorithm is as shown in Fig.10.2.

ProDR.control.delayed: Inputs- delay τ > 0

• Maintain τ separate instances of ProDR.control (Fig.10.1).
Enumerate them by 0, 1, . . . , τ − 1.

• At time t:

1. Update instance (t− 1) mod τ with loss ft−τ .

2. Predict using instance (t− 1) mod τ .

Figure 10.2: ProDR.control.delayed: An instance of delayed to non-delayed reduction
from [131]

We have the following regret guarantee for Algorithm ProDR.control.delayed.

Theorem 108. Let xt be the prediction of the algorithm in Fig. 10.2 at time t. Instan-

tiating each ProDR.control instance by the parameter setting described in Theorem 104.

Let τ be the feedback delay. We have that

n∑

t=1

ft(xt)− ft(ut) = Õ(d3τ 2/3n1/3[T V(u1:n)]2/3 ∨ τ). (10.12)

Further for any interval [a, b] ⊆ [n]:

b∑

t=a

ft(xt)− ft(u) = O(d1.5τ log n). (10.13)
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10.3 Instantiation for the LQR problem

In view of Proposition 101, the LQR problem is reduced to a mini-batch linear re-

gression problem with delayed feedback, where the delay is given by h = O(log n) in

Proposition 101. In this section, we provide explicit form of the linear regression losses

arising in the LQR problem and instantiate Algorithm ProDR.control.delayed (Fig.10.2).

First we need to define certain quantities:

For a sequence of matrices (M [i])mi=1 define flatten((M [i])mi=1) as follows: Let M
[i]
k be

the kth column of M [i].

Let’s define

zk =




Mk
1

...

Mk
dx



∈ Rdudx , (10.14)

and

flatten((M [i])mi=1) :=




z1

...

zm



∈ Rmdudx . (10.15)

For a sequence of DAP parameters M1:n, let T V(M1:n) :=
∑n

t=2

∑m
i=1 ∥M

[i]
t −M [i]

t−1∥1.

We define deflatten as the natural inverse operation of flatten. We have the following

Corollary of Theorem 108 and Proposition 101.

Corollary 109. Assume the notations in Fig.10.1 and Section 10.1. Let Σ∞ = UT
∞Λ∞U∞

be the spectral decomposition of the positive semi definite (PSD) matrix Σ∞ ∈ Rdu×du. .

Let the covariate matrix At := [wT
t−1 . . . w

T
t−m] ⊗ Λ

1/2
∞ U∞ ∈ Rdu×mdudx, where ⊗ denotes

the Kronecker product. Let the bias vector bt := Λ
1/2
∞ U∞q

∗
∞;h(wt:t+h). Let the delay factor
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of ProDR.control.delayed (Fig.10.2) be τ = h as defined in Proposition 101 and let the

decision set given to the ProDR.control instances in Fig.10.2 be the DAP space defined

in Eq.(10.3). Let zt be the prediction at round t made by the ProDR.control.delayed al-

gorithm and let Malg
t := deflatten(zt). At round t, we play the control signal ualgt (xt) =

π
Malg

t
t (xt) according to Eq.(10.2). There exists a choice of input parameters for the

ProDR.control instances in Fig.10.2 such that

R(M1:n) =
n∑

t=1

ℓ(xalgt , ualgt )− ℓ(xM1:n
t , uM1:n

t ) (10.16)

= Õ
(
m3d4d5x(du ∧ dx)(n1/3[T V(M1:n)]2/3 ∨ 1)

)
, (10.17)

where M1:n is a sequence of DAP policies where each Mt ∈ M (eq.(10.3)). Further the

algorithm ProDR.control.delayed also enjoys a strongly adaptive regret guarantee for any

interval [a, b] ⊆ [n]:

b∑

t=a

ℓ(xalgt , ualgt )− ℓ(xMt , uMt ) = Õ((mdudx)1.5 log n), (10.18)

for any fixed DAP policy M ∈M.

The following theorem provides a nearly matching lower bound.

Theorem 110. There exists an LQR system, a choice of the perturbations wt and a

DAP policy class such that:

sup
M1:n with T V(M1:n)≤Cn

E[R(M1:n)] = Ω(n1/3C2/3
n ∨ 1), (10.19)

where the expectation is taken wrt randomness in the strategies of the agent and adversary.

The proof of the above lower bound given in Appendix I.1 is interesting in its own

right. The proof is also applicable to the problem of online non-parametric regression
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against Total Variation (TV) bounded sequences [29, 65]. The lower bounding strat-

egy in [29] goes through arguments based on sequential Rademacher complexity of the

non-parametric class of TV bounded sequences. While they establish the rate wrt n as

n1/3, the correct dependency on the TV of the sequence was not provided in [29]. The

work of [65] ameliorated this issue by appealing to the standard lowerbounds from offline

non-parametric regression literature. This lower bounding route uses fairly sophisticated

arguments based on characterizing the Bernstein width of the set of Haar wavelet coef-

ficients of TV bounded sequences [20]. In contrast, we provide a lower bound capturing

the correct rate wrt both n and TV of the sequence via more direct arguments based on

constructing an explicit adversarial strategy. An elaborate outline of applying our lower

bound to the online non-parametric regression framework is given in Appendix I.1.

Remark 111. The covariate matrix At ∈ Rdu×mdudx that arise in Corollary 109 is rank

deficient whenever mdx > 1. In such cases, the linear regression losses ft(w) as in Fig.10.1

cannot be strongly convex. So the proper universal dynamic regret minimizing algorithm

for strongly convex losses from [120] is inapplicable in general except potentially for the

particular setting of m = dx = 1. Moreover, in the setting of m = dx = 1 a non-zero

strong convexity parameter can exist only if the magnitude of the perturbations |wt| are

bounded away from zero which is restrictive in its scope.

10.4 Concluding Discussion

In this section, we designed a new algorithm for online non-stochastic LQR controller.

The controller provably minimizes the regret with any oracle non-stationary sequence of

Disturbance Action controllers chosen to handle the sequence of adversarially-chosen

disturbances after they realized. We also show that no other algorithm is able to have

smaller max-regret by more than a logarithmic factor, i.e., our proposed algorithm is
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optimal. The underlying algorithm is a new development in minimizing dynamic regret in

non-stationary (minibatched) linear regression problem under the proper learning setup.

The techniques developed in this work can be of independent interest in the broader

literature of online learning. Future work include generalizing the family of loss functions

to general strongly convex losses and exp-concave losses.
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A.1 Additional Experiments
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Figure A.1: An illustration of Arrows on a linear trend which has homogeneous smoothness

The function that we generated in Figure 2.2 is a hybrid function which in the first
half is a “discretized cubic spline” with more knots closely placed towards the end. In the

second half it is a Doppler function f(t) = sin
(

2π(1+ϵ)
t/n+0.38

)
with n being the time horizon.

We observe noisy data yi = f(i/n) + zi, i = 1, ..., n and zi are iid normal variables with
σ = 1. The value of Cn for n > 60K is around 17. Hence for all n > 83521, we are under
the n1/3 regime of σ

√
log(n)/n < Cn < σn1/4.

The window size for moving averages and partition width of OGD were tuned opti-
mally for the TV class (see Appendix C for details). Figure 2.2 depicts the estimated
signals and dynamic regret averaged across 5 runs in a log log plot. The left panel illus-
trates that Arrows is locally adaptive to heterogeneous smoothness of the ground truth.
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Figure A.2: An illustration of Arrows on a step trend with abrupt inhomogeneity.

Red peaks in the figure signifies restarts. During the initial and final duration, the signal
varies smoothly and Arrows chooses a larger window size for online averaging. In the
middle, signal varies rather abruptly. Consequently Arrows chooses a smaller window
size. On the other hand, the linear smoothers OGD and MA attains a suboptimal Õ(

√
n)

regret.
In Figure A.1 and A.2 we plot the estimates and log-log regret for two more functions:

A linear function that is homogeneously smooth and less challenging and a step function
which has an abrupt discontinuity making it more inhomogeneous than linear but have
lesser inhomogeneity w.r.t hybrid signal considered in 2.3.7. Both OGD and MA were
optimally tuned for the TV class as in Appendix A.2.

The red peaks corresponds to restarts by Arrows. For linear functions we can see
that ARROWS chooses inter-restart duration/bin-widths that are constant throughout.
This is expected as a linear trend is spatially homogeneous. For the step function, we see
that Arrows restart only once since the start. Further, notice that it quickly restarts
once the bump is hit. For both of these functions, necessary scaling is done so that we
are in the n1/3 regime quite early.

A.2 Upper bounds of linear forecasters

In this section we compute the optimal batch size for Restarting OGD and optimal
window size for moving averages to yield the Õ(

√
n) regret rate.

Theorem 112. Let the feedback be yt = θt+Zt where Zt is an independent, σ-subgaussian
random variable. Let θ1:n ∈ TV(Cn). Restarting OGD with batch size of

√
n log n σ

Cn

achieves an expected dynamic regret of Õ(U2 + C2
n + σCn

√
n).

Proof. Note that in our setting with squared error losses ft(x) = (x−θt)2, the update rule
of restarting OGD reduces to computing online averages. Thus OGD essentially divides
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the time horizon n into fixed size batches and output online averages within each batch.
Our objective here is to compute the optimal batch size that minimizes the dynamic
regret.

We will bound the expected regret. Let xt be the estimate of OGD at time t. Let
batches be numbered as 1, ..., ⌈n/L⌉ where L is the fixed batch size. Let the total variation

of ground truth within batch i be Ci. Time interval of batch i is denoted by [t
(i)
h , t

(i)
l ].

Due to bias variance decomposition within a batch we have,

Ri =

t
(i)
l∑

t=t
(i)
h

E[(xt − θt)2] = (θ
t
(i)
h −1
− θ

t
(i)
h

)2 +

t
(i)
l∑

t=t
(i)
h +1

(θt − θ̄t(i)h :t−1
)2 +

σ2

t− t(i)h

, (A.1)

≤ (θ
t
(i)
h −1
− θ

t
(i)
h

)2 + LC2
i + σ2(2 + logL), (A.2)

with the convention θ0 = 0 and at start of bin our prediction is just the noisy realization
of the previous data point.

Summing across all bins gives,

⌈n/L⌉∑

i=1

Ri ≤ LC2
n + 2σ2n(2 + logL)

L
+ U2 + C2

n. (A.3)

where we have used assumption (A4) to bound the bias of the first prediction. The
above expression can be minimized by setting L =

√
n log n σ

Cn
to yield a regret bound of

O(U2 + C2 + σCn

√
n log n)

Theorem 113. Under the same setup as in Theorem 112, moving averages with window
size σ

√
n

Cn
yields a dynamic regret of O(σCn

√
n+ U2 + C2

n)

Proof. Let the window size of moving averages be denoted by m. Consider the prediction
at a time xt, t ≥ m. By bias variance decomposition we have,

E[(xt − θt)2] =

(
θi −

∑i−1
j=i−m θj

m

)2

+
σ2

m
. (A.4)

By Jensen’s inequality,

(
θi −

∑i−1
j=i−m θj

m

)2

≤
∑i−1

j=i−m(θj − θi)2
m

, (A.5)

≤
2
∑i−1

j=i−m(j − i+ 1 +m)(θj+1 − θj)2
m

,by (a+ b)2 ≤ 2a2 + 2b2.

(A.6)

Notice that the term (θi−θi−1)
2 will be multiplied by a factor m in the above bias bound
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at time point i, m − 1 times in the next time point i + 1 and so on. By summing this
bias bound across the times points, we obtain

n∑

i=m

2
∑i−1

j=i−m(j − i+ 1 +m)(θj+1 − θj)2
m

≤ 4m
n−1∑

i=1

(θi − θi+1)
2 + U2, (A.7)

≤ 4mC2
n + U2. (A.8)

The squared bias for the initial points can be bounded by.

m−1∑

i=1

(θi − θ̂(1:i−1))
2 ≤ U2 + C2

n. (A.9)

Summing the variance terms yields,

n∑

t=1

Var(xt) =
m−1∑

t=1

σ2

t
+

n∑

t=m

σ2

m
, (A.10)

≤ (1 + logm+ n)σ2

m
. (A.11)

Thus the total MSE can be minimized by setting m = σ
√
n

Cn
, we obtain a dynamic

regret bound of O(σCn

√
n+ U2 + C2

n)

A.3 Proof of useful lemmas

We begin by recording an observation that follows directly from the policy.

Lemma 114. For mth bin that spans the interval [t
(m)
h , t

(m)
l ], discovered by the policy, let

the lengths of α̂(t
(m)
h : t

(m)
l − 1) and α̂(t

(m)
h : t

(m)
l ) be k and k+ respectively. Then∑log2(k)−1

l=0 2l/2∥α̂(t
(m)
h : t

(m)
l − 1)[l]∥1 ≤ σ and

∑log2(k
+)−1

l=0 2l/2∥α̂(t
(m)
h : t

(m)
l )[l]∥1 > σ

Next we prove the marginal sub-gaussianity of the wavelet coefficients.

Lemma 115. Consider the observation model yi = θi + σzi, where zi is iid sub-gaussian
with parameter 1, i = 1, .., n. Let αi denote the wavelet coefficients of the sequence
z = pad0(y1, ...yn). Then each αi is sub-gaussian with parameter 2σ.

Proof. Without loss of generaility let’s charecterize α1. Let u = [u1, ...un, un+1, . . . , u|z|]
T

denote the first row of the orthonormal wavelet transform matrix. Then,

α1 =
n∑

i=1

yi

(
ui(1−

1

n
)−

n∑

j=1,j ̸=i

uj
n

)
. (A.12)
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Thus α1 is a differentiable function of iid sub-gaussian noise zi. We can find its Lipschtiz
constant by bounding the gradient w.r.t zi as follows,

∥∇α1(z1, ..., zn)∥2 ≤ σ

(
n∑

i=1

2u2i (1−
1

n
)2 +

2

n

n∑

j=1,j ̸=i

u2j

) 1
2

, (A.13)

≤ σ (2 + 2)
1
2 , (A.14)

= 2σ. (A.15)

By proposition 2.12 in [18] we conclude that α1 sub-gaussian with parameter 2σ.

In the next lemma, we record the uniform shrinkage property of soft-thresholding
estimator.

Lemma 116. For any interval [th, tl], let Y = pad0(yth , ..., ytl) and Θ = pad0(θth , ..., θtl).
Then |(T (HY ))i| ≤ |(HΘ)i| with probability at-least 1− 2n3−β/8 for each co-ordinate i.

Proof. Consider a fixed bin [
¯
l, l̄] with zero padded vector Y ∈ Rk. Due to sub-gaussian tail

inequality, we have |(HY )i − (HΘ)i| ≤ σ
√
β log(n) with probability at-least 1− 2/nβ/8.

Consider the case (HΘ)i ≥ σ
√
β log(n). Then both the scenarios (HY )i ≤ σ

√
β log(n)

and (HY )i > σ
√
β log(n) leads to shrinkage to a value that is smaller than |(HΘ)i|

in magnitude due to soft-thresholding with threshold set to σ
√
β log(n). Now consider

the case when 0 ≤ (HΘ)i ≤ σ
√
β log(n). Again, soft-thresholding in both scenarios

(HY )i ≤ σ
√
β log(n) and σ

√
β log(n) ≤ (HY )i ≤ (HΘ)i+σ

√
β log(n) leads to shrinkage

to a value that is smaller than |(HΘ)i| in magnitude. One can come up with a similar
argument for the case where (HΘ)i ≤ 0. Now applying a union bound across all O(n)
co-ordinates and all O(n2) bins, we get the statement of the lemma.

Lemma 117. The number of bins, M , discovered by the policy is at-most
max{1, 2n1/3C

2/3
n σ−2/3 log(n)} with probability at-least 1− 2n3−β/2.

Proof. Let Θm = [θ
(m)
1 , θ

(m)
2 , ..., θ

(m)
p ]T be the mean subtracted and zero padded ground

truth sequence values in mth bin [
¯
l, l̄] discovered by our policy. y(m) = [y

(m)
1 , y

(m)
2 , ..., y

(m)
p ]T

be the corresponding mean subtracted and zero padded observations. Note that due to
zero padding p ≤ 2(l̄ −

¯
l) and some of the last values in the vector can be zeroes.

Let αm(
¯
l : l̄) = HΘ denotes the discrete wavelet coefficient vector. We can view the

computation of the Haar coefficients as a recursion. At each level l of the recursion, the
entire length p, is divided into 2l intervals. Let the sample averages of elements of Θm

in these intervals be denoted by the sequence {θ̃1, θ̃2, ..., θ̃2l}. Let α
(l)
m ∈ R2l denotes the

vector of Haar coefficients at level l.
First note that the Haar coefficient α

(l)
m (i) = 1

2

√
p
2l

(θ̃2i − θ̃2i−1) with i = 1, ..., 2l.
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∥α(l)
m ∥21 ≤

p

2l+2




2l∑

i=1

|θ̃2i − θ̃2i−1|




2

, (A.16)

≤ pTV 2[
¯
l − 1 : l̄]

2l
, (A.17)

where TV [a, b] denotes the total variation of the true sequence in the interval [a, b]. The
last inequality holds because the total variation of the smoothed sequence must be at-
most four times the entire total variation of true sequence. The factor 4 is due to the
fact that total variation when we pad a mean zero sequence with zeroes is at-most twice
the total variation before zero padding.

We have,

1√
p

log2(p)−1∑

l=0

2l/2∥α(l)
m ∥1 ≤ log p TV [

¯
l − 1 : l̄]. (A.18)

In the policy we compute α̂m(
¯
l : l̄) = T (Hy(m)) with the soft thresholding factor of

σ
√
β log(n). From lemma 116, we have |(T (Y ))i| ≤ |(HΘ)i| ∀i ∈ [1, p] with probability

at-least 1−2n3−β/8. Since [
¯
l, l̄] is a bin discovered by policy, lemma 114 gives a lowerbound

on ∥αm(
¯
l : l̄)∥ . Putting it all together yields the relation,

σ√
p
<

1√
p

log2(p)−1∑

l=0

2l/2∥α̂(l)
m (

¯
l : l̄)∥1 ≤

1√
p

log2(p)−1∑

l=0

2l/2∥α(l)
m (

¯
l : l̄)∥1 ≤ log(p) TV [

¯
l − 1 : l̄],

(A.19)
with probability at-least 1− 2n3−β/8.
Thus the total variation in the time interval [

¯
l− 1, l̄] can be lower bounded in proba-

bility as

TV [
¯
l − 1 : l̄] >

σ√
p log n

. (A.20)

Due to assumption (A3) we have,

M∑

i=1

TV [
¯
li − 1 : l̄i] = Cn, (A.21)

where [
¯
li : l̄i] are the bins discovered by the policy.

Let pi be the padded width of bin i discovered by the policy. Then,
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Cn log n ≥
M∑

i=1

σ√
pi
, (A.22)

≥ M2σ∑M
i=1

√
pi
, (A.23)

where the last line is obtained via Jensen’s inequality. Now using Holder’s inequality

∥x∥β ≤ d
1
β
− 1

α∥x∥α for 0 < β ≤ α, x ∈ Rd with α = 1/2, β = 1 and noting that∑M
i=1 pi ≤ 2T gives,

σM2 ≤ Cn log n
M∑

i=1

√
pi, (A.24)

≤ Cn log n
√
Mn. (A.25)

Hence we get M ≤ (2n)1/3(Cn log n)2/3σ−2/3 ≤ 2n1/3C
2/3
n σ−2/3 log(n).

When Cn = 0, (A.19) implies that our policy will not restart with probability at-least
1− 2n3−β/8 making M = 1.

We restate two useful results from [31].

Lemma 118. Consider the observation model y = α+Z, where y ∈ Rk and |Zi| ≤ δ∀ i ∈
[1, k]. Let α̂δ be the soft thresholding estimator with input y and threshold δ, then

∥α̂δ − α∥2 ≤
k∑

i=1

min{α2
i , 4δ

2}. (A.26)

Lemma 119. Consider the observation model y = α+Z, where y ∈ Rk, α ∈ A and each
Zi is sub-gaussian with parameter σ2. If A is solid and orthosymmetric, then

inf
α̂

sup
α∈A

E[∥α̂− α∥2] ≥ 1

2.22
sup
A

k∑

i=1

min{α2
i , σ

2}. (A.27)

Let’s pause a moment to ponder how remarkable the above lemma is. The observa-
tions need not be even iid. Given A is solid and orthosymmetric, all that is required is
the marginal sub-gaussianity as the soft-thresholding operation works co-ordinate wise.
Now we reprove theorem 4.2 from [31] with a slight modification of threshold value in
the estimator.

Theorem 120. With probability at-least 1− 2n−β/2, under the model in lemma 119, the
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soft thresholding estimator α̂δ with δ = σ
√
β log(n) obeys

∥α̂δ − α∥2 ≤ 8.88β(1 + log(n)) inf
α̂

sup
α∈A

E[∥α̂− α∥2]. (A.28)

Proof. Consider the soft thresholding estimator α̂δ. By Gaussian tail inequality we have
P (supi |Zi| ≥ δ) ≤ 2n−β/2. Conditioning on the event supi |Zi| ≤ δ and applying lemma
118,

∥α̂δ − α∥2 ≤
k∑

i=1

min{α2
i , 4δ

2}, (A.29)

=
k∑

i=1

min{α2
i , 4βσ

2 log(n)}, (A.30)

≤ max{1, 4β log(n)}
k∑

i=1

min{α2
i , σ

2}, (A.31)

≤ (1 + 4β log(n)) sup
α∈A

k∑

i=1

min{α2
i , σ

2}, (A.32)

≤ 4β(1 + log(n)) 2.22 inf
α̂

sup
α∈A

E[∥α̂− α∥2], (A.33)

where the last line follows from lemma 119.

It can be shown that wavelet coefficients of functions residing in the TV class is
solid and orthosymmetric. As shown in lemma 115, the noisy wavelet coefficients are
marginally sub-gaussian. Thus in the coefficient space, we are under the same observation
model as in lemma 119. Using a uniform bound argument across all O(n2) bins and all
O(n) points within a bin along with lemma 115 leads to the following corollary.

Corollary 121. The soft-thresholded wavelet coefficients of re-centered and zero padded
noisy data within any interval [th, tl] satisfy relation (A.28) with probability atleast 1 −
2n3−β/8.

Next, we record an important preliminary bound that will be used in proving the
main result.

Lemma 122. With probability at-least 1− δ
2
, the total squared error for online averaging

between two arbitrarily chosen time points th and tl satisfies

tl∑

t=th

(xtht −θt)2 ≤ 4σ2 log(4n3/δ)(2+log(tl−th+1))+2(θth−1−θth)2+2

tl∑

t=th+1

(θ̄th:t−1−θt)2.

(A.34)
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Proof. Throughout this lemma we assume the notation θ0 = 0. For proving this, first we
bound the squared error for online sample averages within a bin, b[

¯
l, l̄], that starts and

ends at fixed times
¯
l and l̄ respectively. Then a uniform bound argument will be used for

bounding the squared error within any arbitrarily chosen bin. Note that b[
¯
l, l̄] represents

any fixed time interval and may not be even chosen by the policy. For t ∈ [
¯
l, l̄], consider

the prediction x̄
l
t, with same notation as used in the policy. Define a random variable Zt

as

Zt =
(x̄

l
t − θt)− (λt − θt)
σ
√

1/[t−
¯
l]1+

, (A.35)

where [x]1+ = max{1, x}, λl = θ
¯
l−1 and λt = θ̄

¯
l:t−1, ∀t >

¯
l. Zt is subgaussian with

variance parameter 1 and mean 0. Hence by sub-gaussian tail inequality, we have P (|Zt| ≥√
2 log(4/δ)) ≤ δ/2. By noting that length of a bin is O(n) and applying uniform bound

across all time points within the current bin we have

P

(
sup

¯
l≤t≤l̄

|Zt| ≥
√

2 log(4n3/δ)

)
≤ δ/2n2. (A.36)

Hence with probability at-least 1− δ/2n2,

|x̄lt − θt| ≤ |λt − θt|+ σ

√
2 log(4n3/δ)

[t−
¯
l]1+

,∀t ∈ [
¯
l, l̄]. (A.37)

So the squared error within a bin can be bounded in probability as

l̄∑

t=
¯
l

(x̄
l
t − θt)2 ≤ 2(θ

¯
l−1 − θ

¯
l)
2 + 2

l̄∑

t=
¯
l+1

(θ̄
¯
l:t−1 − θt)2 + 2

l̄∑

t=
¯
l

σ22 log(4n3/δ)

[t−
¯
l]1+

. (A.38)

Here we applied the inequality (a + b)2 ≤ 2a2 + 2b2 on (A.37). Ultimately we are inter-
ested in analyzing the MSE within a bin detected by the policy. However the observations
within a bin satisfies the restarting criterion of the policy and cannot be regarded inde-
pendent. To break free of this constraint, we uniformly bound the quantity of interest —
MSE here — across all possible bins. Noting that number of bins is O(n2) and applying
uniform bound across all bins gives the following single sided tail bound.

Let E denote the event:
supb[

¯
l:l̄](x̄

l
t − θt)2 − 2(θ

¯
l−1 − θ

¯
l)
2 − 2

∑l̄
t=

¯
l+1(θ̄

¯
l:t−1 − θt)2 − 2

∑l̄
t=

¯
l σ

2 2 log(4n
3/δ)

[t−
¯
l]1+

≥ 0.

Then,

P (E) ≤ δ/2. (A.39)

Hence with probability at-least 1− δ/2, any bin b[th : tl] satisfies (A.34).

Since (A.34) holds for any arbitrary interval of the time axis, it is particularly true
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for the bins discovered by the policy. Therefore the total squared error T of the policy is
upper bounded in probability by the sum of bin bounds of the form,

T ≤
M∑

m=1

4σ2 log(4n3/δ)(2+ log(t
(m)
l − t

(m)
h +1))+2(θ

t
(m)
h −1

− θ
t
(m)
h

)2+2

t
(m)
l∑

t=t
(m)
h +1

(θ̄
t
(m)
h :t−1

− θt)
2,

(A.40)

where the outer sum iterates over the bins and M is the total number of bins. The first
term inside the outer summation can be controlled if we can upper bound M . Now we
set out to prove our main theorem.

A.4 Proof of Theorem 1

From the discussion in section 2.1.1, the goal of bounding dynamic regret of the policy
can be achieved by bounding the total squared error of its predictions. Our solution
proceeds in two steps. First we upper bound the total squared error within a bin. Then
we construct an upper bound for the number of bins spawned by the policy. With these
two bounds in place, we bound the total squared error of the policy (A.40).

Let’s first proceed to get a bound on the last summation term in (A.40). We use a
reduction towards Follow The Leader (FTL) strategy. The term is basically the regret
incurred by an FTL game with quadratic loss function for the duration [th, tl].

Let Θ(th : tl − 1) = pad0(θth , ..., θtl−1) = [Θth , ...,Θth+k−1]
T denotes mean subtracted

the zero padded true sequence in the interval [th, tl − 1]. Then,

tl∑

t=th

(θ̄th:t−1 − θt)2 = (θ̄th:tl−1 − θtl)2 +

tl−1∑

t=th

(θ̄th:t−1 − θt)2, (A.41)

≤ (θ̄th:tl−1 − θtl)2 +

tl−1∑

t=th

(θ̄th:t−1 − θt)2
(t− th + 1)

+

tl−1∑

t=th

(θ̄th:tl−1 − θt)2, (A.42)

= (θ̄th:tl−1 − θtl)2 +

tl−1∑

t=th

(θ̄th:t−1 − θt)2
(t− th + 1)

+ ∥Θ(th : tl − 1)∥2. (A.43)

We have applied FTL reduction for online game of predicting the true sequence θth , ..., θtl−1

to get (A.43).
In the discussion below we assume that ∥Dθ1:n∥1 ≤ Cn and |θ1| ≤ U .
Now let’s try to bound the term ∥Θ(th : tl − 1)∥22. This is basically the regret of the
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best expert. By triangle inequality,

∥Θ(th : tl − 1)∥2 ≤ ∥α̂(th : tl − 1)∥21 + ∥α̂(th : tl − 1)− α(th : tl − 1)∥22, (A.44)

≤




log2(p)−1∑

l=0

2l/2∥α̂(th : tl − 1)[l]∥1




2

+ ∥α̂(th : tl − 1)− α(th : tl − 1)∥22, (A.45)

where p is the padded length.
We can base our online averaging restart rule on the output of wavelet smoother.

Suppose we decide to restart when ∥α̂(th : tl)∥1 ≥ Kn−1/3 for a constant K. Then the
first term of (A.45) gives the optimal rate of O(n1/3) when summed across all bins. But
the estimation error term ∥α̂(th : tl−1)−Θ(th : tl−1)∥2 should also be controlled. If the
smoother is minimax over any bin [th, tl], then we can hope to get minimaxity over the
entire horizon. However, the total variation inside the bin is not known to the smoother.
This is where the adaptive minimaxity of wavelet smoother comes to rescue.

Suppose F denotes the class of functions f with total variation TV (f) ≤ Cn. Let A
denote the set of all coefficients of the continuous wavelet transform of functions f ∈ F .
Then A ⊂ Θ

1/2
1,∞(Cn), where Θ

1/2
1,∞(Cn) is a Besov body as defined in [2]. The minimax

rate of estimation in this Besov body is O(n−2/3C
2/3
n σ4/3) where n is the number of

observations. However, this is the rate of convergence of the L2 function norm instead of
the discrete (input-averaged) norm that we consider here. Over the Besov spaces, these
two norms are close enough that the rates do not change (see section 15.5 of [18]). Hence
Corollary 121 can be used to control the bias.

Let ŷ(th : t) denotes the soft-thresholding estimates of the vector pad0(yth:t).
i.e ŷ(th : t) = HTT (H pad0(y(th : t))).

(θ̄th:tl−1 − θtl)2 ≤ 2(θtl−1 − θtl)2 + 2(θ̄th:tl−1 − θtl−1)
2, (A.46)

≤ 2(θtl−1 − θtl)2 + 4(ŷ(th : tl − 1)[tl − 1]− (θ̄th:tl−1 − θtl−1))
2

+ 4(ŷ(th : tl − 1)[tl − 1])2. (A.47)

Since L1 norm is greater than L2 norm, the policy’s restart rule implies that

(ŷ(th : tl − 1)[tl − 1])2 ≤ σ2 (A.48)

Combining (A.47) and (A.48), we get

(θ̄th:tl−1 − θtl)2 ≤ 2(θtl − θtl−1)
2 + γ1(tl − th)1/3 TV 2/3[th : tl] σ

4/3 + σ2, (A.49)
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where last line holds with probablity atleast 1− 2n3−β/8 due to Corollary 121. Here
γ1 is a constant which can depend logarithmically on the width tl − th.

Now let’s bound the second term in (A.43). For any t ∈ [th, tl − 1] we have,

tl−1∑

t=th

(θ̄th:t−1 − θt)2
(t− th + 1)

≤
tl−1∑

t=th

2(θt − θt−1)
2 + 2(θ̄th:t−1 − θt−1)

2

t− th + 1
, (A.50)

≤
tl−1∑

t=th

2(θt − θt−1)
2

+

tl−1∑

t=th

4(ŷ(th : t− 1)[t− 1]− (θ̄th:t−1 − θt−1))
2 + 4(ŷ(th : t− 1)[t− 1])2

t− th + 1
,

(A.51)

≤
tl−1∑

t=th

2(θt − θt−1)
2 + (γ2(tl − th)1/3 TV 2/3[th : tl] σ

4/3 + 4σ2)(1 + log n),

(A.52)

where the last line holds with probability at-least 1− 2n3−β/8.

∥Θ(th : tl − 1)∥22 ≤




log2(p)−1∑

l=0

2l/2∥α̂(th : tl − 1)[l]∥1




2

,

+ γ3(tl − th)1/3 TV 2/3[th : tl] σ
4/3, (A.53)

≤ σ2 + γ3(tl − th)1/3 TV 2/3[th : tl] σ
4/3, (A.54)

with probability at-least 1− 2n3−β/8 for some constant γ3 which can depend logarithmi-
cally on the width tl − th.

Due to Corollary 121 the bounds (A.49), (A.52), (A.54) all simultaneously holds with
probability at-least 1− 2n3−β/8. Combining these bounds, we get

tl∑

t=th

(θ̄th:t−1 − θt)2 ≤ 2∥Dθth:tl∥22 + γ(tl − th)1/3 TV 2/3[th : tl] σ
4/3 + 6σ2(1 + log(n)),

(A.55)

with probability at-least 1− 2n3−β/8 and γ = γ1 + γ2(1 + log(n)) + γ3.
When summed across all bins as in (A.40), with probability at-least 1 − 2n3−β/8 we

have,
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M∑

m=1

t
(m)
l∑

t=t
(m)
h

(θ̄
t
(m)
h :t−1

− θt)2 ≤ U2 + 2∥Dθ1:n∥22 + 6Mσ2(1 + log n)

+
M∑

m=1

γ (k(m))1/3 TV 2/3[t
(m)
h : t

(m)
l ] σ4/3, (A.56)

≤ U2 + 2∥Dθ1:n∥22 + 6Mσ2(1 + log n)

+ γσ4/3n1/3

(
M∑

m=1

k(m)

n

) 1
3
(

M∑

m=1

TV [t
(m)
h : t

(m)
l ]

) 2
3

, (A.57)

≤ U2 + 2∥Dθ1:n∥22 + 6Mσ2(1 + log n)

+ 2γσ4/3n1/3C2/3
n . (A.58)

Here k(m) is the length of Θ(t
(m)
h : t

(m)
l − 1). The term (θ

t
(m)
h −1

− θ
t
(m)
h

)2 is at-most U2

for the first bin. We arrive at (A.57) by applying Holder’s inequality xTy ≤ ∥x∥p∥y∥q
with p = 3 and q = 3/2. For both (A.57) and (A.58) we use the fact that

∑M
m=1 k

(m) ≤ 2n
where the factor 2 is an artifact of zero-padding.

By appealing to lemma 117, we have with probability at-least 1− 4n3−β/8,

M∑

m=1

t
(m)
l∑

t=t
(m)
h

(θ̄
t
(m)
h :t−1

− θt)2 ≤ U2 + 2∥Dθ1:n∥22 + 12σ2 log n

+ 24(log(n))2n1/3C2/3
n σ4/3 + γσ4/3n1/3C2/3

n . (A.59)

Next, we proceed to bound the first summation terms in (A.40). For this, we upper-
bound the number of bins to control the concentration terms in (A.40) when summed
across all bins. Essentially our decision rule should not lead to over binning. Observe
that the sum of total variations across all bins is Cn. If the decision rule guarantees
(at-least in probability) that total variation inside any detected bin is Ω̃(n−1/3), then the
number of bins is optimally O(n1/3). Such a TV lower bounding property is satisfied by
wavelet soft-thresholding as described in lemma 117. This is facilitated by the uniform
shrinkage property of soft-thresholding estimator. More precisely,

Let’s denote

Vm = 4σ2 log(2n3/δ)(2 + log(t
(m)
l − t(m)

h + 1)). (A.60)
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Then,

M∑

m=1

Vm ≤ 4σ2 log(4n3/δ)(2 + log(n)) max{1, 2n1/3C2/3
n σ−2/3 log(n)}, (A.61)

≤ 4σ2 log(4n3/δ)(2 + log(n))

+ 8n1/3C2/3
n σ4/3 log(n) log(4n3/δ)(2 + log(n)), (A.62)

with probability at-least 1 − 2n3−β/8. Here [tmh , t
m
l ] corresponds to the mth bin dis-

covered by the policy. This relation follows due to Lemma 117.
Combining (A.62) and (A.59) we have with probability at-least 1− 4n3−β/8 − δ/2

T ≤ 8n1/3C2/3
n σ4/3(2 + log(n)) log(n)

+ 4σ2 log(4n3/δ)(2 + log(n))

+ U2 + 2∥Dθ1:n∥22 + 12σ2 log n

+ 24(log(n))2n1/3C2/3
n σ4/3 + 2γσ4/3n1/3C2/3

n .

(A.63)

By observing that ∥Dθ1:n∥2 ≤ ∥Dθ1:n∥1 = Cn we get the bound,

T ≤ 8n1/3C2/3
n σ4/3(2 + log(n)) log(n)

+ 4σ2 log(4n3/δ)(2 + log(n))

+ U2 + 2C2
n + 12σ2 log n

+ 24(log(n))2n1/3C2/3
n σ4/3 + 2γσ4/3n1/3C2/3

n .

(A.64)

The above bounds holds with probability at-least 1− δ, if we set β = 24 + 8 log(8/δ)
log(n)

.
We conclude our proof by observing that the above arguments can be readily extended

to any batch smoother that satisfy the following criteria.

• Adaptive minimaxity over any interval within the time horizon.

• The restart decision rule optimally lowerbounds the total variation of any spawned
bin.

Thus our policy can be viewed as a meta-algorithm that lifts a “well behaved smoother”
to an optimal forecaster in the online setting.

Next we remark how the proof can be adapted to the setting where an extra bounded-
ness constraint is put on the ground truth. i.e, θ1:n ∈ TV (Cn) and |θi| ≤ B, i = 1, . . . , n.
Then the U2 term in (A.63) becomes B2. The additive ∥Dθ1:n∥22 term can be bounded
as,
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∥Dθ1:n∥22 =
n∑

i=2

(θi − θi−1)
2, (A.65)

≤
n∑

i=2

(|θi|+ |θi−1|)(|θi − θi−1|), (A.66)

≤ 2BCn. (A.67)

With the boundedness constraint, we also have ∥Dθ1:n∥22 ≤ 4nB2. This essentially
implies that ∥Dθ1:n∥22 ≤ min{4nB2, 2BCn}.

Thus when ∥θ1:n∥∞ ≤ B and if we set β = 24 + 8 log(8/δ)
log(n)

then with probability at-least
1− δ,

T ≤ 8n1/3C2/3
n σ4/3(2 + log(n)) log(n)

+ 4σ2 log(4n3/δ)(2 + log(n))

+B2 + 2 min{4nB2, 2BCn}+ 12σ2 log n

+ 24(log(n))2n1/3C2/3
n σ4/3 + 2γσ4/3n1/3C2/3

n .

(A.68)

A.5 Adaptive Optimality in Discrete Sobolev class

In this section, we establish that despite the fact that Arrows is designed for the
total variation class, it adapts to the optimal rates forecasting sequences that are more
regular.

The discrete Sobelov class is defined as

S(C ′
n) = {θ1:n : ∥Dθ1:n∥2 ≤ C ′

n}. (A.69)

The minimax cumulative error of nonparametric estimation in the discrete Sobolev class
is θ1:n(n2/3[C ′

n]2/3σ4/3) [33].
Recall that the discrete Total Variation class that we considered in this paper is

defined as

T (Cn) = {θ1:n : ∥Dθ1:n∥1 ≤ Cn}. (A.70)

By the norm inequalities, we know that

T (C ′
n) ⊂ S(C ′

n) ⊂ T (C ′
n

√
n).

The following refinement of our main theorem establishes that Arrows also achieves
the minimax rate in discrete Sobolev classes.
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Theorem 123. Let the feedback be yt = θt+Zt where Zt is an independent, σ-subgaussian
random variable. Let θ1:n ∈ S(C ′

n). If β = 24 + 8 log(8/δ)
log(n)

, then with probability at least

1− δ, Arrows achieves a dynamic regret of Õ(n2/3[C ′
n]2/3σ4/3 +U2 + [C ′

n]2 + σ2) where
Õ hides a logarithmic factor in n and 1/δ.

Proof. Let’s minimally expand the Sobolev ball to a TV ball of radius Cn =
√
nC ′

n. This
chosen radius of the TV ball is in accordance with the canonical scaling introduced in
[33]. This activates the following embedding:

S1(C ′
n) ⊆ TV (Cn). (A.71)

We can rewrite (A.63) as

T ≤ 8n1/3∥Dθ1:n∥2/31 σ4/3(2 + log(n)) log(n)

+ 4σ2 log(4n3/δ)(2 + log(n))

+ U2 + 2∥Dθ1:n∥22 + 12σ2 log n

+ 24(log(n))2n1/3∥Dθ1:n∥2/31 σ4/3 + 2γσ4/3n1/3∥Dθ1:n∥2/31 .

(A.72)

The above representation reveals the optimality of our policy over Sobolev class
S1(C

′
n). Enlarging the Sobolev class to the TV class that contains it does not change

the minimax rate in the smoothing setting. See, e.g., Theorem 5 and 6 of [33] and take
d = 1, and C ′

n = n−1/2Cn. By using ∥x∥1 ≤ n1/2∥x∥2 for x ∈ Rn,

∥Dθ1:n∥1
n1/2

≤ ∥Dθ1:n∥2 ≤ C ′
n =

Cn

n1/2
. (A.73)

Plugging this bound on ∥Dθ1:n∥1 in (A.72) recovers the minimax regret for the Sobolev
class of radius C ′

n. The additional term of ∥Dθ1:n∥22 — similar to as shown in in appendix
A.8 — is unavoidable in the online setting for predicting discrete Sobolev sequences.

Remark 124. Note that T (C ′
n) ⊂ S(C ′

n), therefore our lower bound from Proposition 6
still applies, which suggests that the additional [C ′

n]2 + σ2 is required and that Arrows
is an optimal forecaster for sequences in Sobolev classes as well.

A.6 Fast Computation

We describe the proof of O(n log n) runtime guarantee below.
We use an inductive argument. Without loss of generality let the start of current bin

be at time 1. Suppose we know the wavelet transform of points upto time t. Let the next
highest power of 2 for both t and t + 1 be p. We identify this value as a pivot for time
t and t + 1. Zero padding is done to hit this pivot. We can view the pad0 operation at
time t+ 1 as the difference between the padded original data and and a step signal. This
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step signal assume the value ȳ1:t+1 in time [1, t + 1] and 0 in [t + 2, p]. For computing
wavelet transform of the step, we need to update only O(log(p)) coefficients. Inputs to
the Haar transform of the padded data at times t and t+1 differs by just one co-ordinate.
Hence coefficients of only log(p) wavelets need to be changed. Each such change can be
performed in O(1) time in an incremental fashion.

Now let’s consider the case when the pivot for time t+ 1 is 2t. Suppose we know the
Haar wavelet coefficients upto time t. In this case, we need to compute the coefficients
of log(t) newly introduced wavelets that span the interval [t, 2t] since the zero padding
will force most of the new wavelet coefficients to be zero. The computation of each of
those new coefficients can be done in O(1) due to sparsity of signal in interval [t, 2t].
We also need to change the first two wavelet coefficients which can be done again in in
O(1) time. In all these cases, we only need to do soft-thresholding to the newly updated
coefficients. At the base case, when the pivot is just 2, then the computation can be in
O(1) time. Thus within a pivot p, the number of computations required is O(p log(p))
which translates to O(k(m) log(k(m))) computations within the mth bin. Summing across
all the bins yields a runtime complexity of O(n log(n)).

A.7 Regret of AOMD

In this section we prove that for any predictable sequence {Mt}nt=1, the AOMD al-
gorithm has a dynamic regret of Õ(

√
n) when applied to our problem. As discussed in

Section 2.2, consider loss functions ft(x) = (x − yt)2 and comparator sequence {ut}nt=1.
First let’s consider a deterministic noise setting [31]:

yt = θt + δ σ
√

20 log(n), (A.74)

where |δ| ≤ 1 is chosen by a clever adversary. Let’s proceed to get a bound on the
quantity Dn. The gradient of our loss function is 2(x− yt). So after observing the values
of xt and Mt, an adversary can pick a suitable δ such that each term of Dn

Dn =
n∑

t=1

∥∇ft(xt)−Mt∥2∗. (A.75)

can be made O(1). This gives an O(n) bound for Dn.
We can show that Vn is O(n) if we assume that X is compact and all of the yt is

bounded. Boundedness of yt follows from the assumptions (A3) and (A4). By appealing
to assumption (A3) we see that

Cn(u1, u2, ..., un) =
n∑

t=1

∥ut − ut−1∥. (A.76)

Cn(θ1, ..., θn) is O(1). Plugging this into the regret bound specified in [16] bounds the
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dynamic regret in our setting as Õ(
√
n).

We now relate this deterministic noise setting to the guassian setting where the obser-
vations are produced according to yt = θt+Zt, where Zt is a zero mean sub gaussian with
parameter σ2. As described in proof of theorem 120, P (supi |Zi| ≥ σ

√
20 log(n)) ≤ 2n−9.

Hence by conditioning on the event that supi |Zi| ≤ σ
√

20 log(n), the regret bound of
the deterministic noise setting applies to gaussian setting with high probability.

A.8 Lower bound proof

Proof of Proposition 6. First, a lower bound of Ω(n1/3C
2/3
n σ4/3) is given by [2] for the

smoothing estimator x1:n that has more information than we do. The argument uses the
fact that the TV-ball is sandwiched between two Besov-bodies with identical minimax
rate. To the best of our knowledge, the dependence on Cn and σ is first made explicit
in, e.g., [132].

By the fact that “the max is larger than the mean”, we have that for any prior
distribution P ,

sup
θ1:n∈TV(Cn)

E

[
n∑

t=1

(xt − θt)2
]
≥ Eθ1:n∼P

[
E[

n∑

t=1

(xt − θt)2|θ1:n]

]
.

Take P such that

1. θ1 = U with probability 0.5 and −U otherwise.

2. θ2 = θ1 + Cn with probability 0.5 and θ1 − Cn otherwise.

3. θt = θ2 for t = 3, 4, ..., n.

Note that x1 does not observe anything yet, therefore x1 = 0 is the Bayes optimal
decision rule. This gives a trivial lower bound of E [(x1 − θ1)2] ≥ U2. Now, let’s reveal θ1
to x2 an additional information, then by the same argument, we have that E [(x2 − θ2)2] ≥
C2

n.
Consider an alternative P when θ1 = ... = θn = θ. Let the noise be iid Gaussian with

variance σ2. In this case the problem reduces to a naive statistical estimation problem
with θ ∈ [−U,U ]. For each t which observes t − 1 iid samples from N (θ, σ2), then by
[133], the minimax risk for this problem is

inf
θ̂

sup
θ∈[−U,U ]

E(θ̂ − θ)2 =
σ2

t
− π2σ4

tU2
+ o(

σ4

tU2
).

Summing over t = 2, 3, ..., n, and apply the upper/lower bounds of the harmonic series,
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we have a lower bound of

E

[
n∑

t=1

(xt − θt)2
]
≥ max{0, σ2 log(n+ 1)− π2σ4

U2
(1 + log(n))(1 + o(1))}.

Take the condition that U > 2πσ and n > 3, the above expression can be further lower
bounded by 0.5σ2 log(n). Note that this bound applies even if Cn = 0.

Finally, we can similarly apply the same argument to the case when θ1 = 0 and
θ2 = ... = θn = θ and where the constraint is that −Cn ≤ θ ≤ Cn. This gives us a lower
bound of

E

[
n∑

t=2

(xt − θt)2
]
≥ max{0, σ2 log(n)− π2σ4

C2
n

(1 + log(n− 1))(1 + o(1))}.

If Cn > 2πσ and n > 3, we can again bound it below by 0.5σ2 log(n). In other word, we
get the σ2 log(n) lower bound provided that either Cn or U is greater than 2πσ.

The proof is complete by taking the average of lower bounds above. We can take
c = 1/6.

A.8.1 Lower bound with extra boundedness constraint on ground
truth

Suppose we assume |θi| ≤ B, i = 1, . . . , n. Then we can adapt the proof presented
above by considering a prior P such that θi = ϵiB, i = 1, . . . ,min{n, 1 + ⌊Cn/2B⌋}.
θi = θ1+⌊Cn/2B⌋,∀i > min{n, 1 + ⌊Cn/2B⌋}. Here ϵi are independent random variables
assuming value +1 with probability 0.5 and −1 with probability 0.5. Assume that we
reveal to learner the probability law of observations θi. Under this setting we can see
that E [

∑n
t=1(xt − θt)2] ≥ B2 + min{(n− 1)B2, BCn/2}.

Under the setting of yi = θi+ϵi for iid σ2 sub-gaussian ϵi, |θi| ≤ B and i = 1, . . . , n,[20]
establishes that minimax total squared error scales as nmin{B2, σ2}. This along with
previous discussions imply that in the bounded ground truth setting the minimax risk is

Ω̃
(

min{nB2, nσ2, n1/3C
2/3
n σ4/3}+B2 + min{nB2, BCn}+ σ2

)
.

A.8.2 Minimax regret using Arrows for bounded ground truth

From (A.68) the regret of Arrows TArrows satisfy

TArrows = Õ(n1/3C2/3
n σ4/3 + min{nB2, BCn}+ σ2). (A.77)

Let T1 be the regret of an algorithm, say A1, that predicts p ∼ N(0, σ2) at time step
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1 and zero for remaining times. Then it can seen that

T1 = O(nB2 + σ2), (A.78)

= O(nB2 + σ2 + min{nB2, BCn}). (A.79)

Let T2 be the regret of an algorithm, say A2, that predicts yt−1 at time t. Then,

T2 = O(nσ2 + min{nB2, BCn}). (A.80)

Now consider running exponentially weighted average forecaster [40] with three ex-
perts: Arrows, A1 and A2. Since squared error is exponentially concave, by Proposition
3.1 of [40] such a forecaster when run with η = 2 gives a regret T that satisfy,

T = O (min{TArrows, T1, T2}+ log 3) , (A.81)

= Õ
(
min{nB2, nσ2, n1/3C2/3

n σ4/3}+B2 + min{nB2, BCn}+ σ2 + log 3
)
. (A.82)

Thus we acheive the optimal cumulative squared error upto a small additive term of
log 3. If we look at the per round regret this additive term contributes to a small O(1/n)
quantity.

A.8.3 Connections to other lower bounds in literature

[15] derived a lower bound of O(n1/2V
1/2
n ) by packing a sequence of quadratic loss

functions. Note that this is larger than the upper bound that we attain with quadratic
losses. Though this observation seems confusing, a careful study reveals that there is no
contradiction. For constructing the lowerbound, [15] used a variational budget Vn as ,
Vn =

∑n
t=2 supx∈conv(θ1,...θn) |ft(x)−ft−1(x)| = ∑n

t=2 supx∈[θmin,θmax] |(x−θt)2−(x−θt−1)
2|,

where conv(.) denotes the convex hull of a sequence of points. This is different from the
variational budget they use in section 2 of their paper and is also different from Cn that
we use for the TV class. When applied to our setting this Vn is no longer proportional
to our Cn, instead, it is proportional to (θmax − θmin)Cn.

The packing set constructed through the functions defined in equation (A-12) of [15]

obeys (θmax− θmin) = 1
2
V

1/4
n n−1/4. So we have Cn = Vn

V
1/4
n n−1/4

= V
3/4
n n1/4, where we have

subsumed proportionality constants. Thus we see that Vn = C
4/3
n

n1/3 . Putting this into their

lowerbound recovers exactly our n1/3C2/3 bound.
The additional C2

n term that appears in our upper bound is required for any methods
that do online forecasting of sequences in the TV class. The reason why OGD appears
to not require C2

n according to [15] is because they require the θt to be bounded for all t,
while we only require θ1 to be bounded by U (see Theorem 112).

The lowerbound discussed in [25] considers a more general setting of smooth non-
strongly convex sequence of loss functions. Such a lowerbound will not apply in our more

201



Supplementary Materials for Chapter 2 Chapter A

restrictive setting.

A.9 Optimality of linear forecasters in Discrete Sobolev

class

In this section we first establish that just like Arrows, linear strategies such as OGD
and MA are also optimal forecasters for sequences in Discrete Sobolev class. Then we
substantiate it using experiments.

Theorem 125. Let the feedback be yt = θt+Zt where Zt is an independent, σ-subgaussian

random variable. Let θ1:n ∈ S(C ′
n). Restarting OGD with batch size of σ2/3(n logn)1/3

[C′
n]

2/3

achieves an expected dynamic regret of Õ(U2 + [C ′
n]2 + n2/3[C ′

n]2/3σ4/3).

Proof. We stick to the same notations as in Appendix A.2. Let’s start the analysis from
(A.1). Let t′ = t− t(i)h .

(θt − θ̄t(i)h :t−1
)2 ≤

(∑t−1

i=t
(i)
h

(θt − θi)
)2

[t′]2
, (A.83)

≤ t′

[t′]2

t−1∑

i=t
(i)
h

(θt − θi)2, (A.84)

<∼ L[C ′
i]
2. (A.85)

Hence summing across all points yields,

Ri <∼ L2[C ′
i]
2 + σ2 logL. (A.86)

So the total expected regret becomes,

⌈n/L⌉∑

i=1

Ri <∼ L2[C ′
n]2 +

n

L
σ2 logL. (A.87)

By choosing L = σ2/3(n logn)1/3

[C′
n]

2/3 we get the theorem. The additive term [C ′
n]2 arises similarly

as in proof of Theorem 112

The optimality of Moving Averages can be proved similarly.

Remark 126. Thus from Theorems 3, 9, 112, 125 we see that Arrows is minimax
over both the classes TV (Cn) and S(Cn/

√
n) while linear forecasters such as OGD and

MA require different tuning parameters to perform optimally in each class.
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Next, we give numerical experiments substantiating the claims.

Experimental results: Here we consider a doppler function f(t) = sin
(

2π(1+ϵ)
t/n+0.01

)
with
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n2/3(logn)2/3 line

Figure A.3: Regret plot for policies calibrated according to Sobolev radius for a
Doppler function

n being the time horizon. For this function C ′
n = ∥Dθ∥2 = O(Cn/

√
n) when n is suf-

ficiently large and ∥Dθ∥2 = O(Cn) for small n for a TV bound Cn = O(1). Thus for
sufficiently large n, this sequence belong to a small Sobolev ball with radius O(1/

√
n)

while the TV class that encloses that Sobolev ball as per Theorem 123 has radius O(1).
We observe noisy data yi = f(i/n) + zi, i = 1, ..., n and zi are iid normal variables

with σ = 1.Figure A.3 plots the regret averaged across 5 runs in a log log scale. The
necessary input calibration was made as per Remark 124 while running Arrows. We
can see that in this case all the algorithms perform in an optimal manner.

Specifically we identify two regimes one for small n and other for larger n. When
n is large, we obtain the minimax regret rate Õ(n1/3) due to small C ′

n which can be
considered as O(1/

√
n). Numerically for n > 105, C ′

n is less than 0.1% of Cn. For smaller
values of n where C ′

n can be not too small, we attain a regret in accordance with the
Õ(n2/3) minimax rate. Numerically when n < 104, C ′

n is atleast 8.5% of Cn which can
be considered as O(Cn) = O(1).
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B.1 Background

In this section, we compile some preliminary results well established in literature. For
brevity we only discuss the essential aspects that lead to design of our algorithm and its
proof.

B.1.1 Non-parametric regression

A popular model studied in non-parametric regression is

yi = f(i/n) + ϵi, i ∈ [n], (B.1)

where ϵi are iid subgaussian noise and for unknown f : [0, 1]→ R. The idea is to recover
the underlying ground truth f from the observations yi. Let θ1:n = [f(1/n), . . . , f(1)] ∈
Rn be the ground truth sequence. We constraint the ground truth to belong to some non-
parametric class. A well studied (dating back since 90s atleast) non-parametric family is
the class of TV k bounded sequences defined below.

TVk(Cn) := {θ1:n ∈ Rn : nk∥Dk+1θ1:n∥1 ≤ Cn}. (B.2)

The sequences in this class have a piecewise (discrete) polynomial structure. Each
stable section features a polynomial of degree atmost k. However the number of poly-
nomial sections and positions where the sequence transitions from one polynomial to
another is unknown. This makes the task of estimating ground truth from noisy obser-
vations quite challenging. Moreover as noted in [4], such sequences can be used to model
a wide spectrum of real world phenomena. TV k sequences can be obtained by sampling
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the function whose continuous TV k distance is bounded. An illustration for k = 2 is
given in Figure B.1.

The purpose of a non-parametric regression algorithm A is to estimate θ1:n given the
noisy observations yi. The most common metric used to ascertain the performance of
an algorithm in non-parametric regression literature is the squared error loss. Let the
estimates of the algorithm be ŷ1:n. The empirical risk is defined as

Rn = E

[
n∑

t=1

(ŷ1:n[t]− θ1:n[t])2

]
, (B.3)

and the minimax risk for estimating sequences in TV k(Cn) is formulated as

R∗
n = min

A
max

θ∈TV k(Cn)
Rn, (B.4)

where A is an estimation of algorithm. It is well established (see eg. [2]) that

R∗
n = Ω(n

1
2k+3C

2
2k+3
n ). (B.5)
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Figure B.1: A TV 2 bounded sequence θ1:n can be obtained by sampling the continuous
piecewise quadratic function on the left at points i/n, i ∈ [n]. On the right, we plot the
TV 2 distance of the generated sequence for various sequence lengths n. As n increases
the discrete TV 2 distance converges to a constant value given by the continous TV 2

distance of the function on left panel.

B.1.2 Wavelet Smoothing

Let Z+ = N ∪ {0} and L2[0, 1] be the space of all square integrable functions defined
in [0, 1].

Definition 127. A Multi Resolution Analysis (MRA) on interval [0,1] is a sequence of
subspaces {Vj, j ∈ Z+} satisfying
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1. Vj ⊂ Vj+1

2. f(x) ∈ Vj if and only if f(2x) ∈ Vj+1

3.
⋂

j∈Z+
= {0} and

⋃
j∈Z+

spans L2[0, 1].

4. There exists a function ϕ ∈ V0 such that {ϕ(x − k) : k ∈ Z such that ϕ(x −
k) is supported in [0,1]} is an orthonormal basis for V0

The spaces Vj form an increasing sequence of approximations to L2[0, 1]. Let ϕjk(x) =
2j/2ϕ(2jx− k). In what follows we define ϕjk(x) = 0 if it is not supported entirely within
[0, 1]. Due to properties 2 and 4 it follows that {ϕjk(x), k ∈ Z} is an orthonormal basis
for Vj. The function ϕ(x) is called the scale function.

Now let’s define wavelets. Detail subpace Wj ⊂ L2[0, 1] is defined as the orthogonal
complement of Vj in Vj+1. A function ψ(x) is defined to be a wavelet (or mother wavelet)
function if {ψjk(x) = 2j/2ψ(2jx − k), k ∈ Z+ such that ψjk(x) is supported in [0, 1]} is
an orthonormal basis for Wj ∀j ∈ Z+.

Definition 128. A wavelet function ψ(x) has regularity r if

∫ 1

0

xpψ(x)dx = 0, p = 0, . . . , r − 1. (B.6)

The CDJV construction in [41] is an algorithm that provides a scale function ϕ(x)
and wavelet function ψ(x) of a given regularity r. We record an important property of
this construction.

Proposition 129. The CDJV construction with regularity r satisfy

1. Let L = ⌈log 2r⌉. Then VL contains polynomials of degree ≤ r − 1.

2. The functions ψjk(x), j ≥ L, k ∈ Z are orthogonal to polynomials of degree atmost
r − 1.

Let n = 2J and L < J . A discrete Wavelet Transform (DWT) matrix W ∈ Rn×n is
generated by sampling the basis functions that make up VL and WL, . . . ,WJ−1 at points
i/n, i ∈ [n] and scaling them by a factor of n−1/2. The obtained matrix W can be shown
to be orthonormal. The total number of basis functions that make up the space VJ is n.

Now to provide a clearer picture, we orchestrate all the above ideas with the help of
the simple Haar wavelets.

Definition 130. The Haar MRA on [0,1] is defined by

1. The scale function ϕ(x) = 1

2. The mother wavelet ψ(x) = −1 if x ≤ 1/2; 1 otherwise.
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3. Both ϕ(x), ψ(x) are zero outside [0, 1]

Here V0 is the space of constant signals in [0, 1]. W0 is the functions of the form cψ(x)
for c ∈ R. W1 is spanned by ψ10(x) and ψ11(x) and so on. It is clear that regularity of
Haar wavelet ψ(x) is 1. In fact Haar system is a special case of CDJV construction for
regularity 1. Hence L = ⌈log 2r⌉ = 1. The space V1 is spanned by {ϕ(x), ψ(x)}. It is
easy to verify that space V1 contains all polynomials of degree r − 1 = 0 as asserted by
Proposition 129. Furthermore property 2 stated in Proposition 129 is also true.

Now let’s construct the orthonormal Haar DWT matrix W ∈ Rn×n. Let J = log n
We need to sample sample basis functions of V1,W1, . . .WJ−1 at points i/n, i ∈ [n] and
scale them by n−1/2. For simplicity we illustrate this for n = 4.

W =




1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2

1/
√

2 −1/
√

2 0 0

0 0 1/
√

2 −1/
√

2


 . (B.7)

It is noteworthy that general CDJV wavelets for regularity r ≥ 2 do not have a closed
form expression like the Haar system. The filter coefficients are computed by an efficient
iterative algorithm.

Define the soft thresholding operator as

Tλ(x) =





0 |x| ≤ λ

x− λ x > λ

x+ λ x < λ

(B.8)

If the input is a vector the operation is done co-ordinate wise.
Now we are ready to discuss the famous universal soft thresholding algorithm of [2].

WaveletSoftThreshold: Inputs - observations y1:n, subgaussian parame-
ter σ of noise in (B.1), TV order k

1. Let W ∈ Rn×n be a CDJV DWT matrix of regularity k + 1.

2. Output ŷ1:n = W TTσ
√
2 logn(W y).

We have the following proposition due to [2].

Proposition 131. The risk of the wavelet soft thresholding scheme satisfy

Rn = Õ(n
1

2k+3C
2

2k+3
n ). (B.9)
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Comparing with equation (B.5) we see that WaveletSoftThreshold is a near minimax
algorithm for estimating sequences in TV k(Cn). It optimally adapts to the unknown
radius Cn as well.

B.1.3 Vovk Azoury Warmuth (VAW) forecaster

The VAW algorithm is shown in Figure B.2. For a more elaborate discussion on this
algorithm, refer to chapter 11 of [40]. The VAW forecaster is defined as follows.

VAW algorithm

1. Adversary reveals xt ∈ Rd.

2. Agent predicts p̂t = ŵT
t−1xt with ŵt = (I +∑t

s=1 xsx
T
s )−1

∑t−1
s=1 ysxs.

3. Adversary reveals yt.

4. Incur loss (p̂t − yt)2.

Figure B.2: The VAW algorithm

We have the following guarantee on the regret bound of VAW.

Proposition 132. If the VAW forecaster is run on a sequence (x1, y1), . . . , (xn, yn) ∈
Rd × R, then for all u ∈ Rd and n ≥ 1,

n∑

t=1

(yt − p̂t)2 − (yt − uTxt) ≤
1

2
∥u∥22 +

dY 2

2
log(1 +

nX2

d
), (B.10)

where ∥xt∥2 ≤ X, and |yt| ≤ Y, t ∈ [n].

B.2 Analysis

B.2.1 Connecting wavelet coefficients and higher order TV k dis-
tance

Lemma 133. Let θ̃1:t = recenter(θ1:t) and (a, b) = pack(θ̃1:t). For an orthonormal
DWT matrix W ,

∥Wa∥2 + ∥Wb∥2√
t

≲ tk∥Dk+1θ1:t∥1, (B.11)

where we have subsumed constants that depend only on k.
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Proof. Consider the truncated power basis with knots at points 1
n
, 2
n
, . . . , 1 defined as

follows:

g1(x) = 1, g2(x) = x, . . . , gk(x) = xk (B.12)

gk+1+j(x) =

(
x− j

n

)k

+

, j = 1, . . . , n− k − 1, (B.13)

x+ = max{x, 0}. Since an t × t matrix G with entries gj(
i
t
) at the position (i, j) is

invertible, we can write any sequence θ1:t as

θ1:t[i] =
t∑

j=1

βjgj(
i

t
), (B.14)

for i = 1, . . . , t. From the above equation we see that,

tk∥Dk+1θ1:t∥1 = k!
t∑

j=k+2

|βj| (B.15)

Let θ̃1:t = recenter(θ1:t). Let g̃j = recenter(gj) where g̃j is the jth column of the
matrix G. Since ∥gj∥∞ ≤ 1 we have ∥g̃j∥∞ = O(1) where the hidden constant only
depends on k.

Thus

∥θ̃1:t∥∞ =

∥∥∥∥∥
t∑

j=k+2

βjg̃j

∥∥∥∥∥
∞

, (B.16)

≤ sup
k+2≤i≤t

∥g̃i∥∞
t∑

j=k+2

|βj|, (B.17)

≲ tk∥Dk+1θ1:t∥1, (B.18)

where the last line follows from (B.15). We subsume a constant that only depends on k.
Now using ∥x∥2 ≤

√
m∥x∥∞ for x ∈ Rm, we have

∥θ̃1:t∥2√
t

≲ tk∥Dk+1θ1:t∥1. (B.19)

We have thus established a lower-bound on the TV using the energy of the OLS
residuals. For a vector z let (x,y) = pack(z). We have the following relations,

209



Supplementary Materials for Chapter 3 Chapter B

∥z∥2 ≥
√
∥x∥22 + ∥y∥22

2
, (B.20)

≥ ∥x∥2 + ∥y∥2
2

, (B.21)

where the last line follows from Jensen’s inequality and the concavity of
√· function.

B.2.2 Bounding the Regret

Our proof strategy falls through the following steps.

1. Obtain a high probability bound of bias variance decomposition type on the total
squared error incurred by the policy within a bin.

2. Bound the variance by optimally bounding the number of bins spawned.

3. Bound the bias using the restart criterion and adaptive minimaxity of soft-thresholding
estimator [2].

Lemma 134. (bias-variance bound)) Let E[ŷt] = pt. For any bin [th, tl] with th ≥ k
discovered by the policy, we have with probability atleast 1− δ/2

tl∑

t=th

(ŷt − θ1:n[t])2 ≤
t̄l∑

t=th

2(pt − θ1:n[t])2 + 4σ2(k + 1) log

(
1 +

n2k+3

k + 1

)
log(4n3/δ).

(B.22)

Proof. First let’s consider an arbitrary interval [
¯
l, l̄] such that

¯
l ≥ k. We proceed to

bound the bias and variance of predictions made by a VAW forecaster. Note that the bin
[
¯
l, l̄] is arbitrary and may not be an interval discovered by the policy. The predictions

made by VAW forecaster at time t ∈ [
¯
l, l̄] is given by,

ŷt = ⟨xt, Ãt
−1

t−1∑

s=
¯
l−k

ysxs⟩, (B.23)

where Ãt = I +
∑t

s=
¯
l−k xsxs

T .
Let

pt = E[ŷt], (B.24)

= ⟨xt, Ãt
−1

t−1∑

s=
¯
l−k

θ1:n[sxs⟩. (B.25)
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For notational convenience, define

Xt = [x
¯
l−k, . . . ,xt]

T . (B.26)

Let

Var(ŷt) = σ2xt
T Ãt

−1Xt
TXtÃt

−1xt, (B.27)

≤ σ2xt
T Ãt

−1xt, (B.28)

= σ2
t (B.29)

where the last line is due to Xt
TXt ≼ Ãt, where U ≼ V means V − U is a Positive

Semi Definite matrix.
Define a normalized random variable

Zt =
ŷt − pt
σt

. (B.30)

Thus Zt is a sub-gaussian random variable with variance parameter 1. By sub-
gaussian tail inequality we have,

P
(
|Zt| ≥

√
2 log(4n3/δ)

)
≤ δ/2n3, (B.31)

for some δ ∈ (0, 1]. Noting that length of a bin is atmost n, an application of uniform
bound yields

P

(
sup

¯
l≤t≤l
|Zt| ≥

√
2 log(4n3/δ)

)
≤ δ/2n2. (B.32)

Adding and subtracting a θ1:n[t] to the numerator of (B.30), we get that with prob-
ability atleast 1− δ/2n2,

|ŷt − θ1:n[t]| ≤ |pt − θ1:n[t]|+ σt
√

2 log(4n3/δ),∀t ∈ [
¯
l, l̄]. (B.33)

Hence the squared error within a bin can be bounded in probability as

l̄∑

t=
¯
l

(ŷt − θ1:n[t])2 ≤
l̄∑

t=
¯
l

2(pt − θ1:n[t])2 + 4σ2
t log(4n3/δ), (B.34)

where we used (a+ b)2 ≤ 2a2 + 2b2.
Let’s focus on the second term in (B.34). By lemma 11.11 of [40] and by following
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the arguments of proof of Theorem 11.7 there, we get

l̄∑

t=
¯
l

σ2
t ≤ σ2

k+1∑

d=1

log(1 + λd), (B.35)

where λd are the eigenvalues of the (k+ 1)× (k+ 1) matrix Ãl̄− I. It is well known that
Ãl̄−I has the same nonzero eigenvalues as the Gram matrix G with entries Gi.j = xi

Txj .
Note that ∥xt∥22 ≤ n2k+2,∀t ∈ [1, n]. Since the product Πk+1

d=1(1 + λd) is maximised when
λd = (

¯
l − l̄)n2k+2/(k + 1) ≤ n2k+3/(k + 1) we have,

σ2

k+1∑

d=1

log(1 + λd) ≤ σ2(k + 1) log(1 +
n2k+3

k + 1
). (B.36)

Thus with probability atleast 1− δ/n2

l̄∑

t=
¯
l

(ŷt − θ1:n[t])2 ≤
l̄∑

t=
¯
l

2(pt − θ1:n[t])2 + 4σ2(k + 1) log

(
1 +

n2k+3

k + 1

)
log(4n3/δ).

(B.37)

As mentioned earlier, the bin [
¯
l, l̄] can be arbitrary and may not be discovered by

policy. However, we want to analyze the Total Squared Error (TSE) incurred within true
bins spawned by the policy. A small caveat here is that observations within such true
bins satisfy the restart criteria and can’t be regarded as independent random variables.
To get rid of this problem, we use a uniform bound argument to bound the TSE incurred
in all possible O(n2) bins. This leads to

P

(
sup
[
¯
l,l̄]

l̄∑

t=
¯
l

(ŷt − θ1:n[t])2 −
l̄∑

t=
¯
l

2(pt − θ1:n[t])2 (B.38)

− 4σ2(k + 1) log

(
1 +

n2k+3

k + 1

)
log(4n3/δ) ≥ 0

)
≤ δ/2. (B.39)

Lemma 135. (subgaussian wavelet coefficients) Let (y1,y2) = pack (recenter(y))
for a vector y of observations of length L. Let (α1,α2) = (Wy1,Wy2) for an orthonor-
mal DWT matrix W . Then both α1 and α2 are marginally subgaussian with parameter
4σ2.

Proof. From the theory of least squares regression,

recenter(y) = y −XL(XL
TXL)−1XL

Ty, (B.40)
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where XL is defined as in (B.26). Since L ≥ k+1, XL
TXL can be shown to be invertible.

(see for eg. lemma 150)
Without loss of generality, we proceed to characterize the sub-gaussian behaviour of

the first wavelet coefficient of y1. The extension to other wavelet coefficients is straight
forward.

Let uT be the first row of the wavelet transform matrix W whose dimension is
compatible to y1. Let’s augment uT as follows.

ũT = [uT ,0T ], (B.41)

such that length of ũ is L.
We have,

α1[0] = ũTy − ũTXL(XL
TXL)−1XL

Ty. (B.42)

(B.42) along with noisy feedback implies that α1[0] is a Lipschitz function of L
iid subgaussian random variables. Then by Proposition 2.12 from [18], α1[0] is also
subgaussian with variance parameter given by the square of Lipschitz constant ℓ2 times
σ2. Since α1[0] is a linear function of the iid subgaussians we have,

ℓ = ∥ũ−XL(XL
TXL)−1XL

T ũ∥2, (B.43)

≤ ∥ũ∥2 + ∥XL(XL
TXL)−1XL

T ũ∥2, (B.44)

≤(a) ∥u∥2 + ∥XL(XL
TXL)−1XL

T∥2∥u∥2, (B.45)

=(b) 2. (B.46)

In (a) we used ∥Ax∥2 ≤ ∥A∥2∥x∥2 where ∥A∥2 is the induced matrix norm and the fact
that ∥ũ∥2 = ∥u∥2. In (b) we notice that ∥u∥2 = 1 as the DWT matrix W is orthonormal
and ∥XL(XL

TXL)−1XL
T∥2 = 1 since XL(XL

TXL)−1XL
T is a projection matrix.

Similarly it can be shown that α2 is marginally subgaussian with parameter 4σ2.

Lemma 136. (uniform shrinkage) Assume the setting of lemma 135. Let (α̂1, α̂2) =
(T (α1), T (α2)) where T (·) is the soft-thresholding operator with threshold σ

√
β log n.

Then with probability atleast 1− 2n3−β/8, |(α̂r)i| ≤ |E [(αr)i] | for each co-ordinate i and
r = 1, 2. The expectation is taken wrt to randomness in the observations.

Proof. Consider a fixed bin [
¯
l, l̄]. Due to results of lemma 135 and subgaussian tail

inequality,

P
(
|(α̂r)i − E [(αr)i] | ≥ σ

√
β log n

)
≤ 2n−β/8. (B.47)

Then arguing in the similar lines as in the proof of lemma 15 of [37], the result
follows.
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Lemma 137. (bin control) With probability atleast 1 − 2n3−β/8, the number of bins
M , spawned by the policy is atmost

min

{
n,max{1, Õ(n

1
2k+3∥nkD(k+1)θ1:n∥

2
2k+3

1 )}
}
where Õ hides factors that depend on wavelet

function, constants that only depend on TV order k and polynomial factors of log n.

Proof. Let Li be the length of the ith bin. Let α̂1i, α̂2i be the denoised wavelet coefficient
segments of the re-centered observations within a bin i as described in the policy and θi

be the ground truth vector in bin i.
By the policy’s restart rule,

σ√
Li

≤ 1√
Li

(∥α̂1i∥2 + ∥α̂2i∥2) . (B.48)

Due to the uniform shrinkage property specified in lemma 136, we have with proba-
bility atleast 1− 2n3−β/8

σ√
Li

≤ 1√
Li

(∥α1i∥2 + ∥α2i∥2) , (B.49)

≲(a) 2kLk
i ∥Dk+1θi∥1, (B.50)

where (a) follows due to lemma 133. The factor of 2k is due to the fact that length of
vectors α1i or α2i is atmost 2Li. The last line implies that when the TV k distance is
zero, Ada-VAW doesn’t restart with high probability making M = 1.

Rearranging and summing across all bins yields

M∑

i=1

σ

L
k+1/2
i

≲ ∥Dk+1θ1:n[t]∥1. (B.51)

Now applying Jensen’s inequality for the convex function f(x) = 1
xk+1/2 , x > 0, we get

σM
2k+3

2 n
−(2k+1)

2 ≲ ∥Dk+1θ1:n∥1, (B.52)

where ≲ subsumes constants that depend only on wavelet functions, TV order k and
polynomial factors of log n.

Rearranging the last expression yields the lemma.

Lemma 138. (Vovk-Azoury-Warmuth regret) If the Vovk-Azoury-Warmuth fore-
caster with output denoted by v̂j at time j, is run on a sequence
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(w1, v1), . . . , (wn, vn) ∈ Rk+1 × R, then for all u ∈ Rk+1,

t∑

j=1

(v̂j − vj)2 − (uTwj − vj)2 ≤
1

2
∥u∥22 +

(k + 1)B2

2
log

(
1 +

tk+2

k + 1

)
, (B.53)

= Õ(B2), (B.54)

where B = maxi=1,...,t |yi| and wj = [1, j, . . . , jk]T .

Proof. The first inequality is due to Theorem 11.8 of [40]. The second equality follows
because under the given choice of monomial features, it is shown in Corollary 154 that
when u is the coefficient vector of OLS fit, ∥u∥22 = O(B2).

Next we characterize the optimality of soft-thresholding estimator on TV k class. The
key to this is the Theorem 19 from [37].

Theorem 139. [37] Consider the observation model y̆ = ᾰ + Z, where y̆ ∈ Rn, Z is
marginally subgaussian with parameter σ2 and ᾰ ∈ A for some solid and orthosymmetric
A. Let α̂δ be the soft thresholding estimator with input y̆ and threshold δ. When δ =
σ
√
β log n, with probability atleast 1− 2n1−β/2 the estimator α̂δ satisfies

∥α̂δ − α∥2 ≤ 8.88β(1 + log(n)) inf
α̂

sup
α∈A

E[∥α̂− α∥2]. (B.55)

We are interested in the case where A is the space of wavelet coefficients for TV k

bounded fucntions. Since TV k class is sandwiched between two Besov spaces, it can
be shown that A is solid and orthosymmetric (see for eg. [18], section 4.8). Note
that subtracting a polynomial of degree k has no effect on the TV k distance. It has
been established in lemma 135 that OLS residual are subgaussian with parameter 4σ2.
Hence we are under the observation model of Theorem 139. By the results of [2], we

have inf α̂ supα∈AE[∥α̂ − α∥2] = Õ(n
1

2k+3 (nkDθ1:n∥1)
2

2k+3σ
4k+4
2k+3 ). This along with using a

uniform bound across all O(n2) bins leads to the following Corollary.

Corollary 140. Under the observation model and notations in Theorem 139 but with a
subgassuan parameter 4σ2 when A is the wavelet coefficients of re-centered ground truth
within a bin discovered by the policy, then with probability atleast 1− 2n3−β/8

∥α̂δ − α∥2 = Õ(n
1

2k+3 (nkDθ1:n∥1)
2

2k+3σ
4k+4
2k+3 ). (B.56)

Lemma 141. (bias control) Let E[ŷt] = pt. For any bin [th, tl], L = tl − th, with
th ≥ k discovered by the policy, we have with probability atleast 1− 2n3−β/8

t̄l−1∑

t=th

(pt − θ1:n[t])2 = Õ(1) + Õ

(
L

2k+1
2k+3∥Dk+1θth−k:tl−1∥

2
2k+3

1

)
+ (ptl − θ1:n[tl])

2. (B.57)
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Proof. For a bin [th, tl] let

T =

tl∑

t=th

(pt − θ1:n[t])2. (B.58)

Note that T is the squared error incurred by the VAW forecaster when run with the
sequence θth:tl . Let u be the coefficient of the OLS fit using monomial features for the
ground truth [θth−k:tl−1]. Further let’s recall/adopt the following notations:

1 (g1, g2) = pack (recenter(θth−k:tl−1));

2 (α1,α2) = (Wg1,Wg2);

1. [37] (y1,y2) = pack
(
recenter(yth−k:tl−1)

)
;

4 L = tl − th + k;

5 (α̂1, α̂2) = (T (Wy1), T (Wy2)) where T (·) is soft-thresholding operator at thresh-
old σ

√
β log n.

T − (ptl − θ1:n[tl])
2 ≤(a)

tl−1∑

j=th−k

(uTxj − θ1:n[j])2 + Õ(B2), (B.59)

≤(b) ∥α1∥22 + ∥α2∥22 + Õ(B2), (B.60)

≤(c) ∥α̂1∥22 + ∥α̂2∥22 + ∥α̂1 −α1∥22 + ∥α̂2 −α2∥22 + Õ(B2), (B.61)

≤(d) ∥α̂1∥22 + ∥α̂2∥22 + Õ

(
L

2k+1
2k+3∥Dk+1θth−k:tl−1∥

2
2k+3

1 σ
4k+4
2k+3

)
+ Õ(B2),

(B.62)

≤(e)
σ2

L
+ Õ

(
L

2k+1
2k+3∥Dk+1θth−k:tl−1∥

2
2k+3

1 σ
4k+4
2k+3

)
+ Õ(B2), (B.63)

= Õ(1) + Õ

(
L

2k+1
2k+3∥Dk+1θth−k:tl−1∥

2
2k+3

1

)
, (B.64)

with probability atleast 1 − 2n3−β/8. Inequality (a) is due to lemma 138, (b) is due
to orthonormality of wavelet transform matrix W , (c) by triangle inequality, (d) by
Corollary 140 and (e) is due to the fact that restart condition is not satisfied in the
interior of a bin.

Theorem 13. Consider the the feedback model yt = θ1:n[t] + ϵt t = 1, . . . , n where ϵt are

independent σ2 subguassian noise and |θ1:n[t]| ≤ B. If β = 24+ 8 log(8/δ)
log(n)

, then with proba-

bility at least 1−δ, Ada-VAW achieves a dynamic regret of Õ
(
n

1
2k+3

(
nk∥Dk+1θ1:n∥1

) 2
2k+3

)
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where Õ hides poly-logarithmic factors of n, 1/δ and constants k,σ,B that do not depend
on n.

Proof. Let Li be the length of the ith bin [t
(i)
h , t

(i)
l ] discovered by the policy. Let

Ti =

t
(i)
l∑

t=t
(i)
h

(pt − θ1:n[t])2. (B.65)

From lemma 141 we have with with probability atleast 1− 2n3−β/8,

Ti = Õ(1) + Õ

(
L

2k+1
2k+3

i ∥Dk+1θ
t
(i)
h −k:t

(i)
l −1
∥

2
2k+3

1

)
+ (p

t
(i)
l
− θ1:n[t

(i)
l ])2 (B.66)

= Õ(1) + Õ

(
L

2k+1
2k+3

i ∥Dk+1θ
t
(i)
h −k:t

(i)
l −1
∥

2
2k+3

1

)
, (B.67)

where in the last line we used the fact that ground truths are bounded by B.
Now summing the squared bias across all M bins discovered by the policy yields

T =
M∑

i=1

Ti, (B.68)

=(a)
˜O(M) +

M∑

i=1

Õ

(
L

2k+1
2k+3

i ∥Dk+1θ
t
(i)
h −k:t

(i)
l −1
∥

2
2k+3

1

)
, (B.69)

=(b) Õ

(
n

1
2k+3∥nkD(k+1)θ1:n∥

2
2k+3

1

)
+

M∑

i=1

Õ

(
L

2k+1
2k+3

i ∥Dk+1θ
t
(i)
h −k:t

(i)
l −1
∥

2
2k+3

1

)
, (B.70)

=(c) Õ

(
n

1
2k+3∥nkD(k+1)θ1:n∥

2
2k+3

1

)
+ Õ

((
M∑

i=1

Li

) 2k+1
2k+3

× (B.71)

(
M∑

i=1

∥Dk+1θ
t
(i)
h −k:t

(i)
l −1
∥1
) 2

2k+3
)
, (B.72)

= Õ

(
n

1
2k+3∥nkD(k+1)θ1:n∥

2
2k+3

1

)
+ Õ

(
n

1
2k+3∥nkD(k+1)θ1:n∥

2
2k+3

1

)
, (B.73)

with probability atleast 1−4n3−β/8. Line (a) holds with probability atleast 1−2n3−β/8.

For (b) we used lemma 137 and it holds with probability atleast
(
1− 2n3−β/8

)2 ≥ 1 −
4n3−β/8 . For (c) we used Holder’s inequality xTy ≤ ∥x∥p∥y∥q with p = 2k+3

2k+1
and

q = 2k+3
2

.

Since the variance within a bin is Õ(σ2) as indicated by lemma 134, when summed
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across all bins we get a total variance of Õ(σ2M) which is Õ

(
n

1
2k+3∥nkD(k+1)θ1:n∥

2
2k+3

1

)

by lemma 137.
A trivial upperbound for T is

T ≤ n(B2 + σ2), (B.74)

= O(n). (B.75)

Combining (B.73) (B.75) and the variance summed across all terms yields

T = Õ

(
max

{
n, n

1
2k+3∥nkD(k+1)θ1:n∥

2
2k+3

1

})
, (B.76)

with probability atleast 1 − 4n3−β/8 − δ/2 where the dependence of δ in the failure
probability is due to that fact that bias variance decomposition in lemma 134 holds with
probability atleast 1− δ/2. By setting β = 24 + 8 log(8/δ)

log(n)
, we get the Theorem 13.

Remark 142. (Specialization to k = 0) When specialized to the case k = 0, we recover
the optimal rate established in [37] for the bounded ground truth setting upto constants

B and σ. When k = 0, our policy predicts
yth+...+yt−1

t−th+2
at time t. This is similar to online

averaging except that the denominator is now t − th + 2 instead of t − th. [37] also
considers the scenario where the point-wise bound on ground truth can increase in time
as O(Cn). As hinted by the similarity of Ada-VAW with that of [37] for k = 0 along with
the fact that our restart rule also lower-bounds the Total Variation of ground truth with
high probability, it is possible to get a regret bound of Õ(n1/3C

2/3
n + C2

n) for Ada-VAW in
this stronger setting.

Proposition 11 (Minimax Regret). Let yt = θ1:n[t] + ϵt for t = 1, . . . , n where θ1:n ∈
TV (k)(Cn), |θ1:n[t]| ≤ B and ϵt are iid σ2 subgaussian random variables. Let AF be the
class of all forecasting strategies whose prediction at time t only depends on y1, . . . , yt−1.
Let st denote the prediction at time t for a strategy s ∈ AF . Then,

inf
s∈AF

sup
θ1:n∈TV (k)(Cn)

n∑

t=1

E
[
(st − θ1:n[t])2

]
= Ω

(
min{n, n 1

2k+3C
2

2k+3
n }

)
, (3.3)

where the expectation is taken wrt to randomness in the strategy of the player and ϵt.

Proof. Since a batch non-parametric regression algorithm is allowed to see the entire
observations ahead of time, lower bound in the batch setting directly translates to lower
bound for Rdynamic. Let AB be the set of all offline regression algorithms. The minimax
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rates of estimation of TV k bounded sequences under squared error losses from [2] gives,

inf
s∈AB

sup
θ1:n∈TV (k)(Cn)

M∑

t=1

E
[
(st − θ1:n[t])2

]
(B.77)

= Ω

(
n

1
2k+3C

2
2k+3
n

)
. (B.78)

From [20], minimax rates of estimation under squared error losses of sequences that
satisfy |θi| ≤ B scales as min{nB2, nσ2}. Combining the two bounds yields Proposition
11.

Proposition 18. There exist an O (((k + 1)n)2) run-time implementation of Ada-VAW.

Proof. Let’s describe the computational requirement at each time step. As outlined in
Section 11.8 of [40], we can use Sherman-Morrison formula to compute A−1

t in O((k+1)2)
time. Using the same logic we can compute (Xt

TXt)
−1 needed by recenter operation

incrementally in O((k + 1)2) time. Re-centering operation and computation of wavelet
coefficients requires O(n) time per round. Since there are n rounds, the total run-time
complexity becomes O((k + 1)2n2).

Extension to higher dimensions Consider a variational measure and the setup
described in Remark 16. Let ŷ

(i)
t be the prediction of instance i of Ada-VAW at time t.

For each i ∈ [d], we’ve

n∑

t=1

(ŷ
(i)
t − θ1:n[t][i])2 = Õ

(
n

1
2k+3 ∆

2
2k+3

i

)
, (B.79)

by Theorem 13. Summing across all dimensions yields,

Rn =
d∑

i=1

Õ

(
n

1
2k+3 ∆

2
2k+3

i

)
(B.80)

= Õ

(
d

2k+1
2k+3n

1
2k+3C

2
2k+3
n

)
, (B.81)

where the last inequality follows from applying Holder’s inequality xTy ≤ ∥x∥p∥y∥q to
∑d

i=1 1
2k+1
2k+3 ∆

2
2k+3

i with norms p = 2k+3
2k+1

and q = 2k+3
2

.
Extension to general losses Assume the interaction model in Figure 3.1. Instead

of squared error losses, let the losses be ft as discussed in Remark 17. Since ft is gamma
smooth, we have

ft(b) ≤ ft(a) + f ′
t(a)(b− a) +

γ

2
(b− a)2. (B.82)
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Let ŷt be the prediction of Ada-VAW at time t and θt := θ1:n[t]. Then regret with this
loss function is

n∑

t=1

ft(ŷt)− ft(θt) ≤
n∑

t=1

γ

2
(ŷt − θt)2, (B.83)

by (B.82) and using the fact f ′
t(θt) = 0. Now the statement in Remark 17 is immediate

by appealing to Theorem 13.

B.2.3 Exact sparsity

We start by the observation that an exact sparsity (i.e sparsity in the ∥ · ∥0 sense)
in the number of jumps of ∥Dk+1θ1:n∥0 translates to an exact sparsity in the wavelet
coefficients. This is made precise by the following lemma.

Lemma 143. Consider a sequence with ∥Dk+1θ1:n∥0 = J . Then both the signals θ1:n

and θ̃1:n = recenter(θ1:n) can be represented using O(k+J log n) wavelet coefficients of
a CDJV system of regularity k + 1.

Proof. Throughout this proof when we say jumps, we refer to jumps in ∥Dk+1θ1:n∥0.
Let L = 2⌈log2(k+1)⌉. Consider splitting the coefficients α of the DWT transform into
two parts: α1:L and αL+1:n. By CDJV construction, the wavelets corresponding to
indices L + 1, . . . , n are all orthogonal to polynomials to degree atmost k. The space
of polynomials of degree atmost k is contained in the span of wavelets identified by
the indices 1, . . . , L. Though the span of the first L wavelets can also generate other
waveforms which are not polynomials as well.

Notice that between two jumps, the underlying signal is a polynomial of degree atmost
k. By orthogonality property discussed above, wavelet coefficients from the group αL+1:n

assume the value zero if the support of corresponding wavelet is a region where the signal
behaves as a polynomial. Since there are J jump points and each point is covered by
log n wavelets by the Multi Resolution property, there can be atmost O(J log n) non zero
coefficients from the group αL+1:n.

When we subtract the best polynomial fit due to the re-centering operation, it is only
going to affect the first L coefficients and keep the remaining unchanged. Hence the
re-centered signal can have atmost O(k + J log n) nonzero coefficients.

Due to lemmas 133 and 136, the expression in the LHS of restart rule of the policy
lower-bounds the TV k distance within a bin with high probability. So if a bin lies entirely
between two jumps, we do not restart with high probability as the TV k distance is zero.
This lead to the following Corollary.

Corollary 144. Let yt = θt+ϵt, for t = 1, . . . , n where ϵt are sub-gaussian with parameter
σ2 and ∥Dk+1θ1:n∥0 = J with |θt| ≤ B. Then with probability at-least 1−2n3−β/8 Ada-VAW

restarts O(J) times.
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In the next Theorem, we characterize the optimality of soft-thresholding estimator in
the exact sparsity case.

Theorem 145. Under the setup of Corollary 144, the soft thresholding estimator whose
estimates denoted by α̂1:n with threshold set to σ

√
log n satisfy,

∥α̂1:n − θ1:n∥22 = Õ(Jσ2), (B.84)

with probability atleast 1− 2n1−β/2 where Õ hides logarithmic factors of n.

Proof. Let α denote the DWT coefficients of θ1:n. By Gaussian tail inequality and
union bound we have P (supt |ϵt| ≥ σ

√
log n) ≤ 2n1−β/2. Conditioning on the event

supt |ϵt| ≤ σ
√

log n we are under the observation model in lemma 17 of [37]. Following
the results there, with probability atleast 1− 2n1−β/2 we have,

∥α̂1:n − θ1:n∥22 =
n∑

i=1

min
{
α[i]2, 16σ2 log n

}
, (B.85)

= Õ(Jσ2), (B.86)

where the last line follows from lemma 143 and the fact thatO(k+J log n) = O(KJ log n) =
O(J log n).

Now using a uniform bound argument across all O(n2) bins yields the following Corol-
lary.

Corollary 146. Under the observation model and notations in Corollary 144 but with a
subgassuan parameter 4σ2 when θ1:n is the re-centered ground truth within a bin discovered
by the policy, then with probability atleast 1− 2n3−β/8

∥α̂δ − α∥2 = Õ(Jσ2). (B.87)

With Corollaries 144 and 146, the proof of Theorem 13 can be readily adapted to
give Theorem 20.

Proposition 21. Under the interaction model in Figure 3.1, the minimax dynamic regret
for forecasting sequences in Ek+1(Jn) is Ω(Jn).

Proof. Let U{a, b, c} denote a uniform sample from set {a, b, c}. Consider a ground truth
sequence as follows:

1. For t=1, θ1 = U{−B, 0, B}

2. For t = 2 to Jn + 1:

• if θt−1 = −B, θt = U{0, B}
• if θt−1 = 0, θt = U{−B,B}
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• if θt−1 = B, θt = U{−B, 0}

3. For t > Jn + 1, output θt = θt−1

Such a signal will have ∥Dk+1θ1:n∥0 ≤ Jn. Let’s assume that we reveal this sequence
generating process to the learner. Then the Bayes optimal algorithm will suffer a regret
of Ω(Jn).

Extension to higher dimensions Let the ground truth θ1:n[t] ∈ Rd and let vi =
[θ1:n[1][i], . . . ,θ1:n[n][i]], ∥Dk+1vi∥1| ≤ Jn,∀i ∈ [d]. Then run d instances of Ada-VAW

where instance i is dedicated to track the sequence vi. By appealing to Theorem 20 for
each co-ordinate and summing across all d dimensions yields a regret bound of Õ(dJn).

B.3 Adapting to lower orders of k

Though the theory of offline non parametric regression with squared error loss is well
developed for the complete spectrum of function classes TV k(Cn) with k ≥ 0, most of
the practical interest is often limited to lower orders of k namely k = 0, 1, 2, 3 (see for eg.
[4, 3]). This motivates us to design policies that can perform optimally for these lower
TV orders without requiring the knowledge of k beforehand.

Let E be the event that |ϵt| ≤ σ
√

2 log(2n2) for all t = 1, . . . , n where ϵt are as
presented in Figure 3.1. By using subgaussian tail inequality and a union bound across
all time points, it can be shown that the event E happens with probability atleast 1− 1

n
.

The basic idea to achieve adaptivity to k is as follows:

Meta-Policy:

• Instantiate Ada-VAW for k = 0, 1, 2, 3 and run them in parallel.

• Forecast according to an Exponentially Weighted Averages (EWA)
([40]) over the predictions made by each of the instances. Set the
parameter η of EWA to 1/4(B +

√
2 log(2n2))2.

We condition on the event E . The arguments in the proof of Theorem 13 still goes
through even if we condition on E . Let the dynamic regret of Ada-VAW for a particular
value of k be the random variable R

(k)
n . The maximum possible value of R

(k)
n is κn for

some constant κ. We have,

E[R(k)
n |E ] =

∫ κn

−∞
rdP(r), (B.88)

≤ γn
1

2k+3C
2

2k+3
n +

∫ κn

γn
1

2k+3C
2

2k+3
n

rdP(r), (B.89)

≤ γn
1

2k+3C
2

2k+3
n + κn · δ, (B.90)
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for some constant γ, where last line follows due to Theorem 13. By choosing δ = 1/n we
get

E[R(k)
n |E ] = Õ

(
n

1
2k+3C

2
2k+3
n

)
. (B.91)

Let ŷt, be the output of any forecasting strategy at time t. Each expert in the meta-
policy suffers a loss (yt − ŷt)2 for appropriate value of ŷt. Let θt := θ1:n[t]. we have

n∑

t=1

E[(yt − ŷt)2|E ]− E[(yt − θt)2|E ], =(a)

n∑

t=1

E[(θt − ŷt)2|E ]− E[(ŷt − θt)2|E ]E [ϵt|E ],

(B.92)

=
n∑

t=1

E[(θt − ŷt)2|E ], (B.93)

where the last line is simply the expected dynamic regret of the strategy and line (a) is
due to independence of ϵt with ŷt.

Let the dynamic regret of the meta-policy be denoted as Rmeta. Since squared error
loss (yt−ŷt)2 is exponentially concave with parameter 1/4(B+

√
2 log(2n2))2, Proposition

3.1 of [40] along with (B.91) and (B.93) guarantees that,

E[Rmeta|E ] = log 4 + Õ

(
min

k=0,1,2,3
n

1
2k+3

(
nk∥Dk+1θ1:n∥1

) 2
2k+3

)
(B.94)

Thus we see that expected dynamic regret of the meta-policy adapts to TV order
k upto a additive constant of log 4. This additive constant only contributes to a small
O(1/n) term if we consider the per round regret.

B.4 Problems with padding

In this section, we explain why some commonly used padding schemes can potentially
inflate the TV k distance of the resulting sequence.

B.4.1 Zero padding

Consider a sequence θ1:t such that best polynomial fit of this sequence is uniformly
zero. Let γ be the zero padded version of θ1:t such that length of γ is a power of 2. Let
θ̃ = [θt−k, . . . ,θt, 0, . . . , 0]T ∈ R2k+2. We have,

(Dk+1γ)T = [(Dk+1θ1:t)
T , (Dk+1θ̃)T , 0, 0, . . . , 0]. (B.95)
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Due to (B.18), we have ∥θ1:t∥∞ = O(tk∥Dk+1θ1:t∥1). Hence the existence of θ̃ term
makes ∥Dk+1γ∥1 = O(tk∥Dk+1θ1:t∥1).

B.4.2 Mirror image padding

Let γ be the mirror image padded version of the re-centered sequence, θ1:t. i.e
γ = [θ1, . . . , θt, θt, θt−1, . . .] such that its length becomes a power of 2. Then,

∥Dk+1γ∥1 = 2∥Dk+1θ1:t∥1 +Dk+1[θt−k, . . . ,θt−1,θt,θt,θt−1, . . . ,θt−k]T , (B.96)

= 2∥Dk+1θ1:t∥1 +O(tk∥Dk+1θ1:t∥1), (B.97)

where the last line follows from (B.18).

B.5 Technical Lemmas

Lemma 147. The procedure CalcDetRecurse in [134] is sound.

Proof. We use induction on the dimension of the input square matrix.
Base case: when d = 3. Assume that e[0][0] is non-zero. Let the matrix be given by

X =



e00 e01 e02
e10 e11 e12
e20 e21 e22


 (B.98)

The idea is to convert X to an upper triangular matrix. Define:

Y =




1 e01
e00

e02
e00

e10 e11 e12
e20 e21 e22


 (B.99)

So that det(Y ) = det(X)
e00

. Applying elementary row operations we get

det(Y ) =

∣∣∣∣∣∣

1 e01
e00

e02
e00

0 e11 − e10 e01e00
e12 − e10 e01e00

0 e21 − e20 e01e00
e22 −−e20 e01e00

∣∣∣∣∣∣
(B.100)

The inner loop in the procedure CalcDetRecurse computes the determinant of the
inner 2× 2 sub-matrix by considering the numerator of the fractional terms. Hence the
value v return by the recursive call is det(Y [1 :][1 :])e200. So det(X) = e00

v
e200

= v
e00

. This

is precisely the value returned by the procedure after the final division loop.
When e00 is zero, we can swap it with the row whose first element is non-zero and

apply the arguments above. If such a swap is not possible, the procedure correctly
recognizes the determinant as zero.
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Inductive case: Assume that procedure is sound for matrices upto dimension n.
Now define Y as before to set the element e00 to one. By similar arguments we obtain that
value v returned by the recursive call is det(Y [1 :][1 :])en00. Thus we obtain det(X) = v

en−1
00

.

This division is performed at the final loop of the procedure.
Here also when e00 is zero, the swapping argument similar to the base case can be

applied.

Consider OLS fit on the inputs (x1, y1), . . . ,xt, yt) where the features xj = [1, j, . . . , jm]T

and the responses obey maxi=1,...,t |yi| = B. Let the design matrix be

X t = [x1, . . . ,xt]
T . (B.101)

Lemma 148. det(Xt
TXt) is a polynomial in t with degree atmost (k + 1)2.

Proof. The procedure CalcDegreeOfDet in [134] can be used to upperbound the degree of
determinant. It assumes that while doing the subtractions in procedure CalcDetRecurse,
the highest degree terms in the corresponding polynomials do not cancel out.

Let m = k + 1. Observe that XT
t Xt can be compactly written as

XT
t Xt =



S0(t) S1(t) . . . Sm−1(t)

...
...

. . .
...

Sm−1(t) Sm(t) . . . S2m−2(t)


 , (B.102)

where Sp(t) =
∑t

n=1 n
p.

Let’s run procedure CalcDegreeOfDet on an m×m matrix D of degrees arising from
XT

t X t as below.

D =




1 2 . . . m
...

...
. . .

...
m m+ 1 . . . 2m− 1


 (B.103)

Let’s define a seed sequence {s}i as the sequence of numbers that can be found the
main diagonal of a given matrix, excluding the element at the bottom right corner. The
seed sequnece of D is simply 1, 3, . . . , 2m − 3. Let Ti be the element at index (0, 0) for
the matrix in the ith recursive call. Note that T1 = 1. Tracing the steps through the
recursion we get

T2 = s2 + T1 (B.104)

T3 = s2 + T2 + T1 (B.105)

...

Tm−1 = sk−1 + Tk−2 + . . .+ T1 (B.106)
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In m− 1 calls, we will be left with a 2× 2 matrix whose entries are

[
Tm−1 1 + Tm−1

1 + Tm−1 2 + Tm−1

]
(B.107)

Now let’s start with the winding up procedure. There are k − 3 wind-ups that need
to be performed. Let ut be the wound up value from the tth winding up step. We have,

um−2 = 2 + 2Tm−1 − Tm−2 (B.108)

um−3 = um−2 − 2Tm−3 (B.109)

um−4 = um−3 − 3Tm−4 (B.110)

...

u1 = u2 − (m− 2)T1 (B.111)

Note that u1 is the final output produced by the topmost call to CalcDegreeOfDet

procedure. These systems can be unrolled to get

u1 = 2 + 2Tm−1 − (Tm−2 + 2Tm−3 + . . .+ (m− 2)T1 (B.112)

= 2 + sm−1 +
m−1∑

i=1

si (B.113)

Now using explicit expressions for seed sequence {s}i we get

u1 = 2 + 2m− 3 + (m− 1)2 (B.114)

= m2 (B.115)

= (k + 1)2 (B.116)

Lemma 149. Let Sp(t) be a polynomial in t defined as Sp(t) =
∑t

n=1 n
p where p is a

non-negative integer. Then,

(−1)p−1Sp(t− 1) = Sp(−t) (B.117)

Proof. For a(t) = t(t+1)
2

, Faulhaber’s formula states that

t∑

n=1

np =

(p−1)/2∑

i=1

cia(t)(p+1)/2, (B.118)
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when p is odd and

t∑

n=1

np =
t+ 0.5

p+ 1

p/2∑

i=1

(i+ 1)cia(t)p/2, (B.119)

when p is even. The the explicit form of ci can be expressed in terms of Bernoulli numbers.
Note that a(−t) = a(t− 1). Substituting this in the formulas yields the lemma.

Lemma 150. For a universal constant H(m) that depends only on m = k + 1,

det(XT
t X t) = H(m) tm

m∏

i=2

(
t2 − (i− 1)2

)m−i+1
(B.120)

Proof. The strategy is to characterize the roots of determinant. For brevity let’s denote
Zt = XT

t X t. Observe that

Zt =
t∑

i=1

xix
T
i , (B.121)

where xi = [1, . . . , im−1]. Each update xix
T
i increases the rank by atmost 1. After

m such updates Xm becomes a square Vandermonde matrix formed by the sequence
{1, 2, . . . ,m}. Since all of the elements in the sequence are distinct Xm is full rank and
so is Zm. This implies that each such update xix

T
i for i ≤ m increased the rank by

exactly one.
We can view the equation (B.121) as a quantity that evolves in time. For 1 ≤ i ≤

m− 1, there exists m− i rows in Zi that are linearly dependent. This means t = i is a
root of det(Zt) with multiplicity (m− i). By defining x0 = [0, . . . , 0]T for the initial case
t = 0, all the rows are simply zeroes and multiplicity of the root t = 0 is m. Thus we
have established that tm

∏m
i=2 (t− (i− 1))m−i+1 is a sub-expression of det(Zt).

Let’s view Zt as a function of t with t ∈ R as displayed in (B.102). Put t = −t′ in
(B.102). Then we have,

Z(t′) =



S0(−t′) S1(−t′) . . . Sm−1(−t′)

...
...

. . .
...

Sm−1(−t′) Sm(−t′) . . . S2m−2(−t′)


 . (B.122)

Hence showing t′ = a is a root of Z(t′) implies that t = −a is a root of Zt. We have

det(Z(t′)) = (−1)m

∣∣∣∣∣∣∣

−S0(−t′) −S1(−t′) . . . −Sm−1(−t′)
...

...
. . .

...
−Sm−1(−t′) −Sm(−t′) . . . −S2m−2(−t′)

∣∣∣∣∣∣∣
(B.123)
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Consider

det(Z̃(t′)) =

∣∣∣∣∣∣∣

−S0(−t′) −S1(−t′) . . . −Sm−1(−t′)
...

...
. . .

...
−Sm−1(−t′) −Sm(−t′) . . . −S2m−2(−t′)

∣∣∣∣∣∣∣
(B.124)

When t′ is a non-negative integer, lemma 149 implies that the elements in the matrix
above are result of the summation:

t′−1∑

i=0

(−i)p = (−1)pSp(t
′ − 1) (B.125)

= −Sp(−t′), (B.126)

where we adopt the convention 00 = 1.
Thus we have,

Z̃(t′) =
t′∑

i=1

x′
ix

′T
i , (B.127)

where x′
i = [1,−(i− 1), . . . , (−(i− 1))m−1]. Let X ′

t = [x′
1, . . . ,x

′
t]
T .

After m updates, we have that X ′
m is a square Vandermonde matrix defined by the

sequence {0,−1, . . . ,−(m− 1)}. Since each of the elements are distinct, this a full rank
matrix and so each update x′

ix
′T
i for i ≤ m increased the rank by exactly one leading

to Z̃(m) being full rank.
Using similar arguments as above we see that t′ = i is a root of det(Z̃(t′)) with

multiplicity (m− i). This in turn imply that t = −i is a root of det(Zt) with multiplicity

(m − i). Now we have established that tm
∏m

i=2 (t2 − (i− 1)2)
m−i+1

is a sub-expression
of det(Zt). By lemma 148 we conclude that we have found all roots of the determinant
and no further terms depending t can be there.

Remark 151. We conjecture that the universal constant H(m) in lemma 150 is the
determinant of Hilbert matrix of order m.

Definition 152. Let H(t) be a square matrix with each entry rij(t) =
nij(t)

dij(t)
for polyno-

mials nij(t) and dij(t). We say rij(t) is Hilbert-like if rij(t) = O
(

1
ti+j−1

)
for all i, j.

Lemma 153. All the elements of
(
XT

t X t

)−1
are Hilbert-like when t ≥ m = k + 1.

Proof. Computation of inverse is essentially a computation of determinants of the matrix
and its minors. Each element (i, j) of an inverse matrix is a rational function with
numerator being determinant of minor Mij and denominator being the determinant of
the original symmetric matrix.
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Let Zt = XT
t X t When t ≥ m we have from lemma 150 that det(Zt) = Ω(tm

2
). So it

is sufficient to show that det(Mij is O(tm
2+1−i−j). The strategy we follow is same of that

in lemma 148.
We follow a 1 based indexing. Since Zt is symmetric, it is enough to compute the

minors when 1 ≤ i ≤ j ≤ m.
case 1: Consider det(Mij) when 1 < i < j < m− 1. Following the same notations

as in the prood of lemma 150, after m − 2 calls to CalDegreeOfDet we end up with a
matrix below.

F =

[
Tm−2 1 + Tm−2

1 + Tm−2 2 + Tm−2

]
(B.128)

The corresponding seed sequence {s}i is {1, 3, 5, . . . , 2i− 3, 2i, 2i+ 2, . . . , 2j − 2, 2j +
1, 2j + 3, . . . , 2m− 3}. The jumps in the progression is attributed to the deletion of row
i and column j for obtaining minor Mij.

The final output u1, from the topmost call to CalDegreeOfDet is then given by

u1 = sm−2 +
m−2∑

i=1

si (B.129)

= 2 + (2m− 3) + (i− 1)2 + (j − i)(j + i− 1) + (m+ j − 1)(m− j − 1), (B.130)

= m2 + 1− i− j. (B.131)

So det(Mij) is O(tm
2+1−i−j) where the constant in the big-oh only dependents on m.

case 2: (1 < i < j = m− 1). After m− 2 recursion calls we get the matrix below.

F =

[
Tm−2 2 + Tm−2

1 + Tm−2 3 + Tm−2

]
(B.132)

The seed sequence {s}i is {1, 3, . . . , 2i− 3, 2i, . . . , 2j − 2}. So

u1 = 3 + sm−2 +
m−2∑

i=1

si, (B.133)

= 3 + (2m− 4) + (i− 1)2 + (j − i)(j + i− 1), (B.134)

= m2 + 1− i− j. (B.135)

So det(Mij) is O(tm
2+1−i−j).

case 3: (1 < i = j < k − 1).
The seed sequence {s}i is {1, 3, . . . , 2i − 3, 2i + 1, . . . , 2m − 3}. At the last step we

get a matrix as in equation (B.128). Hence,
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u1 = 2 + sm−2 +
m−2∑

i=1

si, (B.136)

= 2 + (2m− 3) + (i− 1)2 + (m− i− 1)(2i+ 1 +m− i− 2), (B.137)

= m2 + 1− i− j. (B.138)

So det(Mij) is O(tm
2+1−i−j).

case 4: (i = j = m− 1).
The seed sequence {s}i is {1, 3, . . . , 2i− 3}. At the last step we get a matrix below.

F =

[
Tm−2 2 + Tm−2

2 + Tm−2 3 + Tm−2

]
(B.139)

So,

u1 = 4 + sm−2 +
m−2∑

i=1

si, (B.140)

= 2 + (2i− 3) + (i− 1)2, (B.141)

= m2 + 1− i− j. (B.142)

So det(Mij) is O(tm
2+1−i−j).

case 5: (i = j = m).
The seed sequence {s}i is {1, 3, . . . , 2m − 5}. At the last step we get a matrix as in

equation (B.128).

u1 = 2 + sm−2 +
m−2∑

i=1

si, (B.143)

= 2 + (2m− 5) + (m− 2)2, (B.144)

= m2 + 1− i− j. (B.145)

So det(Mij) is O(tm
2+1−i−j).

case 6: (i = j = 1).
The seed sequence {s}i is {3, . . . , 2m − 3}. At the last step we get a matrix as in

equation (B.128).
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u1 = 2 + sm−2 +
m−2∑

i=1

si, (B.146)

= 2 + (2m− 3) + (m− 1)2 − 1, (B.147)

= m2 + 1− i− j. (B.148)

So det(Mij) is O(tm
2+1−i−j).

case 7: (1 < i < k − 1 < j = k).
The seed sequence {s}i is {1, . . . , 2i − 3, 2i, . . . , 2m − 4}. At the last step we get a

matrix as in equation (B.128).
So,

u1 = 2 + sm−2 +
m−2∑

i=1

si, (B.149)

= 2 + (2m− 4) + (i− 1)2 + (m− i− 1)(2i+ k − i− 2), (B.150)

= m2 + 1− i− j. (B.151)

So det(Mij) is O(tm
2+1−i−j).

case 8: (i = 1, j = m).
The seed sequence {s}i is {2, . . . , 2m − 4}. At the last step we get a matrix as in

equation (B.128).
So,

u1 = 2 + sm−2 +
m−2∑

i=1

si, (B.152)

= 2 + (2m− 4) + (m− 2)(2 +m− 3), (B.153)

= m2 + 1− i− j. (B.154)

So det(Mij) is O(tm
2+1−i−j).

case 9: (i = 1, j = m− 1).
The seed sequence {s}i is {2, . . . , 2m − 4}. At the last step we get a matrix as in

equation (B.132).
So,
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u1 = 3 + sm−2 +
m−2∑

i=1

si, (B.155)

= 3 + (2m− 4) + (m− 2)(2 +m− 3), (B.156)

= m2 + 1− i− j. (B.157)

So det(Mij) is O(tm
2+1−i−j).

case 10: (i = 1 < j < m− 1).
The seed sequence {s}i is {2, . . . , 2j − 2, 2j + 1, . . . , 2m− 3}. At the last step we get

a matrix as in equation (B.128).
So,

u1 = 2 + sm−2 +
m−2∑

i=1

si, (B.158)

= 2 + (2m− 3) + (j − 1)(2 + j − 2) + (m− j − 1)(2j + 1 + (m− j − 2)), (B.159)

= m2 + 1− i− j. (B.160)

So det(Mij) is O(tm
2+1−i−j).

With the above lemma, the following Corollary can be readily verified.

Corollary 154. When θ1:n is such that ∥θ1:n∥∞ ≤ B = O(1), we have ∥
(
XT

t X t

)−1
XT

t θ1:n∥2 =
O(1).

232



Appendix C

Supplementary Materials for
Chapter 4

C.1 Proofs of Technical Results

For the sake of clarity, we present a sequence of lemmas and sketch how to chain
them to reach the main result in Section C.1.1. This is followed by proof of all lemmas
in Section C.1.2 and finally the proof of Theorem 27 in Section C.1.3.

C.1.1 Proof strategy for Theorem 27

We first show that Aligator suffers logarithmic regret against any expert in the pool
E during its awake period. Then we exhibit a particular partition of the underlying TV
bounded function such that number of chunks in the partition is O(n1/3C

2/3
n ). Following

this, we cover each chunk with atmost log n experts and show that each expert in the cover
suffers a Õ(1) estimation error. The Theorem then follows by summing the estimation
error across all chunks.

Some notations. In the analysis thereafter, we will use the following notations. Let
σ̃ = σ

√
2 log(4n/δ), Rσ = 16(B + σ̃)2 and T (I) = {t ∈ [n] : it ∈ I} for any I ∈ I|[n],

where I|[n] is defined according to the terminology in Section 4.2.1. Let θt := f(xit).
First, we show that Aligator is competitive against any expert in the pool E .

Lemma 155. For any interval I ∈ I|[n] such that T (I) is non-empty, the predictions
made by Aligator ŷt satisfy

∑

t∈T (I)

(ŷt − θt)2 ≤
e− 1

3− e
∑

t∈T (I)

(AI(t)− θt)2 +
log(n log n)Rσ + 2R2

σ log(2n log n/δ)

3− e ,

(C.1)

with probability atleast 1− δ.
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Corollary 156. Let S = {P1, . . . , PM} be an arbitrary ordered set of consecutive intervals
in [n]. For each i ∈ [n] let Ui be the set containing elements of the GC that covers the

interval Pi according to Proposition 23. Denote λ := log(n logn)Rσ+2R2
σ log(2n logn/δ)

3−e
. Then

Aligator forecasts ŷt satisfy

n∑

t=1

(ŷt − θt)2 ≤ min
S

M∑

i=1

∑

I∈Ui

1{|T (I)| > 0}


e− 1

3− e
∑

t∈T (I)

(AI(t)− θt)2 + λ


 , (C.2)

with probability atleast 1− δ.

The minimum across all partitions in the Corollary above hints to the novel ability
of Aligator to incur potentially very low estimation errors.

Next, we proceed to exhibit a partition of the set of exogenous variables queried by
the adversary that will eventually lead to the minimax rate of Õ(n1/3C

2/3
n ). The existence

of such partitions is a non-trivial matter.

Lemma 157. Let S = {xk1 < . . . , < xkm} ⊆ X be the exogenous variables queried by
the adversary over n rounds where each ki ∈ [n]. Denote θ(i) := f(xki) and p(i) :=
#{t : xit = xki} for each i ∈ [m]. Denote [xi, xj] := {xki , xki+1

, . . . , xkj}. For any

[xi, xj] ⊆ S, define V (xi, xj) =
∑j−1

k=i |θ(i) − θ(i+1)|. There exists a partitioning P =
{[x1, xr1 ], [xr1+1, xr2 ], . . . , [xrM−1+1, xm]} of S that satisfies

1. For any [xi, xj] ∈ P \ {[xrM−1+1, xm]}, V (xi, xj) ≤ B√∑j
k=i p(k)

.

2. V (xrM−1+1, xm−1) ≤ B√∑m−1
k=rM−1+1 p(k)

.

3. Number of partitions M ≤ max{3n1/3C
2/3
n B−2/3, 1}.

The next lemma controls the estimation error incurred by an expert during its awake
period.

Lemma 158. Let {
¯
x,< . . . , < x̄} be the exogenous variables queried by the adversary

over n rounds in an arbitrary interval I ∈ I|[n]. Then with probability atleast 1− δ
∑

t∈T (I)

(θt −AI(t))
2 ≤ 2V (

¯
x, x̄)2|T (I)|+ 2σ2 log(2n3 log n/δ) log(|T (I)|), (C.3)

where V (·, ·) is defined as in Lemma 157.

To prove Theorem 27, our strategy is to apply Corollary 156 to the partition in
Lemma 157. By the construction of the GC, each chunk in the partition can be cov-
ered using atmost log n intervals. Now consider the estimation error incurred by an
expert corresponding to one such interval. Due to statements 1 and 2 in Lemma 157 the
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V (
¯
x, x̄)2|T (I)| term of error bound in Lemma 158 can be shown to O(1). When summed

across all intervals that cover a chunk, the total estimation error within a chunk becomes
Õ(1). Now appealing to statement 3 of Lemma 157, we get a total error of Õ(n1/3C

2/3
n )

when the error is summed across all chunks in the partition.

C.1.2 Omitted Lemmas and Proofs

Lemma 159. Let V be the event that for all t ∈ [n], |ϵt| ≤ σ
√

2 log(4n/δ). Then
P(V) ≥ 1− δ/2.
Proof. By gaussian tail inequality, we have for a fixed t P (|ϵt| > σ

√
2 log(4n/δ)) ≤ δ/2n.

By taking a union bound we get P (|ϵt| ≥ σ
√

2 log(4n/δ)) ≤ δ/2 for all t ∈ [n].

Some notations. In the analysis thereafter, we will use the following filtration.

Fj = σ((i1, yi1), . . . , (ij−1, yij−1
)). (C.4)

Let’s denote Ej[·] := E[·|Fj] and Varj[·] := Var[·|Fj]. Let θj = f(xij) and σ̃ = σ
√

2 log(4n/δ).
Let Rσ = 16(B + σ̃)2 and T (I) = {t ∈ [n] : it ∈ I}
Lemma 160. (Freedman type inequality, [135]) For any real valued martingale difference
sequence {Zt}Tt=1 with |Zt| ≤ R it holds that,

T∑

t=1

Zt ≤ η(e− 2)
T∑

t=1

Vart[Zt] +
R log(1/δ)

η
, (C.5)

with probability atleast 1− δ for all η ∈ [0, 1/R].

Lemma 161. For any j ∈ [n], we have

1. Ej[(yj −AI(j))
2 − (yj − θj)2|V ] = Ej[(AI(j)− θj)2|V ].

2. Varj[(yj −AI(j))
2 − (yj − θj)2|V ] ≤ RσEj[(AI(j)− θj)2|V ].

Proof. We have,

Ej[(yj −AI(j))
2 − (yj − θj)2|V ] =(a) Ej[(AI(j)− θj)2|V ]− 2Ej[ϵj|V ]Ej[(AI(j)− θj)|V ],

(C.6)

= Ej[(AI(j)− θj)2|V ], (C.7)

where line (a) is due to the independence of ϵj with the past. Since (AI(j) + θj−2yj)
2 ≤

16(B + σ̃)2 under the event V , it holds that

Varj[(yj −AI(j))
2 − (yj − θj)2|V ] ≤ Ej[(yj −AI(j))

2 − (yj − θj)2|V ]2, (C.8)

≤ 16(B + σ̃)2Ej[(AI(j)− θj)2|V ]. (C.9)
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Lemma 162. For any interval I ∈ I, it holds with probability atleast 1− δ that

1.
∑

j∈T (I)(yj−AI(j))
2−(yj−θj)2 ≤

∑
j∈T (I)(e−1)(AI(j)−θj)2+R2

σ log(2n log n/δ),

2.
∑

j∈T (I)(yj − ŷj)2 − (yj − θj)2 ≥
∑

j∈T (I)(3− e)(ŷj − θj)2 −R2
σ log(2n log n/δ).

Proof. Define Zj = (yj −AI(j))
2 − (yj − θj)2 − (AI(j)− θj)2.

Condition on the event V that |ϵt| ≤ σ
√

2 log(4n/δ).∀t ∈ [n] which happens with
probability atleast 1 − δ/2 by Lemma 159. By Lemma 161, we have {Zj}j∈T (I) is a
martingale difference sequence and |Zj| ≤ 16(B+ σ̃)2 = Rσ. Note that once we condition
on the filtration Fj, there is no randomness remaining in the terms (AI(j) − θj)

2 and
(ŷj − θj)2. Hence Ej[(AI(j) − θj)2|V ] = (AI(j) − θj)2 and Ej[(ŷj − θj)2|V ] = (ŷj − θj)2.
Using Lemma 160 and taking η = 1/Rσ we get,

∑

j∈T (I)

(yj −AI(j))
2 − (yj − θj)2 ≤

∑

j∈T (I)

(e− 1)(AI(j)− θj)2 +R2
σ log(4n log n/δ),

(C.10)

with probability atleast 1 − δ/(4n log n) for a fixed expert AI . Taking a union bound
across all O(n log n) experts in E leads to,

P

( ∑

j∈T (I)

(yj −AI(j))
2 − (yj − θj)2 ≥

∑

j∈T (I)

(e− 1)(AI(j)− θj)2 +R2
σ log(2n log n/δ)|V

)

(C.11)

≤ δ/4, (C.12)

for any expert AI .
By similar arguments on the martingale difference sequence (ŷj − θj)2 − (yj − ŷj)2 −

(yj + θj)
2, it can be shown that

P


 ∑

j∈T (I)

(yj − ŷj)2 − (yj − θj)2 ≤
∑

j∈T (I)

(3− e)(ŷj − θj)2 −R2
σ log(2n log n/δ)|V


 ≤ δ/4,

(C.13)

for any interval I ∈ I|[n]. Taking union bound across the previous two bad events and
multiplying the probability of noise boundedness event V leads to the lemma.

Lemma 155. For any interval I ∈ I|[n] such that T (I) is non-empty, the predictions
made by Aligator ŷt satisfy

∑

t∈T (I)

(ŷt − θt)2 ≤
e− 1

3− e
∑

t∈T (I)

(AI(t)− θt)2 +
log(n log n)Rσ + 2R2

σ log(2n log n/δ)

3− e ,

(C.1)
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with probability atleast 1− δ.
Proof. Condition on the event V . Then the losses ft(x) = (yt−x)2 are 1

4(B+σ
√

log(2n/δ))2
:=

η exp-concave [136, 40]. Since we pass η · ft(x) as losses to SAA in Aligator, Lemma
24 gives

∑

t∈T (I)

− log

(∑

J∈At

wt,Je
−ηft(AJ (t))

)
− ηft(AI(t)) ≤ log(n log n). (C.14)

By η exp-concavity of ft(x), we have

− log

(∑

J∈At

wt,Je
−ηft(AJ (t)))

)
≥ ηft

(∑

J∈At

wt,JAI(t)

)
, (C.15)

= ηft(ŷt). (C.16)

Combining (C.14) and (C.16) gives,

∑

t∈T (I)

ft(ŷt)− ft(AI(t)) ≤
log(n log n)

η
, (C.17)

≤ log(n log n)Rσ. (C.18)

So,

∑

t∈T (I)

(yt − ŷt)2 − (yt − θt)2 ≤
∑

t∈T (I)

(yt −AI(t))
2 − (yt − θt)2 + log(n log n)Rσ, (C.19)

Now invoking Lemma (162) followed by a trivial rearrangement completes the proof.

Lemma 157. Let S = {xk1 < . . . , < xkm} ⊆ X be the exogenous variables queried by
the adversary over n rounds where each ki ∈ [n]. Denote θ(i) := f(xki) and p(i) :=
#{t : xit = xki} for each i ∈ [m]. Denote [xi, xj] := {xki , xki+1

, . . . , xkj}. For any

[xi, xj] ⊆ S, define V (xi, xj) =
∑j−1

k=i |θ(i) − θ(i+1)|. There exists a partitioning P =
{[x1, xr1 ], [xr1+1, xr2 ], . . . , [xrM−1+1, xm]} of S that satisfies

1. For any [xi, xj] ∈ P \ {[xrM−1+1, xm]}, V (xi, xj) ≤ B√∑j
k=i p(k)

.

2. V (xrM−1+1, xm−1) ≤ B√∑m−1
k=rM−1+1 p(k)

.

3. Number of partitions M ≤ max{3n1/3C
2/3
n B−2/3, 1}.

Proof. We provide below a constructive proof. Consider the following scheme of parti-
tioning S.
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1. Set pings = p(1),TV = 0,M = 1.

2. Start a partition from x1.

3. For i = 2 to m

(a) If TV + |θ(i) − θ(i−1)| > B√
pings+p(i)

:

i. pings = p(i),TV = 0 // start a new bin (partition) from position xi.

ii. M = M + 1 // increase the bin counter

(b) Else:

i. pings = pings + p(i),TV = TV + |θ(i) − θ(i−1)|
Statements 1 and 2 of the Lemma trivially follows from the strategy. Next, we

provide an upper bound on number of bins M spawned by the above scheme. Let
[x1, xr1 ], [xr1+1, xr2 ], . . . , [xrM−1,xrM

] be the partition of S discovered by the above scheme.

Define the quantity TV1 :=
∑r1

i=1 |θ(i)− θ(i+1)| associated with bin 1. Similarly define
TV2, . . . ,TVM−1 for other bins.

Define N(1) =
∑r1+1

i=1 p(i). Similarly define N(2), . . . N(M − 1). It is immediate that∑M−1
i=1 N(i) ≤ 2n.
We have,

Cn ≥
M−1∑

i=1

TVi, (C.20)

≥(1)

M−1∑

i=1

B√
N(i)

, (C.21)

≥(2)
(M − 1)3/2 ·B√

2n
, (C.22)

where (1) follows from step 3(a) of the partitioning scheme and (2) is due to convexity
of 1/

√
x, x > 0 and applying Jensen’s inequality. Rearranging and noting that M − 1 ≥

M/2, when M > 1, we obtain

M ≤ 3n1/3C2/3
n B−2/3. (C.23)

Note that when Cn = 0, M will remain 1 as a result of the partitioning scheme.

Lemma 158. Let {
¯
x,< . . . , < x̄} be the exogenous variables queried by the adversary

over n rounds in an arbitrary interval I ∈ I|[n]. Then with probability atleast 1− δ
∑

t∈T (I)

(θt −AI(t))
2 ≤ 2V (

¯
x, x̄)2|T (I)|+ 2σ2 log(2n3 log n/δ) log(|T (I)|), (C.3)
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where V (·, ·) is defined as in Lemma 157.

Proof. Let q(t) =
∑t−1

s=1 1{is ∈ I}. Assume q(t) > 0. Fix a particular expert AI and a
time t. Since yt ∼ N(θt, σ

2) by gaussian tail inequality we have,

P

(∣∣∣∣∣

∑t−1
s=1(ys − θs)1{is ∈ I}∑t−1

s=1 1{is ∈ I}

∣∣∣∣∣ ≥
σ√
q(t)

√
log

(
2n3 log n

δ

))
≤ δ

(n3 log n)
. (C.24)

Applying a union bound across all time points and all experts implies that for any expert
AI and t ∈ T (I) with q(t) ¿ 0,

∣∣∣∣∣AI(t)−
∑t−1

s=1 θs1{is ∈ I}
q(t)

∣∣∣∣∣ ≤
σ√
q(t)

√
log

(
2n3 log n

δ

)
(C.25)

with probability atleast 1− δ.
Now adding and subtracting θt inside the | · | on LHS and using |a − b| ≥ |a| − |b|

yields,

|AI(t)− θt| ≤
∣∣∣∣∣θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

∣∣∣∣∣+
σ√
q(t)

√
log

(
2n3 log n

δ

)
. (C.26)

Hence,

∑

t∈T (I)

(θt −AI(t))
2 ≤(a)

∑

t∈T (I)

2

(
θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

)2

+ 2
σ2

q(t)
log

(
2n3 log n

δ

)

(C.27)

≤
∑

t∈T (I)

2

(
θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

)2

+ 2σ2 log(|T (I)|) log

(
2n3 log n

δ

)
,

(C.28)

with probability atleast 1− δ. In (a) we used the relation (a+ b)2 ≤ 2a2 + 2b2.
Further we have,

∑

t∈T (I)

2

(
θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

)2

≤ 2V (
¯
x, x̄)2|T (I)|. (C.29)

Combining (C.28) and (C.29) completes the proof.
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C.1.3 Proof of the main result: Theorem 27

Proof. Throughout the proof we carry forward all notations used in Lemmas 157 and
158.

We will apply Corollary 156 to the partition in Lemma 157. Take a specific partition
[xi, xj] ∈ P with j ̸= m. Consider a set of indices F = {ki, ki + 1, . . . , kj} of consecutive
natural numbers between ki and kj. By Proposition 23 F can be covered using elements
in I|[n]. Let this cover be U . For any I ∈ U , we have

∑

t∈T (I)

(θt −AI(t))
2 ≤(a) 2V (

¯
x, x̄)2|T (I)|+ 2σ2 log(2n3 log n/δ) log(|T (I)|) (C.30)

≤ 2V (
¯
x, x̄)2|T (F )|+ 2σ2 log(2n3 log n/δ) log(|T (I)|) (C.31)

≤(b) 2B2 + 2σ2 log(2n3 log n/δ) log(n), (C.32)

, with probability atleast 1−δ. Step (a) is due to Lemma 158 and (b) is due to statement
1 of Lemma 157.

Using Lemma 155 and a union bound on the bad events in Lemmas 155 and 158
yields,

∑

t∈T (I)

(ŷt − θt)2 ≤
e− 1

3− e
(
2B2 + 2σ2 log(2n3 log n/δ) log(n)

)
+ λ, (C.33)

with probability atleast 1− 2δ and λ is as defined in Corollary 156. Due to the property
of exponentially decaying lengths as stipulated by Proposition 23, there are only atmost
2 log |F | ≤ 2 log n intervals in U . So,

∑

t∈T (F )

(ŷt − θt)2 ≤ 2 log n

(
e− 1

3− e
(
2B2 + 2σ2 log(2n3 log n/δ) log(n)

)
+ λ

)
. (C.34)

Similar bound can be obtained for the last bin [xrM−1+1, xm] in P . There are two cases
to consider. In case 1, we consider the scenario when V (xrM−1+1, xm) obeys relation 1
of Lemma 157. Then the analysis is identical to the one presented above. In case 2,
we consider the scenario when V (xrM−1+1, xm−1) obeys relation 2 of Lemma 157 while
V (xrM−1+1, xm) doesn’t. Then the error incurred within the interior [xrM−1+1, xm−1] can
be bounded as before. To bound the error at last point, we only need to bound the
error of expert that performs mean estimation of iid gaussians. It is well known that the
cumulative squared error for this problem is atmost σ2 log(n/δ) with probability atleast
1− δ.

By Lemma 157, |P| = max{3n1/3C
2/3
n B−2/3, 1}. Hence the total error summed across
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all partitions in P becomes,

n∑

t=1

(ŷt − θt)2 ≤ 2 log n

(
e− 1

3− e
(
4n1/3C2/3

n B4/3

+ 4σ2 log(2n3 log n/δ) log(n)n1/3C2/3
n B−2/3

)

+ 4 log(n)
e− 1

3− eλn
1/3C2/3

n B−2/3

+ 2 log(n)

(
e− 1

3− e
(
2B2 + 2σ2 log(2n3 log n/δ) log(n)

)
+ λ

)

+ σ2 log(n/δ),

= Õ(n1/3C2/3
n ),

(C.35)

with probability atleast 1− 2δ. A change of variables from 2δ → δ completes the proof.
As a closing note, we remark that the aggressive dependence of B in (C.35) on cases
when B is too small can be dampened by using a threshold of 1√

pings+p(i)
in the partition

scheme presented in proof of Lemma 157.

C.2 Excluded details in Experimental section

Waveforms. The waveforms shown in Fig. C.1 and C.2 are borrowed from [56].
Note that both functions exhibit spatially inhomogeneous smoothness behaviour.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e4

1.0

0.5

0.0

0.5

1.0
Doppler function

Figure C.1: Doppler function, TV = 27
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e4

1.0

0.5

0.0

0.5

Heavisine function

Figure C.2: Heavisine function, TV = 7.2

Hyper-parameter search. Initially we used a grid search on an exponential grid
to realize that the optimal λ across all experiments fall within the range [0.125, 8]. Then
we used a fine-tuned grid
[0.125, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 10, 12, 14, 16] to search
for the final hyper parameter value. For Aligator (heuristics), we searched for different
noise levels in order to find best learning rate. We set search method as Loss/(para ∗
(σ2 + σ2/m)). As Fig. C.7 shows, para = 2 is found to provide good results across all
signals we consider.

Padding for wavelets. For “wavelet” estimator in Fig. 4.6, when data length is not
a power of 2, we used the reflect padding mode in [137], though the results are similar
for other padding schemes.

Experiments on Real Data. We follow the experimental setup described in Section
4.5. A qualitative comparison of the forecasts for the state of New Mexico, USA is
illustrated in Fig. C.8. The average RMSE of Aligator and Holt ES for all states in
USA is reported in Table C.1.

State
RMSE
Aligator

RMSE
Holt ES

% improvement

New Jersey 411.87 546.89 24.69
Ohio 216.24 280.24 22.84

Florida 1330.33 1671.23 20.4
Alabama 290.71 362.13 19.72
New York 876.35 1054.2 16.87

Rhode Island 85.11 98.23 13.35
Vermont 7.59 8.7 12.76
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Kansas 142.17 162.16 12.33
New Mexico 57.88 65.99 12.29
Connecticut 206.79 235.6 12.23
California 1456.48 1650.25 11.74

Pennsylvania 258.21 290.6 11.14
Kentucky 145.61 163.59 10.99

New Hampshire 25.16 27.99 10.1
Minnesota 161.41 179.12 9.89
Michigan 315.86 350.24 9.82
Hawaii 30.24 33.18 8.86
Texas 1510.42 1650.73 8.5

South Dakota 56.83 61.8 8.04
Utah 118.97 128.96 7.74

Alaska 17.54 18.96 7.52
Washington 188.8 202.74 6.88

North Carolina 265.74 284.47 6.58
Nebraska 98.49 105.41 6.56
Montana 28.31 30.28 6.51
Missouri 224.51 239.9 6.42

Iowa 205.77 219.28 6.16
District of Columbia 33.58 35.74 6.04

Virginia 194.29 206.44 5.89
Nevada 159.88 168.92 5.35

Wyoming 16.43 17.25 4.73
Georgia 493.93 518.27 4.7
Oregon 55.48 58.21 4.68

Louisiana 562.89 590.49 4.67
Maryland 209.95 218.22 3.79

Illinois 475.49 492.09 3.37
West Virginia 37.34 38.63 3.33

Delaware 64.1 66.26 3.26
Tennessee 384.55 396.95 3.12
Arizona 481.91 493.73 2.39

South Carolina 271.87 277.42 2.0
Idaho 93.83 95.44 1.68

Colorado 142.58 144.53 1.35
Mississippi 206.67 209.11 1.16
Arkansas 164.83 164.88 0.03

Massachusetts 302.79 301.8 -0.32
Oklahoma 151.82 146.65 -3.41
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Indiana 185.1 178.2 -3.73
North Dakota 42.14 40.49 -3.92

Wisconsin 219.04 203.37 -7.15
Maine 14.59 13.37 -8.36

Table C.1: Average RMSE across all states in USA.
The experimental setup and computation of error met-
rics are as described in Section 4.5. The % improve-
ment tab is computed as follows. Let x1 and x2 be the
RMSE of Aligator and Holt ES respectively. Then
% improvement = (x2 − x1)/max{x1, x2}.
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Figure C.3: Fitted signals for Doppler function with noise level σ = 0.35
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Figure C.4: Histogram of residuals for various algorithms when run on Doppler func-
tion with noise level σ = 0.35. Note that they are residuals w.r.t to ground truth.
Aligator incurs lower bias than wavelets. The bias incurred by dof fused lasso is
roughly comparable to Aligator while former is more compute intensive.
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Figure C.5: Fitted signals for Heavisine function with noise level σ = 0.35
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Figure C.6: Histogram of residuals for various algorithms when run on Heavisine
function with noise level σ = 0.35. Note that they are residuals w.r.t to ground truth.
Aligator incurs lower bias than wavelets. The bias incurred by dof fused lasso is
roughly comparable to Aligator while former is more compute intensive.
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Figure C.7: Hyper-parameter search for learning rate in Aligator (heuristics).
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Figure C.8: A demo on forecasting COVID cases based on real world data. We display
the two weeks forecasts of hedged Aligator and Holt ES, starting from the time points
identified by the dotted lines. Both the algorithms are trained on a 2 month data
prior to each dotted line. We see that hedged Aligator detects changes in trends
more quickly than Holt ES. Further, hedged Aligator attains a 12% reduction in the
average RMSE from that of Holt ES (see Table C.1).
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D.1 Preliminaries

In this section, we recall the Follow-the-Leading-History (FLH) algorithm from [23]
along with some basic definitions.

Definition 163. (Strong convexity) Loss functions ft are said to be H strongly convex
in the domain D if it satisfies

ft(y) ≥ ft(x) + (y − x)T∇ft(x) +
H

2
∥x− y∥2,

for all x,y ∈ D.

FLH enjoys the following guarantee against any base learner.

Proposition 164. [23] Suppose the loss functions are exp-concave with parameter α.
For any interval I = [r, s] in time, the algorithm FLH Fig.D.1 with learning rate ζ = α
gives O(α−1(log r + log |I|)) regret against the base learner in hindsight.

Definition 165. ([24]) An algorithm is said to be Strongly Adaptive (SA) if for every con-
tiguous interval I ⊆ [n], the static regret incurred by the algorithm isO(poly(log n)Γ∗(|I|))
where Γ∗(|I|) is the value of minimax static regret incurred in an interval of length |I|.

It is known from [77] that OGD and ONS achieves static regret of O(log n) and
O(d log n) for strongly convex and exp-concave losses respectively. Hence in view of
Proposition 164 and Definition 165, we can conclude that:

• FLH with OGD as base learners is an SA algorithm for strongly convex losses.

• FLH with ONS as base learners is an SA algorithm for exp-concave losses. (We
treat dimension d as a constant problem parameter and consider minimaxity only
wrt n.)
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FLH: inputs - Learning rate ζ and n base learners E1, . . . , En

1. For each t, vt = (v
(1)
t , . . . , v

(t)
t ) is a probability vector in Rt. Initialize

v
(1)
1 = 1.

2. In round t, set ∀j ≤ t, xjt ← Ej(t) (the prediction of the jth bas learner

at time t). Play xt =
∑t

j=1 v
(j)
t x

(j)
t .

3. After receiving ft, set v̂
(t+1)
t+1 = 0 and perform update for 1 ≤ i ≤ t:

v̂
(i)
t+1 =

v
(i)
t e

−ζft(x
(i)
t )

∑t
j=1 v

(j)
t e−ζft(x

(j)
t )

(D.1)

4. Addition step - Set v
(t+1)
t+1 to 1/(t+ 1) and for i ̸= t+ 1:

v
(i)
t+1 = (1− (t+ 1)−1)v̂

(i)
t+1 (D.2)

Figure D.1: FLH algorithm

We have the following guarantee on runtime.

Proposition 166. [23] Let ρ be the per round run time of base learners and rn be the
static regret suffered by the base learners over n rounds. Then FLH procedure has a
runtime of O(ρn) per round. To improve the runtime one can use AFLH procedure from
[23] that incurs O(ρ log n) runtime overhead per round and suffers O(rn log n) static regret
in any interval.

D.2 Proofs for Section 5.1

We start by providing an example of a scenario where λ in Lemma 36 can scale
linearly with n.

Example 167. Consider the T V(Cn) class with Cn = 1 and n ≥ 6. Let the offline
optimal be given by the step sequence u1 = . . . = u(n/2)−1 = 0 and un/2 = . . . = un = 1.
Our aim is to generate a sequence of labels yt such that this sequence u is indeed the
offline optimal in the class T V(1) along with the property that the optimal dual variable
λ scales linearly with the horizon n.

Clearly we must have s(n/2)−1 = 1. For some appropriate parameter ϵ, consider the
following sign assignment:

• s(n/2)−2 = 1− ϵ, s(n/2)−3 = 1− 2ϵ, . . . , s1 = 1− ((n/2)− 2)ϵ,

• sn−1 = ϵ, sn−2 = 2ϵ, . . . , sn/2 = (n/2)ϵ.
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By setting ϵ = 2/n for n ≥ 6, we get a consistent sign assignment because st ∈ [−1, 1]
for all 1 ≤ t ≤ (n/2) − 2 which corresponds to the portion where ut = 0; s(n/2)−1 = 1;
and st ∈ [−1, 1] for all n/2 ≤ t ≤ n− 1 which corresponds to the portion where ut = 1.

By taking λ = n/2 the adversary can generate labels yt according to the stationarity
condition in Lemma 36 as follows:

• y1 = −2,

• yt = −1, for 2 ≤ t ≤ (n/2)− 1,

• yn/2 = 1,

• yt = 2, for (n/2) + 1 ≤ t ≤ n.

Since the TV of the sequence u is 1, the complementary slackness is also satisfied.
Thus we conclude that if the labels yt ∈ [−2, 2] are generated as above, the offline optimal
sequence in T V(1) class is given by the step sequence u. Furthermore, the optimal dual
variable λ = n/2 scales linearly with the horizon.

Lemma 36. (characterization of offline optimal) Consider the following convex
optimization problem (where z̃1, ..., z̃n−1 are introduced as dummy variables)

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

1

2

n∑

t=1

(yt − ũt)2 (5.7a)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1], (5.7b)
n−1∑

t=1

|z̃t| ≤ Cn (5.7c)

Let u1, . . . , un, z1, . . . , zn−1 be the optimal primal variables and let λ ≥ 0 be the optimal
dual variable corresponding to the last constraint (5.7c). By the KKT conditions, we have

• stationarity: yt = ut−λ(st−st−1), where st ∈ ∂|zt| (a subgradient). Specifically,
st = sign(ut+1−ut) if |ut+1−ut| > 0 and st is some value in [−1, 1] otherwise. For
convenience of notations later, we also define sn = s0 = 0.

• complementary slackness: λ (
∑n

t=2 |ut − ut−1| − Cn) = 0.

Proof. We can form the Lagrangian of the optimization problem as:

L(ũ, z̃, ṽ, λ̃) =
1

2

n∑

t=1

(yt − ũt)2 + λ̃

(
n−1∑

t=1

|z̃t| − Cn

)
+

n−1∑

t=1

ṽt(ũt+1 − ũt − z̃t), (D.3)
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for dual variables λ̃ > 0 and ṽ ∈ Rn−1 unconstrained. Let the (u, z,v, λ) be the optimal
primal and dual variables. By stationarity conditions, we have

ut − yt = vt − vt−1, (D.4)

where we take v0 = vn = 0 and

vt = λst (D.5)

Combining the above two equations and the complementary slackness rule yields the
lemma.

Lemma 38. (key partition) Initialize Q ← Φ. Starting from time 1, spawn a new bin
[is, it] whenever

∑it+1
j=is+1 |uj − uj−1| > B/

√
ni, where ni = it − is + 2. Add the spawned

bin [is, it] to Q. Consider the following post processing routine.

1. Initialize P ← Φ.

2. For i ∈ [|Q|]:

• if uit = uit+1:

(a) Let p be the largest time point with up:it being constant and let q be the
smallest time point with uit+1:q being constant.

(b) Add bin [is, p− 1] to P.
(c) If (i+ 1)t > q then add [p, q] to P and set (i+ 1)s ← q + 1.

(d) Goto Step 2.

• Add [is, it] to P. Goto Step 2.

Let M := |P|. We have M = O
(

1 ∨ n1/3C
2/3
n B−2/3

)
. Further for any bin [is, it] ∈ P,

it holds that
∑it

j=is+1 |uj − uj−1| ≤ B/
√
ni where ni = it − is + 1.

Proof. Let’s use the notation TV [a, b] to denote the TV incurred by the optimal solution
sequence in the interval [a, b]. Let Q = {[

¯
t1, t̄1], . . . , [

¯
tN , t̄N ]} with

¯
t1 := 1 and t̄N := n.

Let nj := t̄j −
¯
tj + 1 We have,

N−1∑

j=1

TV [
¯
tj, t̄j + 1] ≤ Cn. (D.6)

By construction we have TV [
¯
tj, t̄j + 1] > ν/

√
nj. So,
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Cn ≥
N−1∑

j=1

ν/
√
nj (D.7)

≥ (N − 1)3/2ν/
√
n, (D.8)

where the last line follows by Jensen’s inequality. Rearranging gives the bound on N =

O
(

1 ∨ n1/3C
2/3
n B−2/3

)
. Now the post processing step only increases the number of bins

by O(N). Thus we get M = O
(

1 ∨ n1/3C
2/3
n B−2/3

)
.

Lemma 40. (bounding T1,i) Assume that we run FLH with the settings described in
Theorem 34. For any bin i we have T1,i = O (B2 log n)

Proof. Note that FTL with squared error losses outputs predictions which are online
averages of the past labels that the algorithm has seen so far. Hence the predictions of
all base learners as well as FLH belong to the interval [−B,B]. It is known that (see for
eg. [40], Chapter 3) squared error losses are 1/(8B2) exp-concave in the interval [−B,B]
. Further FTL with squared error losses suffers only logarithmic regret of O(B2 log n)
([40], Chapter 3).

Hence due to the adaptive regret bound of FLH (Theorem 3.2 in [23]) by setting the
learning rate ζ = 1/(8B2), we have that the static regret of FLH in any interval [is, it]
is also O(log n). This proves the lemma.

Lemma 41. (bounding T2,i) Define Ci :=
∑it

j=is+1 |uj − uj−1|, the TV within bin i
incurred by the offline optimal solution. Let ∆si := sit − sis−1 and ni := it − is + 1. We

have T2,i ≤ −λ2(∆si)
2

ni
.

Proof. From the stationarity conditions in Lemma 36, we can write

ūi − ȳi =
λ∆si
ni

. (D.9)

Further,

it∑

j=is

(yj − ȳi)2 − (yj − ūi)2 = ni(ūi − ȳi)2 + 2
it∑

j=is

(yj − ūi)(ūi − ȳi) (D.10)

= −ni(ūi − ȳi)2 (D.11)

Now plugging in Eq. (D.9) yields the lemma.

Lemma 42. (bounding T3,i) Let Ci and ∆si be as in Lemma 41.

Case(a) If |∆si| > 0 then T3,i ≤ B2 + 6λCi.
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Case(b) If ∆si = 0 with sis−1 = sit = 1 and the offline optimal u is non-decreasing
within bin i, then T3,i ≤ B2.

Case(c) If ∆si = 0 with sis−1 = sit = −1 and the offline optimal u is non-increasing
within bin i, then T3,i ≤ B2.

Proof. Applying stationarity conditions, we have

T3,i =
it∑

j=is

(yj − ūi)2 − (yj − uj)2 (D.12)

=
it∑

j=is

(uj − ūi)(2yj − ūi − uj) (D.13)

=
it∑

j=is

(uj − ūi)(2yj − 2uj + uj − ūi) (D.14)

=
it∑

j=is

(uj − ūi)2 + 2λ(uj − ūi)(sj−1 − sj) (D.15)

≤ niC
2
i +

it∑

j=is

2λ(uj − ūi)(sj−1 − sj), (D.16)

where in the last line we used |uj− ūi| ≤ Ci. Also observe that niC
2
i ≤ B2 for bins in the

partition P by Lemma 38. Now by expanding the second term followed by a regrouping
of the terms in the summation, we can write

it∑

j=is

2λ(uj − ūi)(sj−1 − sj) = 2λ (sis−1(uis − ūi)− sit(uit − ūi)) + 2λ
it∑

j=is+1

|uj − uj−1|

(D.17)

= 2λCi + 2λ (sis−1(uis − ūi)− sit(uit − ūi)) (D.18)

Now we discuss the three cases.

Case (a) When |∆si| > 0, then by triangle inequality we have
2λ (sis−1(uis − ūi)− sit(uit − ūi)) ≤ 4λCi.

Case (b) In this case we have 2λ (sis−1(uis − ūi)− sit(uit − ūi)) = λ(uis−uit) = −2λCi

since the sequence is non-decreasing within the bin. Hence this term cancels with
the corresponding additive term of 2λCi in Eq. (D.18).

Case (c) By similar logic as in case (b) we can once again write
2λ (sis−1(uis − ūi)− sit(uit − ūi)) = −2λCi.

Substituting the bound of each case into (D.16). we obtain the expression as stated.

253



Supplementary Materials for Chapter 5 Chapter D

Proposition 43. (Extension to higher dimensions) Consider a protocol where at
each time the learner predicts a vector xt ∈ Rd after which the adversary reveals yt

such that ∥yt∥∞ ≤ B. Consider a comparator sequence of vectors w1, . . . ,wn such that
TV (w1:n) :=

∑n
t=2 ∥wt −wt−1∥1 ≤ Cn. By running d instances of FLH with learning

rate ζ = 1/(8B2) and FTL as base learners, where instance i, i ∈ [d], predicts xt[i] at
time t, we have

Rn(w1:n) :=
n∑

j=1

∥yt − xt∥22 − ∥yt −wt∥22 = Õ
(
dB2 log n ∨ d1/3n1/3C2/3

n B4/3
)
.

Proof. Let u1, . . . ,un be the offline optimal sequence. Let Cn[k] =
∑n

t=2 |ut[k]−ut−1[k]|
be its TV allocated to coordinate k. WLOG, let’s assume the FLH for coordinates
k ∈ [k′] for k′ ≤ d incurs Õ

(
n1/3(Cn[k])2/3B4/3

)
regret and the regret incurred by FLH

for coordinates k > k′ is O(log n). Since squared error losses decomposes coordinate-wise,
we have

Rn(w1:n) ≤ sup
w1:n:TV (w1:n)≤Cn

Rn(w1:n) (D.19)

= Rn(u1:n) (D.20)

= (d− k′)B2 log n+
k′∑

k=1

Õ
(
n1/3(Cn[k])2/3B4/3

)
(D.21)

≤ (d− k′)B2 log n+ Õ


n1/3(k′)1/3B4/3

(
k′∑

k=1

Cn[k]

)2/3

 , (D.22)

where the last line follows by Holder’s inequality xTy ≤ ∥x∥3∥y∥3/2, where we treat x as
just a vector of ones in Rk′ . The above expression can be further upper bounded by

Õ
(

2dB2 log n ∨ 2d1/3n1/3C
2/3
n B4/3

)
.

Proposition 44. (Lower bound) Assume the protocol and notations of Proposition
43. For any algorithm, we have

sup
w1:n:TV (w1:n)≤Cn

Rn(w1:n) = Ω
(
dB2 log n ∨ d1/3n1/3C2/3

n B4/3
)
. (5.13)

Proof. Consider a fixed (but unknown) sequence u1, . . . ,un such that TV (u1:n) ≤ Cn

with ∥ut∥∞ ≤ B/2 and TV along the coordinate k ∈ [d], TV (u1:n[k]) ≤ Cn/d for
all k. Let the labels be yt = ut + ϵt where each coordinate of ϵt is generated by iid
U [−B/2, B/2]. Further ϵ1, . . . , ϵn are also iid. Then by the results of [2], for any predic-
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Figure D.2: Various configurations of the optimal sequence within a bin [is, it] with
∆si = 0. The leaf nodes indicate the labels of the paragraphs in the Proof of Theorem
34 to handle each scenario.

tion strategy that produces outputs xt, we have

sup
w1:n:TV (w1:n)≤Cn

Rn(w1:n) ≥
d∑

k=1

n∑

t=1

E
[
(yt[k]− xt[k])2 − (yt[k]− ut[k])2

]
(D.23)

=(a)

d∑

k=1

n∑

t=1

E
[
(ut[k]− xt[k])2

]
(D.24)

=
d∑

k=1

Ω(n1/3(Cn/d)2/3B4/3) (D.25)

= Ω(d1/3n1/3C2/3
n B4/3), (D.26)

where in line (a) we used the fact that xt[k] is independent of yt[k] and yt[k]− ut[k] ∼
U [−B/2, B/2].

The dB2 log n part of the lower bound is implied by the lower bound construction of
Vovk [42] (or cf. proof of Theorem 11.9 in [40]).

Close comparison to lower bound in [37]. For the case of 1D forecasting of TV
bounded sequences, [37] consider a stochastic setting where the labels obey yt = wt + ϵt
for some iid σ subgaussian noise ϵt and wt ∈ T VB(Cn). They provide a lower bound

of Ω̃
(

(nB2 ∧ nσ2 ∧ n1/3C
2/3
n σ4/3) + (nB2 ∧BCn) +B2

)
where (a ∧ b) = min{a, b}. In

accordance with the proof of Proposition 44, we can take σ = B/2 and w1:n ∈ T VB/2(Cn)
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∆si ̸= 0

case (a)

Figure D.3: A configuration of optimal sequence within a bin [is, it] with |∆si| ≠ 0.
The leaf node indicate the label of the paragraph in the Proof of Theorem 34 to handle
this scenario.

to translate this lower bound into our setting for 1D case to get a lower bound of:

Rn(Cn) = Ω̃
(
(nB2 ∧ n1/3C2/3

n B4/3) + (nB2 ∧BCn) +B2
)
. (D.27)

Any learner must have to incur O(B2) loss in the first round. Combining this with
the upper bound in Theorem 34 along with the trvial regret bound of O(nB2) we can
get a refined regret upper bound of:

Rn(Cn) = Õ
(
(nB2 ∧ n1/3C2/3

n B4/3
)

+B2). (D.28)

Comparing Eq.(D.27) and (D.28) seems to falsely suggest that during the regime

where n1/3C
2/3
n B4/3 < BCn < nB2 upper bound in Eq.(D.28) is smaller than the lower

bound in Eq.(D.27). But n1/3C
2/3
n B4/3 < BCn happens when Cn > nB, in which case

BCn < nB2 is not satisfied. Hence we conclude that this regime is not realisable implying
no contradictions.

Close comparison to lower bound in [62]. Proposition 1 of [62] considers squared

error losses in 1D and show that when Cn = n
2+γ
4−γ for all γ ∈ (0, 1), the dynamic regret

obeys

Rn(Cn) = Ω
(
log n ∨ (nCn)γ/2

)
. (D.29)

We proceed to show that our lower bound of Ω(log n ∨ n1/3C
2/3
n ) is tighter than this.

Whenever Cn = n
2+γ
4−γ , we have

(nCn)γ/2 = n
3γ
4−γ , (D.30)

and,

n1/3C2/3
n = n

8+γ
12−3γ . (D.31)

It can be verified that for all γ ∈ (0, 1), n
3γ
4−γ ≤ n

8+γ
12−3γ making our lower bound

tighter.
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D.3 Proofs for Section 5.2

D.3.1 One dimensional setting

In the section, we adopt all the notations used in Section 5.1. For the sake of simplicity
of exposition, we first present the results in one dimensional setting and extend it later
to higher dimensions. We have the following guarantee in one dimension.

Theorem 168. (d = 1) By using the base learner as ONS with parameter ζ = min
{

1
4G†(2B+2G/β)

, α
}

and decision set D and choosing learning rate η = α, FLH guarantees a dynamic regret

Rn(Cn) = Õ
(
n1/3C

2/3
n ∨ log n

)
.

We start the analysis by inspecting the KKT conditions.

Lemma 169. (characterization of offline optimal) Consider the following convex
optimization problem.

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

n∑

t=1

ft(ũt) (D.32a)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1], (D.32b)
n−1∑

t=1

|z̃t| ≤ Cn, (D.32c)

−B ≤ ũt ∀t ∈ [n], (D.32d)

ũt ≤ B ∀t ∈ [n], (D.32e)

Let u1, . . . , un, z1, . . . , zn−1 be the optimal primal variables and let λ ≥ 0 be the optimal
dual variable corresponding to the constraint (D.32c). Further, let γ−t ≥ 0, γ+t ≥ 0 be the
optimal dual variables that correspond to constraints (D.32d) and (D.32e) respectively
for all t ∈ [n]. By the KKT conditions, we have

• stationarity: ∇ft(ut) = λ (st − st−1)+γ−t −γ+t , where st ∈ ∂|zt| (a subgradient).
Specifically, st = sign(ut+1 − ut) if |ut+1 − ut| > 0 and st is some value in [−1, 1]
otherwise. For convenience of notations later, we also define sn = s0 = 0.

• complementary slackness: (a) λ (
∑n

t=2 |ut − ut−1| − Cn) = 0; (b) γ−t (ut +
B) = 0 and γ+t (ut −B) = 0 for all t ∈ [n]

Terminology. We will refer to the optimal primal variables u1, . . . , un in Lemma
169 as the offline optimal sequence in this section.

Next, we record an easy corollary of Lemma 38.

Corollary 170. (key partition) Assume the notations of Lemma 38. Create a partition
of P of [n] with the procedure mentioned in Lemma 38 . Then for any [is, it] ∈ P, we
have
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• (TV constraint)
∑it

j=is+1 |uj − uj−1| ≤ B/
√
ni,

• (Bins bound) M := |P| = O(n1/3C
2/3
n ).

• (Structural property) If is > 1 then uis ̸= uis−1. Similarly if it < n then uit ̸= uit+1.

Now we make an important observation regrading the dual variables γ−j and γ+j . The
following property will be used several times in the proofs to follow.

Lemma 171. Define Γ+
i :=

∑it
j=is

γ+j and Γ−
i :=

∑it
j=is

γ−j . Consider a bin [is, it] ∈ P,
where P is the partition of [n] constructed in Corollary 170. Then at-least one of the
following is always satisfied.

• γ−j = 0 for all j ∈ [is, it].

• γ+j = 0 for all j ∈ [is, it].

Consequently we have
∑it

j=is
|γ−j |+ |γ+j | =

∣∣Γ−
i − Γ+

i

∣∣, for any bin [is, it] ∈ P.

Proof. From the properties of the partition P in Corollary 170, we have that the TV of
the offline optimal incurred within each bin is at-most B/

√
ni ≤ B. Hence within bin

[is, it] ∈ P , if the optimal sequence attains the value −B at some time point, it can never
attain the value B and vice-versa. So due to complementary slackness rule in Lemma
169, either γ+j = 0 or γ−j = 0 uniformly for all j ∈ [is, it]. The last line in the statement
of lemma follows by recalling that γ−j ≥ 0 and γ+j ≥ 0 from Lemma 169.

For convenience, we recall here the regret decomposition of Eq.(5.15) specified to one
dimensional setting. Let P be a partition of [n] into M bins as specified in Corollary 170.
Let [is, it] denote the ith bin in P and let ni be its length. Define ūi = 1

ni

∑it
j=is

uj and

u̇i = ūi − 1
niβ

∑it
j=is
∇fj(ūi) where β is as in Assumption EC-2. Let xj be the prediction

made by FLH at time j. We start with following regret decomposition.

Rn(Cn) ≤
M∑

i=1

it∑

j=is

fj(xj)− fj(u̇i)
︸ ︷︷ ︸

T1,i

+
M∑

i=1

it∑

j=is

fj(u̇i)− fj(ūi)
︸ ︷︷ ︸

T2,i

+
M∑

i=1

it∑

j=is

fj(ūi)− fj(uj)
︸ ︷︷ ︸

T3,i

.

(D.33)

We proceed to bound the terms T1,i, T2,i, T3,i for the bins that belong to the partition
P .

Lemma 172. (bounding T1,i) Let the experts in FLH be the ONS algorithms with

parameter ζ = min
{

1
4G†(2B+2G)

, α
}
and decision set D. Also choose learning rate η = α,
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for FLH. Then for any bin [is, it] we have,

it∑

j=is

fj(xj)− fj(u̇i) = O

(
BG† log n+GG† log n+

log n

α

)
(D.34)

= O(log n). (D.35)

Proof. First we proceed to bound |u̇i|. Since |∇fj(uj)| ≤ G by Assumption EC-1, we
have

|u̇i| ≤ |ūi|+
G

β
(D.36)

≤ B +G, (D.37)

since β ≥ 1 by Assumption EC-2. For any x ∈ D, we have |x− u̇i| ≤ 2B+2G by triangle
inequality.

By Assumption EC-4 we have |∇fj(x)| ≤ G† for any x ∈ D. Also, recall that by
Assumption EC-3, the loss functions fj are α exp-concave in the domain D. Let pj be

the predictions of ONS in the interval [is, it]. If we choose ζ = min
{

1
4G†(2B+2G)

, α
}

as

the parameter of the ONS, Theorem 2 of [77] implies that

it∑

j=is

fj(pj)− fj(u̇i) = O
(
BG† log n+GG† log n

)
(D.38)

= O (log n) . (D.39)

Now the Lemma is implied by the SA regret bound of FLH (Theorem 3.2 of [23]).

Lemma 173. (bounding T2,i). For a bin [is, it] ∈ P, let Ci, ni and ∆si be as in Lemma
41 and Γ+

i ,Γ
−
i be as in Lemma 171. We have

it∑

j=is

fj(u̇i)− fj(ūi) ≤
−
(
λ∆si + Γ−

i − Γ+
i

)2

2niβ
+ λ|∆si|Ci + |Γ−

i − Γ+
i |Ci. (D.40)

Proof. We start with the short proof the descent lemma. Let g(x) be a L strongly smooth
function. Let x+ = x− µ∇f(x) for some µ > 0. Then we have

g(x+)− g(x) ≤ (∇g(x))2
(
L

2
µ2 − µ

)
(D.41)

=
−(∇g(x))2

2L
, (D.42)

by choosing µ = 1/L. By taking g(x) =
∑it

j=is
fj(x) and noting that g is niβ gradient
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Lipschitz due to Assumption EC-2, we get

T2,i :=
it∑

j=is

fj(u̇i)− fj(ūi) (D.43)

≤
−
(∑it

j=is
∇fj(ūi)

)2

2niβ
(D.44)

=
−1

2niβ

(
it∑

j=is

∇fj(uj) +∇fj(ūi)−∇fj(uj)
)2

(D.45)

≤ −1

2niβ

(
it∑

j=is

∇fj(uj)
)2

+
1

niβ

∣∣∣∣∣
it∑

j=is

∇fj(uj)
∣∣∣∣∣

∣∣∣∣∣
it∑

j=is

∇fj(ūi)−∇fj(uj)
∣∣∣∣∣ . (D.46)

From the KKT conditions in Lemma 169 we have
∑it

j=is
∇fj(uj) = λ∆si + Γ−

i − Γ+
i .

Since fj are β-gradient Lipschitz and |ūi − uj| ≤ Ci, we also have

∣∣∣∣∣
it∑

j=is

∇fj(ūi)−∇fj(uj)
∣∣∣∣∣ ≤ niβCi. (D.47)

Substituting these we get,

T2,i ≤
−
(
λ∆si + Γ−

i − Γ+
i

)2

2niβ
+ λ|∆si|Ci + |Γ−

i − Γ+
i |Ci. (D.48)

Lemma 174. (bounding T3,i) For a bin [is, it] ∈ P, let Ci, ni and ∆si be as in Lemma
41 and Γ+

i ,Γ
−
i be as in Lemma 171.

case(a) If |∆si| > 0 then we have,

it∑

j=is

fj(ūi)− fj(uj) ≤
βniC

2
i

2
+ 3λCi + |Γ−

i − Γ+
i |Ci. (D.49)

case(b) If ∆si = 0 with sis−1 = sit = 1 and the offline optimal u is non-decreasing
within bin i with −B < ui < B for all i ∈ [is, it], then

it∑

j=is

fj(ūi)− fj(uj) ≤
βniC

2
i

2
. (D.50)

case(c) If ∆si = 0 with sis−1 = sit = −1 and the offline optimal u is non-increasing
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within bin i with −B < ui < B for all i ∈ [is, it], then

it∑

j=is

fj(ūi)− fj(uj) ≤
βniC

2
i

2
. (D.51)

Proof. Due to strong smoothness, we have

T3,i :=
it∑

j=is

fj(ūi)− fj(uj) (D.52)

≤
it∑

j=is

∇fj(uj)(ūi − uj) +
β

2
(ūi − uj)2 (D.53)

≤ βniC
2
i

2
+

it∑

j=is

∇fj(uj)(ūi − uj). (D.54)

Now by expanding the second term and using the structure of gradients as in Lemma
169 followed by a regrouping of the terms in the summation we can write,

it∑

j=is

∇fj(uj)(ūi − uj) = λ (sis−1(uis − ūi)− sit(uit − ūi)) + λ
it∑

j=is+1

|uj − uj−1| (D.55)

+
it∑

j=is

(γ−j − γ+j )(ūi − uj) (D.56)

≤ λ (sis−1(uis − ūi)− sit(uit − ūi)) + λCi + |Γ−
i − Γ+

i |Ci, (D.57)

where the last line follows due to Lemma 171 and |ūi − uj| ≤ Ci for all j ∈ [is, it].
Now we consider three cases in the statement of the lemma.
case (a) When |∆si| > 0, then by triangle inequality we have

λ (sis−1(uis − ūi)− sit(uit − ūi)) ≤ 2λCi.
case (b) In this case we have

λ (sis−1(uis − ūi)− sit(uit − ūi)) = λ(uis−uit) = −λCi since the sequence is non-decreasing
within the bin. Hence this term cancels with the corresponding additive term of λCi in
Eq. (D.57). Further γ−j = γ+j = 0 since −B < uj < B for all j ∈ [is, it].

case (c) By similar logic as in case (b) we can once again write
λ (sis−1(uis − ūi)− sit(uit − ūi)) = −λCi.

Putting everything together now yields the lemma.

Proof. of Theorem 168. The strategy of the proof is to bound the regret incurred within
each time interval [is, it] ∈ P where P is as in Corollary 170 and add them up towards
the end. We annotate several key paragraphs for the purposes of referring the arguments
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contained in them at later points.
If the the partition P contains only one bin, then we split it into at-most two bins

[1, a] and [a + 1, n] such that the optimal sequence is constant within [1, a] and hence
regret incurred within this bin is Õ(1) by Strong Adaptivity of FLH. The regret incurred
in the bin [a + 1, it] can be bounded by using the arguments below. So in what follows
we assume for a bin [is, it] either is > 1 or it < n.

By virtue of Lemma 171, any bin [is, it] ∈ P will have either γ−j = 0 for all j ∈ [is, it]
or γ+j = 0 for all j ∈ [is, it]. Below we bound the regret for bins with γ+j = 0 uniformly
for all j ∈ [is, it]. The arguments for the alternate case where γ−j = 0 follows similarly.
Figures D.5, D.6 and D.7 sketch the floor plan of the proof pictorially. Throughout the
proof, we will use the properties in Corollary 170 in conjunction with the observations in
Remark 39.

(S1): Consider a bin with ∆si = 0 with sit = sis−1 = 1 and the optimal sequence is
non-decreasing within the bin. By the structural property of Corollary 170, this happens
when uis > uis−1, uit+1 > uit where 1 < is < it < n. Since the sequence is non-decreasing,
it never attains −B within this bin. Hence this is the same situation as in case (b) of
Lemma 174. We have T1,i = Õ(1) due to Lemma 172. T2,i = 0 due to Lemma 173 as
Γ+
i = Γ−

j = 0 since the sequence never attains ±B within the current bin combined with
the fact that ∆si = 0. T3,i = O(1) due to Lemma 174 combined with the fact that
Ci ≤ B/

√
ni due to Corollary 170. So the total regret within the current bin is bounded

by T1,i + T2,i + T3,i = Õ(1).
The total regret for a bin satisfying case (c) of Lemma 174 can be bound using similar

arguments as above.
The three cases where (i) ∆si = 0 with sis−1 = sit = −1 and the offline optimal u is

non-decreasing within bin i; (ii) ∆si = 0 with sis−1 = sit = 1 and the offline optimal u
is non-increasing within bin i and (iii) ∆si = 0 and u is not monotonic will be covered
shortly in the arguments to follow.

Consider a bin with |∆si| > 0 and γ+j = 0 uniformly. From Lemmas 173 and 174 and
using the fact that |∆si| ≤ 2 we have,

T2,i + T3,i ≤
βniC

2
i

2
+
−λ2(∆si)2

2niβ
+ 7λCi

︸ ︷︷ ︸
(1)

+

(
−Γ−

i

)2

2niβ
+ 2Γ−

i Ci

︸ ︷︷ ︸
(2)

−λ∆siΓ
−
i

niβ
. (D.58)

By completing the squares with the terms (1) and (2) in the above display and dropping
the negative terms, we get

T2,i + T3,i ≤
βniC

2
i

2
+

49C2
i niβ

2(∆si)2
+ 2βniC

2
i −

λ∆siΓ
−
i

niβ
(D.59)

≤ 27B2β − λ∆siΓ
−
i

niβ
, (D.60)
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where in last line we used the facts that Ci ≤ B/
√
ni by Corollary 170 and |∆si| > 1

whenever |∆si| ≠ 0 by Remark 39.
Define Ti :=

∑it
j=is

fj(xj)− fj(uj). Notice that:

• (A1): When Γ−
i = 0 and |∆si| > 0, combining Lemma 172 we have Ti = Õ(1);

• (A2): Similarly when ∆si > 0, we get Ti = Õ(1) as Γ−
i ≥ 0 by Lemma 169.

In what follows, we try to split an original bin [is, it] with ∆si < 0 into sub-bins that
satisfy the above conditions (A1) or (A2).

If optimal sequence is uniformly constant, we can appeal to the static regret guarantee
of FLH to get logarithmic regret over n rounds. So we assume that the optimal sequence
is not constant uniformly in the analysis below.

Next, we consider the case when ∆si < 0. We start with the following observation.
(B1): Consider a bin [is, it] that satisfies the structural property in Corollary 170.

When either is > 1 or it < n and ∆si < 0, then sit ∈ {−1, 0} and sis−1 ∈ {0, 1} with
at-least one of them being non-zero.

Since by our assumption |P| > 1, is and it can’t be 1 and n simultaneously. So for
any bin [is, it] with ∆si < 0, observation (B1) has to be satisfied.

When ∆si < 0, we can have three cases as follows.
Case (1): If the optimal solution is constant (i.e Ci = 0) within the bin i. Then we

trivially get Ti = Õ(1).
Case (2): If the optimal solution is monotonic within bin i (see config (a) in Fig.D.4

for an example of this configuration). Then we split the original bin [is, it] into at-most 2
bins. Let j1, j2 be such that um = −B∀m ∈ [is, j1−1]∪[j2+1, it] and uj1 > −B, uj2 > −B.
If uis > −B, then j1 = is and [is, j1 − 1] is viewed as an empty interval. Similar logic
applies for the right interval [j2 + 1, it]. Since the optimal sequence is monotonic within
[is, it], either j1 = is or j2 = it. Without loss of generality let’s assume that j2 = it. We
proceed to bound the regret incurred within each of the two sub-bins separately.

Let’s annotate bin [is, j1 − 1] by i(1) and bin [j1, it] by i(2). For the bin i(1), the
optimal solution is constant and hence the regret Ti(1) = Õ(1). For the bin i(2), notice
that γ−j = 0 ∀j ∈ [j1, it] since the sequence is monotonic with uj1 > −B and since our
assumption j2 = it implies uj2 > −B. Hence we have Γ−

i(2)
= 0. Since sj1−1 ∈ {0, 1}

and by observation (B1), sit ∈ {−1, 0} with at-least one of them being non-zero, we have
|∆si| ̸= 0. Hence the bin i(2) falls into the category (A1). So Ti(2) = Õ(1). Adding the
regret incurred in each sub-bin separately yields Ti = Õ(1).

Case (3): Consider the alternate case where we have ∆si < 0 and the sequence is
not monotonic (see config (b) in Fig. D.4 for an example of this configuration). We split
the original bin [is, it] into at-most three sub-bins [is, j1 − 1], [j1, j2], [j2 + 1, it] such that
(i) If uis = −B, then um = −B ∀m ∈ [is, j1 − 1] and uj1 > −B. If uis > −B, then we
take j1 = is and view [is, j1 − 1] as empty interval. (ii) j2 is the smallest point in [j1, it]
such that sj2 = −1 and uj2 > uj2+1.

Let’s annotate bins [is, j1− 1], [j1, j2], [j2 + 1, it] by i(1), i(2), i(3) respectively. If bin i(1)

is not empty, then we have Ti(1) = Õ(1) since u is constant within that bin.
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Since ∆si < 0, we must have sj1−1 ∈ {0, 1} even if j1 = is. By construction the
sequence u never attains the value −B in the bin i(2) since uj1 > −B and j2 is the
first time point since j1 after which the optimal sequence jumps downwards. So we have
Γi(2) = 0. Further we also have |∆si(2) | > 0 within bin i(2). So we get Ti(2) = Õ(1) since
i(2) falls into category (A1)

For simplicity let’s assume that uit > −B, otherwise we can create another bin that
ends at time it where optimal solution assumes a constant value of −B and proceed with
similar arguments as before to bound the regret in the constant interval.

(S2): If the sequence u is not monotonic in i(3), we split the bin i(3) into two parts
[j2 + 1, j3], [j3 + 1, it] such that j3 is the largest point in [j2 + 1, it] with sj3 = 1 and
uj3 < uj3+1. Let’s annotate the bins [j2 + 1, j3], [j3 + 1, it] by q(1), q(2) respectively. We
have ∆sq(1) > 0 since sj3 = 1 and sj2 = −1. Hence the bins q(1) falls into the category(A2)

mentioned before and we get Tq(1) = Õ(1). Notice that sit ∈ {−1, 0} as ∆si < 0. Since
j3 is the largest point in [j2 + 1, it] with sj3 = 1 and it is assumed before that uit > −B,
we conclude that the sequence in the interval q(2) is a non-increasing sequence that never
attains the value −B. So Γ−

q(2)
= 0. Further we have |∆sq(2)| > 1 . So Tq(2) = Õ(1) since

q(2) falls into the category (A1). We pause to remark that the arguments we used to
bound the regret in the bin i(3) can be used to bound the regret of any bin [rs, rt] ∈ P
with ∆sr = 0 and the sequence u being not monotonic within bin r.

Note that since uj2+1 < uj2 , bin i(3) satisfies the structural property of Corollary 170.
So if the sequence u is non-increasing in bin i(3) and sit = −1, it fits into case (c) of
Lemma 174. So we can bound Ti(3) = Õ(1) using arguments presented in (S1).

If the sequence u is monotonic in bin i(3) and sit = 0 (which happens when it = n),
then we have ∆si(3) = 0−(−1) = 1 > 0. So bin i(3) falls into the category(A2) mentioned
before. Hence the regret Ti(3) = Õ(1).

(S3): If the sequence u is non-decreasing in bin i(3), we split the bin into two intervals
[j2+1, k], [k+1, it] such that k is any point in [j2+1, it] with sk = 1 and uk+1 > uk. (This
configuration is similar to that of config (a) in Fig.5.1). Annotate [j2 + 1, k], [k+ 1, it] by
q(1), q(2) respectively. In bin q(1) we have ∆sq(1) = 2 and hence Tq(1) = Õ(1) since q(1) falls

into the category (A2). Within bin q(2) due to the assumption that uit > −B, we have
Γ−
q(2)

= 0. We also have |∆sq(2) | > 0 and consequently q(2) falls into category (A1). So we

have Tq(2) = Õ(1). We pause to remark that the arguments we used to bound the regret

in bin i(3) for the case where u is non-decreasing, can also be used to bound the regret of
any bin [rs, rt] with ∆sr = 0 and srt = srs−1 = −1 and the sequence u is non-decreasing.
The regret for the alternate case where ∆sr = 0 and srt = srs−1 = 1 and the sequence u
is non-increasing can be bounded similarly using a mirrored argument.

So summarizing, in case (3) we get Ti = Õ(1). Since the intermediate splitting
operations can only increase the number of bins to at-most 6M , adding the regret across
all O(M) bins in Corollary 170 yields the Theorem.
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is = 1 j1 it

config (a)

−B

s0 = 0, sit = −1,∆si = −1

is j2 j3 it

config (b)

−B

sis−1 = 1, sit = −1,∆si = −2

Figure D.4: Examples of configurations referred in the proof of Theorem 168. The
blue dots corresponds to the offline optimal sequence.

Figure D.5: Various configurations of the optimal sequence within a bin [is, it] with
∆si = 0. The leaf nodes indicate the arguments used in the proof of Theorem 168 to
handle each scenario.

D.3.2 Multi dimensional setting

We start by inspecting the KKT conditions.

Lemma 175. (characterization of offline optimal) Consider the following convex
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Γ−
i = 0

∆si < 0

Γ−
i > 0

constant Monotonic Not monotonic(A1)

Case (1) Case (2) Case (3)

Figure D.6: Various configurations of optimal sequence within a bin [is, it] with
∆si < 0. The leaf nodes indicate the arguments used in the proof of Theorem 168
to handle each scenario.

∆si > 0

(A2)

Figure D.7: A configuration of optimal sequence within a bin [is, it] with ∆si > 0.
The leaf node indicate the arguments used in the proof of Theorem 168 to handle each
scenario.

266



Supplementary Materials for Chapter 5 Chapter D

optimization problem.

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

n∑

t=1

ft(ũt) (D.61a)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1], (D.61b)
n−1∑

t=1

∥z̃t∥1 ≤ Cn, (D.61c)

∥ũt∥∞ ≤ B ∀t ∈ [n], (D.61d)

Let u1, . . . ,un, z1, . . . ,zn−1 ∈ Rd be the optimal primal variables and let λ ≥ 0 be the
optimal dual variable corresponding to the constraint (D.61c). Further, let γ+

t ,γ
−
t ∈ Rd

with γ+
t ≥ 0 and γ−

t ≥ 0 be the optimal dual variables that correspond to constraint
(D.61d). Specifically for k ∈ [d], γ+

t [k] corresponds to the dual variable for the constraint
ut[k] ≤ B induced by the relation (D.61d). Similarly γ−

t [k] corresponds to the constraint
−B ≤ ut[k]. By the KKT conditions, we have

• stationarity: ∇ft(ut) = λ (st − st−1) + γ−
t − γ+

t , where st ∈ ∂|zt| (a subgradi-
ent). Specifically, st[k] = sign(ut+1[k] − ut[k]) if |ut+1[k] − ut[k]| > 0 and st[k] is
some value in [−1, 1] otherwise. For convenience of notations later, we also define
sn = s0 = 0.

• complementary slackness: (a) λ (
∑n

t=2 ∥ut − ut−1∥1 − Cn) = 0; (b) γ−
t [k](ut[k]+

B) = 0 and γ+
t [k](ut[k]−B) = 0 for all t ∈ [n] and all k ∈ [d].

The proof of the above lemma is similar to the 1D case and hence omitted.
Terminology. We will refer to the optimal primal variables u1, . . . ,un in Lemma 175
as the offline optimal sequence in this section.

Next, we claim the existence of a partitioning of [n] with some useful properties.

Lemma 176. (key partition) There exist a partitioning P of [n] intoM = O(dn1/3C
2/3
n )

intervals viz {[is, it]}Mi=1 such that for any interval [is, it] ∈ P, Ci ≤ B/
√
ni where

Ci :=
∑it

j=is+1 ∥uj − uj−1∥1 and ni is the length of the interval.

Define Γ+
i :=

∑it
j=is

γ+
j and Γ−

i :=
∑it

j=is
γ−
j . Let ∆si = sit − sis−1, where s is as

defined in Section 5.1.2. We also have that each bin [is, it] ∈ P satisfies at-least one of
the following properties.

Property 1 Across each coordinate k ∈ [d], the sequence uj[k], j ∈ [is, it] is either non-decreasing
or non-increasing.

Property 2 ∥λ∆si + Γ−
i − Γ+

i ∥2 ≥ λ/4.

The proof of the above lemma is deferred to Section D.4.
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We recall Eq.(5.15) here for convenience. Let P be a partition of [n] into M bins
obtained in Lemma 176 Let [is, it] denote the ith bin in P and let ni be its length. Define
ūi = 1

ni

∑it
j=is

uj and u̇i = ūi − 1
niβ

∑it
j=is
∇fj(ūi) where β is as in Assumption EC-

2. Let xj be the prediction made by FLH at time j. We start with following regret
decomposition.

Rn(Cn) ≤
M∑

i=1

it∑

j=is

fj(xj)− fj(u̇i)

︸ ︷︷ ︸
T1,i

+
M∑

i=1

it∑

j=is

fj(u̇i)− fj(ūi)

︸ ︷︷ ︸
T2,i

+
M∑

i=1

it∑

j=is

fj(ūi)− fj(uj)

︸ ︷︷ ︸
T3,i

.

(D.62)

Lemma 177. (bounding T1,i) Let the experts in FLH be the ONS algorithms with

parameter ζ = min
{

1
4G†(2B

√
d+2G

√
d)
, α
}

and decision set D. Also choose learning rate

η = α, for FLH. Then for any bin [is, it] we have,

it∑

j=is

fj(xj)− fj(u̇i) = O

(
d3/2BG† log n+ d3/2GG† log n+

log n

α

)
(D.63)

= O(d3/2 log n), (D.64)

where xj ∈ Rd are the outputs of FLH.

Proof. First we proceed to bound ∥u̇i∥∞. Since ∥∇fj(uj)∥2 ≤ G by Assumption EC-1,
we have

∥u̇i∥∞ ≤ ∥ūi∥∞ +
G

β
(D.65)

≤ B +
G

β
(D.66)

≤ B +G, (D.67)

where we used β > 1 from Assumption EC-2.
For any x ∈ D, we have ∥x − u̇i∥2 ≤ 2B

√
d + 2G

√
d by triangle inequality and the

fact ∥y∥2 ≤
√
d∥y∥∞.

By Assumption EC-4 we have ∥∇fj(x)∥2 ≤ G† for any x ∈ D. Also, recall that
by Assumption EC-3, the loss functions fj are α exp-concave in the domain D. Let
pj, j ∈ [is, it] be the predictions of an ONS algorithm when run in the interval [is, it]. If

we choose ζ = min
{

1
4G†(2B

√
d+2G

√
d)
, α
}

as the parameter of the ONS, Theorem 2 of [77]
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implies that

it∑

j=is

fj(pj)− fj(u̇i) = O

(
d3/2BG† log n+ d3/2GG† log n+

log n

α

)
(D.68)

= O
(
d3/2 log n

)
. (D.69)

Now the Lemma is implied by the SA regret bound of FLH (Theorem 3.2 of [23]).

For strongly convex, losses the tern T1,i can enjoy a better bound.

Lemma 178. (bounding T1,i for strongly convex losses) Suppose that the losses
are H strongly convex. Take experts in FLH as OGD with step size 1/(Hn) and decision
set D. Also choose learning rate η = H/(G†)2, for FLH. Then for any bin [is, it] we
have,

it∑

j=is

fj(xj)− fj(u̇i) = O

(
(G†)2 log n

H

)
, (D.70)

where xj ∈ Rd are the outputs of FLH.

Proof Sketch. The lemma follows by using the regret bound of OGD with strongly convex
losses from [77] and following similar lines of arguments as in Lemma 177.

We state the next lemma to be generically valid for any bin which is not necessarily
a member of P .
Some notations. For a bin [a, b], introduce the notations ∆sa→b := s(ub+1−ub)−s(ua−
ua−1), Γ

+
a→b =

∑b
j=a γ

+
j and Γ−

a→b :=
∑b

j=a γ
−
j . na→b := b− a+ 1. ūa→b = 1

na→b

∑b
j=a uj

and u̇a→b = ūa→b − 1
βna→b

∑b
j=a∇fj(ūa→b).

Lemma 179. For any bin [a, b], we have

T2,[a,b] :=
b∑

j=a

fj(u̇a→b)− fj(ūi) (D.71)

≤ −∥λ∆sa→b + Γ−
a→b − Γ+

a→b∥22
2na→bβ

+ ∥λ∆sa→b + Γ−
a→b − Γ+

a→b∥1Ca→b. (D.72)

Proof. Let g(x) be a α-strongly smooth function. Let x+ = x−µ∇f(x) for some µ > 0.
Then we have

g(x+)− g(x) ≤ ∥∇g(x)∥22
(α

2
µ2 − µ

)
(D.73)

=
−∥∇g(x)∥22

2α
, (D.74)
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by choosing µ = 1/α. By taking g(x) =
∑b

j=a fj(x) and noting that g is niβ gradient
Lipschitz due to Assumption SC-2, we get

T2,[a,b] :=
b∑

j=a

fj(u̇a→b)− fj(ūa→b) (D.75)

≤
−
∥∥∥
∑b

j=a∇fj(ūa→b)
∥∥∥
2

2

2na→bβ
(D.76)

=
−1

2na→bβ

∥∥∥∥∥
b∑

j=a

∇fj(uj) +∇fj(ūa→b)−∇fj(uj)

∥∥∥∥∥

2

2

(D.77)

≤ −1

2na→bβ

∥∥∥∥∥
b∑

j=a

∇fj(uj)

∥∥∥∥∥

2

2

+
1

na→bβ

∥∥∥∥∥
b∑

j=a

∇fj(uj)

∥∥∥∥∥
1

∥∥∥∥∥
b∑

j=a

∇fj(ūa→b)−∇fj(uj)

∥∥∥∥∥
2

,

(D.78)

where we used ⟨x,y⟩ ≤ ∥x∥2∥y∥2 ≤ ∥x∥1∥y∥2 and dropped a negative term from expand-
ing the squared norm. From the KKT conditions in Lemma 175 we have

∑b
j=a∇fj(uj) =

λ∆sa→b + Γ−
a→b − Γ+

a→b. Since fj are β-gradient Lipschitz and ∥ūa→b − uj∥2 ≤ ∥ūa→b −
uj∥1 ≤ Ca→b, we also have

∥∥∥∥∥
b∑

j=a

∇fj(ūa→b)−∇fj(uj)

∥∥∥∥∥
2

≤ na→bβCa→b. (D.79)

Substituting these we get the statement of the lemma.

Lemma 180. For any bin [is, it] ∈ P, we have

it∑

j=is

fj(ūi)− fj(uj) ≤
βniC

2
i

2
+ 5λCi +

∥∥λ∆si + Γ−
i − Γ+

i

∥∥
2
Ci. (D.80)

Proof. Due to strong smoothness, we have

T3,i :=
it∑

j=is

fj(ūi)− fj(uj) (D.81)

≤(a)

it∑

j=is

⟨∇fj(uj), ūi − uj⟩+
β

2
∥ūi − uj∥21 (D.82)

≤ βniC
2
i

2
+

it∑

j=is

⟨∇fj(uj), ūi − uj⟩, (D.83)
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where in line (a) we used ∥ūi − uj∥2 ≤ ∥ūi − uj∥1.
Further,

it∑

j=is

⟨∇fj(uj), ūi − uj⟩ = λ (⟨sis−1,uis − ūi⟩ − ⟨sit ,uit − ūi⟩) (D.84)

+ λ

it∑

j=is+1

∥uj − uj−1∥1 +
it∑

j=is

⟨γ−
j − γ+

j , ūi − uj⟩ (D.85)

By triangle and Holder’s inequalities, the first two terms can be bounded by 3λCi

(recall that ∥ut − ūi∥1 ≤ Ci for all t ∈ [is, it] ). Let’s proceed to bound the last term in
the above display. From Lemma 176, we have Ci ≤ B/

√
ni. So the TV incurred across

each coordinate of the optimal solution is at-most B. Using similar arguments as in
Lemma 171, the complementary slackness in Lemma 175 implies that for each k ∈ [d], if
γ−
j [k] > 0 for at-least one j ∈ [is, it] then γ+

j [k] = 0 for all j ∈ [is, it]. Similarly for each
k ∈ [d], if γ+

j [k] > 0 for at-least one j ∈ [is, it] then γ−
j [k] = 0 for all j ∈ [is, it]. This

observation allows us to write,

it∑

j=is

|γ−
j [k]− γ+

j [k]| =
∣∣Γ−

i [k]− Γ+
i [k]

∣∣ (D.86)

Define Ck
i :=

∑it
j=is+1 |uj[k]− uj−1[k]|. We have,

it∑

j=is

⟨γ−
j − γ+

j , ūi − uj⟩ =
d∑

k=1

it∑

j=is

(γ−
j [k]− γ+

j [k])(ūi[k]− uj[k])

≤(a)

d∑

k=1

∣∣Γ−
i [k]− Γ+

i [k]
∣∣Ck

i

=
d∑

k=1

(
λ∆si[k] sign

(
Γ−

i [k]− Γ+
i [k]

)
+ sign

(
Γ−

i [k]− Γ+
i [k]

) (
Γ−

i [k]− Γ+
i [k]

))
Ck

i

−
d∑

k=1

λ∆si[k] sign
(
Γ−

i [k]− Γ+
i [k]

)
Ck

i

≤(b)

∥∥λ∆si + Γ−
i − Γ+

i

∥∥
2
Ci + 2λCi,

where in line (a) we applied ⟨x,y⟩ ≤ ∥x∥1∥y∥∞ along with the Eq. (D.86). In line (b)
we applied ⟨x,y⟩ ≤ ∥x∥2∥y∥1 for the first term and ⟨x,y⟩ ≤ ∥x∥∞∥y∥1 for the second
term. Putting everything together yields the Lemma.

271



Supplementary Materials for Chapter 5 Chapter D

splitMonotonic: Inputs - (1) an interval [is, it] such that the offline optimal is
monotonic across each coordinate k ∈ [d]; (2) offline optimal sequences u1:n and
the sequence of subgradients (dual variables) s1:n−1 (recall that s0 = sn = 0
by convention.).

1. Initialize T ← Φ, S ← Φ.

2. Add is, it to T .

3. For each coordinate k ∈ [d]:

(a) If u[k] is constant in [is, it], then skip the current coordinate.

(b) Initialize z1 ← is, z2 ← it.

(c) If uis [k] = ±B, let z1 be the first time point in [is, it] where uz1 [k] ̸=
±B. Add z1 − 1, z1 to T .

(d) If uit [k] = ±B, let z2 be the last time point in [is, it] where uz2 [k] ̸=
±B. Add z2, z2 + 1 to T .

(e) If u[k] is non-decreasing in [is, it] then let p ≥ z1 be the first point
with sp−1[k] = 1. If p > z1, add p− 1, p to T .

(f) If u[k] is non-decreasing in [is, it] then let q ≤ z2 be the last point
with sq[k] = 1. If q < z2, add q, q + 1 to T .

(g) If u[k] is non-increasing in [is, it] then let p ≥ z1 be the first point
with sp−1[k] = −1. If p > z1, add p− 1, p to T .

(h) If u[k] is non-increasing in [is, it] then let q ≤ z2 be the last point
with sq[k] = −1. If q < z2, add q, q + 1 to T .

4. For each entry t in T :

(a) If t appears more than 2 times, delete some occurences of t such
that t only appears 2 times in T .

5. Sort T in non-decreasing order. For each consecutive points s, t ∈ T ,
add [s, t] to S.

6. Return the partition S.

Figure D.8: splitMonotonic procedure
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is a1 a2 a3 it

coordinate 1

coordinate 2

coordinate 3

Figure D.9: An example of the partitioning created by splitMonotonic

(See Fig. D.8). The partition S returned by splitMonotonic is
{[is, a1 − 1], [a1, a2 − 1], [a2, a3 − 1], [a3, it]}. Blue dots indicate the offline opti-
mal sequence.

Lemma 181. Let splitMonotonic in Fig.D.8 be run with an input [is, it]. Then the
partition S it return obeys |S| = O(d).

Proof. From the psuedo-code in Fig. D.8 it is obvious that each coordinate can contribute
to increasing the bin count by O(1). Hence the overall bin count in S is O(d).

An illustrative example of the input and output of splitMonotonic is given in
Fig. D.9.

Theorem 47. By using the base learner as ONS with parameter ζ = min
{

1
4G†(2B

√
d+2G/β)

, α
}
,

decision set D and choosing learning rate η = α, FLH obeys R+
n (Cn) = Õ

(
d3.5(n1/3C

2/3
n ∨ 1)

)

if Cn > 1/n and O(d1.5 log n) otherwise. Here a ∨ b := max{a, b} and Õ(·) hides depen-
dence on the constants B,G,G†, α and factors of log n.

Proof. Consider a bin [is, it] ∈ P . By Lemma 176, the bin has to satisfy one of the two
Properties. Let’s first focus on the scenario where [is, it] satisfies Property 2.

Combining the results of Lemmas 179, 180 we can write,
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T2,i + T3,i ≤
−∥λ∆si + Γ−

i − Γ+
i ∥22

2niβ
+ ∥λ∆si + Γ−

i − Γ+
i ∥2Ci (D.87)

+
βniC

2
i

2
+ 5λCi +

∥∥λ∆si + Γ−
i − Γ+

i

∥∥
2
Ci (D.88)

≤(a)
βB2

2
− ∥λ∆si + Γ−

i − Γ+
i ∥22

2niβ
+ 7

(∥∥λ∆si + Γ−
i − Γ+

i

∥∥
2
∨ λ
)
Ci (D.89)

=
βB2

2
−
(
∥λ∆si + Γ−

i − Γ+
i ∥2√

2niβ
−

7Ci

√
niβ

(∥∥λ∆si + Γ−
i − Γ+

i

∥∥
2
∨ λ
)

∥λ∆si + Γ−
i − Γ+

i ∥2
√

2

)2

(D.90)

+
49niβC

2
i

2

(∥∥λ∆si + Γ−
i − Γ+

i

∥∥
2
∨ λ

∥λ∆si + Γ−
i − Γ+

i ∥2

)2

(D.91)

≤(b)
βB2

2
+ 392βniC

2
i (D.92)

≤ 393βB2, (D.93)

where in line (a) we used Ci ≤ B/
√
ni for partitions in P (Lemma 176). In line (b) we

used
∥λ∆si+Γ−

i −Γ+
i ∥2∨λ

∥λ∆si+Γ−
i −Γ+

i ∥2
≥ 4 since ∥λ∆si +Γ−

i −Γ+
i ∥2 ≥ λ/4 by Property 2 of Lemma 176.

Now using Lemma 177, for the bins [is, it] that satisfy property 2, we can write

T1,i + T2,i + T3,i = Õ(d1.5). (D.94)

Now suppose that the bin [
¯
t, t̄] satisfies Property 1 in Lemma 176. In this case, via

a call to splitMonotonic function with the input interval as [
¯
t, t̄], we split the original

bin into O(d) sub-bins (see Lemma 181). Further for a fixed k, if uj[k], j ∈ [
¯
t, t̄] is non-

decreasing, then we can group those consecutive sub-bins into at-most three categories:
(a) a section of time where uj[k] is constant; (b) a section of time where uj[k] is non-
decreasing; (c) a section of time where uj[k] is constant.

We proceed to define these sections formally (where p,m, q are indices defined for
convenience)

• For section (a) let A = {[
¯
t,

¯
t−p − 1], [

¯
t−p, t̄−p], . . . [

¯
t0, t̄0]}

• For section (b) let B = {[
¯
t1, t̄1], . . . , [

¯
tm, t̄m]}

• For section (c) let C = {[
¯
tm+1, t̄m+1], . . . , [t̄q + 1, t̄]}

As mentioned before, these sections are constructed so that the oflline optimal satisfy
the following properties.
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(i) uj[k] j ∈ [
¯
t, t̄0] is constant.

(ii) u
¯
t1 [k] > u

¯
t1−1[k] and u

¯
tm+1 [k] > u

¯
tm+1−1[k].

(iii) uj[k] j ∈ [
¯
t1, t̄m] is non-decreasing.

(iv) uj[k] j ∈ [
¯
tm+1, t̄] is constant.

We remark that the grouping may be different for different coordinates k. Further some
of A,B or C can be empty. In the example we gave in Fig. D.9:

• For coordinate 1 A = ϕ, B = ϕ, C = {[is, a1 − 1], [a1, a2 − 1], [a2, a3 − 1], [a3, it]}.

• For coordinate 2 A = [is, a1 − 1], B = ϕ, C = {[a1, a2 − 1], [a2, a3 − 1], [a3, it]}.

• For coordinate 3 A = {[is, a1 − 1], [a1, a2 − 1]}, B = {[a2, a3 − 1]}, C = {[a3, it]}

We fill focus on the aforementioned scenario where uj[k], j ∈ [
¯
t, t̄] is non-decreasing.

The arguments for the case where uj[k], j ∈ [
¯
t, t̄] is non-increasing are similar. Further

similar to the proof of Theorem 168, we give arguments for the case where γ+j [k] = 0 for
all j in the interval [

¯
t, t̄] stating that arguments for the case γ−j [k] = 0 uniformly in [

¯
t, t̄]

are similar.
From Lemma 179, we have

b∑

j=a

fj(u̇a→b)− fj(ūa→b) ≤
−∥λ∆sa→b + Γ−

a→b − Γ+
a→b∥22

2na→bβ
+ ∥λ∆sa→b + Γ−

a→b − Γ+
a→b∥1Ca→b.

(D.95)

Observe that the relation in Eq. (D.83) holds for any generic bin [a, b] that may not
be a member of P (replacing Ci, ni, ūi with Ca→b, na→b, ūa→b). So

T3,[a,b] :=
b∑

j=a

fj(ūa→b)− fj(uj) ≤
d∑

k=1

βna→bC
2
a→b

2d
+

b∑

j=a

⟨∇fj(uj), ūa→b − uj⟩. (D.96)

Note that Eq. (D.95) and (D.96) decompose coordinate-wise. So for the bin [
¯
t, t̄] ∈ P

where the optimal sequence is monotonic across each coordinate, our strategy is to bound

Sa→b[k] :=
−
(
λ∆sa→b[k] + Γ−

a→b[k]− Γ+
a→b[k]

)2

2na→bβ
+ |λ∆sa→b[k] + Γ−

a→b[k]− Γ+
a→b[k]|Ca→b

+
βna→bC

2
a→b

2d
+

b∑

j=a

∇fj(uj)[k](ūa→b[k]− uj[k]), (D.97)

275



Supplementary Materials for Chapter 5 Chapter D

for each k ∈ [d] and [a, b] ∈ A ∪ B ∪ C and finally adding them across all coordinates to
bound

∑d
k=1 Sa→b[k]. Doing so will result in a bound on T2,[a,b] + T3,[a,b]. Further, T1,[a,b]

can be bound by strongly adaptive regret. This enables us to bound
∑

[a,b]∈A∪B∪C T1,[a,b]+

T2,[a,b] + T3,[a,b] thereby leading to a regret bound in the parent bin [
¯
t, t̄] ∈ P which was

the input interval for the call to splitMonotonic that we started with.
Let C[a,b][k] be the TV of offline optimal incurred in the interval any interval [a, b]

along coordinate k. First we focus on the bins in B. If B is not empty, then γj[k] =
0∀j ∈ [

¯
t1 → t̄m] due to property (ii) and (iii) above. By using the stationarity conditions

in Lemma 175, we can write

∑

[a,b]∈B

b∑

j=a

∇fj(uj)[k](ūa→b[k]− uj[k]) = λC
¯
t1→t̄m [k] + λ

(
s
¯
t1−1[k]u

¯
t1 [k]− st̄m [k]ut̄m [k]

)

(D.98)

+
∑

[a,b]∈B

λūa→b[k]∆sa→b[k]. (D.99)

So we have,

∑

[a,b]∈B

Sa→b[k] ≤
βn

¯
t1→t̄mC

2

¯
t1→t̄m

2d
+ λC

¯
t1→t̄m [k] + λ

(
s
¯
t1−1[k]u

¯
t1 [k]− st̄m [k]ut̄m [k]

)

(D.100)

+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ λ|∆sa→b[k]|C

¯
t1→t̄m + λūa→b[k]∆sa→b[k]

(D.101)

≤(a)

βn
¯
t→t̄C

2

¯
t→t̄

2d
+ λC

¯
t1→t̄m [k] + λ

(
s
¯
t1−1[k]u

¯
t1 [k]− st̄m [k]ut̄m [k]

)
(D.102)

+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ λ|∆sa→b[k]|C

¯
t→t̄ + λūa→b[k]∆sa→b[k]

(D.103)

≤(b)
βB2

2d
+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ λ|∆sa→b[k]|C

¯
t→t̄ + λūa→b[k]∆sa→b[k],

(D.104)

where in line (a) we used the fact that C
¯
t1→t̄m ≤ C

¯
t→t̄ and n

¯
t1→t̄m ≤ n

¯
t→t̄ since [

¯
t1, t̄m] is

contained within [
¯
t, t̄]. In line (b) we used C

¯
t→t̄ ≤ B/

√
n
¯
t→t̄ (since [

¯
t, t̄] ∈ P) along with

the fact that
λ
(
s
¯
t1−1[k]u

¯
t1 [k]− st̄m [k]ut̄m [k]

)
= −λC

¯
t1→t̄m since

s
¯
t1−1[k] = st̄m = 1 due to property (ii) and (iii) above.
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Define ǔB := 1
|B|
∑

[a,b]∈B ūa→b. Observe that since s
¯
t1−1[k] = st̄m [k] = 1, we can write∑

[a,b]∈B ∆sa→b[k] = 0 by the telescoping structure.

By noting that we can subtract 0 = λǔB[k]
∑

(a,b)∈B ∆sa→b[k] and that |ūa→b[k] −
ǔB[k]| ≤ C

¯
t→t̄, we have

∑

[a,b]∈B

Sa→b[k] ≤ βB2

2d
+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ λ|∆sa→b[k]|C

¯
t→t̄

+ λ (ūa→b[k]− ǔB[k]) ∆sa→b[k]

≤ βB2

2d
+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ 2λ|∆sa→b[k]|C

¯
t→t̄

=
βB2

2d
+
∑

[a,b]∈B

−
(
λ∆sa→b[k]√

2na→bβ
− C

¯
t→t̄

√
2na→bβ

)2

+ 2βna→bC
2

¯
t→t̄

≤ βB2

2d
+ 2βn

¯
t→t̄C

2

¯
t→t̄

≤ βB2

2d
+ 2βB2

≤ 3βB2.

Next, we address bins present in A and C. We provide the arguments for bounding∑
[a,b]∈A Sa→b[k]. Bounding the sum for bins in C can be done using similar arguments.

Observe that by property (i) above, the sequence uj[k] for j ∈ [is, t̄0] is a constant.
So the last term in Eq. (D.97) is zero for any Sa→b[k] where [a, b] ∈ A. Now proceeding
similar to above by completing the squares and dropping the negative terms, we get
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∑

[a,b]∈A

Sa→b[k] ≤
∑

[a,b]∈A

(
−
(
λ∆sa→b[k] + Γ−

a→b[k]− Γ+
a→b[k]

)2

2na→bβ
(D.105)

+|λ∆sa→b[k] + Γ−
a→b[k]− Γ+

a→b[k]|Ca→b +
βna→bC

2
a→b

2d

)
(D.106)

=
∑

[a,b]∈A


−

(
λ∆sa→b[k] + Γ−

a→b[k]− Γ+
a→b[k]√

2na→bβ
− Ca→b

√
na→bβ

2

)2

(D.107)

+
na→bβC

2
a→b

2
+
βna→bC

2
a→b

2d


 (D.108)

≤
∑

[a,b]∈A

na→bβC
2

¯
t→t̄ (D.109)

≤ n
¯
t→t̄βC

2

¯
t→t̄ (D.110)

≤ βB2. (D.111)

Similarly it can be shown that
∑

[a,b]∈C Sa→b[k] = O(1). Recalling that |A|+ |B|+ |C| =
O(d) we have

T2,[
¯
t,t̄] + T3,[

¯
t,t̄] ≤

d∑

k=1

∑

[a,b]∈A∪B∪C

Sa→b[k] = O(d). (D.112)

From Lemma 177 we have

T1,[
¯
t,t̄] = Õ(d2.5), (D.113)

for bins [
¯
t, t̄] ∈ P that satisfy property 2 in Lemma 176.

Comparing Eq. (D.94) and (D.113) we conclude that

T1,i + T2,i + T3,i = Õ(d2.5), (D.114)

for all bins [is, it] in the partition P of Lemma 176. Since |P| = O(dn1/3C
2/3
n ), adding

the above bound across all bins leads to the theorem.
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If Cn ≤ 1/n, then we have

n∑

t=1

ft(xj)− ft(ut) ≤
n∑

t=1

ft(xj)− ft(u1) +
n∑

t=1

ft(u1)− ft(ut) (D.115)

≤(a) Õ(d1.5) +G†nCn (D.116)

= Õ(d1.5) (D.117)

where line (a) follows from the fact that ft is G† Lipschitz in D.

Proposition 48. For strongly convex losses, the regret bound can be improved to

Õ
(
d2(n1/3C

2/3
n ∨ 1)

)
if Cn > 1/n and O(log n) otherwise by using OGD as base learners

in the FLH procedure. See Appendix D.3.2 for a proof.

Proof Sketch. First we consider the case where the offline optimal in monotonic in each
coordinate of a bin in P . The static regret in any bin for strongly convex losses is O(log n)
by Lemma 178 (as opposed to Õ(d1.5) for exp-concave losses). Hence Eq.(D.113) can be
re-written as T1,[

¯
t,t̄] = Õ(d). By following similar arguments as in proof of Theorem 47,

we can re-write Eq.(D.114) as

T1,i + T2,i + T3,i = Õ(d). (D.118)

If the offline optimal is not monotonic, in each coordinate, we can write

T1,i + T2,i + T3,i = Õ(1), (D.119)

by following similar arguments for the corresponding case in the proof of Theorem 47.
Finally we sum across all |P| = O(dn1/3C

2/3
n ). The case Cn ≤ 1/n can be handled

similar to that of the exp-concave case.

D.4 Technical Lemmas

We start by describing a partitioning procedure namely generateBins.
generateBins: Inputs - the offline optimal sequence.

Step 1 InitializeQ ← Φ. Starting from time 1, spawn a new bin [is, it] whenever
∑it+1

j=is+1 ∥uj−
uj−1∥1 > B/

√
ni, where ni = it − is + 1. Add the spawned bin [is, it] to Q.

Step 2 Initialize P ← Φ,R ← Φ.

Step 3 For each bin [is, it] ∈ Q:

(a) Let ∆si = sit − sis−1. Γ+
i =

∑it
j=is

γ+
j . Γ−

i =
∑it

j=is
γ−
j .
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(b) If for each k ∈ [d], the sequence uk is monotonic in [is, it], then remove [is, it]
from Q and add it to P .

(c) If there exists one coordinate k ∈ [d] such that sis−1[k] ∈ [−1,−1/4] and
sit [k] ∈ [0, 1] and γ+

j [k] = 0 ∀j ∈ [is, it], then remove [is, it] from Q and add it
to P . Goto Step 3.

(d) If there exists one coordinate k ∈ [d] such that sis−1[k] ∈ [−1/4, 0] and sit [k] ∈
[1/4, 1] and γ+

j [k] = 0 ∀j ∈ [is, it], then remove [is, it] from Q and add it to P .
Goto Step 3.

(e) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it]
and sis−1[k] ∈ [−1/4, 1] and sit [k] ∈ [−1/4, 1] and γ+

j [k] = 0 ∀j ∈ [is, it] then:

i. Initialize z ← is. Remove [is, it] from Q.

ii. if uis [k] = −B, then split [is, it] into [is, a] and [a + 1, it] where a is the
first time point within [is, it] such that ua[k] > −B. Add [is, a− 1] to Q.
Set z ← a.

iii. Let j be the first time in [z, it] such that sj−1[k] = −1 with uj[k] <
uj−1[k]. Add [z, j − 1] and [j, it] to P . Goto Step 3.

(f) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it]
and sis−1[k], sit [k] ∈ [−1/4, 1/4] and γ+

j [k] = 0 ∀j ∈ [is, it] then:

i. Initialize z ← is. Remove [is, it] from Q.

ii. if uis [k] = −B, then split [is, it] into [is, a] and [a + 1, it] where a is the
first time point within [is, it] such that ua[k] > −B. Add [is, a] to Q. Set
z ← a+ 1.

iii. Let j be the first time in [z, it] such that sj−1[k] = −1 with uj[k] <
uj−1[k]. . Add [z, j − 1] and [j, it] to P . Goto Step 3.

(g) If there exists one coordinate k ∈ [d] uk is non-monotonic in [is, it] and such
that sis−1[k] ∈ [−1,−1/4] and sit [k] ∈ [−1, 1/4] and γ+

j [k] = 0 ∀j ∈ [is, it]
then:

i. Initialize z ← it. Remove [is, it] from Q.

ii. If uit [k] = −B, then split [is, it] into [is, a] and [a + 1, it] where a is the
last time point within [is, it] such that ua[k] > −B. Add [a + 1, it] to Q.
Set z ← a.

iii. Let j be the last time in [is, z] such that sj−1[k] = 1 with uj[k] > uj−1[k]..
Add [is, j − 1] and [j, z] to P . Goto Step 3.

(h) If there exists a coordinate k ∈ [d] such that uk is non-monotonic in [is, it]
and sis−1[k] ∈ [−1/4, 1] and sit [k] ∈ [−1, 1/4] and γ+

j [k] = 0,∀j ∈ [is, it] then:

i. Initialize p← is − 1. Remove [is, it] from Q.

ii. If uis [k] = −B, then let p be the largest point in [is, it] such that ut[k] =
−B ∀t ∈ [is, p]. Add [is, p] to Q.
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iii. Let j be the first point in [p+ 1, it] with sj−1[k] = −1 with uj−1[k] > −B
and uj[k] < uj−1[k]. Add [p+ 1, j − 1] to P .

iv. If ur[k] is monotonic in [j, it], add [j, it] to Q. Goto Step 3.

v. Initialize q ← it + 1.

vi. If uit [k] = −B, let q be smallest point in [j, it] such that ur[k] = −B ∀r ∈
[q, it]. Add [q, it] to Q.

vii. Let h be the last time point in [j, q − 1] such that sh−1[k] = 1 with
uh[k] > uh−1[k]. Add [j, h− 1] to P .

viii. If h < q − 1, add [h, q − 1] to P .

ix. Goto Step 3.

(i) If there exists one coordinate k ∈ [d] such that sis−1[k] ∈ [0, 1] and sit [k] ∈
[−1,−1/4] and γ−

j = 0 ∀j ∈ [is, it], then remove [is, it] from Q and add it to
P . Goto Step 3.

(j) If there exists one coordinate k ∈ [d] such that sis−1[k] ∈ [1/4, 1] and sit [k] ∈
[−1/4, 0] and γ−

j = 0 ∀j ∈ [is, it], then remove [is, it] from Q and add it to P .
Goto Step 3.

(k) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it]
and sis−1[k], sit [k] ∈ [−1, 1/4] and γ−

j = 0 ∀j ∈ [is, it] and there exists a
coordinate j ∈ [is, it] such that sj−1[k] = 1 and uj−1[k] < B then:

i. Initialize p← is. Remove [is, it] from Q.

ii. If uis [k] = B, then let p be the largest point in [is, it] such that ut[k] =
B ∀t ∈ [is, p]. Add [is, p] to Q.

iii. Let j be the first point in [p + 1, it] such that sj−1[k] = 1 with uj−1[k] <
uj[k]. Add [p+ 1, j − 1] to P . Add [j, iq] to Q. Goto Step 3.

(l) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it]
and sis−1[k], sit [k] ∈ [−1/4, 1] and γ−

j = 0 ∀j ∈ [is, it] and there exists a
j ∈ [is, it] such that uj[k]− uj−1[k] = −1 and uj[k] < B then:

i. Initialize z1 ← is, z2 ← it. Remove [is, it] from Q.

ii. If uis [k] = B, then let p1 be the last point in [is, it] such that ut[k] =
B ∀t ∈ [is, p1]. Set z1 ← p1 + 1. Add [is, p] to Q.

iii. If uit [k] = B, then let p2 be the smallest point in [is, it] such that ut[k] =
B ∀t ∈ [p2, it]. Set z2 ← p2 − 1. Add [p2, it] to Q.

iv. Let j be the last point in [z1, z2] such that sj−1[k] = −1 and uj[k] < B
with uj−1[k] > uj[k]. Add [z1, j − 1] and [j, z2] to P . Goto Step 3.

(m) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it]
and sis−1[k] ∈ [−1, 1/4] and sit [k] ∈ [−1/4, 1] and γ−

j = 0 ∀j ∈ [is, it] then:

i. Initialize p← is − 1. Remove [is, it] from Q.
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ii. If uis [k] = B, then let p be the last time point such that ut[k] = B ∀t ∈
[is, p]. Add [is, p] to Q.

iii. Let j be the first point in [p+1, it] such that sj−1[k] = 1 with uj−1[k] < B
with uj−1[k] < uj[k]. Add [p+ 1, j − 1] to P .

iv. If ur[k] is monotonic in [j, it], add [j, it] to Q. Goto Step 3.

v. Initialize q ← it + 1.

vi. If uit [k] = B, let q be smallest point in [j, it] such that ur[k] = B ∀r ∈
[q, it]. Add [q, it] to Q.

vii. Let h be the last time point in [j, q − 1] such that sh−1[k] = −1 with
uh−1[k] > uh[k]. Add [j, h− 1] to P .

viii. If h < q − 1, add [h, q − 1] to P .

ix. Goto Step 3.

Step 4 Return P .
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E.1 Proofs for Section 6.2

We start by characterizing the offline optimal. Define the sign function as sign(x) =
1 if x > 0; −1 if x < 0; and some v ∈ [−1, 1] if x = 0. We start by presenting a sequence
of useful lemmas.

Lemma 52. (characterization of offline optimal) Consider the following convex
optimization problem (where z̃1, ..., z̃n−1 are introduced as dummy variables)

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

1

2

n∑

t=1

(yt − ũt)2 (6.4a)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1], (6.4b)
n−1∑

t=1

|z̃t| ≤ Cn, (6.4c)

−B ≤ ũt ∀t ∈ [n], (6.4d)

ũt ≤ B ∀t ∈ [n], (6.4e)

Let u1, . . . , un, z1, . . . , zn−1 be the optimal primal variables and let λ ≥ 0 be the optimal
dual variable corresponding to the constraint (6.4c). Further, let γ−t ≥ 0, γ+t ≥ 0 be the
optimal dual variables that correspond to constraints (6.4d) and (6.4e) respectively for
all t ∈ [n]. By the KKT conditions, we have

• stationarity: ut− yt = λ (st − st−1) + γ−t − γ+t , where st ∈ ∂|zt| (a subgradient).
Specifically, st = sign(ut+1 − ut) if |ut+1 − ut| > 0 and st is some value in [−1, 1]
otherwise. For convenience of notations later, we also define sn = s0 = 0.
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• complementary slackness: (a) λ (
∑n

t=2 |ut − ut−1| − Cn) = 0; (b) γ−t (ut +
B) = 0 and γ+t (ut −B) = 0 for all t ∈ [n]

Proof. We can form the Lagrangian of the optimization problem as:

L(ũ1:n, z̃1:n−1, ṽ, λ̃, γ̃
+
1:n, γ̃

−
1:n) =

1

2

n∑

t=1

(yt − ũt)2 + λ̃

(
n−1∑

t=1

|z̃t| − Cn

)
+

n−1∑

t=1

ṽt(ũt+1 − ũt − z̃t)

(E.1)

+
n∑

t=1

γ̃−t (−B − ũt) + γ̃+t (ũt −B), (E.2)

for dual variables λ̃ > 0, ṽ1:n unconstrained, γ̃−1:n ≥ 0 and γ̃+1:n ≥ 0. Let (u1:n, z1:n, v1:n, λ, γ
−
1:n, γ

+
1:n)

be the optimal primal and dual variables. By stationarity conditions (via the derivative
wrt ut), we have:

ut − yt + vt−1 − vt − γ−t + γ+t = 0, (E.3)

where we take v0 = vn = 0. Stationarity conditions via derivative wrt zt yields

vt = λst. (E.4)

Combining the above two equations and the complementary slackness rules yields the
lemma.

Example 182. We describe the example used to create Fig.6.1. We adopt the notations
of Lemma 52.

• G = 4 and B = 2.

• For each k ∈ [0, n
1/4

2
− 1], uj = B − 1

2n3/4 for all j ∈ [2kn3/4 + 1, (2k + 1)n3/4].

• For each k ∈ [0, n
1/4

2
− 1], uj = B for all j ∈ [(2k + 1)n3/4 + 1, (2k + 2)n3/4].

• y1 = yn3/4 = B − 1
2n3/4 − n3/4−2

n
. yj = B − 1

2n3/4 − (1− 2/n) for all j ∈ [2, n3/4 − 1].

• For each k ∈ [1, n
1/4

2
− 1], y2kn3/4+1 = y(2k+1)n3/4 = B − 1

2n3/4 − n3/4−2
n

. yj =

B − 1
2n3/4 − (1− 2/n) for all j ∈ [2kn3/4 + 2, (2k + 1)n3/4 − 1].

• For each k ∈ [0, n
1/4

2
− 1], yj = G for all j ∈ [(2k + 1)n3/4 + 1, (2k + 2)n3/4].

• γ−j = 0 for all j ∈ [n].

• For each k ∈ [0, n
1/4

2
− 1], γ+j = 0 for all j ∈ [2kn3/4 + 1, (2k + 1)n3/4].
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• For each k ∈ [0, n
1/4

2
− 2], γ+

(2k+1)n3/4+1
= γ+

(2k+2)n3/4 = G − B − n3/4−2
n

. γ+j =

G−B − 2(1− 1/n) for all j ∈ [(2k + 1)n3/4 + 2, (2k + 2)n3/4 − 1].

• γ+
n−n3/4+1

= γ+n = G−B − n3/4−2
n

.

• λ = n3/4 − 2.

• st = 1/n+ (t− 1) 1−2/n

n3/4−2
for 1 ≤ t ≤ n3/4 − 1. sn3/4 = 1.

• For each k ∈ [0, n
1/4

2
−2], st = 1−1/n+(t−1−(2k+1)n3/4) 2/n−2

n3/4−2
for (2k+1)n3/4+1 ≤

t ≤ (2k + 2)n3/4 − 1. s(2k+2)n3/4 = −1.

• For each k ∈ [1, n
1/4

2
− 1], st = −1 + 1/n+ (t− 1− 2kn3/4) 2−2/n

n3/4−2
. s(2k+1)n3/4 = 1.

• st = 1− 1/n+ (t− 1− n+ n3/4) 2/n−1

n3/4−1
for n− n3/4 + 1 ≤ t ≤ n− 1. sn = 0.

Terminology. We will refer to the optimal primal variables u1, . . . , un in Lemma 52
as the offline optimal solution in this section. For two natural numbers a < b, we denote
[a, b] = {a, a+ 1, . . . , b}.
Definition 53.

• For a bin [a, b] ⊆ {2, . . . , n − 1}, the offline optimal solution is said to assume
Structure 1 if uj = ua ∈ (−B,B) for all j ∈ [a, b] and ub > ub+1 and ua > ua−1.

• For a bin [a, b] ⊆ {2, . . . , n − 1}, the offline optimal solution is said to assume
Structure 2 if uj = ua ∈ (−B,B) for all j ∈ [a, b] and ub < ub+1 and ua < ua−1.

• For a bin [a, b], we define gapmin(β, [a, b]) := minj∈[a,b] |uj − β| where β ∈ R.

The following Lemma plays a central role in the analysis. Qualitatively, it captures
a fundamental way in which the adversary is constrained.

Lemma 183. (λ-length lemma) Suppose that the offline optimal solution sequence
takes the form of Structure 1 or Structure 2 in an interval [j, j + ℓ − 1] for some ℓ > 0

and j ∈ {2, . . . , n− 1}. Then λ ≤ (B+G)ℓ
2

.

Proof. We consider the case of Structure 2. Arguments are similar for case of Structure
1. Let the optimal sign assignments be written as sj+k−1 = −1 + ϵk where ϵk ∈ [0, 2] for
all k ∈ [ℓ− 1]. From the KKT conditions, we have

yj = u− λϵ1
yj+1 = u− λ(ϵ2 − ϵ1)

...

yj+ℓ−2 = u− λ(ϵℓ−1 − ϵℓ−2)

yj+ℓ−1 = u− λ(2− ϵℓ−1)
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Consider a vector z = [ϵ1, ϵ2 − ϵ1, . . . , 2 − ϵℓ−1]
T . Note that the condition ∥z∥∞ > 0

is always satisfied. Otherwise we must have 2 = ϵℓ−1 = . . . = ϵ1. But ϵ1 = 2 makes
∥z∥∞ > 0 yielding a contradiction.

Let k∗ be such that |z[k∗]| = ∥z∥∞. Since λ ≥ 0, we can write λ =
|yj+k∗−1−u|

∥z∥∞ . Since

|yj+k∗−1 − u| is bounded, a lower bound on ∥z∥∞ will yield an upper bound on λ. To
this end, we consider the following optimization problem:

min
t, ϵ1, . . . , ϵℓ−1

t (E.5a)

s.t. 0 ≤ ϵi ≤ 2 ∀i ∈ [ℓ− 1], (E.5b)

ϵ1 ≤ t, (E.5c)

|ϵi+1 − ϵi| ≤ t ∀i ∈ [ℓ− 2], (E.5d)

2− ϵℓ−1 ≤ t (E.5e)

We can form the Lagrangian as:

L(t, ϵ1:ℓ−1, a1:ℓ−1, b1:ℓ−1, c1:ℓ−2, d1:ℓ−2, e1, eℓ−1) = t−
ℓ−1∑

i=1

aiϵi +
ℓ−1∑

i=1

bi(ϵi − 2) (E.6)

+
ℓ−2∑

i=1

ci(−t− ϵi+1 + ϵi) +
ℓ−2∑

i=1

di(ϵi+1 − ϵi − t)

(E.7)

+ e1(ϵ1 − t) + e2(2− ϵℓ−1 − t) (E.8)

Stationarity conditions are:

∂L
∂t

= 0 =⇒ 1 +
ℓ−2∑

i=1

−ci − di − e1 − e2 = 0 (E.9)

∂L
∂ϵ1

= 0 =⇒ −a1 + b1 + c1 − d1 + e1 = 0 (E.10)

∂L
∂ϵℓ−1

= 0 =⇒ −aℓ−1 + bℓ−1 − cℓ−2 + dℓ−2 − e2 = 0 (E.11)

∂L
∂ϵi

= 0 =⇒ −ai + bi − ci−1 + ci + di−1 − di = 0, where i ∈ {2, . . . , ℓ− 2} (E.12)
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Complementary slackness conditions are:

aiϵi = 0, i ∈ [ℓ− 1] (E.13)

bi(ϵi − 2) = 0, i ∈ [ℓ− 1] (E.14)

ci(−t− ϵi+1 + ϵi) = 0, i ∈ [ℓ− 2] (E.15)

di(ϵi+1 − ϵi − t) = 0, i ∈ [ℓ− 2] (E.16)

e1(ϵ1 − t) = 0 (E.17)

e2(2− ϵℓ−1 − t) = 0 (E.18)

Dual feasibility conditions are ai ≥ 0, bi ≥ 0 for i ∈ [ℓ − 1] and ci ≥ 0, di ≥ 0 for
i ∈ [ℓ− 2] and e1 ≥ 0, e2 ≥ 0.

Primal feasibility conditions are given by the constraint set of the optimization prob-
lem.

Now we form a guess for optimal primal and dual variables as t = 2/ℓ and ϵi = 2i/ℓ
for i ∈ [ℓ− 1] and ai = bi = 0 for i ∈ [ℓ− 1] and ci = 0 for i ∈ [ℓ− 2] and e1 = e2 = d1 =
. . . = dℓ−2 = 1/ℓ. All the KKT conditions can be readily verified for this solution guess.

Recall that, earlier we defined z = [ϵ1, ϵ2− ϵ1, . . . , 2− ϵℓ−1]
T and λ =

|yj+k∗−1−u|
∥z∥∞ where

k∗ is such that |z[k∗]| = ∥z∥∞. By the previous optimization problem we deduce that
∥z∥∞ ≥ 2/ℓ. Since |yj+k∗−1 − u| ≤ B +G, we conclude that λ ≤ (B +G)ℓ/2

Next, we exhibit a useful partitioning scheme of the interval [n].

Lemma 184. ([65])(key partition) Initialize P ← Φ. Starting from time 1, spawn a
new bin [is, it] whenever

∑it+1
j=is+1 |uj − uj−1| > B/

√
ni, where ni = it − is + 2. Add the

spawned bin [is, it] to P.
Let M := |P|. We have M = O

(
1 ∨ n1/3C

2/3
n B−2/3

)
.

Notations. For bin [is, it] ∈ P we define: ni = it − is + 1, ūi = 1
ni

∑it
j=is

uj, ȳi =
1
ni

∑it
j=is

yj, Γ+
i =

∑it
j=is

γ+j , Γ−
i =

∑it
j=is

γ−j , ∆si = sit − sis−1, Ci =
∑it

j=is+1 |uj − uj−1|.
For any general bin [a, b] define the quantities na→b, ūa→b, ȳa→b,Γ

+
a→b,Γ

−
a→b,∆sa→b, Ca→b

analogously as above.
Next we calculate the static regret guarantee of the FLH-ONS strategy.

Lemma 185. ([77], [23]) Consider a bin [a, b] ⊆ [n] and a point w ∈ [−B,B]. Under
the setting of Theorem 50 we have

b∑

t=a

(yt − xt)2 − (yt − w)2 ≤ 10(B +G)2 log n (E.19)

= Õ(1), (E.20)

where xt are the predictions of FLH-OGD.
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Proof. The losses (yt − x)2 are strongly convex with parameter 2. Further the gradients
are bounded by 2(G+B). Hence by Theorem 1 in [77] we have the static regret guarantee
of OGD being 4(G+B)2 · (2 log n)/4 = 2(G+B)2 log n.

The losses (yt − x)2 are 1/(2(G + B)2) exp-concave. So by applying Theorem 3.2 in
[23] we have the regret of FLH against any base experts bounded as 8(G+B)2 log n.

Adding these regret bounds yields the lemma.

Lemma 186. (low λ regime) If the optimal dual variable λ = O
(

n1/3

C
1/3
n

)
, we have the

regret of FLH-OGD strategy bounded as

n∑

t=1

(yt − xt)2 − (yt − ut)2 = Õ(n1/3C2/3
n ∨ 1), (E.21)

where xt is the prediction of FLH-OGD at time t.

Proof. Throughout this proof, the bins [is, it] we consider belong to the partition P .
Case 1: When the offline optimal solution touches the boundary B within a bin

[is, it]. We use a three term regret decomposition as follows.

it∑

j=is

(yj − xj)2 − (yj −B)2

︸ ︷︷ ︸
T1,i

+
it∑

j=is

(yj −B)2 − (yj − ūi)2

︸ ︷︷ ︸
T2,i

+
it∑

j=is

(yj − ūi)2 − (yj − uj)2

︸ ︷︷ ︸
T3,i

(E.22)

Now T1,i = O(log n) by strong adaptivity of FLH. Observe that due to complementary
slackness, γ−j = 0 uniformly within the bin since the TV within the bin is at-most
B/
√
ni < 2B and hence the solution never touches −B boundary within this bin. By

using the KKT conditions, we have yj = uj − λ(sj − sj−1) + γ+j . So

T2,i =
it∑

j=is

(ūi −B)2 + 2(yj − ūi)(ūi −B) (E.23)

= ni(ūi −B)2 + 2ni(ȳi − ūi)(ūi −B) (E.24)

≤(a) B
2 + 2(ūi −B)(Γ+

i − λ∆si) (E.25)

≤(b) B
2 + 4λCi + 2Γ+

i (ūi −B) (E.26)

where in line (a) we used KKT conditions and |ūi−B| ≤ B/
√
ni due to the TV constraint

within bin and in line (b) we used: (i) |ūi−B| ≤ Ci as the optimal solution assumes the
value B at some time point in [is, it] (ii) |∆si| ≤ 2.
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We have

T3,i =
it∑

j=is

(uj − ūi)2 + 2(yj − uj)(uj − ūi) (E.27)

≤ niC
2
i + 2

it∑

j=is

(−λ(sj − sj−1) + γ+j )(uj − ūi) (E.28)

=(a) niC
2
i + 2λ(sis−1(uis − ūi)− sit(uit − ūi)) + 2λCi + 2

it∑

j=is

γ+j (uj − ūi) (E.29)

=(b) niC
2
i + 2λ(sis−1(uis − ūi)− sit(uit − ūi)) + 2λCi + 2Γ+

i (B − ūi) (E.30)

≤(c) B
2 + 6λCi + 2Γ+

i (B − ūi), (E.31)

where line (a) is obtained by a rearrangement of the sum and line (b) is obtained by
the complementary slackness condition which states that γ+j = 0 if uj < B. Line (c) is
obtained by |uj − ūi| ≤ Ci for any j ∈ [is, it] and by applying triangle inequality.

So overall we can bound the regret within this bin by adding Eq.(E.26) and (E.31)
with T1,i = O(log n) as

T1,i + T2,i + T3,i ≤ O(log n) + 2B2 + 10λCi. (E.32)

Case 2: When the offline optimal solution touches boundary −B within a bin [is, it].
This case can be treated similar to Case 1.

Case 3: When the offline optimal solution doesn’t touch either boundaries within a
bin [is, it]. Here we use a two term regret decomposition as

it∑

j=is

(yj − xj)2 − (yj − ūi)2

︸ ︷︷ ︸
T1,i

+
it∑

j=is

(yj − ūi)2 − (yj − uj)2

︸ ︷︷ ︸
T2,i

. (E.33)

By following the analysis used in obtaining the bound of Eq.(E.31) (where we use
γ−j = γ+j = 0 due to complementary slackness), we obtain

T1,i + T2,i ≤ O(log n) +B2 + 6λCi (E.34)

By summing up the regret bounds which assumes the form in Eq.(E.32) (for Case 1
and 2) or Eq.(E.34) (for Case 3) across all bins in the partition P , we obtain the overall
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regret as

n∑

t=1

(yt − xt)2 − (yt − ut)2 ≤ O(|P| log nB2) + 2B2|P|+ 10λCn (E.35)

= Õ(n1/3C2/3
n ∨ 1), (E.36)

where in the last line we used the fact that |P| = O(n1/3C
2/3
n ∨ 1) and λ = O((n/Cn)1/3)

by the premise of the lemma.

Lemma 187. (monotonic sequence) Consider a bin [is, it] ∈ P such that the offline
optimal solution is monotonic within this bin. Then the regret of FLH-OGD strategy
within this bin is at-most 31(B +G)2 log n = O(log n).

Proof. When the optimal sequence is monotonic within a bin [is, it] ∈ P , it is always
possible to form at-most 3 bins: [is, r1], [r1 + 1, r2], [r2 + 1, it] such that the offline
optimal solution is constant within bins [is, r1] and [r2 + 1, it] alongside the condition
that the bin [r1 + 1, r2] satisfies one of the following properties: a) sr1 = sr2 = 1 and the
offline optimal solution is non-decreasing within bin [r1 + 1, r2] or b) sr1 = sr2 = −1 and
the offline optimal solution is non-increasing within bin [r1 + 1, r2]. (see for eg. Fig.E.1).

Due to Lemma 185, the regret within bins [is, r1] and [r2 + 1, it] is at-most 10(B +
G)2 log n each. Note that this three sub-bin refinement can make sure that the offline
optimal solution doesn’t touch the boundaries ±B within the bin [r1 + 1, r2]. We bound
the regret within bin [r1 + 1, r2] via a two term regret decomposition as follows.

r2∑

j=r1+1

(yj − xj)2 − (yj − ūr1+1→r2)
2

︸ ︷︷ ︸
T1

+

r2∑

j=r1+1

(yj − ūr1+1→r2)
2 − (yj − uj)2

︸ ︷︷ ︸
T2

. (E.37)

We have T1 ≤ 10(B +G)2 log n. Further due to KKT conditions we have,

T2 =

r2∑

j=r1+1

(uj − ūr1+1→r2)(2yj − uj − ūr1+1→r2) (E.38)

=

r2∑

j=r1+1

(uj − ūr1+1→r2)(2yj − 2uj + uj − ūr1+1→r2) (E.39)

=

r2∑

j=r1+1

(uj − ūr1+1→r2)
2 + 2λ(uj − ūr1+1→r2)(sj−1 − sj) (E.40)

≤ niC
2
i +

r2∑

j=r1+1

2λ(uj − ūr1+1→r2)(sj−1 − sj), (E.41)
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where in the last line we used |uj − ūr1+1→r2| ≤ Ci. We also have niC
2
i ≤ B2 by the

construction in Lemma 184.
By expanding the second term followed by a regrouping of terms in the summation,

we can write

r2∑

j=r1+1

2λ(uj − ūr1+1→r2)(sj−1 − sj) = 2λ (sr1(ur1+1 − ūr1+1→r2)− sr2(ur2 − ūr1+1→r2))

(E.42)

+ 2λ

r2∑

j=r1+2

|uj − uj−1| (E.43)

= 2λCr1+1→r2 (E.44)

+ 2λ (sr1(ur1+1 − ūr1+1→r2)− sr2(ur2 − ūr1+1→r2)) .
(E.45)

Since sr1 = sr2 = 1 if the offline optimal is non-decreasing in [r1 + 1, r2] or sr1 =
sr2 = −1 if the offline optimal is non-increasing in [r1 + 1, r2], we have sr1ur1+1−sr2ur2 =
−|ur1+1− ur2| = −Cr1+1→r2 . Hence we see that the second term exactly cancels with the
first term in Eq.(E.45).

Thus overall we have shown that the total regret in [is, it] is at-most 31(B+G)2 log n.

is r1 r2 it

Figure E.1: An example of a configuration referred in the proof of Lemma 187. Here
sr1 = sr2 = −1 and the sequence is non-increasing within [r1 + 1, r2].

Lemma 188. Suppose there exists an interval [a, b] (which may not belong to P) with
length ℓ such that the optimal sequence takes the form of Structure 1 or Structure 2 within
[a, b]. Assume that ȳa→b ∈ [−B,B]. Then the regret of FLH-OGD within the bin [a, b]
at-most 10(B +G)2 log n− 4λ2

ℓ
.
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Proof. We use a two term regret decomposition as follows:

b∑

j=a

(yj − xj)2 − (yj − ȳa→b)
2

︸ ︷︷ ︸
T1

+
b∑

j=a

(yj − ȳa→b)
2 − (yj − uj)2

︸ ︷︷ ︸
T2

. (E.46)

By the Definition 53 of Structure 1 and 2, the offline optimal solution is constant
within bin [a, b]. We denote uj = u for all j ∈ [a, b]. Further |∆sa→b = 2|. We have,

T2 = −ℓ(ȳa→b − u)2 − 2
b∑

j=a

(yj − ȳa→b)(ȳa→b − u) (E.47)

= −ℓ(ȳa→b − u)2 (E.48)

=(a) −
−λ2(∆sa→b)

2

ℓ
(E.49)

= −4λ2

ℓ
, (E.50)

where line (a) is obtained by the KKT conditions yj = u− λ(sj − sj−1) for all j ∈ [a, b]
and hence ȳa→b = u− λ∆sa→b

ℓ
.

Due to Lemma 185, we have T1 ≤ 10(B + G)2 log n. Combining both bounds yields
the lemma.

Lemma 189. Consider a bin [a, b] with length ℓ.
Case 1: When offline optimal takes the form of Structure 1 within this bin and

ȳa→b ≥ B, then

b∑

j=a

(yj − xj)2 − (yj − uj)2 ≤ 10(B +G)2 log n− ℓ(B − ua)2, (E.51)

and
Case 2: When offline optimal takes the form of Structure 2 within this bin and

ȳa→b ≤ −B, then

b∑

j=a

(yj − xj)2 − (yj − uj)2 ≤ 10(B +G)2 log n− ℓ(B + ua)
2, (E.52)

where xj are the predictions of the FLH-OGD algorithm.

Proof. We consider Case 2. Arguments for Case 1 are similar. We employ a two term
regret decomposition as follows.
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b∑

j=a

(yj − xj)2 − (yj +B)2

︸ ︷︷ ︸
T1

+
b∑

j=a

(yj +B)2 − (yj − uj)2

︸ ︷︷ ︸
T2

. (E.53)

By Definition 53, the offline optimal solution is constant within bin [a, b]. So we have
uj = ua for all j ∈ [a, b]. From the KKT conditions, we have

T2 =
b∑

j=a

(ua +B)2 + 2(yj − ua)(ua +B) (E.54)

= ℓ(ua +B)2 − 2λ∆sa→b(ua +B) (E.55)

= ℓ(ua +B)2 − 4λ(ua +B), (E.56)

where in the last line we used ∆sa→b = 2 for Structure 2. From the premise of the lemma
for Case 2, we have ȳa→b ≤ −B. Since ȳa→b = ua − 2λ/ℓ, we must have

ȳa→b ≤ −B =⇒ λ ≥ ℓ

2
(ua +B). (E.57)

Plugging this lower bound to Eq.(E.56) and noting that ua +B ≥ 0, we get

T2 ≤ −ℓ(ua +B)2. (E.58)

By Lemma 185, we have T1 ≤ 10(B + G)2 log n. Now summing T1 and T2 results in
the lemma.

Lemma 190. (large margin bins) Assume that λ ≥ ϕn1/3

c
1/3
n

for some constant ϕ that

do not depend on n and Cn. Consider a bin [is, it] ∈ P within which the offline op-
timal solution takes the form of Structure 1 or Structure 2 (or both) for some appro-

priate sub-intervals of [is, it]. Let µth =

√
36(B+G)3C

1/3
n logn

ϕn1/3 . Then gapmin(−B, [is, it]) ∨

gapmin(B, [is, it]) ≥ µth whenever Cn ≤
(

B2ϕ
144(B+G)3 logn

)3
n = Õ(n).

Proof. Suppose gapmin(−B, [is, it]) < µth. Then the largest value of offline optimal at-
tained within this bin [is, it] is at-most −B + µth + B/

√
ni (recall ni := it − is + 1

and TV within this bin is at-most B/
√
ni by Lemma 184). So gapmin(B, [is, it]) ≥

2B− µth−B/
√
ni. Our goal is to show that whenever Cn obeys the constraint stated in

the lemma, we must have

2B − µth −B/
√
ni ≥ µth. (E.59)
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Let ℓi be the length of a sub-interval of [is, it] where the offline optimal solution
assumes the form of Structure 1 or Structure 2. Due to Lemma 183, we have

ni ≥ ℓi ≥
2λ

(G+B)
≥ 2ϕ

(G+B)

n1/3

C
1/3
n

, (E.60)

where the last inequality follows due to the condition on λ assumed in the current lemma.
So a sufficient condition for Eq.(E.59) to be true is

2B ≥ 2


2

√
36(G+B)3C

1/3
n log n

ϕn1/3
∨B

√
(G+B)C

1/3
n

2ϕn1/3


 . (E.61)

Recall that by Assumption A1 in Section 6.2, we have G ≥ B ≥ 1 WLOG. So the
above maximum will be attained by the first term and can be further simplified as

2B ≥ 4

√
36(G+B)3C

1/3
n log n

ϕn1/3
. (E.62)

The above condition is always satisfied whenever Cn ≤
(

B2ϕ
144(B+G)3 logn

)3
n.

At this point, we have shown that gapmin(−B, [is, it]) < µth =⇒ gapmin(B, [is, it]) ≥
µth under the conditions of the lemma. Taking the contrapositive yields gapmin(B, [is, it]) <
µth =⇒ gapmin(−B, [is, it]) ≥ µth.

Lemma 191. (high λ regime) If the optimal dual variable λ ≥ ϕ n1/3

C
1/3
n

= Ω
(

n1/3

C
1/3
n

)
for

some constant ϕ > 0 that doesn’t depend on n and Cn, we have the regret of FLH-OGD
strategy bounded as

n∑

t=1

(yt − xt)2 − (yt − ut)2 = Õ(n1/3C2/3
n ∨ 1), (E.63)

where xt is the prediction of FLH-OGD at time t.

Proof. Throughout the proof, we consider only the regime where Cn ≤
(

B2ϕ
84(B+G)3 logn

)3
n =

Õ(n). In the alternate regime where Cn = Ω̃(n), the trivial regret bound of Õ(n) is near
minimax optimal.

Reminiscent to the road-map in Section 6.2.2, it is useful to define the following
condition:

Condition (A): Let a bin [a, b] be given such that Ca→b ≤ B/
√
b− a+ 1. It satisfies

at-least one of the following criteria. (i) gapmin(B, [a, b]) ≥ gapmin(−B, [a, b]) and the
optimal solution takes the form of Structure 1 in at-least one sub-interval [r, s] ⊆ [a, b];

294



Supplementary Materials for Chapter 6 Chapter E

or (ii) gapmin(−B, [a, b]) ≥ gapmin(B, [a, b]) and the optimal solution takes the form of
Structure 2 in at-least one sub-interval [r, s] ⊆ [a, b].

Consider a bin [is, it] ∈ P that satisfies Condition (A). We refine [is, it] into a partition
that contains smaller sub-intervals as follows:

Pi := {[is,
¯
i1 − 1], [

¯
i1, ī1], [

¯
i′1, ī

′
1], . . . , [¯

im(i) , īm(i) ], [
¯
i′m(i) , ī

′
m(i) := it]}, (E.64)

such that:

1. If gapmin(B, [is, it]) > gapmin(−B, [is, it]), then the offline optimal in the intervals
[
¯
ij, īj], j ∈ [m(i)] takes the form of Structure 1. Further, let k be the largest value

in [is, it] such that uis:k is constant. If uis > uis−1 and uk > uk+1, then we treat
the first sub-interval in Pi as empty by putting

¯
i1 = is. Similarly let k be smallest

value in [is, it] such that uk:it is constant. If uk−1 < uk and uit > uit+1 then we
treat the last sub-interval in Pi as empty by putting

¯
i′
m(i) = it + 1.

2. If gapmin(B, [is, it]) ≤ gapmin(−B, [is, it), then the offline optimal in the intervals
[
¯
ij, īj], j ∈ [m(i)] takes the form of Structure 2. Further, let k be the largest value

in [is, it] such that uis:k is constant. If uis < uis−1 and uk < uk+1, then we treat
the first sub-interval in Pi as empty by putting

¯
i1 = is. Similarly let k be smallest

value in [is, it] such that uk:it is constant. If uk−1 > uk and uit < uit+1 then we
treat the last sub-interval in Pi as empty by putting

¯
i′
m(i) = it + 1.

3. In all sub-intervals [
¯
i′j, ī

′
j], j ∈ [m(i)], the offline optimal sequence can be split into

piece-wise monotonic sections with at-most 2 pieces.

An illustration of this refinement scheme is given in Fig.E.2.
Let there be m

(i)
1 bins among {[

¯
i1, ī1], . . . , [

¯
im(i) , īm(i) ]} which satisfy the property in

Lemma 188. Let their lengths be denoted by {ℓ(1)
1(i)
, . . . , {ℓ(1)

m
(i)
1

}. These bins will be referred

as Type 1 bins henceforth.
Similarly let there be m

(i)
2 bins among {[

¯
i1, ī1], . . . , [

¯
im(i) , īm(i) ]} which satisfy either

Case 1 or Case 2 in Lemma 189. Let their lengths be denoted by {ℓ(2)
1(i)
, . . . , {ℓ(2)

m
(i)
2

}. These

bins will be referred as Type 2 bins henceforth.
Each bin in Type 1 and Type 2 can be paired with one adjacent bin (if non-empty) in

Pi where the optimal sequence displays a piece-wise monotonic behaviour with at-most
2 pieces. (For example the bin [

¯
i1, ī1] can be paired with [

¯
i′1, ī

′
1] where in the later the

optimal sequence displays a piece-wise monotonic behaviour. See Fig.E.2 for example.)
To see why this is true, consider the case gapmin(B, [is, it]) ≤ gapmin(−B, [is, it). By
construction, the optimal solution must preclude the form of Structure 2 in the bin [

¯
i′k, ī

′
k]

where k ∈ [m(i)]. This means the offline optimal can either take a non-increasing form
in [

¯
i′k, ī

′
k] or it can monotonically increase and then optionally monotonically decrease.

In both the cases, it can be split into at-most 2 sections where the solution is purely
monotonic. Similar arguments apply for the case gapmin(B, [is, it]) > gapmin(−B, [is, it).
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Similarly, if bin [is,
¯
i1− 1] is non-empty then the offline optimal must assume a piece-

wise monotonic structure with at-most 2 pieces. Then applying Lemma 187 to each of
the 2 pieces separately and adding the regret bounds yields

¯
i1−1∑

j=is

fj(xj)− fj(uj) = Õ(1). (E.65)

Note that m
(i)
1 + m

(i)
2 = m(i). Let the total regret contribution from Type 1 bins

along with their pairs and Type 2 bins along with their pairs be referred as R
(i)
1 and R

(i)
2

respectively.
Since a sub-bin that is paired with a Type 1 or Type 2 bin can be split into at-most

2 sub-intervals where the optimal sequence is purely monotonic (see Fig. E.2), we can
bound the regret within such sub-bins [

¯
i′k, ī

′
k], k ∈ [m(i)] by at-most 62(G + B)2 log n by

Lemma 187.
For a Type 2 bin [a, b] ⊆ [is, it], we can have two possible configurations: If gapmin(B, [is, it]) >

gapmin(−B, [is, it]) then B−ua ≥ gapmin(B, [is, it]) ≥ µth where the first inequality follows
by the definition of gapmin(B, [is, it]) and the last inequality follows by Lemma 190. Sim-
ilarly If gapmin(B, [is, it]) ≤ gapmin(−B, [is, it]) then B + ua ≥ gapmin(−B, [is, it]) ≥ µth.
With this observation and using the results of Lemma 189, we can bound the regret
contribution from any Type 2 bin and its pair as:

R
(i)
2 ≤

m
(i)
2∑

j=1(i)

((
10(G+B)2 log n− ℓ(2)j µ2

th

)
+ 62(G+B)2 log n

)
(E.66)

≤ 72m
(i)
2 (G+B)2 log n− µ2

th(

m
(i)
2∑

j=1(i)

ℓ
(2)
j ). (E.67)

From Eq.(E.60), we have ℓ
(2)
j ≥ 2ϕn1/3

(G+B)C
1/3
n

for j ∈ {1(i), . . . ,m
(i)
2 }. So we can continue as

R
(i)
2 ≤ 72m

(i)
2 (G+B)2 log n− µ2

th

2ϕn1/3

(G+B)C
1/3
n

m
(i)
2 (E.68)

= 0, (E.69)

where the last line is obtained by plugging in the value of µth from Lemma 190.
So by refining every interval in P that satisfy Condition (A) and summing the regret

contribution from all Type 2 bins and their pairs across all refined intervals in P yields
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M∑

i=1

R
(i)
2 ≤ 0, (E.70)

where we recall that M := |P| = O(n1/3C
2/3
n ∨ 1) and assign R2(i) = 0 for intervals in P

that do not satisfy Condition (A).
For any Type 1 bin, its regret contribution can be bounded by Lemma 188. So we

have the regret contribution from Type 1 bins and their pairs bounded as

R
(i)
1 ≤

m
(i)
1∑

j=1




10(G+B)2 log n− 4λ2

ℓ
(1)

j(i)


+ 62(G+B)2 log n


 (E.71)

= 72m
(i)
1 (G+B)2 log n− 4λ2

m
(i)
1∑

j=1

1

ℓ
(1)

j(i)

(E.72)

By refining every interval in P that satisfies Condition (A) and summing the regret
contribution from all Type 2 bins and their pairs across all refined intervals in P yields

M∑

i=1

R
(i)
1 ≤ 72(G+B)2 log n

M∑

i=1

m
(i)
1 − 4λ2

M∑

i=1

m
(i)
1∑

j=1

1

ℓ
(1)

j(i)

(E.73)

≤ 72(G+B)2M1 log n− 4λ2
M2

1

n
, (E.74)

where in the last line: a) we define M1 :=
∑M

i=1m
(i)
1 with the convention that m

(i)
1 = 0

if the bin [is, it] ∈ P doesn’t satisfy Condition (A); b) applied AM-HM inequality and

noted that
∑M

i=1

∑m
(i)
1

j=1 ℓ
(1)

j(i)
≤ n.

To further bound Eq.(E.74), we consider two separate regimes as follows.

Recall that λ ≥ ϕ n1/3

C
1/3
n

. So continuing from Eq.(E.74),

M∑

i=1

R
(i)
1 ≤ 72(G+B)2M1 log n− 4ϕ2 n

2/3

C
2/3
n

M2
1

n
(E.75)

≤ 0, (E.76)

whenever M1 ≥ 18(G+B)2 logn
ϕ2 n1/3C

2/3
n = Ω̃(n1/3C

2/3
n ).

In the alternate regime where M1 ≤ 18(G+B)2 logn
ϕ2 n1/3C

2/3
n = Õ(n1/3C

2/3
n ∨ 1), we
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trivially obtain:

M∑

i=1

R
(i)
1 = Õ(n1/3C2/3

n ∨ 1) (E.77)

Putting everything together by combining the bounds in Eq.(E.65), (E.70), (E.76) and
(E.77), we can bound the total regret contribution from the bins that satisfy Condition
(A) as:

M∑

i=1

R
(i)
1 +R

(i)
2 + Õ(1) = Õ(n1/3C2/3

n ∨ 1), (E.78)

where we have assigned R
(i)
1 = R

(i)
2 = 0 for bins that don’t satisfy Condition (A).

Throughout the proof till now, we have only considered bins [is, it] ∈ P which sat-
isfy Condition (A). Not meeting this criterion will only make the arguments easier as
explained below.

If a bin [is, it] ∈ P doesn’t satisfy Condition (A), by taking a logical negation of
Condition (A), we conclude that this can only happen if the optimal solution precludes
the form of either Structure 1 or Structure 2 (or both) within some sub-interval of [is, it].
Consequently by applying similar arguments we used to handle the bins [

¯
i′k, ī

′
k], k ∈ [m(i)],

we can split the offline optimal sequence uis:it into at-most 2 piece-wise monotonic sections

and use Lemma 187 to bound the regret in [is, it] as Õ(1). Since |P| = O(n1/3C
2/3
n ∨

1), we conclude that the total regret from all bins that don’t satisfy Condition (A) is

Õ(n1/3C
2/3
n ∨ 1).

Proof. of Theorem 50. The proof is now immediate from Lemmas 186 and 191.

i1 i1 i′1 i′1 i2 i2 i′2 i′2 i3 i3 i′3 i′3

−B

B

U V U V U V

Figure E.2: Refinement of a bin that satisfy Condition (A) in the proof of
Lemma 191 with gapmin(−B, [is, it]) ≥ gapmin(B, [is, it]). Here we assign is = i1
and it = ī′3 The following pairs are formed in the proof of Lemma 191:
Pi = ([i1, ī1], [i

′
1, ī

′
1]), ([i2, ī2], [i

′
2, ī

′
2]), ([i3, ī3], [i

′
3, ī

′
3]). Blue dots represent the optimal

sequence
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E.2 Proofs for Section 6.3

Corollary 54. Let the loss functions ft be H strongly convex in L2 norm across the (box)
domain D = {x ∈ Rd : ∥x∥∞ ≤ B}. i.e, ft(y) ≥ ft(x) +∇ft(x)T (y − x) + H

2
∥y − x∥22

for all x,y ∈ D. Suppose ∥∇ft(x)∥∞ ≤ G∞ for all x ∈ D. For each i ∈ [d], construct

surrogate losses ℓ
(i)
t : R → R as ℓ

(i)
t (x) = (x− (xt[i]−∇ft(xt)[i]/H))2 where xt is the

prediction of the learner at time t. By running d instances of uni-variate FLH-OGD with
decision set [−B,B] and learning rate ζ = 1/(2(2B+G∞/H)2) where instance i predicts

xt[i] at time t and suffers losses ℓ
(i)
t , we have

n∑

t=1

ft(xt)− ft(wt) = Õ
(
d1/3n1/3C2/3

n ∨ d
)
, (6.10)

for any comparator sequence w1:n with TV (w1:n) :=
∑n

t=2 ∥wt − wt−1∥1 ≤ Cn. Õ(·)
hides the dependence on factors of log n,B,H,G∞.

Proof. Due to strong convexity, we have for any wt ∈ Rd,

ft(xt)− ft(wt) ≤ −⟨∇ft(xt),wt − xt⟩ −
H

2
∥wt − xt∥2 (E.79)

= H
(
⟨∇ft(xt)/H,xt − xt⟩+ (1/2)∥xt − xt∥2)

)
(E.80)

−H
(
⟨∇ft(xt)/H,wt − xt⟩+ (1/2)∥wt − xt∥2)

)
(E.81)

=
d∑

i=1

H
(
∇ft(xt)[i](xt[i]− xt[i])/H + (1/2)(xt[i]− xt[i])

2
)

(E.82)

−H
(
∇ft(xt)[i](wt[i]− xt[i])/H + (1/2)(wt[i]− xt[i])

2
)

(E.83)

= (H/2)

(
d∑

i=1

ℓ
(i)
t (xt[i])− ℓ(i)t (wt[i]),

)
(E.84)

where the last line is obtained by completing the squares. Let ut ∈ Rd for t ∈ [n] be
defined as the offline optimal sequence corresponding to the optimization problem:

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

n∑

t=1

d∑

i=1

ℓ
(i)
t (ũt[i]) (E.85a)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1], (E.85b)
n−1∑

t=1

∥z̃t∥1 ≤ Cn, (E.85c)

∥ũt∥∞ ≤ B ∀t ∈ [n], (E.85d)

Let Cn[i] =
∑n

t=2 |ut[i] − ut−1[i]| be its TV allocated to coordinate i. By Theorem
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1, the FLH-OGD instance i with learning rate ζ = 1/(2(2B + G∞/H)2) attains the
regret of Õ

(
n1/3(Cn[i])2/3 ∨ 1

)
regret. WLOG, let’s assume that FLH-OGD instances for

coordinates i ∈ [k], k ≤ d incurs Õ
(
n1/3(Cn[i])2/3

)
regret wrt losses ℓ

(i)
t and the regret

incurred by FLH-OGD instances for coordinates k > k′ is O(log n). Let Rn(w1:n) :=∑n
t=1 ft(xt) − ft(wt) and R′

n(w1:n) := (H/2)
(∑n

t=1

∑d
i=1 ℓ

(i)
t (xt[i])− ℓ(i)t (wt[i])

)
. From

Eq.(E.84) Rn(w1:n) ≤ R′
n(w1:n). We have,

Rn(w1:n) ≤ R′
n(w1:n) (E.86)

≤ sup
w1,...,wn∈D∑n

t=2 ∥wt−wt−1∥1≤Cn

R′
n(w1:n) (E.87)

= R′
n(u1:n) (E.88)

= (d− k)Õ(1) +
k∑

i=1

Õ
(
n1/3(Cn[i])2/3

)
(E.89)

≤ (d− k)Õ(1) + Õ


n1/3(k)1/3

(
k∑

i=1

Cn[i]

)2/3

 , (E.90)

where the last line follows by Holder’s inequality xTy ≤ ∥x∥3∥y∥3/2, where we treat x
as just a vector of ones in Rk. The above expression can be further upper bounded by

Õ
(

2d ∨ 2d1/3n1/3C
2/3
n

)
.

E.3 Proofs for Section 6.4

We start by inspecting the KKT conditions.

Lemma 192. (characterization of offline optimal) Consider the following convex
optimization problem (where z̃1, ..., z̃n−1 are introduced as dummy variables).

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

n∑

t=1

ft(ũt) (E.91a)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1], (E.91b)
n−1∑

t=1

∥z̃t∥1 ≤ Cn, (E.91c)

∥ũt∥∞ ≤ B ∀t ∈ [n], (E.91d)

Let u1, . . . ,un, z1, . . . ,zn−1 ∈ Rd be the optimal primal variables and let λ ≥ 0 be the
optimal dual variable corresponding to the constraint (E.91c). Further, let γ+

t ,γ
−
t ∈ Rd

with γ+
t ≥ 0 and γ−

t ≥ 0 be the optimal dual variables that correspond to constraint
(E.91d). Specifically for k ∈ [d], γ+

t [k] corresponds to the dual variable for the constraint
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ut[k] ≤ B induced by the relation (E.91d). Similarly γ−
t [k] corresponds to the constraint

−B ≤ ut[k]. By the KKT conditions, we have

• stationarity: ∇ft(ut) = λ (st − st−1) + γ−
t − γ+

t , where st ∈ ∂|zt| (a subgradi-
ent). Specifically, st[k] = sign(ut+1[k] − ut[k]) if |ut+1[k] − ut[k]| > 0 and st[k] is
some value in [−1, 1] otherwise. For convenience of notations later, we also define
sn = s0 = 0.

• complementary slackness: (a) λ (
∑n

t=2 ∥ut − ut−1∥1 − Cn) = 0; (b) γ−
t [k](ut[k]+

B) = 0 and γ+
t [k](ut[k]−B) = 0 for all t ∈ [n] and all k ∈ [d].

The proof of the above lemma is similar to that of Lemma 52 and hence omitted.
Terminology. We will refer to the optimal primal variables u1, . . . ,un in Lemma 192
as the offline optimal sequence in this section. We reserve the term FLH-ONS for the
instantiation of FLH with ONS as base learners with parameters as in Theorem 59.

Notations. For bin [is, it] ∈ P we define: ni = it − is + 1, ūi = 1
ni

∑it
j=is

uj,

Γ+
i =

∑it
j=is

γ+
j , Γ−

i =
∑it

j=is
γ−
j , ∆si = sit − sis−1, Ci =

∑it
j=is+1 ∥uj − uj−1∥1.

For any general bin [a, b] define the quantities na→b, ūa→b,Γ
+
a→b,Γ

−
a→b,∆sa→b, Ca→b

analogously as above.
The following is a direct extension for Lemma 184.

Lemma 193. (key partition) Initialize P ← Φ. Starting from time 1, spawn a new
bin [is, it] whenever

∑it+1
j=is+1 ∥uj − uj−1∥1 > B/

√
ni, where ni = it − is + 2. Add the

spawned bin [is, it] to P.
Let M := |P|. We have M = O

(
1 ∨ n1/3C

2/3
n B−2/3

)
.

Proposition 194. The losses ft defined in Eq.(6.19) are:

• G2 gradient Lipschitz over the domain D in Assumption B1

• Define γ := 2GB
√
αd/2+1/

√
2α. Then the losses ft are α

′ := 1/(2γ2) exp-concave
across D.

• ft are G
′ := 2αG2B

√
d+G Lipschitz in L2 norm across D.

Proof. The first two statements have been already proved in Section 6.4. For the last
statement we have that

∇ft(x) = (α∇ℓt(xt)
T (x− xt) + 1)∇ℓt(xt). (E.92)

So by triangle inequality we obtain that ∥∇ft(x)∥2 ≤ 2αG2B
√
d+G.
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Lemma 195. (Strongly Adaptive regret) ([77], [23]) Consider any bin [a, b] and a
comparator w ∈ D. Under Assumptions B1-2 in Section 6.4, the static regret of the
FLH-ONS with losses ft obeys

b∑

j=a

fj(xj)− fj(w) ≤ 10d(8G2B2αd+ 1/α) log n (E.93)

where xj are predictions of FLH-ONS and γ is as defined in Theorem 59.

Proof. Let α′ = 1/(2γ2). The static regret of ONS is 5d(G′D + 1/α′) log n for α′ exp-
concave losses (Theorem 2 in [77]) where D is the diameter of the decision set. We have
D = 2B

√
d for the box decision set. the static regret of ONS in our setting is at-most

5d(2G′B
√
d+ 1/α′) log n.

The regret of the FLH against any of its base experts is at-most (4/α′) log n for α′ exp-
concave losses (Theorem 3.2 in [23]). Adding both these regret bounds, using Proposition
194 and further upper bounding the sum results in the lemma.

Lemma 196. (low λ regime) If the optimal dual variable λ = O
(

d1.5n1/3

C
1/3
n

)
, we have

the regret of FLH-ONS strategy bounded as

n∑

t=1

ft(xt)− ft(ut) = Õ
(
10d(8G2B2αd+ 1/α)(n1/3C2/3 ∨ 1)

)
, (E.94)

where xt is the prediction of FLH-ONS at time t.

Proof. Consider a bin [is, it] ∈ P . Note that for any j ∈ [is, it] and k ∈ [d], both γ+
j [k]

and γ−
j [k] can’t be simultaneously non-zero due to complementary slackness and the fact

that Ci ≤ B/
√
ni < 2B by the construction in Lemma 193. For some fixed ǔ ∈ D, we

have

it∑

j=is

fj(xj)− fj(ǔ)

︸ ︷︷ ︸
T1,i

+
it∑

j=is

fj(ǔ)− fj(uj)

︸ ︷︷ ︸
T2,i

. (E.95)

By virtue of Lemma 195, we have T1,i = Õ(d2). Due to gradient Lipschitzness in
Proposition 194

T2,i ≤
it∑

j=is

⟨∇fj(uj), ǔ− uj⟩+
G2

2
∥ǔ− uj∥22. (E.96)
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We construct ǔ as follows:

• If there exists a j ∈ [is, it] and k ∈ [d] such that uj[k] = B, set ǔ[k] = B.

• If there exists a j ∈ [is, it] and k ∈ [d] such that uj[k] = −B, set ǔ[k] = −B.

• If the optimal solution doesn’t touch either boundaries ±B in [is, it] across a coor-
dinate, set ǔ[k] = uis [k].

It is easy to see that ǔ ∈ D and ∥ǔ−uj∥2 ≤ ∥ǔ−uj∥1 ≤ Ci for all j ∈ [is, it]. Using
this observation along with the KKT conditions, we continue from Eq.(E.96) as

T2,i ≤ G2niC
2
i +

it∑

j=is

⟨∇fj(uj), ǔ− uj⟩, (E.97)

≤ G2niC
2
i +

it∑

j=is

λ⟨sj − sj−1, ǔ− uj⟩+ ⟨γ−
j − γ+

j , ǔ− uj⟩ (E.98)

≤(a) G
2B2 + λ⟨sis−1,uis − ǔ⟩ − λ⟨sit ,uit − ǔ⟩+ λ

it∑

j=is+1

∥uj − uj−1∥1 (E.99)

+
it∑

j=is

d∑

k=1

γ−
j [k](ǔ[k]− uj[k])− γ+j [k](ǔ[k]− uj[k]) (E.100)

≤(b) G
2B2 + 3λCi, (E.101)

where line (a) is obtained by using that fact that Ci ≤ B/
√
ni and a rearrangement of

the summations and line (b) is obtained by noting that γ−
j [k] = 0 when uj[k] > −B via

complementary slackness and ǔ[k]−uj[k] is zero when uj[k] = −B since by construction
of ǔ: ǔ[k] = −B if uj[k] = −B for some j ∈ [is, it]. Similar arguments are applied to
show the terms including γ+

j also sums to zero. In line (b) we also used the fact that
⟨sis−1,uis − ǔ⟩ ≤ ∥sis−1∥∞∥uis − ǔ∥1 ≤ Ci. Similarly ⟨sit ,uit − ǔ⟩ ≤ Ci

Hence summing T1,i and T2,i across all bins in P yields

M∑

i=1

T1,i + T2,i ≤(a) Õ(Md2) + λCn (E.102)

≤ Õ
(
10d(8G2B2αd+ 1/α)(n1/3C2/3 ∨ 1)

)
, (E.103)

where we recall that M := |P| = O(1 ∨ n1/3C
2/3
n ) by Lemma 193 and in line (a) we used∑M

i=1Ci ≤ Cn and λ = O(d1.5n1/3/C
1/3
n ) by the premise of the current Lemma.

Definition 197. For a bin [a, b], the offline optimal is said to be piece-wise maximally
monotonic in [a,b] with m pieces across some coordinate k ∈ [d], if we can split
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[a, b] into m disjoint consecutive bins [a1, b1], . . . , [am, bm] such that the offline optimal
sequence within each [ai, bi] is purely monotonic across coordinate k′. Further, right-
extending any interval [ai, bi] to [ai, bi+1] if bi+1 ∈ [a, b] makes uai:bi+1[k

′] non-monotonic.
The sections [ai, bi] for i ∈ [m] are termed maximally monotonic sections.

Lemma 198. The sequence returned at Step 3 of generateGhostSequence in Fig.E.3
has the following properties:

Property 1 The elements in the sequence changes only at-most 3d times. i.e,
∑b

j=a+1 I(ǔj ̸=
ǔj−1) ≤ 7d, where I(·) is the indicator function.

Property 2 Every member of the sequence lie in the box decision set D.

Property 3 For any j ∈ [a, b],
d∑

k=1
k ̸=kfix

|ǔj[k]−uj[k]| ≤ Ca→b, where Ca→b is the TV of the offline

optimal in bin [a, b].

Proof. Observe that in the procedure detailed in Fig.E.3, we split the bin [a, b] into at-
most 7 bins across any coordinate. The value of the comparator across that coordinate
stays unchanged in each of the new sub-bins. This implies that number of distinct
comparators in {ǔa, . . . , ǔb} is at-most 7d. It is also easy to see that each ǔj, j ∈ [a, b]
stays inside the decision set D.

Note that for any j ∈ [a, b] and any k ∈ [d] \ {kfix}, ǔj[k] coincides with the value of
uj′ [k] for some j′ ∈ [a, b]. This implies that |ǔj[k] − uj[k]| ≤ Ca→b[k] for any j ∈ [a, b],
where Ca→b[k] is the TV of the optimal solution across coordinate k in bin [a, b]. So

d∑
k=1

k ̸=kfix

|ǔj[k]− uj[k]| ≤
d∑

k=1
k ̸=kfix

Ca→b[k] ≤ Ca→b. Thus Property 3 is true.

Lemma 199. (monotonic bins) Consider a bin [a, b] with length ℓ where the offline
optimal sequence is piece-wise maximally monotonic in [a, b] across any coordinate with
at-most 4 pieces. Let the TV of the optimal solution within bin [a, b] denoted by Ca→b be
at-most B/

√
ℓ. Then we have the regret of FLH-ONS strategy in this bin bounded as

b∑

j=a

fj(xj)− fj(uj) ≤ 70d2(8G2B2αd+G2B2 + 1/α) log n, (E.104)

where xj are the predictions of the FLH-ONS lagorithm.

Proof. We first construct a useful sequence of comparators:
ǔa:b = generateGhostSequence (u1:n, kfix = 0, ufix = 0, [a, b]).

We remark that as kfix = 0 /∈ [d], the condition in Step 2(a) of Fig.E.3 is never
satisfied.
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Figure E.3: generateGhostSequence procedure. If line 2(c) is replaced by “If the
optimal solution monotonically decreases first across coordinate k, then”, then we
propagate that change by replacing the phrases increasing/decreasing and > / < in the
lines below 2(c)(i) by the bracketed statements next to it.
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Next, we employ a two term regret decomposition as follows

b∑

j=a

fj(xj)− fj(ǔj)

︸ ︷︷ ︸
T1

+
b∑

j=a

fj(ǔj)− fj(uj)

︸ ︷︷ ︸
T2

. (E.105)

By noting that there are only at-most 7d change points in the comparator sequence
(see Lemma 198), we can sum up the SA regret guarantee from Lemma 195 against each
of the constant sections of ǔa:b to obtain

T1 ≤ 70d2(8G2B2αd+ 1/α) log n. (E.106)

To bound T2 we use gradient Lipschitzness in Proposition 194 and look at a coordinate-
wise decomposition.

T2 ≤
b∑

j=a

⟨∇fj(uj), ǔj − uj⟩+
G2

2
∥ǔj − uj∥22 (E.107)

≤ ℓG2C2
a→b

2
+

d∑

k=1

b∑

j=a

∇fj(uj)[k](ǔj[k]− uj[k]), (E.108)

where in the last line we used that fact that ∥ǔj−uj∥22 ≤ ∥ǔj−uj∥21 ≤ C2
a→b by Property

3 of Lemma 198, where Ca→b is the TV of the optimal solution within bin [a, b].
Since Ca→b ≤ B

√
ℓ, we have the first term in Eq.(E.108) bounded by G2B2

2
. Next we

proceed to bound the second term in Eq.(E.108) coordinate-wise. Consider a coordinate
k ∈ [d]. We have two cases:

Case 1: When the optimal solution across coordinate k in bin [a, b] has a structure
described in Step 2(b) of the generateGhostSequence procedure of Fig.E.3. In this case
ǔj[k] = uj[k] = ua[k] for j ∈ [a, b]. So

b∑

j=a

∇fj(uj)[k](ǔj[k]− uj[k]) = 0. (E.109)

Case 2: When the optimal solution across coordinate k in bin [a, b] has a structure
described in Step 2(c) of the generateGhostSequence procedure of Fig.E.3. In this case,
we can write

b∑

j=a

∇fj(uj)[k](ǔj[k]− uj[k]) =
7∑

i=1

r̄i∑

j=
¯
ri

∇fj(uj)[k](ǔj[k]− uj[k]), (E.110)

where [
¯
ri, r̄i], i ∈ [7] are as defined in generateGhostSequence of Fig.E.3.

From Step 2(c)(ii) we have for each i ∈ {2, 4, 6}, ǔj[k] = uj[k] = u
¯
ri [k] for all
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j ∈ [
¯
ri, r̄i] if non-empty. So

∑r̄i
j=

¯
ri
∇fj(uj)[k](ǔj[k]− uj[k]) = 0 for each i ∈ {2, 4, 6}.

Next we consider the interval [
¯
r1, r̄1]. If within bin [

¯
r1, r̄1], the optimal solution

across coordinate k is constant, then
∑r̄1

j=
¯
r1
∇fj(uj)[k](ǔj[k]−uj[k]) = 0. Otherwise let

[
¯
r1, r̄1] = [

¯
r1, p] ∪ [p+ 1, r̄1] such that the optimal solution is constant in [

¯
r1, p] and non-

decreasing (non-increasing) within [p+1, r̄1] across coordinate k. Recall from Fig.E.3 that

¯
r1 = a. Since ǔj[k] = ua[k] for all j ∈ [

¯
r1, p] we get

∑p
j=

¯
r1
∇fj(uj)[k](ǔj[k]−uj[k]) = 0.

Further note that due to the presence of bins [
¯
r1, p] and [

¯
r2, r̄2] the solution uj[k] for

j ∈ [p+ 1, r̄1] will never touch the boundaries ±B. So by the KKT conditions and using
ǔj[k] = ua[k] for j ∈ [p+ 1, r̄1], we have

r̄1∑

j=p+1

∇fj(uj)[k](ǔj[k]− uj[k]) =

r̄1∑

j=p+1

λ(sj[k]− sj−1[k])(ua[k]− uj[k]) (E.111)

= λ (sp[k](up+1[k]− ua[k])− sr̄1 [k](ur̄1 [k]− ua[k]))
(E.112)

+ λ

r̄1∑

j=p+2

|uj[k]− uj−1[k]| (E.113)

= 0, (E.114)

where the last line is obtained as follows: Observe that sp[k] = sr̄1 [k] = 1 (or − 1) and
sp[k]up+1[k]− sr̄1 [k]ur̄1 [k] = −Cp+1→r̄1 due to monotonicity of up+1:r̄1

By using similar arguments we used to show Eq.(E.114), it can be proved that

r̄i∑

j=
¯
ri

∇fj(uj)[k](ǔj[k]− uj[k]) =

r̄i∑

j=
¯
ri

∇fj(uj)[k](u
¯
ri [k]− uj[k]) (E.115)

= 0, (E.116)

for i ∈ {3, 5}.
Further, by using similar arguments we used to handle [

¯
r1, r̄1], it can be shown that

r̄7∑

j=
¯
r7

∇fj(uj)[k](ǔj[k]− uj[k]) = 0. (E.117)

Thus overall by combining Case 1 and 2 and continuing from Eq.(E.108), we have
T2 ≤ G2B2/2. Thus the total regret

T1 + T2 ≤ 70d2(8G2B2αd+ 1/α) log n+G2B2/2 (E.118)

≤ 70d2(8G2B2αd+G2B2 + 1/α) log n, (E.119)

which concludes the proof.
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Definition 200. We introduce the following definitions for convenience.

• For a bin [a, b] ⊆ {2, . . . , n − 1}, the offline optimal solution is said to assume
Structure 1 across coordinate k if uj[k] = ua[k] ∈ (−B,B) for all j ∈ [a, b] and
ub[k] > ub+1[k] and ua[k] > ua−1[k].

• For a bin [a, b] ⊆ {2, . . . , n − 1}, the offline optimal solution is said to assume
Structure 2 across coordinate k if uj[k] = ua[k] ∈ (−B,B) for all j ∈ [a, b] and
ub[k] < ub+1[k] and ua[k] < ua−1[k].

• A bin [r, s] is said to contain Structure 1 and Structure 2 if across some coordinate
k, the offline optimal solution assumes the form of Structure 1 in an interval [a, b] ⊂
[r, s] and Structure 2 in some interval [a′, b′] ⊂ [r, s] with [a, b] ∩ [a′, b′] = Φ.

• For a bin [a, b], we define GAPmin(β, [a, b])[k] := minj∈[a,b] |uj[k]− β|, where β ∈ R.

Next we provide a lemma analogous to Lemma 188.

Lemma 201. Consider a bin [a, b] with length ℓ where the TV of the offline optimal
obeys Ca→b ≤ B/

√
ℓ. Assume that for some coordinate k′ ∈ [d], ua:b[k

′] takes the form
of Structure 1 or Structure 2. Further suppose that across all coordinates, the offline
optimal solution is piece-wise maximally monotonic in [a, b] with at-most 4 pieces. If∣∣∣ua[k

′]− 1
ℓG2

∑b
j=a∇fj(uj)[k

′]
∣∣∣ ≤ B, then

b∑

j=a

fj(xj)− fj(uj) ≤ 70d2(8G2B2αd+G2B2 + 1/α) log n− 2λ2

ℓG2
, (E.120)

where xj are the predictions of FLH-ONS.

Proof. Let kfix = k′ and ufix = ua[k
′] − 1

ℓG2

∑b
j=a∇fj(uj)[k

′]. Consider a comparator
sequence
ǔa:b = generateGhostSequence(u1:n, kfix, ufix, [a, b]). We use a two term regret decom-
position

b∑

j=a

fj(xj)− fj(ǔj)

︸ ︷︷ ︸
T1

+
b∑

j=a

fj(ǔj)− fj(uj)

︸ ︷︷ ︸
T2

. (E.121)

By Properties 1 and 2 in Lemma 198, we know that the comparator ǔa:b changes only
at-most 7d times and every single point in the sequence belongs to D. Hence by strong
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adaptivity (Lemma 195), we have

T1 ≤ 70d2(8G2B2αd+ 1/α) log n. (E.122)

Further via gradient Lipschitzness in Proposition 194,

T2 ≤
b∑

j=a

⟨∇fj(uj), ǔj − uj⟩+
G2

2
∥ǔj − uj∥22 (E.123)

=
b∑

j=a

(
∇fj(uj)[k

′](ǔj[k
′]− uj[k

′]) +
G2

2
(ǔj[k

′]− uj[k
′])2
)

(E.124)

+
d∑

k=1
k ̸=k′

b∑

j=a

(
∇fj(uj)[k](ǔj[k]− uj[k]) +

G2

2
(ǔj[k]− uj[k])2

)
(E.125)

≤ G2B2

2
+

d∑

k=1
k ̸=k′

b∑

j=a

∇fj(uj)[k](ǔj[k]− uj[k]) (E.126)

+
b∑

j=a

(
∇fj(uj)[k

′](ǔj[k
′]− uj[k

′]) +
G2

2
(ǔj[k

′]− uj[k
′])2
)
, (E.127)

where in the last line we have used the facts that
∑d

k=1
k ̸=k′

(ǔj[k]− uj[k])2 ≤
(∑d

k=1
k ̸=k′
|ǔj[k]− uj[k]|

)2

≤ C2
a→b ≤ B2/ℓ by Property 3 of Lemma 198 and the TV

constraint assumed in the premise of the current lemma.
Since the optimal solution across any coordinate is piece-wise maximally monotonic

with at-most 4 pieces, by following the same arguments used in Case 1 and 2 in the proof
of Lemma 199, we can write

b∑

j=a

∇fj(uj)[k](ǔj[k]− uj[k]) = 0, (E.128)

for any k ̸= k′.
Recall that uj[k

′] = ua[k
′] ∈ (−B,B) for all j ∈ [a, b]. Further by our construction,

ǔj[k
′] = ua[k

′]− 1
ℓG2

∑b
j=a∇fj(uj)[k

′], for all j ∈ [a, b]. The key observation is to realize
that (ǔj[k

′]− uj[k
′]) stays at a constant value for all j ∈ [a, b]. So we have
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b∑

j=a

∇fj(uj)[k
′](ǔj[k

′]− uj[k
′]) = (ǔa[k

′]− ua[k
′])

b∑

j=a

∇fj(uj)[k
′] (E.129)

=
−1

ℓG2

(
b∑

j=a

∇fj(uj)[k
′]

)2

. (E.130)

Further we have,

b∑

j=a

G2

2
(ǔj[k

′]− uj[k
′])2 =

1

2ℓG2

(
b∑

j=a

∇fj(uj)[k
′]

)2

. (E.131)

Combining Eq.(E.130) and (E.131), we get

b∑

j=a

∇fj(uj)[k
′](ǔj[k

′]− uj[k
′]) +

G2

2
(ǔj[k

′]− uj[k
′])2 =

−1

2ℓG2

(
b∑

j=a

∇fj(uj)[k
′]

)2

(E.132)

=(a)
−1

2ℓG2
(λ∆sa→b[k

′])
2

(E.133)

= (b)
−2λ2

ℓG2
, (E.134)

where line (a) is due to the KKT conditions and the fact that uj[k
′] ∈ (−B,B) thus

making γ+
j [k′] = γ−

j [k′] = 0 and line (b) is due to the fact that |∆sa→b[k
′]| = 2 for

Structure 1 and Structure 2.
Hence overall we have shown that T2 ≤ G2B2

2
− 2λ2

ℓG2 . Combining with Eq.(E.122) we
conclude that the total regret of the FLH-ONS strategy within the bin [a, b] is bounded
by

T1 + T2 ≤ 70d2(8G2B2αd+ 1/α) log n+
G2B2

2
− 2λ2

ℓG2
(E.135)

≤ 70d2(8G2B2αd+G2B2 + 1/α) log n− 2λ2

ℓG2
. (E.136)

Lemma 202. Consider a bin [a, b] with length ℓ where the TV of the offline optimal
obeys Ca→b ≤ B/

√
ℓ. Assume that for some coordinate k′ ∈ [d], ua:b[k

′] takes the form
of Structure 1 or Structure 2. Further suppose that across all coordinates, the offline
optimal solution is piece-wise maximally monotonic in [a, b] with at-most 2 pieces.

Case 1: When ua:b[k
′] takes the form of Structure 1 and ua[k

′]− 1
ℓG2

∑b
j=a∇fj(uj)[k

′] ≥
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B, then

b∑

j=a

fj(xj)− fj(uj) ≤ 70d2(8G2B2αd+G2B2 + 1/α) log n− ℓG2

2
(B − ua[k

′])2,

(E.137)

and
Case 2: When ua:b[k

′] takes the form of Structure 2 and ua[k
′]− 1

ℓG2

∑b
j=a∇fj(uj)[k

′] ≤
−B, then

b∑

j=a

fj(xj)− fj(uj) ≤ 70d2(8G2B2αd+G2B2 + 1/α) log n− ℓG2

2
(B + ua[k

′])2,

(E.138)

where xj are the predictions of FLH-ONS.

Proof. We consider Case 1. The arguments for the alternate case are similar. We proceed
in a similar way as in the proof of Lemma 201. Let kfix = k′ and ufix = B. Consider a
comparator sequence ǔa:b = generateGhostSequence(u1:n, kfix, ufix, [a, b]). We use a two
term regret decomposition as in Eq.(E.121). Using similar argumets as in the proof of
Lemma 201, we have

T1 ≤ 70d2(8G2B2αd+ 1/α) log n. (E.139)

Bounding T2 in a similar fashion as in the proof of Lemma 201, we have

T2 ≤
G2B2

2
+

b∑

j=a

(
∇fj(uj)[k

′](ǔj[k
′]− uj[k

′]) +
G2

2
(ǔj[k

′]− uj[k
′])2
)
, (E.140)

where we have used Eq.(E.128) for bounding the cross terms for coordinates k ̸= k′

The main difference is in how we handle the last term of Eq.(E.140). Recall that
ǔj[k

′] = B and uj[k
′] = ua[k

′] for all j ∈ [a, b]. So

b∑

j=a

(∇fj(uj)[k
′](ǔj[k

′]− uj[k
′])+

G2

2
(ǔj[k

′]− uj[k
′])2 (E.141)

=
G2ℓ

2
(B − ua[k

′])2 − 2λ(B − ua[k
′]), (E.142)

where the last line is obtained via the KKT conditions and the fact that ∆sa→b[k
′] = −2

for Case 1. (Recall that |ua[k
′]| < B by the definition of Structure 1. So by complemen-

tary slackness γ+
j [k′] = γ−j [k′] = 0.)

By the premise of the lemma for Case 1, we have ua[k
′]− 1

ℓG2

∑b
j=a∇fj(uj)[k

′] ≥ B.
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Again by using the KKT conditions and noting that ∆sa→b[k
′] = −2, we conclude that

λ ≥ (B − ua[k
′])ℓG2

2
. (E.143)

Plugging this lower bound for λ to Eq.(E.142) and noting that (B − ua[k
′]) ≥ 0, we

get

b∑

j=a

(
∇fj(uj)[k

′](ǔj[k
′]− uj[k

′]) +
G2

2
(ǔj[k

′]− uj[k
′])2
)
≤ −ℓG

2

2
(B − ua[k

′])2.

(E.144)

Hence overall, we conclude that

T1 + T2 ≤ 70d2(8G2B2αd+ 1/α) log n+
G2B2

2
− ℓG2

2
(B − ua[k

′])2 (E.145)

≤ 70d2(8G2B2αd+G2B2 + 1/α) log n− ℓG2

2
(B − ua[k

′])2. (E.146)

Lemma 203. Suppose fineSplit is invoked with input [r, s] such that Cr→s ≤ B/
√
s− r + 1.

The offline optimal solution within any bin [a, b] ∈ Q at Step 7 of fineSplit procedure in
Fig.E.4 is piece-wise maximally monotonic in [a, b] with at-most 4 pieces across any co-
ordinate k ∈ [d]. Further there exists a coordinate k ∈ [d] that satisfy one of the following
conditions:

1. The offline optimal within bin [a, b] takes the form of Structure 1 across coordinate
k and B − ua[k] ≥ GAPmin(B, [r, s])[k] ≥ GAPmin(−B, [r, s])[k].

2. The offline optimal within bin [a, b] takes the form of Structure 2 across coordinate
k and B + ua[k] ≥ GAPmin(−B, [r, s])[k] ≥ GAPmin(B, [r, s])[k].

Proof. We start by a basic observation.
FACT 1: Note that Cr→s ≤ B/

√
s− r + 1 ≤ B. So the ur:s[k

′] cannot touch both B
and −B boundaries.

Consider a bin [a, b] ∈ Q. By the construction of fineSplit, there exists a coordinate
k ∈ [d] across which the optimal solution stays constant within [a, b] and assumes the
form of Structure 1 or 2. For the sake of contradiction, let’s assume that for some
k′ ∈ [d], with k′ ̸= k, the optimal solution is maximally monotonic in [a, b] with at-
least 5 pieces across the coordinate k′. This can happen only when the optimal solution
increases (decreases) then decreases (increases) then increases (decreases) then decreases
(increases) and finally increase (decrease) again within bin [a, b] and evolve arbitrarily
there on-wards. Combined with FACT 1, such a behaviour can result in one of the
following configurations across the coordinate k′:
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fineSplit: Input - (1) offline optimal sequence u1:n (2) an interval [r, s] ⊆ [n].
Across some coordinate k ∈ [d], the offline optimal solution must take the form
of both Structure 1 and 2 or either one of them at-least two times within some
appropriate sub-intervals of [r, s].

1. Initialize Q ← Φ, Q′ ← Φ.

2. For each coordinate k ∈ [d] across which the optimal solution takes the
form of Structures 1 and 2 or either one of them at-least two times within
some appropriate sub-intervals of [r, s]:

(a) if GAPmin(B, [r, s])[k] > GAPmin(−B, [r, s])[k] then add intervals
[a, b] ⊂ [r, s] where the offline optimal across coordinate k assumes
the form of Structure 1 to Q.

(b) if GAPmin(B, [r, s])[k] ≤ GAPmin(−B, [r, s])[k] then add intervals
[a, b] ⊂ [r, s] where the offline optimal across coordinate k assumes
the form of Structure 2 to Q.

3. For each bin [a, b] ∈ Q if there exists another interval [p, q] ∈ Q with
[p, q] ⊆ [a, b], then remove [a, b] from Q.

4. Sort intervals in Q in increasing order of the left endpoints. (i.e [a, b] <
[p, q] if a < p).

5. Starting from the first bin, for each bin [a, b] ∈ Q:

(a) if there exists an interval [p, q] ∈ Q such that a < p and b < q, then
remove [p, q] from Q

6. Add disjoint and maximally continuous intervals that are the subsets of
[r, s]\{∪[a,b]∈Q[a, b]} to Q′ such that the interval [r, s] can be fully covered
by disjoint intervals from Q and Q′.

7. Return (Q,Q′).

Figure E.4: fineSplit procedure.

• Both Structure 1 and Structure 2 are formed.

• Only Structure 2 is formed at-least two times. This means that if [x, y] ⊂ [a, b]
is a maximally monotonic section with ux:y[k

′] increasing, then uy[k
′] = B. Then

GAPmin(−B, [r, s])[k′] > GAPmin(B, [r, s])[k′] = 0.

• Only Structure 1 is formed at-least two times. This means that if [x, y] ⊂ [a, b] is
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a maximally monotonic section with ux:y[k
′] decreasing, then uy[k

′] = −B. Then
GAPmin(B, [r, s])[k′] > GAPmin(−B, [r, s])[k′] = 0.

In all of the above cases, at-least one sub-interval of [a, b] will be added to Q at Step
2(a) or 2(b). This would imply that at Step 3, the bin [a, b] is removed from Q and never
added again resulting in a contradiction.

The last statement of the Lemma is immediate from Steps 2(a)-(b) of fineSplit.

Lemma 204. Suppose fineSplit is invoked with input [r, s] such that Cr→s ≤ B/
√
s− r + 1.

The offline optimal solution within any interval [p, q] ∈ Q′ at Step 7 of fineSplit proce-
dure in Fig.E.4 is piece-wise maximally monotonic in [p, q] with at-most 4 pieces across
any coordinate.

Proof. Consider a coordinate k ∈ [d] and a bin [p, q] ∈ Q′. We provide the arguments
for the case when GAPmin(−B, [r, s])[k] ≥ GAPmin(B, [r, s])[k]. The arguments for the
complementary case are similar. We start by stating two facts.

FACT 1: GAPmin(−B, [p, q])[k] > 0.
To see this, assume for the sake of contradiction that GAPmin(−B, [p, q])[k] = 0.

Then this means that GAPmin(−B, [p, q])[k] = GAPmin(B, [r, s])[k] = 0. So the optimal
solution across coordinate k, ur:s[k] must touch both B and −B at distinct time points
in [r, s]. This would violate the TV constraint that Cp→q ≤ B/

√
s− r + 1 ≤ B, thus

yielding a contradiction.
FACT2: It is not the case that there exists two intervals [p1, q1], [p2, q2] ⊂ [p, q] within

which the offline optimal takes the form of Structure 2 across the coordinate k ∈ [d].
Let’s prove the above fact via contradiction. Assume that there exists [p1, q1], [p2, q2] ⊂

[p, q] ∈ Q′ such that the offline optimal takes the form of Structure 2 within them across
the coordinate k ∈ [d]. Then [pi, qi] (i = 1, 2) must have been added to Q in step 2(b)
of fineSplit. Since intervals in Q don’t overlap with intervals in Q′ due to Step 6, this
would mean that the interval [pi, qi] (i = 1, 2) got removed from Q later.

Case 1: Consider the case where [pi, qi] (i = 1, 2) has been removed at Step 5(a). This
means that there exists an interval [a, b] ⊆ [r, s] where the offline optimal has Structure
1 or 2 across some coordinate k′ ̸= k and [pi, qi] ∩ [a, b] ̸= Φ. Observe that [a, b] is never
removed from Q since we are processing bins in sorted order at Step 4-5. This would
contradict the fact that intervals in Q don’t overlap with intervals in Q′ due to Step 6.

Case 2: Consider the case where [pi, qi] (i = 1, 2) has been removed at Step 3. This
means that there exists an interval [x, y] ⊆ [pi, qi] where the offline optimal assumes
Structure 1 or 2 across some coordinate k′ ̸= k. If [x, y] is present in the final Q in
Step 7, then this would again warrant a contradiction to the non-overlapping property
between the intervals of Q and Q′. If [x, y] is removed at a later point through Step 5(a),
by using similar arguments as in Case 1 yields a contradiction. Thus we conclude that
the FACT 2 is true.

FACT 3: It is not the case that there exists two intervals [p1, q1], [p2, q2] ⊂ [p, q] within
the offline optimal takes the form of Structure 1 in [p1, q1] and Structure 2 in [p2, q2] across
the coordinate k ∈ [d].
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The above fact can be proven using similar arguments that are used in proving FACT
2.

In light of FACT 1, FACT 2 and FACT 3, we conclude the statement of the lemma.

Next we introduce a structural lemma analogous to Lemma 183.

Lemma 205. (λ-length lemma) Consider a bin [a, b] ⊆ {2, . . . , n − 1} with length ℓ.
Suppose that within this bin, the offline optimal solution sequence assumes the form of
Structure 1 or Structure 2 across some coordinate k ∈ [d], then λ ≤ G∞ℓ

2
, where G∞ is

as in Assumption B2.

Proof Sketch. The arguments for this proof are almost identical to that used for proving
Lemma 183. We outline the parts where there are differences. We provide the arguments
for Structure 2. Structure 1 can be handled similarly. Let the optimal sign assignments
across coordinate k be written as sj[k] = −1 + ϵj where ϵj ∈ [0, 2] and j ∈ [a, b]. From
the KKT conditions, we can write:

∇fa(ua)[k] = λϵa (E.147)

∇fa+1(ua+1)[k] = λ(ϵa+1 − ϵa) (E.148)

... (E.149)

∇fb−1(ub−1)[k] = λ(ϵb−1 − ϵb−1) (E.150)

∇fb(ub)[k] = λ(2− ϵb−1) (E.151)

Define the vector z = [ϵa, ϵa+1 − ϵa, . . . , 2 − ϵb−1]
T . As noted in the proof of Lemma

183, we must have ∥z∥∞ > 0. Let j∗ be such that ∥z∥∞ = |z[j∗]|. Then λ =
∇fa+j∗−1(ua+j∗−1)[k]/∥z∥∞. From the optimization problem considered in the proof of
Lemma 183, we have ∥z∥∞ ≥ 2/ℓ. Since ∥∇fj(uj)∥∞ ≤ G∞ for all j ∈ [n] by Assumption
B2, we have λ = ∇fa+j∗−1(ua+j∗−1)[k]/∥z∥∞ ≤ (G∞ℓ)/2.

Lemma 206. (large margin bins) Assume that λ ≥ d1.5ϕn1/3

c
1/3
n

for a constant ϕ =
√

70(8G2B2α +G2B2 + 1/α) that does not depend on n and Cn. Consider a bin [is, it] ∈
P within which the offline optimal solution takes the form of Structure 1 or Structure
2 (or both) across a coordinate k ∈ [d] for some appropriate sub-intervals of [is, it]. Let

µth =

√
140d1.5(8G2B2α+G2B2+1/α)G∞C

1/3
n logn

G2ϕn1/3 . Then

GAPmin(−B, [is, it])[k] ∨GAPmin(B, [is, it])[k] ≥ µth,

whenever Cn ≤
(

B2G2ϕ
560d1.5(8G2B2α+G2B2+1/α)G∞ logn

)3
n = Õ(n).

Proof. Suppose GAPmin(−B, [is, it])[k] < µth. Then the largest value of the optimal
solution across coordinate k attained within this bin [is, it] is at-most −B+µth +B/

√
ni
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(recall ni := it − is + 1 and Ci ≤ B/
√
ni due to Lemma 193). So GAPmin(B, [is, it])[k] ≥

2B− µth−B/
√
ni. Our goal is to show that whenever Cn obeys the constraint stated in

the lemma, we must have

2B − µth −B/
√
ni ≥ µth. (E.152)

Let ℓi be the length of a sub-interval of [is, it] where the offline optimal solution
assumes the form of Structure 1 or Structure 2. Due to Lemma 205, we have

ni ≥ ℓi ≥
2λ

G∞
≥ 2d1.5ϕn1/3

G∞C
1/3
n

(E.153)

where the last inequality follows due to the condition assumed in the current lemma. So
a sufficient condition for Eq.(E.152) to be true is

2B ≥ 2


2

√
140d1.5(8G2B2α +G2B2 + 1/α)G∞C

1/3
n log n

G2ϕn1/3
∨B

√
G∞C

1/3
n

2d2.5/2ϕn1/3


 .

(E.154)

Recall that by Assumption B2, we have G ∧ G∞ ∧ B ≥ 1. So the above maximum
will be attained by the first term and can be further simplified as

2B ≥ 4

√
140d1.5(8G2B2α +G2B2 + 1/α)G∞C

1/3
n log n

G2ϕn1/3
. (E.155)

The above condition is always satisfied whenever Cn ≤
(

B2G2ϕ
560d1.5(8G2B2α+G2B2+1/α)G∞ logn

)3
n.

At this point, we have shown that
GAPmin(−B, [is, it])[k] < µth =⇒ GAPmin(B, [is, it])[k] ≥ µth under the conditions of
the lemma. Taking the contrapositive yields
GAPmin(B, [is, it])[k] < µth =⇒ GAPmin(−B, [is, it])[k] ≥ µth.

Lemma 207. (high λ regime) Suppose the optimal dual variable λ ≥ d1.5ϕ n1/3

C
1/3
n

=

Ω
(

n1/3

C
1/3
n

)
for

ϕ =
√

70(8G2B2α +G2B2 + 1/α) that does not depend on n and Cn. We have the regret
of FLH-ONS strategy bounded as

n∑

t=1

ft(xt)− ft(ut) = Õ
(
140d2(8G2B2αd+G2B2 + 1/α)(n1/3C2/3

n ∨ 1)
)
I{Cn > 1/n}

(E.156)

+ Õ
(
d(8G2B2αd+ 1/α

)
I{Cn ≤ 1/n}), (E.157)
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where xt is the prediction of FLH-ONS at time t and I{·} is the boolean indicator function
taking values in {0, 1}.

Proof. Throughout the proof we assume that Cn

(
B2G2ϕ

560d1.5(8G2B2α+G2B2+1/α)G∞ logn

)3
n. Oth-

erwise the trivial regret bound of Õ(n) is near minimax optimal.
First we consider the regime where Cn ≥ 1/n. It is useful to define the following

annotated condition.
Condition (A): Let a bin [r, s] be given. For some coordinate k′ ∈ [d], there exists

disjoint intervals [r1, s1], [r2, s2] ⊂ [r, s] that satisfy at-least one of the following: (i)
ur1:s1 [k

′] has the form of Structure 1 and ur2:s2 [k
′] has the form of Structure 2; (ii) Both

ur1:s1 [k
′] and ur2:s2 [k

′] have the form of Structure 1; (iii) Both ur1:s1 [k
′] and ur2:s2 [k

′] have
the form of Structure 2.

The above condition is basically the prerequisite for the fineSplit procedure of
Fig.E.4.

Let [is, it] ∈ P be a bin that satisfy Condition (A) for a coordinate k′ ∈ [d]. Here P
is the partition obtained in Lemma 193.

Let (Q,Q′) be the collections of intervals obtained by invoking the fineSplit pro-
cedure with the bin [is, it] as input. Let’s write Q ∪ Q′ ∪ {Φ} as a collection of disjoint
consecutive intervals as follows:

Q∪Q′ ∪ {Φ} := {[is,
¯
i1 − 1], [

¯
i1, ī1], [

¯
i′1, ī

′
1], . . . , [¯

im(i) , īm(i) ], [
¯
i′m(i) , ī

′
m(i) ]}, (E.158)

with ī′
m(i) = it.

Here we follow the convention that the bins [
¯
ip, īp] ∈ Q and [

¯
i′p, ī

′
p] ∈ Q′ ∪ {Φ} for all

p ∈ [m(i)]. Similar to the proof of Lemma 191, for enforcing this convention, we may have
to set either of the bins [is,

¯
i1−1] or [

¯
i′
m(i) , ī

′
m(i) ] to be empty. More precisely, if is belongs

to some interval in Q, then we set the first sub-interval [is, ī1− 1] to be empty by setting
ī1 = is. Similarly, if it belongs to some interval in Q, we treat the sub-interval [

¯
i′
m(i) , ī

′
m(i) ]

as empty by setting
¯
i′
m(i) = it + 1. Further some of the intervals: [

¯
i′k, ī

′
k], k ∈ [m(i)] can

be empty. For example if
¯
ik+1 = īk + 1, then [

¯
i′k, ī

′
k] is treated as empty.

Note that if the first sub-interval [is,
¯
i1 − 1] is non-empty then it must belong to Q′

according to our convention. By Lemma 204 and Lemma 199,

¯
i1−1∑

j=is

fj(xj)− fj(uj) = Õ
(
70d2(8G2B2αd+G2B2 + 1/α) log n

)
. (E.159)

We proceed to bound the regret in [
¯
i1, ī

′
m(i) ]. Let P(i)

1 denote the collection of bins
among Q = {[

¯
i1, ī1], . . . , [

¯
im(i) , īm(i) ]} which satisfy the property in Lemma 201. Let

|P(i)
1 | := m

(i)
1 and their lengths be denoted by {ℓ(1)

1(i)
, . . . , ℓ

(1)

m
(i)
1

}. These bins will be referred

as Type 1 bins henceforth.
Similarly let P(i)

2 = Q \ P(i)
1 which satisfy either of the properties in Lemma 202.
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Let |P(i)
2 | := m

(i)
2 and their lengths be denoted by {ℓ(2)

1(i)
, . . . , ℓ

(2)

m
(i)
2

}. These bins will be

referred as Type 2 bins henceforth. A bin [a, b] ∈ P(i)
2 satisfy at-least one of the following

properties

P1: For some coordinate k ∈ [d], the offline optimal satisfy the condition of Case 1 in
Lemma 202 and B − ua[k] ≥ µth.

P2: For some coordinate k ∈ [d], the offline optimal satisfy the condition of Case 2 in
Lemma 202 and B + ua[k] ≥ µth.

To see this, let’s inspect the way in which the bin [a, b] has been added to Q when
we invoke fineSplit with the input bin [is, it]. If [a, b] has been added via Step 2-
(a), then we have GAPmin(B, [is, it])[k] > GAPmin(−B, [is, it])[k] for a coordinate k. By
Lemma 206 it holds that GAPmin(B, [is, it])[k] ≥ µth under the Cn regime we consider. So
B−ua[k] ≥ GAPmin(B, [is, it])[k] ≥ µth where the first inequality follows by the definition
of GAP (see Definition 200). Further, observe that ua[k

′]− 1
ℓG2

∑b
j=a∇fj(uj)[k

′] < −B is

never satisfied, where ℓ = b−a+1. Otherwise it will imply that − 1
ℓG2

∑b
j=a∇fj(uj)[k

′] =
2λ
ℓG2 < −B − ua[k

′] ≤ 0 which is not true as λ ≥ 0. We must also have ua[k
′] −

1
ℓG2

∑b
j=a∇fj(uj)[k

′] /∈ [−B,B]. Otherwise, bin [a, b] would have been already added

to P(i)
1 and would have never present in P(i)

2 . So we conclude that property P1 follows.
Property P2 can also be shown to be true using similar arguments when the bin [a, b]
has been added to Q via Step 2-(b) of fineSplit.

Each bin [
¯
ik, īk], k ∈ [m(i)] of Type 1 and Type 2 can be paired with an adjacent bin

[
¯
i′k, ī

′
k] ∈ Q′ ∪ {Φ}, k ∈ [m(i)] which is either empty or the optimal sequence displays a

piece-wise maximally monotonic behaviour in [
¯
i′k, ī

′
k] across all coordinates as recorded in

Lemma 204.
Note that m

(i)
1 + m

(i)
2 = m(i). Let the total regret contribution from Type 1 bins

along with their pairs and Type 2 bins along with their pairs be referred as R
(i)
1 and R

(i)
2

respectively.
For a bin [a, b] ∈ P(i)

2 , in either of the cases covered by the properties P1 and P2, we
have by Lemma 202 that

b∑

j=a

fj(xj)− fj(uj) ≤ 70d2(8G2B2αd+G2B2 + 1/α) log n− ℓG2

2
µ2
th, (E.160)

Let [a′, b′] ∈ Q′∪{Φ} be the pair assigned to [a, b]. If it is non-empty, then due to Lemma
204 and Lemma 199 the regret from the bin [a′, b′] is at-most 70d2(8G2B2αd + G2B2 +
1/α) log n.
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So we can bound R
(i)
2 as

R
(i)
2 ≤

m
(i)
2∑

j=1(i)

((
70d2(8G2B2αd+G2B2 + 1/α) log n−

ℓ
(2)
j G2

2
µ2
th

)
(E.161)

+ 70d2(8G2B2αd+G2B2 + 1/α) log n

)
(E.162)

≤ m
(i)
2 140d2(8G2B2αd+G2B2 + 1/α) log n− G2µ2

th

2
(

m
(i)
2∑

j=1(i)

ℓ
(2)
j ), (E.163)

From Eq.(E.153), we have ℓ
(2)
j ≥ 2ϕd1.5n1/3

G∞C
1/3
n

for j ∈ {1(i), . . . ,m
(i)
2 } under the regime of λ

we consider. So we can continue as

R
(i)
2 ≤ 140m

(i)
2 d

2(8G2B2αd+G2B2 + 1/α) log n−G2µ2
thm

(i)
2

ϕd1.5n1/3

G∞C
1/3
n

(E.164)

≤ 140m
(i)
2 d

3(8G2B2α +G2B2 + 1/α) log n−G2µ2
thm

(i)
2

ϕd1.5n1/3

G∞C
1/3
n

(E.165)

= 0, (E.166)

where the last line is obtained by plugging in the value of µth as in Lemma 206.
So by refining every interval in P (recall that P is from Lemma 193) that satisfy

Condition (A) and summing the regret contribution from all Type 2 bins and their pairs
across all refined intervals in P yields

M∑

i=1

R
(i)
2 ≤ 0, (E.167)

where we recall that M := |P| = O(n1/3C
2/3
n ∨ 1) and assign R2(i) = 0 for intervals in P

that do not satisfy Condition (A).
For any Type 1 bin, its regret contribution can be bounded by Lemma 201. The

regret contribution from its pair can be bounded by Lemma 199 as before. So we have
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R
(i)
1 ≤

m
(i)
1∑

j=1

(
70d2(8G2B2αd+G2B2 + 1/α) log n− 2λ2

ℓ
(1)

j(i)
G2


 (E.168)

+ 70d2(8G2B2αd+G2B2 + 1/α) log n

)
(E.169)

= 140m
(i)
1 d

2(8G2B2αd+G2B2 + 1/α) log n− 2λ2

G2

m
(i)
1∑

j=1

1

ℓ
(1)

j(i)

. (E.170)

So by refining every interval in P that satisfy Condition (A) and summing the regret
contribution from all Type 2 bins and their pairs across all refined intervals in P yields

M∑

i=1

R
(i)
1 ≤ 140d2(8G2B2αd+G2B2 + 1/α) log n

M∑

i=1

m
(i)
1 −

2λ2

G2

M∑

i=1

m
(i)
1∑

j=1

1

ℓ
(1)

j(i)

(E.171)

≤ 140d2(8G2B2αd+G2B2 + 1/α)M1 log n− 2λ2

G2

M2
1

n
, (E.172)

≤ 140d3(8G2B2α +G2B2 + 1/α)M1 log n− 2λ2

G2

M2
1

n
(E.173)

where in the last line: a) we define M1 :=
∑M

i=1m
(i)
1 with the convention that m

(i)
1 = 0 if

the ith bin in P doesn’t satisfy Condition (A); b) applied AM-HM inequality and noted

that
∑M

i=1

∑m
(i)
1

j=1 ℓ
(1)

j(i)
≤ n.

To further bound Eq.(E.173), we consider two separate regimes as follows.

Recall that λ ≥ d1.5ϕ n1/3

C
1/3
n

. So continuing from Eq.(E.173),

140d3(8G2B2α +G2B2 + 1/α)M1 log n− 2λ2
M2

1

G2n
≤ 140d3(8G2B2α +G2B2 + 1/α)×

(E.174)

M1 log n− 2d2.5ϕ2 n
2/3

C
2/3
n

M2
1

G2n
(E.175)

≤ 0, (E.176)

whenever M1 ≥ 70(8G2B2α+G2B2+1/α) logn
ϕ2 n1/3C

2/3
n = Ω̃(n1/3C

2/3
n ).

In the alternate regime where M1 ≤
(

70(8G2B2α+G2B2+1/α) logn
ϕ2 n1/3C

2/3
n ∨ 1

)

= Õ(n1/3C
2/3
n ∨ 1), we trivially obtain

∑M
i=1R

(i)
1

= Õ
(

140d2(8G2B2αd+G2B2 + 1/α)(n1/3C
2/3
n ∨ 1)

)
.
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The regret contribution from all sub-bins that starts at is i ∈ [M ] which are not paired

in Eq.(E.158) is only at-most Õ(d2.5(n1/3C
2/3
n ∨ 1)) by adding the bound of Eq.(E.159)

across all O(n1/3C
2/3
n ∨ 1) bins in P .

Throughout the entire proof we have assumed that m
(i)
1 and m

(i)
2 are non-zero for

some bin [is, it] ∈ P . Not meeting this criterion will only make the arguments easier as
explained below.

We have shown that the total regret contribution from the refined bins
∑M

i=1R
(i)
1 +

R
(i)
2 = Õ(n1/3C

2/3
n ∨ 1), we trivially obtain∑M

i=1R
(i)
1 = Õ

(
140d2(8G2B2αd+G2B2 + 1/α)(n1/3C

2/3
n ∨ 1)

)
under the conditions of

the lemma, where we have taken R
(i)
1 = R

(i)
2 = 0 if the ith bin [is, it] ∈ P doesn’t satisfy

Condition (A) across any coordinate.
If a bin doesn’t satisfy Condition (A) across any coordinate, then the offline opti-

mal solution within that bin assumes a piece-wise maximally monotonic structure with
at-most 4 pieces across any coordinate. By Lemma 199, the regret within such bins is
Õ (70d2(8G2B2αd+G2B2 + 1/α)). Since there can be at-most O(n1/3C

2/3
n ∨1) such bins

in P , the total regret contribution from those bins is again

Õ
(

70d2(8G2B2αd+G2B2 + 1/α)(n1/3C
2/3
n ∨ 1)

)
. Now putting everything together yields

the lemma.
If Cn ≤ 1/n, then we have

n∑

t=1

ft(xj)− ft(ut) ≤
n∑

t=1

ft(xj)− ft(u1) +
n∑

t=1

ft(u1)− ft(ut) (E.177)

≤(a) Õ
(
10d(8G2B2αd+ 1/α) log n

)
+GnCn (E.178)

= Õ
(
d(8G2B2αd+ 1/α

)
(E.179)

where line (a) follows from the fact that ft is G Lipschitz.

Proof. of Theorem 59. The proof is immediate from the results of Lemmas 196 and
207.

E.4 Reparametrization of certain polytopes to box

Proposition 208. Consider an online problem with losses ft that are α exp-concave on
the decision set D = {x ∈ Rd : c ≤ Ax ≤ b} such that A is full rank and 0 < b− c.

We can reparametrize this into an equivalent online learning problem with losses
f̃t(z) = ft(A

−1(D−1(z + 1) + c)) that are α exp-concave on the decision set D̃ = { z ∈
Rd : ∥z∥∞ ≤ 1}, where D = diag(2/(b[1] = c[1]), . . . , 2/(b[d]− c[d])) and 1 is the vector
of ones in Rd.
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Further if the losses ft are G Lipschitz in D, then the losses f̃t are ∥A−1D−1∥opG
Lispchitz in D̃.

Proof. We have,

c ≤ Ax ≤ b (E.180)

⇐⇒ 0 ≤ Ax− c ≤ b− c. (E.181)

Then we have 0 ≤ D(Ax − c) ≤ (2)1. This equivalent to −1 ≤ D(Ax − c) − 1 ≤ 1.
By putting z = D(Ax− c)− 1 we can rewrite the original decision set as ∥z∥∞ ≤ 1.

Since A is full rank, there is a one-one mapping between the original decision set
D and the new decision set D̃ := {z ∈ Rd : ∥z∥∞ ≤ 1}. Given a z ∈ D̃, we can find
the corresponding point x ∈ D as x = A−1(D−1(z + 1) + c). So the losses in the new
parametrization becomes f̃t(z) = ft(A

−1(D−1(z + 1) + c)).
Let B := A−1D−1 and d := A−1D−11+A−1c so that f̃t(z) = ft(Bz +d). Then we

have

∇f̃t(z) = BT∇ft(Bz + d) (E.182)

= BT∇ft(x), (E.183)

for a point x = (Bz + d) ∈ D.
Similarly

∇2f̃t(z) = BT∇2ft(Bz + d)B (E.184)

= BT∇2ft(x)B. (E.185)

From the above two equations we can easily verify that ∇2f̃t(z) ≽ α∇f̃t(z)∇f̃t(z)T

as the functions ft itself are α exp-concave in D.
Further by Holder’s inequality we have

∥∇f̃t(z)∥ ≤ ∥A−1D−1∥op∥∇ft(x)∥2 ≤ ∥A−1D−1∥opG.
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F.1 Analysis

We start with the analysis in the uni-variate setting followed by the proof in multi-
dimensions. The analysis requires very clumsy algebraic manipulations in certain places.
We used Python’s open-source simplification engine SymPy [138] to assist with the alge-
braic manipulations.

A remark. The constants occurring in the proofs may be optimized further though we
haven’t aggressively focused on doing so.

F.1.1 One dimensional setting

Lemma 67. (KKT conditions) Let u1, . . . , un be the optimal primal variables and let
λ ≥ 0 be the optimal dual variable corresponding to the constraint (7.8b). Further, let
γ−t ≥ 0, γ+t ≥ 0 be the optimal dual variables that correspond to constraints (7.8c) and
(7.8d) respectively for all t ∈ [n]. By the KKT conditions, we have

• stationarity: ∇ft(ut) = λ ((st−1 − st)− (st−2 − st−1)) + γ−t − γ+t , where st =
sign((ut+2 − ut+1)− (ut+1 − ut)). Here sign(x) = x/|x| if |x| > 0 and any value in
[−1, 1] otherwise. For convenience of notations, we also define s−1 = s0 = sn−1 =
sn = 0.

• complementary slackness: (a) λ (∥D2u1:n∥1 − Cn/n) = 0; (b) γ−t (ut + 1) = 0
and γ+t (ut − 1) = 0 for all t ∈ [n]

Proof. By introducing auxiliary variables, we can re-write the offline optimization prob-
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lem as:

min
ũ1, . . . , ũn

n∑

t=1

ft(ũt) (F.1a)

s.t. z̃t = ũt+2 − 2ũt+1 + ũt ∀t ∈ [n− 2] (F.1b)
n−2∑

t=1

|z̃t| ≤ Cn/n, (F.1c)

− 1 ≤ ũt ∀t ∈ [n], (F.1d)

ũt ≤ 1 ∀t ∈ [n], (F.1e)

The Lagrangian of the optimization problem can be written as

L(ũ1:n, z̃1:n−2, ṽn−2, γ̃
−
1:n, γ̃

+
1:nλ̃) =

n∑

t=1

ft(ũt) + λ̃

(
n−2∑

t=1

|z̃t| − Cn/n

)
(F.2)

+
n−2∑

t=2

ṽt(ũt+2 − 2ũt+1 + ũt − z̃t) +
n∑

t=1

γ+t (ũt − 1)− γ−t (ũt + 1).

(F.3)

Due to stationary conditions wrt ut, we have

∇ft(ut) = 2vt−1 − vt − vt−2 + γ−t − γ+t , (F.4)

where we define v−1 = v0 = vn−1 = vn = 0 and, due to staionarity conditions wrt vt we
have

vt = λsign(zt). (F.5)

Combining the above two equations and the complementary slackness rule now yields
the Lemma.

Terminology. In what follows, we refer to u1:n from the Lemma above to be the offline
optimal sequence.

Lemma 68. (key partition) For some interval [a, b] ∈ [n], define ℓa→b := b − a + 1.
There exists a partitioning of the time horizon P := {[1s, 1t], . . . , [is, it], . . . [Ms,Mt]}
where M = |P| such that for any bin [is, it] ∈ P we have: 1) ∥D2uis:it∥1 ≤ 1/ℓ

3/2
is→it

; 2)

∥D2uis:it+1∥1 > 1/ℓ
3/2
is→it+1 and 3) M = O

(
n1/5C

2/5
n ∨ 1

)
.

Proof. Let the total number of bins formed be M . Consider the case where M > 1. We
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have that

∥D2u1:n∥1 ≥
M−1∑

i=1

∥D2uis→it+1∥1 (F.6)

≥(a) 1/ℓ
3/2
is→it+1 (F.7)

≥(b)
(M − 1)5/2

n3/2
, (F.8)

where line (a) follows due to the construction of the partition and line (b) is due to
Jensen’s inequality applied to the convex fucntion f(x) = 1/x3/2 for x > 0.

Rearranging and including the trivial case where M = 1 yields the lemma.

Proposition 209. In the following analysis we will often use a useful represent offline
optimal within a bin [a, b] to be ma,ma + ma+1, . . . ,

∑b
t=amt WLOG. We can view this

sequence to be samples obtained from a piece-wise linear signal that is continuous at every
sampling point.

Lemma 210. (residual bound) Consider a bin [a, b]. Let ℓ := b− a+ 1. Define:

X =




1 1
1 2
...
1 ℓ


 (F.9)

Let β = (XTX)−1XTua:b be the least square fit coefficient computed with labels ut
and co-variates xt = [1, t − a + 1]T where t ∈ [a, b]. Then we have that the residuals
satisfy

|βTxt − ut| ≤ 20ℓ∥D2ua:a+ℓ−1∥1, (F.10)

whenever ℓ ≥ 6.

Proof. We follow the notations of Proposition 209 for representing the offline optimal
ua, . . . , ub. The residual at time i ∈ [a, b] can be computed through straight forward
algebra as:

ui − βTxi =
1

(ℓ2 − 1)

ℓ∑

j=2

(
6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2 (F.11)

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}
)
ma+j−1,

(F.12)
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where I{·} is the indicator function assuming value 1 if the argument evaluates true and
0 otherwise. Now we note that if all mk for k ∈ [a + 1, b] are same, then the residuals
ui − βTxi must be zero for all i as the least square fit exactly matches the labels in this
case. In particular, this implies from Eq.(F.12) that

1

(ℓ2 − 1)

ℓ∑

j=2

(
6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2 (F.13)

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}
)
ma+1 = 0.

(F.14)

Subtracting Eq.(F.14) from (F.12) we get,

ui − βTxi =
1

(ℓ2 − 1)

ℓ∑

j=2

(
6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2 (F.15)

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}
)

(mj+a−1 −ma+1)

(F.16)

≤ 1

(ℓ2 − 1)
max

j∈[a+2,b]
|mj −ma+1|

ℓ∑

j=3

∣∣∣∣∣6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2

(F.17)

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}
∣∣∣∣∣, (F.18)

where the last line is due to Holder’s inequality. Further, we have |mj − ma+1| ≤∑a+2
t=j |mj −mj−1| ≤ ∥D2ua:b∥1 by the definition of the discrete difference operator D2.
Now applying triangle inequality and the crude bounds 1+(1−2i)/ℓ ≤ 3, (ℓ−j+1) ≤

ℓ, (ℓ+ j) ≤ 2ℓ, i/ℓ ≤ 1, 2ℓ ≥ 2/ℓ and −2/ℓ ≤ 0 we obtain

∣∣∣∣∣6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2 (F.19)

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}
∣∣∣∣∣ ≤ 19ℓ2 + 2ℓ. (F.20)

So,
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|ui − βTxi| ≤ ℓ · 19ℓ2 + 2ℓ

ℓ2 − 1
∥D2ua:b∥1 (F.21)

≤ 20ℓ∥D2ua:b∥1, (F.22)

where the last line is due to 19ℓ2 + 2ℓ ≤ 20ℓ2 − 20 for all ℓ ≥ 6.

Lemma 211. (bounding T3) Consider a bin [a, b] with length ℓ = b − a + 1 obtained
from the scheme in Lemma 68. Assume the notations in Lemma 210. Let’s represent the
residual as rt := βTxt−ut = (t−a+1)Mt−1+Ct−1 for t > a and r1 := βTxa−ua = Ma+
Ca with Mb := Mb−1 = Ma+ℓ−2 and Cb := Cb−1 = Ca+ℓ−2. Suppose ∥D2ua:b∥1 ≤ ℓ−3/2.
We have,

b∑

t=a

ft(β
Txt)− ft(ut) ≤ 200 + λ

(
(sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb)

(F.23)

− sa−1Ma + sb−1Mb−1 −
b∑

t=a+1

|Mt −Mt−1|
)

(F.24)

+ 20ℓ−1/2

b∑

t=a

|γ−t − γ+t | (F.25)

Further we have |Ma| ≤ ∥D2ua:b∥1 and |Mb| ≤ ∥D2ua:b∥1 whenever ℓ ≥ 2.
Here the semantics is that each Mt = rt+1− rt for all t > a and Ma = ra+1− ra. Any

two points rt and rt+1 can be joined using a unique line segment which in turn defines Ct

appropriately.

Proof. By gradient Lipschitzness of f we have

b∑

t=a

ft(β
Txt)− ft(ut) ≤

b∑

t=a

⟨∇ft(ut),βTxt − ut⟩+
b∑

t=a

1

2
(βTxt − ut)2. (F.26)

Now will focus on bounding the last two terms above.
From the construction of bins in Lemma 68, we know that ℓ∥D2ua:b∥1 ≤ 1/

√
ℓ. Hence

we obtain using Lemma 210 that

b∑

t=a

1

2
(βTxt − ut)2 ≤ 200. (F.27)
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Recall the representation of the residual βTxt−ut = tMt+Ct mentioned in the lemma
statement. Observe that in accordance with Proposition 209 this residual can also be
viewed as samples of a piece-wise linear signal that is continuous at every sampled point.
In particular observe that for every t ∈ [a, b] we have:

(t− a+ 1)Mt−1 + Ct−1 = (t− a+ 1)Mt + Ct (F.28)

Consequently

Ct − Ct−1 = (t− a+ 1)(Mt−1 −Mt) (F.29)

From KKT conditions of Lemma 67 we have

b∑

t=a

⟨∇ft(ut),βTxt − ut⟩ =
b∑

t=a

λ (((st−1 − st−2)− (st − st−1)) ((t− a+ 1)Mt + Ct))

︸ ︷︷ ︸
X1

(F.30)

+
b∑

t=a

(γ−t − γ+t )(βTxt − ut)
︸ ︷︷ ︸

X2

(F.31)

X1

λ
= (sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb) (F.32)

+
b−1∑

t=a

(st − st−1) ((t− a+ 2)Mt+1 + Ct+1 − ((t− a+ 1)Mt + Ct)) (F.33)

=(a) (sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb) +
b−1∑

t=a

(st − st−1)Mt+1 (F.34)

= (sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb) +
b−1∑

t=a

(Mt+1 −Mt+2)st− (F.35)

sa−1M2 + sb−1Mℓ (F.36)

=(b) (sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb)− sa−1Ma + sb−1Mb−1−
(F.37)

b∑

t=a+1

|Mt −Mt−1|, (F.38)

where in line (a) we used Eq.(F.29) and in line (b) we used the fact that
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st = sign((ut+2 − ut+1)− (ut+1 − ut)) = sign(Mt+2 −Mt+1) along with the fact that
Ma = Ma+1 and Mb−1 = Mb.

By Holder’s inequality and Lemma 210, we have

X2 ≤ 20ℓ∥D2ua:b∥1
b∑

t=a

|γ−t − γ+t | (F.39)

≤ 20ℓ−1/2

b∑

t=a

|γ−t − γ+t |, (F.40)

where the last line is due to ∥D2ua:b∥1 ≤ ℓ−3/2 as assumed in the lemma’s statement.
Putting everything together completes the proof.

Next, we proceed to give useful bounds on |Ma| and |Mb−1|.
Since Ma = Ma+1 and Ca = Ca+1, we have Ma = (ua+1 − βTxa+1)− (ua − βTxa).So

Eq.(F.12) we have,

|Ma| =
∣∣∣∣∣

ℓ∑

j=2

6(ℓ− j + 1)(1− j)
ℓ3 − ℓ (mj+a−1 −ma+1)

∣∣∣∣∣ (F.41)

≤ ∥D2ua:b∥1
ℓ∑

j=3

6(ℓ− j + 1)(j − 1)

ℓ3 − ℓ (F.42)

= ∥D2ua:b∥1
ℓ2 + ℓ− 6

ℓ(ℓ+ 1)
(F.43)

≤ ∥D2ua:b∥1, (F.44)

where in the last line we used ℓ2+ℓ−6
ℓ(ℓ+1)

≤ 1 for all ℓ ≥ 2.

Similarly Mb−1 = ub − βTxb − (ub−1 − βTxb−1) by recalling that Mb = Mb−1 and
Cb = Cb−1. Proceeding from Eq.(F.12) we obtain,

|Mb−1| =
∣∣∣∣∣
ℓ−1∑

j=2

6(ℓ− j + 1)(1− j)
ℓ3 − ℓ (mj+a−1 −mb)

∣∣∣∣∣ (F.45)

≤ ∥D2ua:b∥1
ℓ−1∑

j=2

6(ℓ− j + 1)(j − 1)

ℓ3 − ℓ (F.46)

= ∥D2ua:b∥1
ℓ2 + ℓ− 6

ℓ(ℓ+ 1)
(F.47)

≤ ∥D2ua:b∥1. (F.48)
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Lemma 212. Consider a bin [a, b] ∈ P of length ℓ from Lemma 68. Suppose |ua| < 1.
Then either γ−j = 0 or γ+j = 0 for all j ∈ [a, b].

Proof. We will provide arguments for the case when the offline optimal first hits −1
before hitting 1 for some point in [a, b]. The arguments for the alternate case where it
hits 1 first are similar.

If the offline optimal hits −1 at some point in [a, b] it can only rise upto at-most
−1 + 1/

√
l afterwards. This is due to the constraint ∥D2ua:b∥1 ≤ 1/ℓ3/2.

Since −1 + 1/
√
l < 1 as ℓ > 1/4, we have that the offline optimal never touches 1

within the bin [a, b]. Consequently γ+j = 0 for all j ∈ [a, b].

Definition 213. The slope of the optimal solution at a time point t is defined to be
ut+1 − ut for all t ∈ [n− 1].

Proposition 214. The bins in P can be further refined in such a way that each bin either
satisfy the condition in Lemma 212 or has constant slope, meaning the L1 TV distance
is zero. Further in doing so the size of partition P only gets increased by at-most 2.

Proof. Suppose for a bin [a, b] ∈ P , if the offline optimal starts at 1. Then we can split
that bin into two bins [a, c] and [c + 1, b] such that uc > −1 and ∥D2ua:c∥1 = 0. Similar
splitting can also be done for bins that start from −1. Observe that this refinement only
increases the partition size only by at-most 2.

Corollary 215. One powerful consequence of Lemma 212 and Proposition 214 when com-
bined with the fact that γ−t and γ+t are both non-negative (Lemma 67) is that

∑b
t=a |γ−t −

γ+t | is either equal to
∑b

t=a γ
−
t or

∑b
t=a γ

+
t for all bins [a, b] in the refined partition of

Proposition 214 whenever the ∥D2ua:b∥1 > 0.

From here on WLOG we will assume that the bins [a, b] in partition P will satisfy
the conditions:

• ∥D2ua:b∥1 ≤ 1/l3/2, where ℓ = b− a+ 1.

• It satisfies the conditions mentioned in Proposition 214 and consequently satisfying
the condition in Corollary 215.

• |P| = O(n1/5C
2/5
n ).

Lemma 216. (bounding T2) Consider a bin [a, b] ∈ P with length ℓ = b − a + 1 that
doesn’t touch boundary 1. Let Γ =

∑b
j=a γ

−
j and Γ̃ =

∑b
j=a j

′γ−j where j′ := j − a + 1 .
Let β be as in Lemma 210.

Let F (β) :=
∑b

j=a fj(x
T
j β). Define:

A :=
b∑

j=a

xjx
T
j (F.49)
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Consider the following update:

α = β −A−1
b∑

j=a

f ′
j(x

T
j β)xj (F.50)

= β −A−1∇F (β) (F.51)

We have,

2L (F (α)− F (β)) ≤ −∥g∥2A−1 − ∥h∥2A−1 − 2 < g,A−1h⟩ (F.52)

+ 2⟨A−1(g + h),
b∑

j=a

xj

(
f ′
j(x

T
j β)− f ′

j(uj)
)
, (F.53)

where g = λ[−sa−2 + sa−1 + sb−1 − sb,−sa−2 + (ℓ+ 1)sb−1 − ℓsb]T and h = [Γ, Γ̃]T so
that

∑b
j=a f

′
j(uj)xj = g + h.

Further we have:

• ∥g∥2
A−1 as in Eq. (F.67)

• ∥h∥2
A−1 as in Eq. (F.90)

• ⟨A−1g,h⟩ as in Eq. (F.92)

• ⟨A−1g,
∑b

j=a xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ bounded above by Eq.(F.83)

• ⟨A−1h,
∑b

j=a xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ bounded above by Eq.(F.89)

Similar expressions can be derived for bins [a, b] that may touch boundary 1 instead
of -1.

Proof. We note that due to gradient Lipschitnzess of f ,

∇2F (β) =
b∑

j=a

f ′′
j (xT

j β)xjx
T
j ≼ A (F.54)

So by Taylor’s theorem we have for some z = tα + (1− t)β

F (α)− F (β) = −⟨∇F (β),A−1∇F (β)⟩+
1

2
∥A−1∇F (β)∥2∇2F (z) (F.55)

≤ −⟨∇F (β),A−1∇F (β)⟩+
1

2
∥A−1∇F (β)∥2A (F.56)

= −1

2
∥∇F (β)∥2A−1 , (F.57)
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where

A−1 =
2

(ℓ− 1)ℓ

[
2ℓ+ 1 −3
−3 6

ℓ+1

]
(F.58)

Next we turn to lower bounding the above RHS

∥∇F (β)∥2A−1 = ∥
b∑

j=a

f ′
j(uj)xj +

b∑

j=a

(f ′
j(x

T
j β)− f ′

j(uj))xj∥2A−1 (F.59)

≥ ∥
b∑

j=a

f ′
j(uj)xj∥2A−1 − 2⟨A−1

b∑

j=a

f ′
j(uj)xj,

b∑

j=a

(f ′
j(x

T
j β)− f ′

j(uj))xj⟩

(F.60)

From the KKT conditions in Lemma 67, we have

b∑

j=a

f ′
j(uj)xj = [λ(−sa−2 + sa−1 + sb−1 − sb) + Γ, λ(−sa−2 + (ℓ+ 1)sb−1 − ℓsb) + Γ̃]T ,

(F.61)

where Γ and Γ̃ are as defined in the statement of the lemma.
For the sake of brevity let’s denote g = λ[−sa−2 + sa−1 + sb−1 − sb,−sa−2 + (ℓ +

1)sb−1 − ℓsb]T and h = [Γ, Γ̃]T so that
∑b

j=a f
′
j(uj)xj = g + h.

We have

A−1g =
2λ

(ℓ− 1)ℓ
[(2− 2ℓ)sa−2 + (2ℓ+ 1)sa−1 − (ℓ+ 2)sb−1 + (ℓ− 1)sb, (F.62)

3(ℓ− 1)

ℓ+ 1
sa−2 − 3sa−1 + 3sb−1 −

3(ℓ− 1)

ℓ+ 1
sb]

T , (F.63)

and so

∥g∥2A−1 =
2λ2

(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)s2a−2 + (4− 4ℓ2)sa−2sa−1 − (2ℓ2 − 6ℓ+ 4)sa−2sb+

(F.64)

(2ℓ2 − 2)sa−2sb−1 + (2ℓ2 + 3ℓ+ 1)s2a−1+ (F.65)

(2ℓ2 − 2)sa−1sb − (2ℓ2 + 6ℓ+ 4)sa−1sb−1+ (F.66)

(2ℓ2 − 3ℓ+ 1)s2b + (4− 4ℓ2)sb−1sb + (2ℓ2 + 3ℓ+ 1)s2b−1

)
(F.67)
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Using Eq. (F.63) we get

⟨A−1g,
b∑

j=a

xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ =
2λ

(ℓ− 1)ℓ

(
(2− 2ℓ)sa−2 + (2ℓ+ 1)sa−1 (F.68)

− (ℓ+ 2)sb−1 + (ℓ− 1)sb

)
b∑

j=a

(f ′
j(x

T
j β)− f ′

j(uj))

(F.69)

+
2λ

(ℓ− 1)ℓ

(
3(ℓ− 1)

ℓ+ 1
sa−2 − 3sa−1 (F.70)

+ 3sb−1 −
3(ℓ− 1)

ℓ+ 1
sb

)
b∑

j=a

j′(f ′
j(x

T
j β)− f ′

j(uj)).

(F.71)

Using gradient Lipschitzness, triangle inequality and Lemma 210 we have

b∑

j=a

(f ′
j(x

T
j β)− f ′

j(uj)) ≤
b∑

j=a

|xT
j β − uj| (F.72)

≤ 20ℓ2∥D2ua:b∥1, (F.73)

and similarly

b∑

j=a

j′(f ′
j(x

T
j β)− f ′

j(uj)) ≤
b∑

j=a

Lj′|xT
j β − uj| (F.74)

≤ 20ℓ3∥D2ua:b∥1. (F.75)

So continuing from Eq. (F.71),
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⟨A−1g,

b∑

j=a

xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ ≤
40λℓ∥D2ua:b∥1

(ℓ− 1)

∣∣∣∣∣(2− 2ℓ)sa−2 + (2ℓ+ 1)sa−1 (F.76)

− (ℓ+ 2)sb−1 + (ℓ− 1)sb

∣∣∣∣∣ (F.77)

+
40λℓ2∥D2ua:b∥1

(ℓ− 1)

∣∣∣∣∣
3(ℓ− 1)

ℓ+ 1
sa−2 − 3sa−1 + 3sb−1

(F.78)

− 3(ℓ− 1)

ℓ+ 1
sb

∣∣∣∣∣ (F.79)

≤ 40λℓ−1/2

(ℓ− 1)

∣∣∣∣∣(2− 2ℓ)sa−2 + (2ℓ+ 1)sa−1 (F.80)

− (ℓ+ 2)sb−1 + (ℓ− 1)sb

∣∣∣∣∣ (F.81)

+
40λℓ1/2

(ℓ− 1)

∣∣∣∣∣
3(ℓ− 1)

ℓ+ 1
sa−2 − 3sa−1 (F.82)

+ 3sb−1 −
3(ℓ− 1)

ℓ+ 1
sb

∣∣∣∣∣, (F.83)

where we used ∥D2ua:b∥1 ≤ ℓ−3/2.
We have:
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⟨A−1h,

b∑

j=a

xj

(
f ′
j(β

Txj)− f ′
j(uj)

)
=

2

(ℓ− 1)ℓ

(
((2ℓ+ 1)Γ− 3Γ̃)

b∑

j=a

f ′
j(β

Txj)− f ′
j(uj)

(F.84)

+

(
6Γ̃

ℓ+ 1
− 3Γ

)
× (F.85)

b∑

j=a

(j − a+ 1)
(
f ′
j(β

Txj)− f ′
j(uj)

)
)

(F.86)

≤ 40ℓ∥D2ua:b∥1
(ℓ− 1)

|(2ℓ+ 1)Γ− 3Γ̃| (F.87)

+
40ℓ2∥D2ua:b∥1

(ℓ− 1)

∣∣∣∣∣
6Γ̃

ℓ+ 1
− 3Γ

∣∣∣∣∣ (F.88)

≤ 40ℓ−1/2

(ℓ− 1)
|(2ℓ+ 1)Γ− 3Γ̃|+ 40ℓ1/2

(ℓ− 1)

∣∣∣∣∣
6Γ̃

ℓ+ 1
− 3Γ

∣∣∣∣∣ ,

(F.89)

where the last line is obtained by using similar arguments used for obtaining Eq.(F.83).
By substituting the expression for A−1 and simplifying,

∥h∥2A−1 =
2

(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ+ 1)(ℓ+ 1)Γ2 − 6ΓΓ̃(ℓ+ 1) + 6Γ̃2

)
. (F.90)

Using Eq.(F.63), we obtain

⟨A−1g,h⟩ =
b∑

j=a

2λγ−j
(ℓ− 1)ℓ

(
−3j + 3ℓj′ − 2ℓ2 + 2

ℓ+ 1
sa−2 + (−3j′ + 2ℓ+ 1)sa−1 (F.91)

+ (3j′ − ℓ− 2)sb−1 +
−3ℓj + 3j′ + ℓ2 − 1

ℓ+ 1
sb

)
(F.92)

Lemma 217. (bounding T1) Consider a bin [a, b]. Let pt be the predictions of FLH-
SIONS algorithm with parameters ϵ = 2, C = 20 and exp-concavity factor σ. Suppose α
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and β are as defined in Lemma 216. For any µ ∈ {α,β} FLH-SIONS satsifies:

b∑

t=a

ft(pt)− ft(µTxt) ≤ 256 +
1

2σ
log(1 + σn/2) +

4

σ
log n. (F.93)

Proof. We will derive the guarantee for µ = α. The guarantee for µ = α follows
similarly.

Let’s begin by calculating v := A−1
∑b

j=a f
′
j(x

T
j β)xj.

We have,

|v[1]| =
∣∣∣∣∣

2

(ℓ− 1)ℓ

ℓ∑

j=1

(2ℓ+ 1− 3j)f ′
(j+a−1)(x

T
j+a−1β)

∣∣∣∣∣ (F.94)

(a) ≤
2

(ℓ− 1)ℓ
· 2ℓ(ℓ− 1) (F.95)

= 4, (F.96)

where line (a) is obtained via Lipschitzness and Holder’s inequality xTy ≤ ∥x∥1∥y∥∞
and the fact that |2ℓ+ 1− 3j| ≤ 2(ℓ− 1) for all j ∈ [1, ℓ].

Similarly

|v[2]| =
∣∣∣∣∣

2

(ℓ− 1)ℓ(ℓ+ 1)

ℓ∑

j=1

(−3(ℓ+ 1) + 6j)f ′
(j+a−1)(x

T
j+a−1β)

∣∣∣∣∣ (F.97)

≤ 2

(ℓ− 1)ℓ(ℓ+ 1)
· 3ℓ(ℓ− 1) (F.98)

=
6

(ℓ+ 1)
, (F.99)

where we used | − 3(ℓ+ 1) + 6j| ≤ 3(ℓ− 1) for all j ∈ [1, ℓ].
Combining Eq.(F.96) and (F.99) we conclude that

|vTxj| ≤ 4 + (j − a+ 1)
6

(ℓ+ 1)
(F.100)

≤ 10, (F.101)

where the last line follows due to the fact (j − a+ 1) ≤ ℓ.
Hence by Triangle inequality we have,

|αTxj| ≤ |βTxj|+ 10. (F.102)
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Further note that

∥v∥2 ≤ 8 (F.103)

Notice that β = A−1∑ℓ
j=a ujxj which have similar functional form as v. Since

|uj| ≤ B for all j ∈ [n], by following similar arguments used in bounding v we obtain
|βTxj| ≤ 10 and

∥β∥2 ≤ 8. (F.104)

Continuing from (F.102) we get

|αTxj| ≤ 20. (F.105)

Further,

∥α∥2 ≤ ∥β∥2 + ∥v∥2 (F.106)

≤ 16 (F.107)

Since the losses ft are σ exp-concave in [−1, 1], b+y Theorem 2 in [82] and Lemma 3.3 in
[23], FLH-SIONS with parameters set as in the statement of the Lemma yields a regret
of

b∑

t=a

ft(pt)− ft(αTxt) ≤ 256 +
1

2σ
log(1 + σn/2) +

4

σ
log n. (F.108)

Lemma 218. (monotonic slopes) Consider a bin [is, it] ∈ P such that the slopes are
monotonic (i.e either non-decreasing or non-increasing). Let pj be the predictions made
by the FLH-SIONS algorithm with parameters as set in Lemma 217. Then we have,

it∑

j=is

fj(pj)− fj(uj) ≤ O

(
1

2σ
log(1 + σn/2) +

4

σ
log n+ 210408

)
(F.109)

= Õ(1) (F.110)

Proof. We will consider the case of non-decreasing slopes. The alternate case can be
handled similarly.

Assume that the slope within the bin is not constant, otherwise we trivially get
logarithmic regret as we need only to compete with the best fixed linear fit which is

337



Supplementary Materials for Chapter 7 Chapter F

handled by the static regret of FLH-SIONS in any interval (µ = β in Lemma 217).
The optimal solution within a bin of P obtained via Proposition 214 which doesn’t

have constant slope may touch either −1 or 1 but not both. Consider the case where the
optimal touches −1. Then as the slopes are non-decreasing, once it leaves −1, it never
touches −1 again. So we can split the bin [is, it] into at-most 3 bins [a, b], [b + 1, c] and
[c+ 1, d] such that the optimal touches −1 only within [b+ 1, c]. (This bin can be empty
if the optimal doesn’t touch −1 anywhere within [is, it]).

Now we will bound the regret within bin [a, b].
Suppose that sa−1 = 1 and sb = 1. If this condition is not satisfied, we can refine the

bin [a, b] into at-most 3 bins [a1, b1], [a2, b2], [a3, b3] such that the optimal has constant
slope in the first and last bins and sa2−1 = sb2 = 1. This is possible because the slopes
in [a, b] are non-decreasing.

Let ∆ := ∥D2ua:b∥1 and ℓ := b − a + 1. Let p and q be two numbers in [0, 2].
Substituting sa−2 = 1− p, sa−1 = 1, sb−1 = 1− q and sb = 1 into Lemma 211 and using
the fact that |jMj + Cj| ≤ 20ℓ∆ for all j ∈ [a, b] due to Lemma 210, we get

T3 ≤ 40λ(p+ q)ℓ∆ + 200, (F.111)

where we observed that a term arising from Lemma 211: −Ma + Mb−1 −
∑b

t=a+1 |Mt −
Mt−1| = 0 as the slopes are non-decreasing.

By making similar sign substitutions in Lemma 216 and noting that h = 0, we get

T2 ≤
−2λ2

2(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq

)
(F.112)

+
40λℓ∆

ℓ− 1
(2p(ℓ− 1) + q(ℓ+ 2)) +

40λℓ2∆

(ℓ− 1)(ℓ+ 1)
(p(ℓ− 1) + q(ℓ+ 1)) (F.113)

≤ −2λ2

2(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq

)
(F.114)

+ 160λℓ∆(p+ q) + 160λℓ∆(p+ q), (F.115)

where in the last line we used the fact that ℓ− 1 ≥ ℓ/2 and ℓ+ 2 ≤ 2ℓ for all ℓ ≥ 2.
Now consider the case where p ≥ q. Then,

(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq ≥ (2ℓ2 − 3ℓ+ 1)p2 (F.116)

≥ ℓ2p2, (F.117)

where the last line holds for all ℓ ≥ 3. (If ℓ ≤ 3, the regret within the bin is trivially O(1)
appealing to the Lipschitzness of the losses ft and the boundedness of the predictions
and the comparators (see proof of Lemma 217)). Thus by using ℓ− 1 ≤ ℓ and ℓ+ 1 ≤ 2ℓ,
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we get

−2λ2

2(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq

)
≤ −λ

2p2

2ℓ
. (F.118)

Combining Eq. (F.115) and (F.118) and using the fact that p ≥ q, we have

T2 ≤
−λ2p2

2ℓ
+ 640λℓ∆p. (F.119)

Similarly from (F.111) using p ≥ q we get

T3 ≤ 40λ(p+ q)ℓ∆ + 200 (F.120)

≤ 80λpℓ∆ + 200 (F.121)

Combining Eq. (F.119) and (F.121) we have

T2 + T3 ≤
−λ2p2

2ℓ
+ 648λpℓ∆ + 200 (F.122)

= −
(
λp√
2ℓ
− 648

√
2ℓ3/2∆

)
+ 209952ℓ3∆2 + 200 (F.123)

≤ 210152, (F.124)

where in the last line we dropped the negative term and used the facts that ∆ ≤ 1/ℓ3/2.
For the case of q ≥ p, we have

(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq ≥ (2ℓ2 − 3ℓ+ 1)q2 (F.125)

≥ ℓ2q2, (F.126)

where the last line holds for all ℓ ≥ 3. This is the same expression as in Eq.(F.117)
with p replaced by q. By replacing p with q in the arguments we detailed for the case of
p ≥ q earlier, we arrive at the same conclusion that T2 + T3 ≤ 210152 even when q ≥ p.
(If ℓ ≤ 3, the regret within the bin is trivially O(1) appealing to the Lipschitzness of
the losses ft and the boundedness of the predictions and the comparators (see proof of
Lemma 217))

Similar bound on T2 + T3 can be shown for bin [c + 1, d] by essentially the same
arguments.

Hence through Lemma 217 we have the dynamic regret in bins [a, b] to be:
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b∑

t=a

ft(pt)− ft(ut) ≤ 256 +
1

2σ
log(1 + σn/2) +

4

σ
log n+ 210152 (F.127)

= Õ(1) (F.128)

Similarly, the regret within bin [c+ 1, d] is also bounded by the above expression.
As the slope within bin [b + 1, c] is constant, the regret incurred within this bin is

trivially bounded by 256 + 1
2σ

log(1 + σn/2) + 4
σ

log n due to Lemma 217.
Adding the regret incurred across the bins [a, b], [b+ 1, c] and [c+ 1, d] together yields

the lemma.

Next, we will focus on bounding T2 + T3 for general non-monotonic bins in P .

Lemma 219. (non-monotonic slopes) Consider a bin [is, it] ∈ P such that the slopes
are not monotonic. Let pj be the predictions made by the FLH-SIONS algorithm with
parameters as set in Lemma 217. Then we have,

it∑

j=is

fj(pj)− fj(uj) ≤ O

(
1

σ
log(1 + σn) +

12

σ
log n+ 1

)
(F.129)

= Õ(1) (F.130)

Proof. Let [a, b] ∈ P be a bin where the slope is not monotonic and not constant.
Assume that |sa−1| = |sb| = 1. Otherwise we can split the original bin into at-most 3

bins [a, b1−1], [b1, b2], [b2+1, b] such that |sb1−1| = |sb2| = 1 and slopes are constant in the
the other two bins. This is possible because slope in [a, b] is not constant or monotonic.

For a bin [a, b] we define boundary signs to be sa−2, sa−1, sb−1 and sb.
First, we will study the case where the offline optimal touches the boundary −1 at

two point r and w with r < w. The case of arbitrary number of boundary touches will
be discussed towards the end. (All arguments can be mirrored appropriately for the case
where optimal touches boundary 1).

In what follows we use the notations in the proof of Lemma 216. From Eq.(F.61) we
have

g + h = λµ + γ−r xr + γ−wxw, (F.131)

where µ ∈ R2 is a vector depending on the boundary signs and the length ℓ := b− a+ 1.
xr = [1, r − a+ 1]T and xw defined similarly.

Since g + h is an affine map of [λ, γ−r , γ
−
w ]T and since A is positive definite for ℓ ≥ 2,

we conclude that ∥g+h∥2
A−1 is jointly convex in λ, γ−r , γ

−
w via appealing to the convexity

of squared L2 norm.
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First let’s focus on the case where boundary signs obey sa−1 = 1 and sb = −1. Let
sa−2 = 1− p and sb−1 = −1 + q for some p, q ∈ [0, 2].

Making these sign substitutions in Lemma 216, we get:

∥g∥2A−1 =
2λ2

(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2−

(2ℓ2 − 2)pq + 12(ℓ− 1)p− 12(ℓ+ 1)q + 24

)
. (F.132)

⟨g,A−1h⟩ =
λ

(ℓ− 1)ℓ(ℓ+ 1)
(−24− 6ℓ(p− q) + 6(p+ q)) (r′γ−r + w′γ−w )+

+
λ

(ℓ− 1)ℓ(ℓ+ 1)

(
2ℓ2(2p− q)− 6ℓq − 4(p+ q) + 12(ℓ+ 1)

)
(γ−r + γ−w ),

(F.133)

where r′ = r − a+ 1 and w′ = w − a+ 1.
Let ∆ := ℓ−3/2. By using equation (F.83) and the facts ℓ − 1 ≥ ℓ/2, ℓ + 1 < ℓ,

p, q ∈ [0, 2] and triangle inequality, we bound

⟨A−1g,
b∑

j=a

xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ ≤(a)
40λℓ∆

ℓ− 1
|2p(ℓ− 1)− q(ℓ+ 2) + 6|

+
40λℓ2∆

ℓ− 1
|3q(ℓ+ 1) + p(1− ℓ)− 4|

(b) ≤ 640λℓ∆(p+ q) + 800λ∆, (F.134)

where the line (a) is obtained by equation (F.83) and making the boundary sign substi-
tutions. Line (b) is obtained using the facts ℓ− 1 ≥ ℓ/2, ℓ+ 2 ≤ 2ℓ whenever ℓ ≥ 2 and
p, q ∈ [0, 2] along with triangle inequality.

From Eq.(F.89), by using similar triangle inequality based arguments and the fact
that |Γ̃| ≤ ℓ|Γ| by Holder’s inequality and Corollary 215 in as above we obtain

⟨A−1h,

b∑

j=a

xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ ≤ 1200ℓ∆(γ−r + γ−w ). (F.135)
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To bound T3 we observe from Lemma 211

T3 = 200 + λ

(
(sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb)

− sa−1Ma + sb−1Mb−1 −
ℓ∑

t=2

|Mt −Mt−1|
)

+ 20ℓ∆(γ−r + γ−w )

≤ 200 + λ

(
|(sa−1 − sa−2)(Ma + Ca)|+ |(sb − sb−1)(ℓMb + Cb)|

+ |Ma|+ |Mb−1|+ ∆

)
+ 20ℓ∆(γ−r + γ−w )

≤ 200 + 80λℓ∆(p+ q) + 3λ∆ + 20ℓ∆(γ−r + γ−w ), (F.136)

where in the last line we used the fact that |(j − a + 1)Mj + Cj| ≤ 20ℓ∆ from Lemma
210.

Recall that ∆ = ℓ−3/2. Combining all the above equations / inequalities above and
Eq. (F.90), define:

T (λ, γ−r , γ
−
w ) :=

(
(2ℓ+ 1)(ℓ+ 1)(γ−r + γ−w )2 − 6(γ−r + γ−w )(r′γ−r + w′γ−w )(ℓ+ 1) + 6(r′γ−r + w′γ−w )2

)

+
(
(2ℓ+ 1)(ℓ+ 1)(γ−r + γ−w )2 − 6(γ−r + γ−w )(r′γ−r + w′γ−w )(ℓ+ 1) + 6(r′γ−r + w′γ−w )2

)

+ (−24− 6ℓ(p− q) + 6(p+ q)) (r′γ−r + w′γ−w )

+
(
2ℓ2(2p− q)− 6ℓq − 4(p+ q) + 12(ℓ+ 1)

)
(γ−r + γ−w )

− ((ℓ− 1)ℓ(ℓ+ 1))
(
720λℓℓ−3/2(p+ q) + 803λℓ−3/2 + 1220ℓℓ−3/2(γ−r + γ−w )

)
.

(F.137)

We have,

T2 + T3 ≤ −
T (λ, γ−r , γ

−
w )

(ℓ− 1)ℓ(ℓ+ 1)
+ 200. (F.138)

The expression in Eq.(F.137) can be compactly written as:

T (λ, γ̌−r , γ̌
−
w ) = 0.5 · (ℓ− 1)ℓ(ℓ+ 1)∥g + h∥2A−1 + Φ(λ, γ̌−r + γ̌−w ) (F.139)

:= Q(λ, γ−r + γ−w , rγ
−
r + wγ−w ), (F.140)

where g+h is as in Eq.(F.131) (which only depends on the boundary signs and λ, γ−r +γ−w
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and rγ−r + wγ−w ) and Φ(λ, γ̌−r , γ̌
−
w ) is a linear function of its arguments namely,

Φ(λ, γ̌−r + γ̌−w ) = −(ℓ− 1)ℓ(ℓ+ 1)
(
20λℓℓ−3/2(p+ q) + 803λℓ−3/2 + 1220ℓℓ−3/2(γ−r + γ−w )

)

(F.141)

Since we have established earlier that ∥g∥2
A−1 is convex in λ, γ−r , γ

−
w we will certainly

have T (λ, γ−r , γ
−
w ) as a function jointly convex in its arguments.

The function B referred in main text is defined to be:

B(λ, γ−r , γ
−
w ; r, w) := − T (λ, γ−r , γ

−
w )

(ℓ− 1)ℓ(ℓ+ 1)
+ 200, (F.142)

with r′ and w′ in Eq.(F.137) to be taken as r′ = r−is+1 and w′ = w−is+1 , ℓ = it−is+1
and T (λ, γ−r , γ

−
w ) is as in Eq.(F.137).

So we consider the following convex optimization problem:

min
λ, γ−r , γ

−
w

T (λ, γ−r , γ
−
w ) (F.143a)

s.t. λ ≥ 0 (F.143b)

Note that in the program above we do unconstrained minimization over γ−r and γ−w .
Doing so can only further decrease the objective function leading to a valid upper bound
on T2 + T3.

First we will perform a partial minimization wrt the variables γ−r and γ−w . Differen-
tiating the objective wrt γ−r and setting to zero yields:

(
2(2ℓ2 + 3ℓ+ 1)− 12(ℓ+ 1)r′ + 12(r′)2

)
γ̂−r

+
(
2(2ℓ2 + 3ℓ+ 1)− 6(ℓ+ 1)(r′ + w′) + 12r′w′) γ̂−w

= λr′ (24 + 6ℓ(p− q)− 6(p+ q))− λ
(
2ℓ2(2p− q)− 6ℓq − 4(p+ q) + 12(ℓ+ 1)

)

+ 1220ℓ2(ℓ2 − 1)ℓ−3/2. (F.144)

Similarly differentiating the objective wrt γ−w and setting to zero yields:

(
2(2ℓ2 + 3ℓ+ 1)− 12(ℓ+ 1)w′ + 12(w′)2

)
γ̂−w

+
(
2(2ℓ2 + 3ℓ+ 1)− 6(ℓ+ 1)(r′ + w′) + 12r′w′) γ̂−r

= λw′ (24 + 6ℓ(p− q)− 6(p+ q))− λ
(
2ℓ2(2p− q)− 6ℓq − 4(p+ q) + 12(ℓ+ 1)

)

+ 1220ℓ2(ℓ2 − 1)ℓ−3/2. (F.145)

Solving the above two equations yields:
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γ̂−r =

w′λℓ2p+ w′λℓ2q − w′λp− w′λq

+ 1220w′ℓ0.5 − 1220w′ℓ2.5 − λℓ3q − λℓ2p
− λℓ2q + 2λℓ2 + λℓq + λp

+ λq − 2λ− 610ℓ0.5 − 610ℓ1.5 + 610ℓ2.5 + 610ℓ3.5

r′ℓ2 − r′ − w′ℓ2 + w′ , (F.146)

and

γ̂−w =

− r′λℓ2p− r′λℓ2q + r′λp+ r′λq

− 1220r′ℓ0.5 + 1220r′ℓ2.5 + λℓ3q + λℓ2p

+ λℓ2q − 2λℓ2 − λℓq − λp− λq
+ 2λ+ 610ℓ0.5 + 610ℓ1.5 − 610ℓ2.5 − 610ℓ3.5

r′ℓ2 − r′ − w′ℓ2 + w′ . (F.147)

Substituting the above two expression we get:

T (λ, γ̂−r , γ̂
−
w ) =

− 797λℓ2.0 − 1780λℓ3.0p− 1780λℓ3.0q

+ 2391λℓ4.0 + 5340λℓ5.0p+ 5340λℓ5.0q − 2391λℓ6.0

− 5340λℓ7.0p− 5340λℓ7.0q + 797λℓ8.0 + 1780λℓ9.0p+ 1780λℓ9.0q

+ 744200ℓ3.5 − 2232600ℓ5.5 + 2232600ℓ7.5 − 744200ℓ9.5

ℓ2.5 − 2ℓ4.5 + ℓ6.5

(F.148)

Looking at Eq.(F.148) we notice that it is a linear fucntion of λ which defined the
function L(λ) mentioned in Section 7.2.1 of the main text:

L(λ) =

− 797λℓ2.0 − 1780λℓ3.0p− 1780λℓ3.0q

+ 2391λℓ4.0 + 5340λℓ5.0p+ 5340λℓ5.0q − 2391λℓ6.0

− 5340λℓ7.0p− 5340λℓ7.0q + 797λℓ8.0 + 1780λℓ9.0p+ 1780λℓ9.0q

+ 744200ℓ3.5 − 2232600ℓ5.5 + 2232600ℓ7.5 − 744200ℓ9.5

ℓ2.5 − 2ℓ4.5 + ℓ6.5
(F.149)

We observe that the leading term (i.e terms whose magnitude is biggest) in the
denominator is a positive quantity namely ℓ6.5. The leading term in the numerator that
contains λ grows as 1780λℓ9(p+q)+797λℓ8. So the unconstrained minimum of this linear
function is attained at λ = −∞.

Hence the constrained minimum (with constraint λ ≥ 0) of the optimization problem
F.143a is attained at λ = 0. We calculate the optimal objective to the constrained
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problem via Eq.(F.148) as

T (0, γ̂−r , γ̂
−
w ) =

744200 (ℓ1.5 − 3ℓ3.5 + 3ℓ5.5 − ℓ7.5)
ℓ0.5 − 2ℓ2.5 + ℓ4.5

, (F.150)

where we consider bins with length ℓ ≥ 14.
Since ℓ4 ≥ 2ℓ2 for all ℓ ≥ 2, we continue from the previous display to obtain:

T (0, γ̂−r , γ̂
−
w ) ≥ −744200 · (1 + 3 + 3 + 1)

ℓ7.5

ℓℓ.5
(F.151)

= −5953600ℓ3, (F.152)

Hence we have

T (0, γ̂−r , γ̂
−
w )

(ℓ− 1)ℓ(ℓ+ 1)
≥ −5953600ℓ3

(ℓ− 1)ℓ(ℓ+ 1)
(F.153)

≥ −11907200, (F.154)

where in the last line we used the fact that ℓ − 1 ≥ ℓ/2 is satisfied for all ℓ ≥ 14 and
ℓ+ 1 > ℓ.

Hence continuing from Eq.(F.138) we conclude that

T2 + T3 ≤ (11907200 + 200) (F.155)

= 11907400. (F.156)

The term T1 can be bound as

T1 ≤ 256 +
1

2σ
log(1 + σn/2) +

4

σ
log n (F.157)

= Õ(1), (F.158)

by Lemma 217.
Now suppose that the offline optimal within bin [a, b] touches boundary −1 more than

two times. In this case we propose a reduction to the previous type of analysis where
only γ−r and γ−w are potentially non-zero.

The reduction is facilitated by two observations:

1. While performing the minimization of function T (λ, γ−r , γ
−
w ) in Eq.(F.137) via the

optimization problem F.143a we neither used the fact that r and w are integers nor
constrained any bounds on them as well

2. The partially minimized objective in Eq.(F.148) fortunately doesn’t depend on
neither r nor w.

Now let’s consider the case where arbitrary number of γ−j , j ∈ [a, b] can be non-zero.
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We can then write,

Γ =
b∑

j=a

γ−j (F.159)

= γ̌−r + γ̌−w , (F.160)

where γ̌−r := γ−1 and γ̌−w = Γ− γ̌−1 .

Define r′ := 1 and w′ :=
∑b

j=a j′γ−
j −γ̌−

r

γ̌−
w

= Γ̃−γ̌−
r

γ̌−
w

where we assume that γ̌−w > 0 (other-

wise, we fall back to the earlier analysis).
With these re-definitions we note that

T2 + T3 ≤ −
T (λ, γ̌−r , γ̌

−
w )

(ℓ− 1)ℓ(ℓ+ 1)
, (F.161)

still holds. Further, T (λ, γ̌−r , γ̌
−
w ) is jointly convex in its arguments. This can be seen as

follows: Note that T (λ, γ̌−r , γ̌
−
w ) assumes the form

T (λ, γ̌−r , γ̌
−
w ) = 0.5 · (ℓ− 1)ℓ(ℓ+ 1)∥g + h∥2A−1 + Φ(λ, γ̌−r + γ̌−w ), (F.162)

where Φ(λ, γ̌−r + γ̌−w ) is an affine function of its arguments and

h = [Γ, Γ̃]T (F.163)

= [γ̌−r + γ−w , r
′γ̌−r + w′γ̌−w ]T , (F.164)

where the last line follows due to our re-parametrizations. By following essentially same
arguments as earlier for proving convexity of T (λ, γ−r , γ

−
w ) we conclude that T (λ, γ̌−r , γ̌

−
w )

is also jointly convex in its arguments.
This completes our reduction to the case of two-boundary touches and rest of analysis

proceeds by minimizing T (λ, γ̌−r , γ̌
−
w ) as earlier.

We now consider the case where sa−1 = sb = 1. We can split the original bin [a, b]
into two sub-bins [a1, b1] and [a2, b2] with a2 = b1 + 1 such that (i) sb1 = −1 with
ub1+1 − ub1 > ua2+1 − ua2 and (ii) the slopes are non-decreasing within [a2, b2]. This can
be achieved by picking b1 as the last point within [a, b] where ub1+1−ub1 > ub1+2−ub1+1.

In the bin [a1, b1] we apply the previous analysis to bound regret by Õ(1). For the
bin [a2, b2] we resort to Lemma 218 to bound regret by Õ(1).

The analysis for the case of boundary signs assignments sa−1 = −1 and sb = 1 as well
as sa−1 = −1 and sb = −1 can be done similarly.

Adding the regret bounds across all newly formed bins due to potential splitting yields
the lemma.

Next, we provide the full regret guarantee in a uni-variate setting.
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Theorem 220. Let pt be the predictions of FLH-SIONS algorithm with parameters ϵ = 2,
C = 20 and exp-concavity factor σ. Under Assumptions A1-A4, we have that,

n∑

t=1

ft(pt)− ft(wt) = Õ(n1/5C2/5
n ∨ 1), (F.165)

for any comparator sequence w1:n ∈ T V(1)(Cn). Here Õ hides poly-logarithmic factors of
n and a ∨ b = max{a, b}.

Proof. The proof is complete by adding the Õ(1) dynamic regret bound from Lemmas

218 and 219 across O(n1/5C
2/5
n ∨ 1) bins in the partition P .

The proof of Lemma 69 stated in the main text is similar to the arguments used to
derive Eq.(F.57). We record it for the sake of completeness.

Lemma 69. We have that T2 ≤ −1
2
∥∇F (β)∥2A−1.

Proof. We follow the same notations used in defining Lemma 69 in the main text.
Let’s begin by calculating v := A−1∑b

j=a f
′
j(x

T
j β)xj.

We have,

|v[1]| =
∣∣∣∣∣

2

(ℓ− 1)ℓ

ℓ∑

j=1

(2ℓ+ 1− 3j)f ′
(j+a−1)(x

T
j+a−1β)

∣∣∣∣∣ (F.166)

(a) ≤
2

(ℓ− 1)ℓ
· 2ℓ(ℓ− 1) (F.167)

= 4, (F.168)

where line (a) is obtained via Lipschitzness and Holder’s inequality xTy ≤ ∥x∥1∥y∥∞
and the fact that |2ℓ+ 1− 3j| ≤ 2(ℓ− 1) for all j ∈ [1, ℓ].

Similarly

|v[2]| =
∣∣∣∣∣

2

(ℓ− 1)ℓ(ℓ+ 1)

ℓ∑

j=1

(−3(ℓ+ 1) + 6j)f ′
(j+a−1)(x

T
j+a−1β)

∣∣∣∣∣ (F.169)

≤ 2

(ℓ− 1)ℓ(ℓ+ 1)
· 3ℓ(ℓ− 1) (F.170)

=
6

(ℓ+ 1)
, (F.171)

where we used | − 3(ℓ+ 1) + 6j| ≤ 3(ℓ− 1) for all j ∈ [1, ℓ].
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Combining Eq.(F.168) and (F.171) we conclude that

|vTxj| = 4 + (j − a+ 1)
6

(ℓ+ 1)
(F.172)

≤ 10, (F.173)

where the last line follows due to the fact (j − a+ 1) ≤ ℓ.
Hence by Triangle inequality we have

|αTxj| ≤ |βTxj|+ 10. (F.174)

Now we bound |βTxj| using similar arguments. We have v′ := A−1∑b
j=a ujxj. Now

noting that |uj| ≤ 1 by Assumption A1 and using similar arguments used to obtain
Eq.(F.173) we conclude that

|βTxj| ≤ 10. (F.175)

So continuing from Eq.(F.174) we have |αTxj| ≤ 20.
For some z = tα + (1− t)β, t ∈ [0, 1] we have by Taylor’s theorem that

F (α)− F (β) = −⟨∇F (β),A−1∇F (β)⟩+
1

2
∥A−1∇F (β)∥2∇2F (z) (F.176)

≤ −⟨∇F (β),A−1∇F (β)⟩+
1

2
∥A−1∇F (β)∥2A (F.177)

= −1

2
∥∇F (β)∥2A−1 , (F.178)

where in the first inequality we used that fact that ∇2F (z) ≼ A due to the fact that the
functions fj are 1 gradient Lipschitz in [−20, 20]d via Assumption A3.

F.1.2 Multi-dimensional setting

Lemma 221. Consider the following convex optimization problem.

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

n∑

t=1

ft(ũt) (F.179a)

s.t. z̃t = ũt+2 − 2ũt+1 + ũt ∀t ∈ [n− 2], (F.179b)
n−2∑

t=1

∥z̃t∥1 ≤ Cn/n, (F.179c)

− 1 ≤ ũt[k] ∀t ∈ [n], ∀k ∈ [d] (F.179d)

ũt[k] ≤ 1 ∀t ∈ [n], ∀k ∈ [d] (F.179e)
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splitMonotonic: Inputs- (1) offline optimal sequence (2) A bin [is, it] (3) A
coordinate k ∈ [d]

1. Compute zj[k] = uj+1[k]− uj[k]

2. If z[k] is constant in [is, it] return {is, it}.

3. If z[k] is non-decreasing (non-increasing) across [is, it]: //ensure equal

boundary signs (see caption) for bin [b+ 1, c] below.

(a) Split [is, it] into at-most three bins [is, b], [b+1, c], [c+1, it] such that
zj[k] remains constant in the first and last bins. Further zb+1[k] >
(<)zb[k] and zc+1[k] > (<)zc[k].

(b) Return {is, b, b+ 1, c, c+ 1, it}

Figure F.1: splitMonotonic procedure. If line 3 is replaced by “If z[k] is non-in-
creasing ...”, then we propagate that change by replacing the symbols > / < in the
lines below 3 by the bracketed statements next to it. For a bin [a, b], we refer to sa−1

and sb as the boundary signs.

Let u1, . . . ,un, z1, . . . ,zn−2 be the optimal primal variables and let λ ≥ 0 be the
optimal dual variable corresponding to the constraint (F.283c). Further, let γ−

t ≥ 0,γ+
t ≥

0 (coordinate-wise) be the optimal dual variables that correspond to constraints (F.283d)
and (F.179e) respectively for all t ∈ [n]. Note that γ−

t ,γ
+
t ∈ Rd. By the KKT conditions,

we have

• stationarity: ∇ft(ut) = λ ((st−1 − st)− (st−2 − st−1))+γ−
t −γ+

t , where st[k] ∈
∂|zt[k]| (a subgradient) for k ∈ [d]. Specifically, st[k] = sign((ut+2[k] − ut+1[k]) −
(ut+1[k]−ut[k])) if |(ut+2[k]−ut+1[k])−(ut+1[k]−ut[k])| > 0 and st[k] is some value
in [−1, 1] otherwise. For convenience of notations, we also define s−1 = s0 = 0.

• complementary slackness: (a) λ
(∑n−2

t=1 ∥zt∥1 − Cn/n
)

= 0; (b) γ−
t [k](ut[k] +

1) = 0 and γ+
t [k](ut[k]− 1) = 0 for all t ∈ [n].

The proof of above Lemma is similar to that of Lemma 67 and hence omitted.

Lemma 222. [82] Consider an online learning setting where at each round t, we are
given a feature vector xt ∈ R2. Define f̃t(v) = ft(x

T
t v[1 : 2], . . . ,xT

t v[2d − 1 : 2d]) for
some vector v ∈ R2d. Let the function f(r) be σ exp-concave and G Lipschitz for r ∈ Rd

with ∥r∥∞ ≤ C. Define Kt := {w ∈ R2d : |xT
t w[2k − 1 : 2k]| ≤ C ∀k ∈ [d]}. Let

K := ∩Tt=1Kt and gt := ∇f̃t(pt). Consider a variant of the algorithm proposed by [82]
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generateBins: Input- (1) offline optimal sequence

1. Form consecutive bins [is, it] such that: // coarse partition based

on TV1 distance

(a) ∥D2uis:it∥1 ≤ 1/ℓ
3/2
is→it

(b) ∥D2uis:it+1∥1 > 1/ℓ
3/2
is→it+1,

where ℓa→b := b− a+ 1.

2. Let the partition of the time horizon be represented as P̧′ :=
{[1s, 1t], . . . , [is, it], . . . [Ms,Mt]} where M = |P ′|.

3. Initialize R ← Φ.

4. For each bin [is, it] ∈ P ′: // ensuring γ+
j [k]γ−j [k] = 0 for all k ∈ [d]

(a) R = R∪ {is, it}.
(b) For each coordinate k ∈ [d]:

i. If uis [k] = 1(−1) and there exists a point p ∈ [is, it] such that
up = −1(1) then R ← R∪ {p− 1, p}

ii. If uit [k] = 1(−1) and there exists a point p ∈ [is, it] such that
up = −1(1) then R ← R∪ {p− 1, p}

5. Remove duplicates from R and form a partition P by splitting at each
point in R

6. Return P
Figure F.2: generateBins procedure. If line 7(d) is replaced by “If zp[k] < zp−1[k]”,
then we propagate that change by replacing the symbols > / < in the lines below 7(d)
by the bracketed statements next to it. For a bin [a, b], we refer to sa−1 and sb as the
boundary signs.

where the algorithm makes a prediction p̂t+1 ∈ Rd at round t+ 1 as:

wt+1 = pt −A−1
t gt (F.180)

pt+1 = argmin
w∈Kt+1

∥w −wt+1∥At (F.181)

p̂t+1 =
[
xT
t+1pt+1[1 : 2], . . . ,xT

t+1pt+1[2d− 1 : 2d]
]T

(F.182)

where At = ϵI +
∑t

s=1 σgsg
T
s with I is the identity matrix and ϵ is an input parameter.
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Then for any w ∈ K we have the regret controlled as

T∑

t=1

ft(p̂t)− f̃t(w) =
T∑

t=1

f̃t(pt)− f̃t(w) (F.183)

≤ ϵ∥w∥22
2

+
2d

σ
log

(
1 +

σTG2

dϵ

)
. (F.184)

We will call this algorithm as SIONS (Scale Invariant Online Newton Step).

Proof. First we show that exp-concavity is invariant to affine transforms. Since ft is σ
exp-concave, we have

f̃t(w) ≥ f̃t(v) +

〈
∇ft(xT

t v[1 : 2], . . . ,xT
t v[2d− 1 : 2d]),

[xT
t (w[1 : 2]− v[1 : 2]), . . . ,xT

t (w[2d− 1 : 2d]− v[2d− 1 : 2d])]T ]

〉

+
σ

2

(〈
∇ft(xT

t v[1 : 2], . . . ,xT
t v[2d− 1 : 2d]),

[xT
t (w[1 : 2]− v[1 : 2]), . . . ,xT

t (w[2d− 1 : 2d]− v[2d− 1 : 2d])]T ]

〉)2

. (F.185)

For the sake of brevity let’s denote f
(k)
t := ∇ft(xT

t v[1 : 2], . . . ,xT
t v[2d − 1 : 2d])[k]

for k ∈ [d]. Then we have

∇f̃t(v) =
[
f
(1)
t xT

t , . . . , f
(d)
t xT

t

]T
. (F.186)

Let

A =

〈
∇ft(xT

t v[1 : 2], . . . ,xT
t v[2d− 1 : 2d]),

[xT
t (w[1 : 2]− v[1 : 2]), . . . ,xT

t (w[2d− 1 : 2d]− v[2d− 1 : 2d])]T ]

〉
. (F.187)

With this, we observe that,

A = (w − v)T∇f̃t(v). (F.188)
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Thus, we obtain the affine invariance of exp-concavity as:

f̃t(w) ≥ f̃t(v) + (w − v)T∇f̃t(v) +
σ

2

(
(w − v)T∇f̃t(v)

)2
. (F.189)

Note that the set Kt is convex. This can be seen as follows: if v,w ∈ Ķt, then we
have |xT

t v[2k − 1 : 2k]| ≤ C and |xT
t w[2k − 1 : 2k]| ≤ C for all k ∈ [d]. Now for any

t ∈ [0, 1] let z = tv + (1− t)w. Then we have for any k ∈ [d] that

|xT
t z[2k − 1 : 2k]| ≤ t|xT

t v[2k − 1 : 2k]|+ (1− t)|xT
t 2[2k − 1 : 2k]| (F.190)

≤ C, (F.191)

where the first inequality is via triangle inequality. Thus z ∈ Kt so the set Kt is convex.
So by the properties of projection to convex sets (see for example, Lemma 16 in [77])

and the definition of the algorithm, we have that

∥pt+1 −w∥2At
≤ ∥wt+1 −w∥2At

(F.192)

= ∥pt −w∥2At
+ gT

t A
−1
t gt − 2gT

t (pt −w). (F.193)

LetRT (w) :=
∑T

t=1 f̃t(pt)−f̃t(w). Since each ft is exp-concave, we have by Eq.(F.189)
and the previous inequality that

2RT (w) ≤
T∑

t=1

2gT
t (pt −w)− σ(gT

t (pt −w))2 (F.194)

≤
T∑

t=1

gT
t A

−1
t gt + ∥pt −w∥2At

− ∥pt+1 −w∥2At
− σ(gT

t (pt −w))2 (F.195)

≤ ∥w∥2A0
+

T∑

t=1

gT
t A

−1
t gt + (pt −w)T (At −At−1 − σgtg

T
t )(pt −w) (F.196)

= ∥w∥2A0
+

T∑

t=1

gT
t A

−1
t gt, (F.197)

where the last line is by the definition of At.
By using the arguments of Lemma 12 of [77] we have

T∑

t=1

gT
t A

−1
t gt ≤

2d

σ
log

(
1 +

σTG2

dϵ

)
. (F.198)
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Thus overall we have,

RT (w) ≤ ϵ∥w∥22
2

+
2d

σ
log

(
1 +

σTG2

dϵ

)
(F.199)

Corollary 223. [23] Consider the FLH algorithm from [23] with SIONS from Lemma 222
as the base experts with parameter ϵ = 2 as described in Fig.7.3. Consider an arbitrary
interval [a, b] ⊆ [n]. Then the regret of FLH-SIONS within this interval is controlled as:

b∑

j=a

fj(yj)− f̃j(w) ≤ ∥w∥22 +
2d

σ
log

(
1 +

σn3G2

dϵ

)
+

4 log n

σ
, (F.200)

where w ∈ ∩bj=aKj and f̃ is as defined in Lemma 222.

Proof. Since the loss functions fj are σ exp-concave, by Lemma 3.3 in [23] we have that

b∑

j=a

fj(yj) ≤
4 log n

σ
+

b∑

j=a

fj(Ea(j)). (F.201)

Subtracting f̃j(w) from both sides and using Lemma 222 now yields the result.

Corollary 224. The number of bins M := |P| formed via a call to generateBins(u1:n)

is at-most O(n1/5C
2/5
n ∨ 1).

Proof. The proof is similar to that of Lemma 68.

Lemma 225. Let [is, it] ∈ P where P is the partition produced via the generateBins

procedure. We have that the dynamic rgeret of FLH-SIONS within this bin controlled as

it∑

j=is

fj(p̂j)− fj(uj) = Õ(d2), (F.202)

where p̂j ∈ Rd are the predictions of the algorithm.

Proof. Consider a bin [is, it]. Let Q = refineSplit([is, it]). Define f̃j(v) := f̃j(y
T
j v) for

v ∈ R2d.
Next, we proceed to construct the details of a regret decomposition within a bin
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[is, it]:

it∑

j=is

fj(p̂j)− fj(uj) =
it∑

j=is

fj(p̂j)− fj(Xjαj)

︸ ︷︷ ︸
T1

+
it∑

j=is

fj(Xjαj)− fj(Xjβj)

︸ ︷︷ ︸
T2

(F.203)

+
it∑

j=is

fj(Xjβj)− fj(uj)

︸ ︷︷ ︸
T3

, (F.204)

where we will construct appropriate yj,αj,βj ∈ R2d and Xj ∈ Rd×2d in what follows.

AssignCo-variatesAndSlopes1: Inputs- (1) offline optimal sequence (2) A
bin [a, b] (3) A coordinate k ∈ [d]

1. Let βk be the least square fit coefficient computed with labels being
ua[k], . . . ,ub[k] and co-variates xj := [1, j − a + 1]T so that the fitted
value at time j is given by ûj[k] = βTxj.

2. Set βj[2k − 1 : 2k]← βk for all j ∈ [a, b].

3. Set αk ← βk

4. Set αj[2k − 1 : 2k]← αk for all j ∈ [a, b].

5. Set yj[2k − 1 : 2k] = xj for all j ∈ [a, b].

Figure F.3: AssignCo-variatesAndSlopes1 used to set the parameters in the regret
decomposition of Eq.(F.204) whenever the offline optimal is constant across the spec-
ified coordinate k within the interval [a, b]. We use a 1-based indexing. i.e v[1] refers
the first element of a vector v.

(A1): Consider a coordinate k ∈ [d] such that u[k] is not monotonic in [is, it] and do
not touch boundary 1. Let [is, it] = [is, a − 1] ∪ [a, b] ∪ [b + 1, c] ∪ [c + 1, it] such that
u[k] is constant in bins [is, a − 1] and [c + 1, it]. Further we consider the case where
sa−1 = 1 and sb = −1 with u[k] non-decreasing within [b + 1, c]. (Note that this can
be guaranteed by picking b as the last point with ub+1[k] − ub[k] > ub+2[k] − ub+1[k].)
The alternate case where sa−1 = −1 and sb = 1 with u[k] non-increasing within [b+ 1, c]
can be handled similarly. All the arguments we explain for the case of offline optimal
touching the boundary −1 can be mirrored to handle the case where the offline optimal
touches the boundary 1. (The offline optimal can’t touch both boundaries simultaneously
along a coordinate, see Lemma 212)

We will use 1-based indexing. (i.e v[1] denotes the first element of a vector). For each
k ∈ [d]:
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AssignCo-variatesAndSlopes2: Inputs- (1) offline optimal sequence (2) A
bin [a, b] (3) A coordinate k ∈ [d]

1. Let βk be the least square fit coefficient computed with labels being
ua[k], . . . ,ub[k] and co-variates xj := [1, j − a + 1]T so that the fitted
value at time j is given by ûj[k] = βTxj.

2. Set βj[2k − 1 : 2k]← βk for all j ∈ [a, b].

3. Set yj[2k − 1 : 2k]← xj for all j ∈ [a, b].

4. Define Ak :=
∑b

j=a xjx
T
j , f̃j(v) := f̃j(y

T
j v) for some v ∈ R2d.

5. Set αk ← βk −A−1
k

∑b
j=a∇f̃(βj)[2k − 1 : 2k].

6. Set αj[2k − 1 : 2k]← αk for all j ∈ [a, b].

Figure F.4: AssignCo-variatesAndSlopes2 used to set the parameters in the regret
decomposition of Eq.(F.204) whenever the offline optimal may not be constant across
the specified coordinate k within the interval [a, b]. We use a 1-based indexing. i.e v[1]
refers the first element of a vector v.

• Call AssignCo-variatesAndSlopes1(u1:n, [is, a− 1], k).

• Call AssignCo-variatesAndSlopes2(u1:n, [a, b], k).

• Let [b+1, t1−1], [t1, t2], [t2+1, c] be the bins returned by a call to splitMonotonic(u1:n, [b+
1, c], k).

• Call AssignCo-variatesAndSlopes1(u1:n, [b+ 1, t1 − 1], k).

• Call AssignCo-variatesAndSlopes2(u1:n, [t1, t2], k).

• Call AssignCo-variatesAndSlopes1(u1:n, [t2 + 1, c], k).

• Call AssignCo-variatesAndSlopes1(u1:n, [c+ 1, it], k).

For a vector y we treat y[m : n] = [y[m], . . . ,y[n]]T . Define Xj ∈ Rd×2d as

XT
j =




yj[1 : 2] 0 . . . 0
0 yj[3 : 4] . . . 0
...

. . .
...

0 . . . yj[2d− 1 : 2d]


 , (F.205)
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where 0 = [0, 0]T and yj is set according to various calls of AssignCo-variatesAndSlopes1
and
AssignCo-variatesAndSlopes2 as done previously.

We proceed to bound T2+T3 in Eq.(F.204). First notice that due to Taylor’s theorem,

f̃j(αj)− f̃j(βj) = ⟨∇f̃j(βj),αj − βj⟩+
1

2
∥αj − βj∥2∇2f̃j(v)

, (F.206)

where v = tαj + (1− t)βj for some t ∈ [0, 1]. Now we use Lemma 226 to obtain,

f̃j(αj)− f̃j(βj) ≤ ⟨∇f̃j(βj),αj − βj⟩+
1

2

d∑

k′=1

∥αj[2k
′ − 1 : 2k′]− βj[2k

′ − 1 : 2k′]∥2yj [2k
′−1:2k′]yj [2k

′−1:2k′]T

(F.207)

=
d∑

k′=1

⟨∇fj(Xjβj)[k
′]yj[2k

′ − 1 : 2k′],αj[2k
′ − 1 : 2k′]− βj[2k

′ − 1 : 2k′]⟩

(F.208)

+
1

2

d∑

k′=1

∥αj[2k
′ − 1 : 2k′]− βj[2k

′ − 1 : 2k′]∥2yj [2k
′−1:2k′]yj [2k

′−1:2k′]T

(F.209)

Further, due to gradient Lipschitzness,

f̃j(βj)− fj(uj) = fj(Xjβj)− fj(uj) (F.210)

≤ ⟨∇fj(uj),Xjβj − uj⟩+
1

2
∥Xjβj − uj∥22 (F.211)

=
d∑

k′=1

∇fj(uj)[k
′] ·
(
βj[2k

′ − 1 : 2k′]Tyj[2k
′ − 1 : 2k′]− uj[k

′]
)

(F.212)

+
d∑

k′=1

1

2
∥βj[2k

′ − 1 : 2k′]Tyj[2k
′ − 1 : 2k′]− uj[k

′]∥22 (F.213)

Looking at Eq.(F.209) and (F.213), we see that they decompose across each coordinate
k′. So we can bound T2 + T3 in any bin [is, it] coordinate wise:
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T2 + T3 =
d∑

k′=1

it∑

j=is

⟨∇fj(Xjβj)[k
′]yj[2k

′ − 1 : 2k′],αj[2k
′ − 1 : 2k′]− βj[2k

′ − 1 : 2k′]⟩

(F.214)

+
1

2

d∑

k′=1

∥αj[2k
′ − 1 : 2k′]− βj[2k

′ − 1 : 2k′]∥2yj [2k
′−1:2k′]yj [2k

′−1:2k′]T (F.215)

+∇fj(uj)[k
′] ·
(
βj[2k

′ − 1 : 2k′]Tyj[2k
′ − 1 : 2k′]− uj[k

′]
)

(F.216)

+
1

2
∥βj[2k

′ − 1 : 2k′]Tyj[2k
′ − 1 : 2k′]− uj[k

′]∥22 (F.217)

:=
d∑

k′=1

it∑

j=is

t2,j,k′ + t3,j,k′ , (F.218)

where in the last line we define:

t2,j,k′ := ⟨∇fj(Xjβj)[k
′]yj[2k

′ − 1 : 2k′],αj[2k
′ − 1 : 2k′]− βj[2k

′ − 1 : 2k′]⟩ (F.219)

+
1

2
∥αj[2k

′ − 1 : 2k′]− βj[2k
′ − 1 : 2k′]∥2yj [2k

′−1:2k′]yj [2k
′−1:2k′]T , (F.220)

and

t3,j,k′ := ∇fj(uj)[k
′] ·
(
βj[2k

′ − 1 : 2k′]Tyj[2k
′ − 1 : 2k′]− uj[k

′]
)

(F.221)

+
1

2
∥βj[2k

′ − 1 : 2k′]Tyj[2k
′ − 1 : 2k′]− uj[k

′]∥22. (F.222)

Next, we proceed to bound
∑it

j=is
t2,j,k + t3,j,k for the coordinate k with a structure

as mentioned in Paragraph (A1).
Recall that [is, it] = [is, a− 1] ∪ [a, b] ∪ [b + 1, t1 − 1] ∪ [t1, t2] ∪ [t2 + 1, c] ∪ [c + 1, it].

So we will consider each of these sub-bins separately.
For bin [is, a−1] we have αj[2k−1 : 2k] = βj[2k−1 : 2k] and βj[2k−1 : 2k]Tyj[2k−1 :

2k] = uj[k]. So we trivially have

a−1∑

j=is

t2,j,k + t3,j,k = 0. (F.223)

Next, we focus on the bin [a, b]. We note that by construction, αj[2k − 1 : 2k]
and βj[2k − 1 : 2k] are fixed for all j ∈ [a, b]. Let’s denote these fixed values by αk

and βk respectively. For the sake of brevity let’s denote xj := yj[2k − 1 : 2k] and
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Ak =
∑b

j=a xjx
T
j . We have the relation,

αk = βk −A−1
k

b∑

j=a

∇f̃(βj)[2k − 1 : 2k] (F.224)

= βk −A−1
k

b∑

j=a

∇fj(Xjβj)[k]xj. (F.225)

By the new compact notations, we have

t2,j,k = ⟨∇fj(Xjβj)[k]xj,αk − βk⟩+
1

2
∥αk − βk∥2xjxT

j
, (F.226)

and

t3,j,k = ∇fj(uj)[k] ·
(
βT

kxj − uj[k]
)

+
1

2
∥βT

kxj − uj[k]∥22. (F.227)

From Eq.(F.225) we have,

b∑

j=a

t2,j,k = −
∥∥∥∥∥

b∑

j=a

∇fj(Xjβj)[k]xj

∥∥∥∥∥

2

A−1
k

+
1

2

∥∥∥∥∥A
−1
k

b∑

j=a

∇fj(Xjβj)[k]xj

∥∥∥∥∥

2

Ak

(F.228)

= −1

2

∥∥∥∥∥
b∑

j=a

∇fj(Xjβj)[k]xj

∥∥∥∥∥

2

A−1
k

(F.229)

≤ −1

2

∥∥∥∥∥
b∑

j=a

∇fj(uj)[k]xj

∥∥∥∥∥

2

A−1
k

+ 2⟨A−1
k

b∑

j=a

∇fj(uj)[k]xj, (F.230)

b∑

j=a

xj

(
∇fj(Xjβj)[k]−∇fj(uj)[k]

)
⟩. (F.231)

Now we define gk = λ[−sa−2[k] + sa−1[k] + sb−1[k]− sb[k],−sa−2[k] + (ℓ+ 1)sb−1[k]−
ℓsb[k]]T and hk = [Γ[k], Γ̃[k]]T where Γ =

∑b
j=a γ

−
j − γ+

j and Γ̃ =
∑b

j=a j
′(γ−

j − γ+
j )

where j′ = j − a + 1 so that
∑b

j=a∇fj(uj)[k]xj = gk + hk via the KKT conditions in
Lemma 221.
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With these, we can bound:

b∑

j=a

2 · t2,j,k ≤ −∥gk∥2A−1
k
− ∥hk∥2A−1

k
− 2 < gk,A

−1
k hk⟩ (F.232)

+ 2⟨A−1
k (gk + hk),

b∑

j=a

xj

(
∇fj(Xjβj)[k]−∇fj(uj)[k]

)
⟩ (F.233)

Proceeding similarly to Eq.(F.73) and (F.75) by gradient Lipschitzness we obtain,

b∑

j=a

∇fj(Xjβj)[k]−∇fj(uj)[k] ≤
b∑

j=a

∥Xjβj − uj∥1 (F.234)

≤ 20ℓ2ℓ−3/2, (F.235)

where in the last line we used Lemma 210 coordinate-wise and the fact that ∥D2ua:b∥1 ≤
ℓ−3/2.

Similarly,

b∑

j=a

j′(∇fj(Xjβj)[k])−∇fj(uj)[k] ≤
b∑

j=a

j′∥Xjβj − uj∥1 (F.236)

≤ 20ℓ3ℓ−3/2. (F.237)

Hence by KKT conditions in Lemma 221, we can further bound

⟨A−1
k gk,

b∑

j=a

xj

(
∇fj(Xjβj)[k]−∇fj(uj)[k]

)
⟩ ≤ 40λℓ−1/2

(ℓ− 1)

∣∣∣∣∣(2− 2ℓ)sa−2[k]+ (F.238)

(2ℓ+ 1)sa−1[k] (F.239)

− (ℓ+ 2)sb−1[k] + (ℓ− 1)sb[k]

∣∣∣∣∣ (F.240)

+
40λℓ1/2

(ℓ− 1)

∣∣∣∣∣
3(ℓ− 1)

ℓ+ 1
sa−2[k]− 3sa−1[k]

(F.241)

+ 3sb−1[k]− 3(ℓ− 1)

ℓ+ 1
sb[k]

∣∣∣∣∣, (F.242)
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and

⟨A−1
k hk,

b∑

j=a

xj

(
∇fj(Xjβj)[k]−∇fj(uj)[k]

)
⟩ ≤ 40ℓ−1/2

(ℓ− 1)
|(2ℓ+ 1)Γ[k]− 3Γ̃[k]| (F.243)

+
40ℓ1/2

(ℓ− 1)

∣∣∣∣∣
6Γ̃[k]

ℓ+ 1
− 3Γ[k]

∣∣∣∣∣ . (F.244)

We observe that Eq.(F.233),(F.242),(F.244) are semantically same as Eq.(F.218),
(F.73) and (F.75) respectively in the 1D case.

Next, we proceed to setup a similar observation for bounding
∑b

j=a t3,j,k. From KKT
conditions in Lemma 221 and proceeding similar to the arguments in Lemma 211 we get,

b∑

j=a

∇fj(uj)[k] ·
(
βj[2k − 1 : 2k]Tyj[2k − 1 : 2k]− uj[k]

)
(F.245)

=
b∑

j=a

λ

(
((sj−1[k]− sj−2[k])− (sj[k]− sj−1[k]))× (F.246)

((j − a+ 1)M j[k] + Cj[k])

)
(F.247)

+
b∑

j=a

(γ−
j [k]− γ+

j [k])× (F.248)

(βj[2k − 1 : 2k]Tyj[2k − 1 : 2k]− uj[k]) (F.249)

≤
b∑

j=a

λ

(
((sj−1[k]− sj−2[k])− (sj[k]− sj−1[k]))× (F.250)

((j − a+ 1)M j[k] + Cj[k])

)
(F.251)

+ 20ℓ−1/2

b∑

j=a

∣∣γ−
j [k]− γ+

j [k]
∣∣ , (F.252)

where similar to Lemma 211, we represent βj[2k − 1 : 2k]Tyj[2k − 1 : 2k] − uj[k] =
(j − a + 1)M j[k] + Cj[k] with M a[k] = M a+1[k], Ca[k] = Ca+1[k], M b[k] = M b−1[k]
and Cb[k] = Cb−1[k]. The last line is obtained due to Lemma 210.

Further, by using Lemma 210 we obtain,

d∑

k′=1

b∑

j=a

1

2
∥βj[2k

′ − 1 : 2k′]Tyj[2k
′ − 1 : 2k′]− uj[k

′]∥22 ≤ 200. (F.253)
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Combining the last two inequalities yields,

b∑

j=a

t3,j,k ≤ 200 +
b∑

j=a

λ

(
((sj−1[k]− sj−2[k])− (sj[k]− sj−1[k])) ((j − a+ 1)M j[k]

(F.254)

+ Cj[k])

)
+ 20ℓ−1/2

b∑

j=a

∣∣γ−
j [k]− γ+

j [k]
∣∣ . (F.255)

We observe that the last inequality is semantically similar to Eq.(F.25) for 1D case.
Recall that Eq.(F.233),(F.242),(F.244) are also semantically same as Eq.(F.218), (F.83)
and (F.89) respectively in the 1D case.

Hence we can proceed to bound

b∑

j=a

t2,j,k + t3,j,k = O(1), (F.256)

using the same arguments as in Lemma 219.
Observe that by construction, the slopes across coordinate k are constant in the bins

[b + 1, t1 − 1], [t2 + 1, c] and [c + 1, it]. So by using similar arguments used for handling
the bin [is, a− 1] we obtain,

∑

j∈I

t2,j,k + t3,j,k = 0, (F.257)

where I ∈ {[b+ 1, t1 − 1], [t2 + 1, c], [c+ 1, it]}.
By appealing to our reduction to 1D case facilitated by Eq.(F.233) and (F.255) and

using similar arguments used to handle the monotonic slopes case as in Lemma 218 we
obtain,

t2∑

j=t1

t2,j,k + t3,j,k = O(1). (F.258)

So far we have discussed bounding
∑it

j=is
t2,j,k + t3,j,k for a bin with structure across

coordinate k as described in Paragraph (A1). We remark that if the slopes across a
coordinate k assumes a monotonic structure across [is, it], we can handle it in the same
way as we handled the sub-bin [t1, t2] above.

We pause to remark that Eq.(F.223),(F.256),(F.257) and (F.258) together gives a
way to bound to

∑it
j=is

t2,j,k′ + t3,j,k′ across any coordinate k′ as we comprehensively
considered all the possible structures across a coordinate k′. (The alternate cases where
where sa−1 = −1 and sb = 1 with u[k′] non-increasing within [b + 1, c] can be handled
similarly to the case described in Paragraph (A1). Finally the case where the offline
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optimal touches boundary 1 instead of −1 can be handled using similar arguments.)
Thus overall we obtain that for any bin [is, it] ∈ P we have:

T2 + T3 ≤
d∑

k′=1

it∑

j=is

t2t2,j,k′ + t3,j,k′ (F.259)

= O(d), (F.260)

where T2 and T3 are as defined in Eq.(F.204).
Next, we proceed to control T1. Recall that

T1 =
it∑

j=is

fj(pj)− fj(Xjαj). (F.261)

Let’s revisit bin [is, it] with structure as described in Paragraph (A1) across coordinate
k. First we consider the bin [a, b]. Through the call to
AssignCo-variatesAndSlopes2(u1:n, [a, b], k) we set αk. Further αj[2k − 1 : 2k] = αk

for all j ∈ [a, b]. By using similar arguments as in the proof of Lemma 217 which
lead to Eq.(F.105), we have that |yj[2k − 1 : 2k]Tαj| ≤ 20. For other bins such as
[is, a− 1], [b + 1, t1 − 1], [t2 + 1, c], [c + 1, it] where the slope of the offline optimal across
coordinate k remains constant, we set αj[2k − 1 : 2k] for j ∈ I with I ∈ {[is, a− 1], [b+
1, t1 − 1], [t2 + 1, c], [c + 1, it]} to be a constant value obtained as the least square fit
coefficients with co-variates yj[2k − 1 : 2k] and labels set appropriately via the call to
AssignCo-variatesAndSlopes1. Hence in this case also we have |yT

j [2k−1 : 2k]αj[2k−
1 : 2k]| ≤ 10 via the arguments in Lemma 217.

For the alternate cases (i) where sa−1 = −1 and sb = 1 with u[k′] non-increasing
within [b+1, c] as described in Paragraph (A1) (ii) case where the offline optimal touches
boundary 1 instead of -1 (iii) The offline optimal across coordinate k is non-decreasing
within [is, it] and (iv) The offline optimal across coordinate k is non-increasing within
[is, it]. In all these cases we can set the quantities αj[2k − 1 : 2k],yj[2k − 1 : 2k]
by similar calls to AssignCo-variatesAndSlopes1 or AssignCo-variatesAndSlopes2

such that yj[2k − 1 : 2k]Tαj[2k − 1 : 2k] ≤ 20 for all j ∈ [is, it]. For example, for case
(iii) we can resort to similar arguments used for handling sub-bin [t1, t2] which is again
similar to how we handled the bin [a, b]. (see Paragraph (A1)).

Further, even-though we create at-most 6 sub-bins across each coordinate for an
interval [is, it] ∈ P (see Paragraph (A1) and the sequence of calls beneath), doing so
for each coordinate can result in at-most 6d partitions of uis:it overall. However, if we
consider any sub-bin [p, q] of this partition, we have that αj[2k − 1 : 2k] is fixed and
βj[2k− 1 : 2k] is fixed for all j ∈ [p, q] across any coordinate k ∈ [d] and yj[2k− 1 : 2k][2]
is monotonically increasing wrt j ∈ [p, q] for all coordinates k ∈ [d]. Now suppose that
k′ ∈ [d] is such that yj[2k

′ − 1 : 2k′][1] ≤ yj[2k − 1 : 2k][1] for all k ̸= k′ and for all
j ∈ [p, q]. With a change of variables we have that α̃j[2k − 1 : 2k]Tyj[2k

′ − 1 : 2k′] =
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αj[2k − 1 : 2k]Tyj[2k − 1 : 2k] by setting α̃j[2k − 1 : 2k][2] = αj[2k − 1 : 2k][2] and
α̃j[1] = αj[1] + (yj[2k − 1 : 2k][2] − yj[2k

′ − 1 : 2k′][2])αj[2k − 1 : 2k][2] for k ̸= k′

within the bin [p, q]. Since (yj[2k − 1 : 2k][2] − yj[2k
′ − 1 : 2k′][2]) ≤ yj[2k − 1 : 2k][2]

by Eq.(F.99) we have that

|(yj[2k − 1 : 2k][2]− yj[2k
′ − 1 : 2k′][2])αj[2k − 1 : 2k][2]| ≤ 6. (F.262)

Further we have from Eq.(F.105) that |αj[2k−1 : 2k][2]yj[2k
′−1 : 2k′][2]+αj[2k−1 :

2k][1]| ≤ 20 due to the fact that αj[2k − 1 : 2k] remains fixed from a time point j∗ ≤ p
such that yj∗ [2k − 1 : 2k] = [1, 1]T . Further we have that

∥α̃j[2k − 1 : 2k]∥22 = (αj[2k − 1 : 2k][2])2 (F.263)

+ (αj[2k − 1 : 2k][1] + (yj[2k − 1 : 2k][2]− yj[2k
′ − 1 : 2k′][2])×

(F.264)

αj[2k − 1 : 2k][2])2 (F.265)

≤ 2 (αj[2k − 1 : 2k][2] + αj[2k − 1 : 2k][1])2 (F.266)

+ 2
(
(yj[2k − 1 : 2k][2]− yj[2k

′ − 1 : 2k′][2])αj[2k − 1 : 2k][2]
)2

(F.267)

≤ 584, (F.268)

where the last line is due to Eq.(F.107) and (F.262).
Let’s represent µ ∈ R2d such that µ[2k′ − 1 : 2k′] = α[2k′ − 1 : 2k′] and µ[2k − 1 :

2k] = α[2k − 1 : 2k] for all other k ∈ [d].
Thus within the sub-bin [p, q], we have that |µT [2k−1 : 2k]yj[2k

′−1 : 2k′]| ≤ 20 for all
k ∈ [d]. Further, due to Eq.(F.268) we have that ∥µ∥22 ≤ 584d. Hence we can use a base
expert that starts at time p which gives the co-variate yj[2k

′ − 1 : 2k′] to all coordinates
where j ∈ [p, q]. Note that the sub-bin [p, q] must have been resulted via a splitting
across coordinate k′ at time p. So by the calls to AssignCo-variatesAndSlopes1 or
AssignCo-variatesAndSlopes2 we set yp[2k

′ − 1 : 2k′] = [1, 1]T . Thus there exists a
base expert in FLH-SIONS (Fig.7.3) that provides the co-variate yj[2k

′ − 1 : 2k′] to all
coordinates where j ∈ [p, q].

This expert will have a regret of Õ(d) against µ via Lemma 222. By using Strong
Adaptivity from Corollary 223 (set w = µ there and recall that ∥µ∥22 ≤ 584d) and adding
the regret across all 6d sub-bins of [is, it] lead to an Õ(d2) on T1 in Eq.(F.204). Thus for
any bin in P produced by generate bins procedure, we have its dynamic regret bounded
by Õ(d2).

Proof of Theorem 63. The proof is now complete by adding the Õ(d2) dynamic regret

bound across all O(n1/5C
2/5
n ∨ 1) bins in P from Corollary 224.
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The proof of Lemma 71 is same as that of the lemma below, albeit with slightly
different notations for Xj.

Lemma 226. Let Xj be as defined in Eq.(F.205). Let f̃j(v) = fj(Xjv) for some v ∈ R2d

and let Σ := XT
j Xj ∈ R2d×2d. We have,

∇2f̃j(v) ≼ Σ (F.269)

Proof. We have,

f̃j(v) = fj
(
⟨yj[1 : 2],v[1 : 2]⟩, . . . , ⟨yj[2d− 1 : 2d],v[2d− 1 : 2d]⟩

)
. (F.270)

Let

f ′′
jk := ∇2fj

(
⟨yj[1 : 2],v[1 : 2]⟩, . . . , ⟨yj[2d− 1 : 2d],yj[2d− 1 : 2d]⟩

)
[j][k], (F.271)

be the Hessian of f evaluated at the vector
[⟨y[1 : 2],v[1 : 2]⟩, . . . , ⟨y[2d− 1 : 2d],v[2d− 1 : 2d]⟩]T ∈ Rd.

By straightforward calculations, we obtain

∇2f̃j(v) =




f ′′
11yj[1 : 2]yj[1 : 2]T . . . f ′′

1dyj[1 : 2]yj[2d− 1 : 2d]T

...
. . .

...
f ′′
d1yj[2d− 1 : 2d]yj[1 : 2]T . . . f ′′

ddyj[2d− 1 : 2d]yj[2d− 1 : 2d]T


 ,

(F.272)

Let I ∈ Rd×d be the identity matrix and 1 ∈ R2×2 be the matrix of all ones. Fur-
ther let’s denote b := [⟨y[1 : 2],v[1 : 2]⟩, . . . , ⟨y[2d− 1 : 2d],v[2d− 1 : 2d]⟩]T We can suc-
cinctly write:

Σ−∇2f̃j(v) =
((
I −∇2f(b)

)
⊗ 1
)
◦ yjy

T
j , (F.273)

where ⊗ denotes the Kronecker product and ◦ denotes the Hadamard product.
Recall that the loss functions fj are 1-gradient Lipschitz. So we have (I −∇2f(b)) is

Positive Semi Definite (PSD). The matrices 1 and yjy
T
j are also PSD. Since both Kro-

necker and Hadamard products preserves positive semidefiniteness, we have∇2f̃j(v) ≼ Σ
which proves the lemma.

Proposition 227. Consider the sequence class T V1(Cn) as per Eq.(7.1). Under As-
sumption A1 (see Section 7.2) we have that T V(1)(Cn) ⊆ T V(0)(2Cn + 20d).

Proof. We start by considering a 1D setting. Consider a sequence w1:n ∈ T V(1)(Cn). We
can represent it as sum (point-wise) of two sequences as

w1:n = p1:n + q1:n, (F.274)
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where q1:n = βTxt where xt = [1, t]T and β is the least square fit coefficnts computed by
using covariates xt and labels wt, t ∈ [n]. Here the p1:n is the residual sequence obtained
by subtracting the least square fit sequence from the true sequence.

Following the terminology in Lemma 211, we can represent pt = tMt + Ct. Further,
due to Eq.(F.29) (with a = 1) we have that pt+1 − pt = Mt+1.

Applying triangle inequality to Eq.(F.274) we have

∥Dw1:n∥1 ≤ ∥Dp1:n∥1 + ∥Dq1:n∥1. (F.275)

Further,

∥Dp1:n∥1 =
n∑

t=2

|Mt| (F.276)

=
n∑

t=2

∣∣∣∣∣M1 +
t−1∑

j=1

Mj+1 −Mj

∣∣∣∣∣ (F.277)

≤
n∑

t=2

|M1|+D2∥p1:n∥1 (F.278)

=(a) n|M1|+ nD2∥w1:n∥1 (F.279)

≤(b) 2nD2∥w1:n∥1, (F.280)

where in line (a) we used the fact that ∥D2p1:n∥1 = ∥D2w1:n∥1 as subtracting a linear
sequence doesn’t affect the TV1 distance. In line (b) we applied |M1| ≤ ∥D2w1:n∥1 as
shown in Lemma 211.

It remains to bound ∥Dq1:n∥1. For this we note that ∥qt∥ ≤ 10 for all t ∈ [n] due to
Eq.(F.175). Since q1:n is a monotonic sequence we have that its variation ∥Dq1:n∥1 ≤ 20.

Thus overall we obtain that

∥Dw1:n∥1 ≤ 2nD2∥w1:n∥1 + 20 (F.281)

≤ 2Cn + 20. (F.282)

For multiple dimensions we apply the same argument across each dimension and add
them up to yield the lemma.

F.2 Proof of Proposition 65

In this section, we first prove the following result.

Theorem 228. Let pt be the predictions of FLH-SIONS algorithm with parameters ϵ = 2,
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C = 20 and exp-concavity factor σ. Under Assumptions A1-A4, we have that,

n∑

t=1

ft(pt)− ft(wt) = Õ(d2n1/3C2/3
n ∨ d2),

for any Cn > 0 and any comparator sequence w1:n ∈ T V(0)(Cn). Here Õ hides poly-
logarithmic factors of n and a ∨ b = max{a, b}.

Proof. The proof follows almost directly from the arguments in [65]. First, we use the par-
tition P mentioned in Lemma 30 in [65]. Let the partition be cP = {[1s, 1t], . . . , [Ms,Mt]},
with |P| = M .

Consider the following convex optimization problem.

min
ũ1, . . . , ũn, z̃1, . . . , z̃n−1

n∑

t=1

ft(ũt) (F.283a)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1], (F.283b)
n−1∑

t=1

∥z̃t∥1 ≤ Cn, (F.283c)

∥ũt∥∞ ≤ B ∀t ∈ [n], (F.283d)

Let u1, . . . ,un be the optimal solution to the above problem. Let wj be the prediction
of the FLH-SIONS algorithm at time j. Define:

Rn(Cn) =
n∑

t=1

fj(wt)− ft(ut). (F.284)

Define ūi = 1
ni

∑it
j=is

uj and u̇i = ūi − 1
ni

∑it
j=is
∇fj(ūi). We can use the regret

decomposition of [65].

Rn(Cn) ≤
M∑

i=1

it∑

j=is

fj(wj)− fj(u̇i)

︸ ︷︷ ︸
T1,i

+
M∑

i=1

it∑

j=is

fj(u̇i)− fj(ūi)

︸ ︷︷ ︸
T2,i

+
M∑

i=1

it∑

j=is

fj(ūi)− fj(uj)

︸ ︷︷ ︸
T3,i

.

(F.285)

For any bin [is, it] ∈ P , we can bound T2,i + T3,i = O(1) by using the arguments in
the proof of Theorem 14 of [65] since the losses in our case are also gradient-Lipschitz as
per Assumption A3. So we only need to consider the term T1,i. Observe that
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∥u̇i∥∞ ≤ ∥ūi∥∞ +
1

ni

it∑

j=is

∥∇fj(ūi)∥∞ (F.286)

≤ 2, (F.287)

as per Assumptions A1-A2. Further we can view the comparator u̇i as a linear predictor
with slope zero. The output of this linear predictor is bounded in magnitude by 2 which
is less that 20. Hence FLH-SIONS under the setting of the current theorem leads to
T1,i = Õ(d). Since M = O(dn1/3C

2/3
n ∨ d) for the partition in Lemma 30 of adding the

regret across all bins results in the theorem.

Theorem228 when combined with Theorem 63 now directly leads to Proposition 65.

F.3 Proof of Proposition 62

The result proven in this section is mainly due to the geometric arguments in [20,
2] (or see [18] for a comprehensive monograph) with an extra technicality of handling
boundedness constraint as per Assumption A1 (in Section 7.2).

In the proof we make extensive use of wavelet theory and refer readers to [18] for
necessary preliminaries.

Proposition 62. Under Assumptions A1-A4, any online algorithm necessarily suffers
supw1:n∈T V(1)(Cn)

Rn(w1:n) = Ω(d3/5n1/5C
2/5
n ∨ d).

Proof. We consider a uni-variate setting with the losses ft(w) = (dt − w)2 where dt =
ut +N (0, 1) with u1:n ∈ T V(1)(Cn). At each step, dt is revealed to the learner as doing
so can only make learning easier.

Let W be the set of whole numbers. For the purposes of analysis, we start with an
abstract observation model:

yj = θj + ϵN (0, 1), j ∈W (F.288)

where θj are the wavelet coefficients in a regularity-three CDJV multi-resolution basis
[41] of a function in F1(Cn) from which the discrete samples u1:n are generated.

In what follows we will show that for any procedure estimating the wavelet coefficients
(let the estimate be θ̂j, j ∈W) we have that

∑

j∈W

(θ̂j − θj)2 = Ω(C2/5ϵ8/5). (F.289)

Due to Section 15.5 of [18], by taking ϵ = 1/
√
n, such a guarantee will then imply

a lower bound of Ω(n−4/5C2/5) for 1
n

∑n
t=1(ut − ût)2, where ût is the estimate produced
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by observing the data dt (assume C = Ω(1/
√
n) for now). This rate will finally imply a

dynamic regret lower bound in the following manner:

E

[
sup

r1:n∈T V(1)(C)

n∑

t=1

ft(ût)− ft(rt)
]
≥ sup

r1:n∈T V(1)(C)

E

[
n∑

t=1

ft(ût)− ft(rt)
]

(F.290)

=(a) sup
r1:n∈T V(1)(C)

n∑

t=1

E[(ût − ut)2]− (rt − ut)2

(F.291)

=
n∑

t=1

E[(ût − ut)2], (F.292)

where in line (a) we used the bias variance decomposition and the fact that ût is inde-
pendent of dt for online algorithms.

In what follows we use a dyadic indexing scheme for referring to wavelet coefficients
in Eq.(F.288) as θjk which means the kth wavelet coefficient in resolution j ≥ 0. There
are 2j wavelet coefficients in resolution j. We will also use θj· to denote a sequence of 2j

wavelet coefficients at resolution j.
Let β be the subset of wavelet coefficients at resolutions less than or equal to 2. i.e,

β = [θ0·, θ1·, θ2·] which has a length of 7.
Define a Besov norm as follows:

∥θ∥
b
3/2
1,1

:= ∥β∥1 +
∑

j≥3

23j/2∥θj·∥1. (F.293)

Define a Besov space as:

A(B) := {θ : ∥θ∥
b
3/2
1,1
≤ B}. (F.294)

It is known that A(κC) ⊆ F1(C) for some constant 0 < κ ≤ 1. (see for eg. Eq.(33)
in [80] along with Theorem 1 in [2]).

Since the spaceA(B) is solid and orthosymmetric (see Section 4.8 in [18]) we have that
the risk of estimating coefficients from A is lower bounded by the risk (i.e

∑
j≥0(θ̂j−θj)2)

of the hardest rectangular sub-problem as shown by [20].
A hyper-rectangle is defined as follows:

Θ(τ) = {θ : |θj| ≤ τj, j ≥ 0}. (F.295)

From [20], the minimax risk over a hyper-rectangle under the observation model
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Eq.(F.288) is known to be:

R∗(τ) := min
θ̂

max
θ∈Θ(τ)

∑

j≥0

(θ̂j − θ)2 (F.296)

≥
∑

j≥0

min{τ 2j , ϵ2}. (F.297)

So all we need to show is an appropriate hyper-rectangle (which is identified by τ)
within A(B) whose minimax risk is sufficiently large.

We next proceed to give such a hyper-rectangle. Let j∗ ∈W be the smallest number
such that

2j∗ ≥ C2/5

ϵ2/5
. (F.298)

For simplicity, from now on-wards, let’s assume that j∗ is an integer that satisfy
2j∗ = C2/5

ϵ2/5
.

Define the hyper-rectangle coordinates by

τj∗k =
κC

25j∗/2
, (F.299)

for all k = 0, 1, . . . , 2j∗ − 1 and τj· = 0 for all other resolutions.
Note that κC

25j∗/2
= ϵ. The minimax risk over such a hyper-rectangle then becomes

R∗(τ) = 2j∗ϵ (F.300)

= (κC)2/5ϵ8/5. (F.301)

Now it remains to verify that

1. The hyper-rectangle in Eq.(F.299) is indeed in A(κC).

2. The function produced by the coefficients in that hyper rectangle is bounded by 1
point-wise in magnitude.

First we notice that by taking ϵ = 1/
√
n as mentioned earlier, we have

2j∗ > 4, (F.302)

whenever C > 45/2/
√
n. We first consider the case where C is within this regime.

For the first item, we have that

∥τ∥
b
3/2
1,1

= 23j∗/2 · 2j∗
κC

25j∗/2
(F.303)

= κC, (F.304)
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where we used the fact that j∗ > 2 in the regime C > 45/2/
√
n.

Hence Θ(τ) ⊆ A(κC).
For the second item, we notice that due to Lemma B.18 in [18], it is sufficient to show

that 2j∗/2∥θj∗·∥∞ = O(1). Taking ϵ = 1/
√
n as mentioned earlier, we have that

2j∗/2∥θj∗·∥∞ =
κC

22j∗
(F.305)

= κ1/5C1/5ϵ4/5 (F.306)

=
κ1/5C1/5

n2/5
(F.307)

≤ 1, (F.308)

in the non-trivial regime of C ≤ n2 where we recall that κ ≤ 1.
For the regime where C ≤ 1/

√
n, the trivial lower bound of Ω(1) estimation error

kicks in. Thus overall we have shown that for any online algorithm producing estimates
ût we have that

n∑

t=1

E[(ût − ut)2] = Ω(n1/5C2/5 ∨ 1), (F.309)

thus obtaining a lower bound on the dynamic regret as per Eq.(F.292).
In multiple-dimensions we can consider a similar setup as before with losses ft(w) =

∥dt − w∥22 with dt[k] = ut[k] + N (0, 1) where u1:n ∈ T V(1)(C). We can consider a
sequence u1:n such that ∥nD2u1:n[k]∥1 = C/d across each coordinate k ∈ [d].

min
p1:n

max
w1:n∈T V(1)(C)

n∑

t=1

ft(pt)− ft(wt) =
d∑

k=1

n∑

t=1

Ω(n1/5(C/d)2/5 ∨ 1) (F.310)

= Ω(d3/5n1/5C2/5 ∨ d). (F.311)

This completes the proof of the proposition.
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G.1 Omitted proofs from Section 8.2

In the next two lemmas, we verify Assumption 2 for some important loss functions.

Lemma 229 (cross-entropy loss). Consider a sample (x, y) ∼ Q. Let p ∈ RK
+ and

p̃(x) ∈ ∆K be a distribution that assigns a weight proportional p(i)
q0(i)

f0(i|x) to the label

i . Let ℓ(p̃(x), y) =
∑K

i=1 I{y = i} log(1/p(x)[i]) be the cross-entropy loss. Let L(p) :=

E(x,y)∼Q[ℓ(p(x), y)] be its population analogue. Then L(p) is 2
√
K/µ Lipschitz in ∥ · ∥2

norm over the clipped box D := {p ∈ RK
+ : µ ≤ p(i) ≤ 1 ∀i ∈ [K]} which is compact and

convex. Further, the true marginals qt ∈ D whenever qt(i) ≥ µ for all i ∈ [K].

Proof. We have

L(p) = −
K∑

i=1

E[E[Qt(i|x) log(p̃(x)[i])|x]] (G.1)

= E[log(
K∑

i=1

wip(i))]−
K∑

i=1

E[E[Qt(i|x) log(wip(i))|x]], (G.2)

where we define wi := f0(i|x)/q0(i). Then we can see that

∇L(p)[i] = E

[
wi∑K

j=1wjp(j))

]
− E

[
Qt(i|x)

p(i)

]
. (G.3)

So if mini p(i) ≥ µ, we have that wi∑K
j=1 wjp(j)

≤ 1/µ and Qt(i|x)/p(i) ≤ 1/µ. So by triangle

inequality, |∇L(p)[i]| ≤ 1/µ+ 1/µ.
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Lemma 230 (binary 0-1 loss). Consider a sample (x, y) ∼ Q. Let p ∈ RK
+ and p̃(x) ∈ ∆K

be a distribution that assigns a weight proportional p(i)
q0(i)

f0(i|x) to the label i. Let ŷ(x) be

a sample obtained from the distribution p̃(x). Consider the binary 0-1 loss ℓ(ŷ(x), y) =
I(ŷ(x) ̸= y). Let L(p) := E(x,y)∼Q,ŷ(x)∼p̃(x)I(ŷ(x) ̸= y) be its population analogue. Let
q0(i) ≥ α > 0. Then L(p) is 2K3/2/(ατ) Lipschitz in ∥ · ∥2 norm over the domain
D := {p ∈ RK

+ :
∑K

i=1 p(i)f0(i|x) ≥ τ, p(i) ≤ 1 ∀i ∈ [K]} which is compact and convex.
Further, the true marginals qt ∈ D whenever qt(i) ≥ µ for all i ∈ [K].

Proof. We have that

L(p) =
K∑

i=1

E[Q(y ̸= i|x)p̃(x)[i]]. (G.4)

Denote p̃(x)[i] = p(i)wi/
∑K

j=1 p(j)wj with wj := f0(i|x)/q0(i). Then we see that

∣∣∣∣
∂p̃(x)[i]

∂p(i)

∣∣∣∣ =

∣∣∣∣∣∣∣
wi∑K

j=1wjp(j)
− (wip(i))wi(∑K

j=1wjp(j)
)2

∣∣∣∣∣∣∣
(G.5)

≤ 1

ατ
+

wi∑K
j=1wjp(j)

(G.6)

≤ 2/(ατ). (G.7)

Similarly,

∣∣∣∣
∂p̃(x)[i]

∂p(j)

∣∣∣∣ =
wip(i)wj(∑K
j=1wjp(j)

)2 (G.8)

≤ 1/(ατ). (G.9)

Thus we conclude that ∥∇p̃(x)[i]∥2 ≤ 2
√
K/(ατ), where the gradient is taken with

respect to p ∈ RK
+ .

Therefore,

∥∇L(p)∥2 ≤
K∑

i=1

∥∇p̃(x)[i]∥2 (G.10)

≤ 2K3/2/(ατ). (G.11)

Remark 231. The condition
∑K

i=1 f0(i|x)p(i) ≥ τ is closely related to Condition 1 of
[95]. Note that this is strictly weaker than imposing the restriction that the distribution
p(i) ≥ µ for each i.
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Remark 232. We emphasize that the conditions in Lemmas 229 and 230 are only suf-
ficient conditions that imply bounded gradients. However, they are not necessary for
satisfying bounded gradients property.

Lemma 233. Let µ, ν ∈ ∆K be such that µ[i] = qt(i). Let st = C−1f0(xt), where C is
the confusion matrix defined in Assumption 1. We have that E[st] = µ and Var(st) ≤
1/σ2

min(C)

Proof. Let q̃t(ŷt) = Ext∼QX
t ,ŷ(xt)∼f0(xt)I{ŷ(xt) = ŷt} be the probability that the classifier

f0 predicts the label ŷt. Here QX
t (x) :=

∑K
i=1Qt(x, i). Let’s denote Qt(ŷ(xt) = ŷt|yt =

i) := Ext∼Qt(·|y=i),ŷ(xt)∼f0(xt)I{ŷ(xt) = ŷt}. By law of total probability, we have that

q̃t(ŷt) =
K∑

i=1

Qt(ŷ(xt) = ŷt|yt = i)qt(i) (G.12)

=
K∑

i=1

Q0(ŷ(xt) = ŷt|yt = i)qt(i), (G.13)

where the last line follows by the label shift assumption.
Let µ, ν ∈ RK be such that µ[i] = qt(i) and ν[i] = q̃t(i). Then the above equation can

be represented as ν = Cµ. Thus µ = C−1ν.
Given a sample xt ∈ Qt, the vector f0(xt) forms an unbiased estimate of ν. Hence we

have that the vector µ̂ := C−1f0(xt) is an unbiased estimate of µ. Moreover,

∥µ̂∥2 ≤ ∥C−1∥2∥f0(xt)∥ (G.14)

≤ 1/σmin(C). (G.15)

Hence the variance of the estimate µ̂ is bounded by 1/σ2
min(C).

We have the following performance guarantee for online regression due to [71].

Proposition 234 ([71]). Let st = C−1f0(xt). Let q̂t := ALG(s1:t−1) be the online esti-
mate of the true label marginal qt produced by the Aligator algorithm by taking s1:t−1 as
input at a round t. Then we have that

T∑

t=1

E
[
∥q̂t − qt∥22

]
= Õ(K1/3T 1/3V

2/3
T (1/σ

4/3
min(C)) +K), (G.16)

where VT :=
∑T

t=2 ∥qt−qt−1∥1. Here Õ hides dependencies in absolute constants and poly-
logarithmic factors of the horizon. Further this result is attained without prior knowledge
of the variation VT .
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By following the arguments in [65], a similar statement can be derived also for the
FLH-FTL algorithm of [23] (Algorithm 9).

Theorem 73. Suppose we run Algorithm 2 with the online regression oracle ALG as
FLH-FTL (App. G.4) or Aligator [71]. Then under Assumptions 1 and 2, we have

E[Rdynamic(T )] = Õ

(
K1/6T 2/3V

1/3
T

σ
2/3
min(C)

+

√
KT

σmin(C)

)
, (8.3)

where VT :=
∑T

t=2 ∥qt− qt−1∥1 and the expectation is taken with respect to randomness in
the revealed co-variates. Further, this result is attained without prior knowledge of VT .

Proof. Owing to our carefully crafted reduction from the problem of online label shift
to online regression, the proof can be conducted in just a few lines. Let q̃t be the value
of ALG(s1:t−1) computed at line 2 of Algorithm 2. Recall that the dynamic regret was
defined as:

Rdynamic(T ) =
T∑

t=1

Lt(q̂t)− Lt(qt) ≤
T∑

t=1

G∥q̂t − qt∥2 (G.17)

Continuing from Eq.(I.27), we have

E[Rdynamic(T )] ≤
T∑

t=1

G · E[∥q̂t − qt∥2] (G.18)

≤
T∑

t=1

G · E[∥q̃t − qt∥2] (G.19)

≤
T∑

t=1

G
√
E∥q̃t − qt∥22 (G.20)

≤ G

√√√√T
T∑

t=1

E[∥q̃t − qt∥22] (G.21)

= Õ

(
K1/6T 2/3V

1/3
T (1/σ

2/3
min(C)) +

√
KT/σmin(C)

)
, (G.22)

where the second line is due to non-expansivity of projection, the third line is due to
Jensen’s inequality, fourth line by Cauchy-Schwartz and last line by Proposition 234.
This finishes the proof.

Next, we provide matching lower bounds (modulo log factors) for the regret in the
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unsupervised label shift setting. We start from an information-theoretic result which will
play a central role in our lower bound proofs.

Proposition 235 (Theorem 2.2 in [17]). Let P and Q be two probability distributions on
H, such that KL(P||Q) ≤ β < ∞, Then for any H-measurable real function ϕ : H →
{0, 1},

max{P(ϕ = 1),Q(ϕ = 0)} ≥ 1

4
exp(−β). (G.23)

Theorem 76. Let VT ≤ 64T . There exists a loss function, a domain D (in Assumption
2), and a choice of adversarial strategy for generating the data such that for any algorithm,

we have
∑T

t=1E([Lt(q̂t)]−Lt(qt)) = Ω
(

max{T 2/3V
1/3
T ,
√
T}
)
, where q̂t ∈ D is the weight

estimated by the algorithm and qt ∈ D is the label marginal at round t chosen by the
adversary. Here the expectation is taken with respect to the randomness in the algorithm
and the adversary.

Proof. We start with a simple observation about KL divergence. Consider distributions
with density P (x, y) = P0(x|y)p(y) and Q(x, y) = P0(x|y)q(y) where (x, y) ∈ R × [K].
Note that these distributions are consistent with the label shift assumption. We note
that

KL(P ||Q) =
K∑

i=1

∫

R
P0(x|i)p(i) log

(
P0(x|i)p(i)
P0(x|i)q(i)

)
dx (G.24)

=
K∑

i=1

∫

R
P0(x|i)p(i) log

(
p(i)

q(i)

)
dx (G.25)

=
K∑

i=1

p(i) log

(
p(i)

q(i)

)
(G.26)

Thus we see that under the label shift assumption, the KL divergence is equal to the
KL divergence between the marginals of the labels.

Next, we define a problem instance and an adversarial strategy. We focus on a binary
classification problem where the labels is either 0 or 1. As noted before, the KL divergence
only depends on the marginal distribution of labels. So we fix the density Q0(x|y) to be
any density such that under the uniform label marginals (q0(1) = q0(0) = 1/2) we can
find a classifier with invertible confusion matrix (recall from Fig. 1 that Q0 corresponds
to the data distribution of the training data set).

Divide the entire time horizon T is divided into batches of size ∆. So there are
M := T/∆ batches (we assume divisibility). Let Θ =

{
1
2
− δ, 1

2
+ δ
}

be a set of success
probabilities, where each probability can define a Bernoulli trial. Here δ ∈ (0, 1/4) which
will be tuned later.
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The problem instance is defined as follows:

• For batch i ∈ [M ], adversary selects a probability q̊i ∈ Θ uniformly at random.

• For any round t that belongs to the ith batch, sample a label yt ∼ Ber(qt) and
co-variate xt ∼ Q0(·|yt). Here qt = q̊i. The co-variate xt is revealed.

• Let q̂t be any estimate of qt at round t. Define the loss as Lt(q̂t) := I{qt ≥ 1/2}(1−
q̂t) + I{qt < 1/2}q̂t.

We take the domain D in Assumption 2 as [1/2− δ, 1/2 + δ]. It is easy to verify that
Lt(q̂t) is Lipschitz over D. Note that unlike [15], we do not have an unbiased estimate of
the gradient of loss functions.

Let’s compute an upperbound on the total variation incurred by the true marginals.
We have

T∑

t=2

|qt − qt−1| =
M∑

i=2

|̊qi − q̊i−1| (G.27)

≤ 2δM (G.28)

≤ VT , (G.29)

where the last line is obtained by choosing δ = VT/(2M) = VT∆/(2T ).
Since at the beginning of each batch, the sampling probability is chosen uniformly at

random, the loss function in the current batch is independent of the history available at
the beginning of the batch. So only the data in the current batch alone is informative in
minimising the loss function in that batch. Hence it is sufficient to consider algorithms
that only use the data within a batch alone to make predictions at rounds that falls
within that batch.

Now we proceed to bound the regret incurred within batch 1. The computation is
identical for any other batches.

Let P be the joint probability distribution in which labels (y1, . . . , y∆) within batch
1 are sampled with success probability 1/2− δ (i.e qt = 1/2− δ)

P(y1, . . . , y∆) = Π∆
i=1(1/2− δ)yi(1/2 + δ)1−yi . (G.30)

Define an alternate distribution Q such that

Q(y1, . . . , y∆) = Π∆
i=1(1/2 + δ)yi(1/2− δ)1−yi . (G.31)

According to the above distribution the data are independently sampled from Bernoulli
trials with success probability 1/2 + δ. (i.e qt = 1/2 + δ)

Moving forward, we will show that by tuning ∆ appropriately, any algorithm won’t
be able to detect between these two alternate worlds with constant probability resulting
in sufficiently large regret.
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We first bound the KL distance between these two distributions. Let

KL(1/2− δ||1/2 + δ) := (1/2 + δ) log

(
1/2 + δ

1/2− δ

)
+ (1/2− δ) log

(
1/2− δ
1/2 + δ

)
(G.32)

≤(a) (1/2 + δ)
2δ

1/2 + δ
− (1/2− δ) 2δ

1/2 + δ
(G.33)

=
16δ2

1− 4δ2
(G.34)

≤(b)
64δ2

3
, (G.35)

where in line (a) we used the fact that log(1 + x) ≤ x for x > −1 and observed that
−4δ/(1 + 2δ) > −1 as δ ∈ (0, 1/4). In line (b) we used δ ∈ (0, 1/4).

Since P and Q are product of the marginals due to independence we have that

KL(P||Q) =
∆∑

t=1

KL(1/2− δ||1/2 + δ) (G.36)

≤ (64∆/3) · δ2 (G.37)

= 16/3 (G.38)

:= β, (G.39)

where we used the choices δ = ∆VT/(2T ) and ∆ = (T/VT )2/3.
Suppose at the beginning of batch, we reveal the entire observations within that batch

y1:∆ to the algorithm. Note that doing so can only make the problem easier than the
sequential unsupervised setting. Let q̂t be any measurable function of y1:∆. Define the
function ϕt := I{q̂t ≥ 1/2}. Then by Proposition 235, we have that

max{P(ϕt = 1),Q(ϕt = 0)} ≥ 1

4
exp(−β), (G.40)

where β is as defined in Eq.(G.39).
Notice that if qt = 1/2−δ, then Lt(q̂t) ≥ 1/2 for any q̂t ≥ 1/2. Similarly if qt = 1/2+δ,

we have that Lt(q̂t) ≥ 1/2 for any q̂t < 1/2.
Further note that Lt(qt) = 1/2− δ by construction.
For notational clarity define Lp

t (x) := x and Lq
t (x) := 1− x. We can lower-bound the

instantaneous regret as:
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E[Lt(q̂t)]− Lt(qt) =(a)
1

2
(EP[Lp

t (q̂t)]− Lp
t (1/2− δ)) +

1

2
(EQ[Lq

t (q̂t)]− Lq
t (1/2 + δ))

(G.41)

≥(b)
1

2
(EP[Lp

t (q̂t)|q̂t ≥ 1/2]− Lp
t (1/2− δ)P(ϕt = 1) (G.42)

+
1

2
(EQ[Lq

t (q̂t)|q̂t < 1/2]− Lq
t (1/2 + δ)Q(ϕt = 0) (G.43)

≥(c)
1

2
δP(ϕt = 1) +

1

2
δQ(ϕt = 0) (G.44)

≥ δ/2 max{P(ϕt = 1),Q(ϕt = 0)} (G.45)

≥(d)
δ

8
exp(−β), (G.46)

where in line (a) we used the fact the success probability for a batch is selected uniformly
at random from Θ. In line (b) we used the fact that Lp

t (q̂t) − Lp
t (1/2 − δ) ≥ 0 since

q̂t ∈ D = [1/2 − δ, 1/2 + δ]. Similarly term involving Lq
t is also handled. In line (c) we

applied (EP[Lp
t (q̂t)|q̂t ≥ 1/2] − Lp

t (1/2 − δ)) ≥ δ since EP[Lp
t (q̂t)|q̂t ≥ 1/2] ≥ 1/2 and

Lp
t (1/2 − δ) = 1/2 − δ. Similar bounding is done for the term involving EQ as well. In

line (d) we used Eq.(G.40).
Thus we get the total expected regret within batch 1 as

∆∑

t=1

E[Lt(q̂t)]− Lt(qt) ≥
δ∆

8
exp(−β) (G.47)

The total regret within any batch i ∈ [M ] can be lower bounded using exactly the
same arguments as above. Hence summing the total regret across all batches yields

T∑

t=1

E[Lt(q̂t)]− Lt(qt) ≥
T

∆
· δ∆

8
exp(−β) (G.48)

=
VT∆

16
· exp(−β) (G.49)

= T 2/3V
1/3
T exp(−β)/16. (G.50)

The Ω(
√
T ) part of the lowerbound follows directly from Theorem 3.2.1 in [59] by

choosing D with diameter bounded by Ω(1).
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Algorithm 7 LPA: a black-box reduction to produce a low-switching online regression
algorithm

Input: Online regression oracle ALG, failure probability δ, maximum standard deviation
σ (see Definition 72).

1: Initialize prev = 0 ∈ RK , b = 1
2: Get estimate θ̃t from ALG(z1:t−1)
3: Output θ̂t = prev
4: Receive an observation zt

// test to detect non-staionarity

5: if
∑t

j=b+1 ∥prev− θ̃j∥22 > 5Kσ2 log(2T/δ) then
6: Set b = t+ 1, prev = zt
7: Restart ALG
8: else if t− b+ 1 is a power of 2 then
9: Set prev =

∑t
j=b zj/t−b+1

10: end if
11: Update ALG with zt

G.2 Design of low switching online regression algo-

rithms

Even-though Algorithm 4 has attractive performance guarantees, it requires retrain-
ing with weighted ERM at every round. This is not satisfactory since the retraining can
be computationally expensive. In this section, we aim to design a version of Algorithm 4
with few retraining steps while not sacrificing the statistical efficiency (up to constants).
To better understand why this goal is attainable, consider a time window [1, n] ⊆ [T ]
where the true label marginals remain constant or drift very slowly. Due to the slow
drift, one reasonable strategy is to re-train the model (with weighted ERM) using the
past data only at time points within [1, n] that are powers of 2 (i.e via a doubling epoch
schedule). For rounds t ∈ [1, n] that are not powers of 2, we make predictions with a
previous model hprev computed at tprev := 2⌊log2 t⌋ which is trained using data seen upto
the time tprev. Observe that this constitutes at least half of the data seen until round t.
This observation when combined with the slow drift of label marginals implies that the
performance of the model hprev at round t will be comparable to the performance of a
model obtained by retraining using entire data collected until round t.

To formalize this idea, we need an efficient online change-point-detection strategy
that can detect intervals where the TV of the true label marginals is low and retrain only
(modulo at most log T times within a low TV window) when there is enough evidence
for sufficient change in the TV of the true marginals. We address this problem via a
two-step approach. In the first step, we construct a generic black-box reduction that
takes an online regression oracle as input and converts it into another algorithm with the
property that the number of switches in its predictions is controlled without sacrificing
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the statistical performance. Recall that the purpose of the online regression oracles is to
track the true label marginals. The output of our low-switching online algorithm remains
the same as long as the TV of the true label marginals (TV computed from the time point
of the last switch) is sufficiently small. Then we use this low-switching online regression
algorithm to re-train the classifier when a switch is detected.

We next provide the Low switching through Phased Averaging (LPA) (Algorithm
7), our black-box reduction to produce low switching regression oracles. We remark that
this algorithm is applicable to the much broader context of online regression or change
point detection and can be of independent interest.

We now describe the intuition behind Algorithm 7. The purpose of Algorithm 7 is
to denoise the observations zt and track the underlying ground truth θt in a statistically
efficient manner while incurring low switching cost. Hence it is applicable to the broader
context of online non-parametric regression [37, 139, 71] and offline non-parametric re-
gression [3, 140].

Algorithm 7 operates by adaptively detecting low TV intervals. Within each time
window it performs a phased averaging in a doubling epoch schedule. i.e consider a low
TV window [b, n]. For a round t ∈ [b, n] let tprev := 2⌊log2(t−b+1)⌋. In round t, the algorithm
plays the average of the observations zb:tprev . So we see that in any low TV window, the
algorithm changes its output only at-most O(log T ) times.

For the above scheme to not sacrifice statistical efficiency, it is important to efficiently
detect windows with low TV of the true label marginals. Observe that the quantity prev

computes the average of at-least half of the observations within a time window that start
at time b. So when the TV of the ground truth within a time window [b, t] is small, we
can expect the average to be a good enough representation of the entire ground truth
sequence within that time window. Consider the quantity Rt :=

∑t
j=b+1 ∥prev − θj∥22

which is the total squared error (TSE) incurred by the fixed decision prev within the
current time window. Whenever the TV of the ground truth sequence θb:t is large, there
will be a large bias introduced by prev due to averaging. Hence in such a scenario the
TSE will also be large indicating non-stationarity. However, we can’t compute Rt due
to the unavailability of θj. So we approximate Rt by replacing θj with the estimates θ̃j
coming from the input online regression algorithm that is not constrained by switching
cost restrictions. This is the rationale behind the non-stationarity detection test at Step
5. Whenever a non-staionarity is detected we restart the input online regression algorithm
as well as the start position for computing averages (in Step 6).

We have the following guarantee for Algorithm 7.

Theorem 236. Suppose the input black box ALG given to Algorithm 7 is adaptively
minimax optimal (see Definition 72). Then the number of times Algorithm 7 switches

its decision is at most Õ(T 1/3V
2/3
T ) with probability at least 1 − δ. Further, Algorithm

7 satisfies
∑T

t=1 ∥θ̂t − θt∥22 = Õ(T 1/3V
2/3
T ) with probability at least 1 − δ, where VT =∑T

t=2 ∥θt − θt−1∥1.
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Remark 237. Since Algorithm 7 is a black-box reduction, there are a number of possible
candidates for the input policy ALG that are adaptively minimax. Examples include FLH
with online averages as base learners [23] or Aligator algorithm [71].

Armed with a low switching online regression oracle LPA, one can now tweak Algo-
rithm 4 to have sparse number of retraining steps while not sacrificing the statistical
efficiency (up to multiplicative constants). The resulting procedure is described in Algo-
rithm 8 (in App. G.3) which enjoys similar rates as in Theorem 77 (see Theorem 240).

G.3 Omitted proofs from Section 8.3

First we recall a result from [71].

Proposition 238 (Theorem 5 of [71]). Consider the online regression protocol defined
in Definition 72. Let θ̂t be the estimate of the ground truth produced by the Aligator
algorithm from [71]. Then with probability at-least 1 − δ, the total squared error (TSE)
of Aligator satisfies

T∑

t=1

∥θt − θ̂t∥22 = Õ(T 1/3V
2/3
T + 1), (G.51)

where VT =
∑T

t=2 ∥θt− θt−1∥1. This bound is attained without any prior knowledge of the
variation VT .

The high probability guarantee also implies that

T∑

t=1

E[∥θt − θ̂t∥22] = Õ(T 1/3V
2/3
T + 1), (G.52)

where the expectation is taken with respect to randomness in the observations.

By following the arguments in [65], a similar statement can be derived also for the
FLH-FTL algorithm of [23] (Algorithm 9).

Next, we verify that the noise condition in Definition 72 is satisfied for the empirical
label marginals computed at Step 5 of Algorithm 4.

Lemma 239. Let st be as in Step 5 of Algorithm 4. Then it holds that st = qt + ϵt with
ϵt being independent across t and Var(ϵt) ≤ 1/N .

Proof. Since st is simply the empirical label proportions, it holds that E[st] = qt. Further
Var(st) ≤ 1 as the indicator function is bounded by 1/N . This concludes the proof.

Theorem 77. Suppose the true label marginal satisfies mint,k qt(k) ≥ µ > 0. Choose
the online regression oracle in Algorithm 4 as FLH-FTL (App. G.4) or Aligator from
[71] with its predictions clipped such that q̂t[k] ≥ µ. Then with probability at least 1− δ,
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Algorithm 4 produces hypotheses with RH
dynamic = Õ

(
T 2/3V

1/3
T +

√
T log(|H|/δ)

)
, where

VT =
∑T

t=2 ∥qt − qt−1∥1. Further, this result is attained without any prior knowledge of
the variation budget VT .

Proof. In the proof we first proceed to bound the instantaneous regret at round t. Re-
write the population loss as:

Lt(h) =
1

N(t− 1)

t−1∑

i=1

N∑

j=1

E

[
qt(yij)

qi(yij)
ℓ(h(xij), yij)

]
, (G.53)

where the expectation is taken with respect to randomness in the samples.
We define the following quantities:

Lemp
t (h) :=

1

N(t− 1)

t−1∑

i=1

N∑

j=1

qt(yij)

qi(yij)
ℓ(h(xij), yij), (G.54)

L̃t(h) :=
1

N(t− 1)

t−1∑

i=1

N∑

j=1

E

[
q̂t(yij)

q̂i(yij)
ℓ(h(xij), yij)

]
, (G.55)

and

L̃emp
t (h) :=

1

N(t− 1)

t−1∑

i=1

N∑

j=1

q̂t(yij)

q̂i(yij)
ℓ(h(xij), yij). (G.56)

We decompose the regret at round t as

Lt(ht)− Lt(h
∗
t ) = Lt(ht)− L̃t(ht) + L̃t(ht)− L̃emp

t (ht) + Lemp
t (h∗t )− Lt(h

∗
t ) (G.57)

+ L̃emp
t (ht)− Lemp

t (h∗t ) (G.58)

≤ Lt(ht)− L̃t(ht)︸ ︷︷ ︸
T1

+ L̃t(ht)− L̃emp
t (ht)︸ ︷︷ ︸

T2

+Lemp
t (h∗t )− Lt(h

∗
t )︸ ︷︷ ︸

T3

(G.59)

+ L̃emp
t (h∗t )− Lemp

t (h∗t )︸ ︷︷ ︸
T4

, (G.60)

where in the last line we used Eq.(8.4). Now we proceed to bound each terms as note
above.
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Note that for any label m,

∣∣∣∣
qt(m)

qi(m)
− q̂t(m)

q̂i(m)

∣∣∣∣ ≤
∣∣∣∣
qt(m)

qi(m)
− qt(m)

q̂i(m)

∣∣∣∣+

∣∣∣∣
qt(m)

q̂i(m)
− q̂t(m)

q̂i(m)

∣∣∣∣ (G.61)

≤ 1

µ2
(|qi(m)− q̂i(m)|+ |qt(m)− q̂t(m)|) , (G.62)

where in the last line, we used the assumption that the minimum label marginals (and
hence of the online estimates via clipping) is bounded from below by µ. So by applying
triangle inequality and using the fact that the losses are bounded by B in magnitude, we
get

T1 ≤ B

N(t− 1)µ2

t−1∑

i=1

N∑

j=1

E [∥q̂i − qi∥1 + ∥q̂t − qt∥1] (G.63)

≤ B
√
K

(t− 1)µ2

t−1∑

i=1

E [∥q̂i − qi∥2 + ∥q̂t − qt∥2] (G.64)

≤(a)
B
√
K

µ2


E[∥q̂t − qt∥2] +

√∑t−1
i=1 E[∥qi − q̂i∥22]

t− 1


 (G.65)

≤(b)
B
√
K

µ2

(
E[∥q̂t − qt∥2] + ϕ · V

1/3
T

(t− 1)1/3

)
, (G.66)

where line (a) is a consequence of Jensen’s inequality. In line (b) we used the following
fact: by Lemma 239 and Proposition 234, the expected cumulative error of the online
oracle at any step is bounded by ϕt1/3V

2/3
t for some multiplier ϕ which can contain

poly-logarithmic factors of the horizon (see Proposition 238).
Proceeding in a similar fashion, the term T4 can be bounded by Eq.(G.66).
Next, we proceed to handle T3. Let h ∈ H be any fixed hypothesis. Then each

summand in Eq.(G.54) is an independent random variable assuming values in [0, B/µ]
(recall that the losses lie within [0, B]). Hence by Hoeffding’s inequality we have that

Lemp
t (h)− Lt(h) ≤ B

µ

√
log(3T |H|/δ)
N(t− 1)

, (G.67)

≤ B

µ

√
log(3T |H|/δ)

(t− 1)
, (G.68)

with probability at-least 1 − δ/(3T |H|). Now taking union bound across all hypotheses
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in H, we obtain that:

T3 ≤ B

µ

√
log(3|H|/δ)

(t− 1)
, (G.69)

with probability at-least 1− δ/(3T ).
To bound T2, we notice that it is not possible to directly apply Hoeffding’s inequality

because the summands in Eq.(G.55) are correlated through the estimates of the online
algorithm. So in the following, we propose a trick to decorrelate them. For any hypothesis
h ∈ H, we have that

q̂t(yij)

q̂i(yij)
ℓ(h(xij, yij))−E

[
q̂t(yij)

q̂i(yij)
ℓ(h(xij, yij))

]
(G.70)

=

(
q̂t(yij)

q̂i(yij)
− qt(yij)

qi(yij)

)
ℓ(h(xij, yij))

︸ ︷︷ ︸
Uij

− (G.71)

E

[(
q̂t(yij)

q̂i(yij)
− qt(yij)

qi(yij)

)
ℓ(h(xij, yij))

]

︸ ︷︷ ︸
Vij

+ (G.72)

qt(yij)

qi(yij)
ℓ(h(xij, yij))− E

[
qt(yij)

qi(yij)
ℓ(h(xij, yij))

]

︸ ︷︷ ︸
Wij

. (G.73)

Now using Eq.(G.62) and proceeding similar to the bouding steps of Eq.(G.66), we
obtain

1

N(t− 1)

t−1∑

i=1

N∑

j=1

Uij ≤
B

N(t− 1)µ2

t−1∑

i=1

N∑

j=1

∥q̂i − qi∥1 + ∥q̂t − qt∥1 (G.74)

≤ B
√
K

µ2(t− 1)

t−1∑

i=1

∥q̂i − qi∥2 + ∥q̂t − qt∥2 (G.75)

≤(a)
B
√
K

µ2


∥q̂t − qt∥2 +

√∑t−1
i=1 ∥qi − q̂i∥22
t− 1


 (G.76)

≤(b)
B
√
K

µ2

(
∥q̂t − qt∥2 + ϕ · V

1/3
T

(t− 1)1/3

)
, (G.77)

with probability at-least 1− δ/3. In line (a) we used Jensen’s inequlaity and in the last
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line we used the fact the the online oracle attains a high probability bound on the total
squared error (TSE) (see Proposition 238).

1
N(t−1)

∑t−1
i=1

∑N
j=1 Vij can be bounded using the same expression as above using similar

logic.
To bound 1

N(t−1)

∑t−1
i=1

∑N
j=1Wij, we note that it is the sum of independent random

variables. Hence using the same arguments used to obtain Eq.(G.68), we have that

1

N(t− 1)

t−1∑

i=1

N∑

j=1

Wij ≤
B

µ

√
log(3T |H|/δ)

(t− 1)
, (G.78)

with probability at-least 1−δ/(3T |H|). Hence taking a union bound across all hypothesis
classes and across the high probability event of low TSE for the online algorithm yields
that

T2 ≤ 2B
√
K

µ2

(
∥q̂t − qt∥2 + ϕ · V

1/3
T

(t− 1)1/3

)
+
B

µ

√
log(3T |H|/δ)

(t− 1)
, (G.79)

with probability at-least 1− 2δ/(3T ).
Combining the bounds developed for T1,T2,T3 and T4 and by taking a union bound

across the event that resulted in Eq.(G.69), we obtain the following bound on instanta-
neous regret.

Lt(ht)− Lt(h
∗
t ) ≤

2B
√
K

µ2

(
∥q̂t − qt∥2 + E[|q̂t − qt∥2] + ϕ · V

1/3
T

(t− 1)1/3
+

√
log(3T |H|/δ)

(t− 1)

)
,

(G.80)

with probability at-least 1− δ/T .
Note that via Jensen’s inequality:

T∑

t=1

E[∥qt − q̂t∥2] ≤

√√√√T

T∑

t=1

E[∥qt − q̂t∥22] (G.81)

≤ ϕT 2/3V
1/3
T , (G.82)

where in the last line we used Proposition 238.
Similarly it can be shown that

T∑

t=1

∥qt − q̂t∥2 ≤ ϕT 2/3V
1/3
T , (G.83)
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under the event that resulted in Eq.(G.80).
Observe that

T∑

t=1

V
1/3
T

t1/3
≤ 2T 2/3V

1/3
T . (G.84)

Finally note that

T∑

t=1

1√
t
≤ 2
√
T . (G.85)

Hence combining the above bounds and adding Eq.(G.80) across all time steps, fol-
lowed by a union bound across all rounds, we obtain that

T∑

t=1

Lt(ht)− Lt(h
∗
t ) ≤

4B
√
K

µ2

(
3ϕT 2/3V

1/3
T +

√
T log(3T |H|/δ)

)
, (G.86)

with probability at-least 1− δ.

Next, we prove Theorem 236.

Theorem 236. Suppose the input black box ALG given to Algorithm 7 is adaptively
minimax optimal (see Definition 72). Then the number of times Algorithm 7 switches

its decision is at most Õ(T 1/3V
2/3
T ) with probability at least 1 − δ. Further, Algorithm

7 satisfies
∑T

t=1 ∥θ̂t − θt∥22 = Õ(T 1/3V
2/3
T ) with probability at least 1 − δ, where VT =∑T

t=2 ∥θt − θt−1∥1.

Proof. First we proceed to bound the number of switches. Observe that between two
time points where condition in Line 5 of Algorithm 7 evaluates true, we can have at-most
log T switches due to the doubling epoch schedule in Line 8.

We first bound the number of times, condition in Line 5 is satisfied. Suppose for some
some time t, we have that

∑t
j=b+1 ∥prev−θ̃j∥22 > 4Kσ2 log(T/δ). Suppose throughout the

run of the algorithm, this is ith time the previous condition is satisfied. Let ni := t−b+1
and let Ci = TV[b → t] where TV[p → q] =

∑q
t=p+1 ∥θt − θt−1∥1. Due to the doubling

epoch schedule, we have that that prev = 1
ℓ

∑ℓ
j=b yj and E[prev] = 1

ℓ

∑ℓ
j=b θj for some

ni ≥ ℓ ≥ (t− b+ 1)/2 = ni/2.
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So we have

t∑

j=b+1

∥prev− θ̃j∥22 ≤
t∑

j=b+1

2∥prev− θj∥22 + 2∥θ̃j − θj∥22 (G.87)

≤
t∑

j=b+1

2∥E[prev]− θj∥22 + 2∥prev− E[prev]∥22 + 2∥θ̃j − θj∥22 (G.88)

≤(a) 2(ℓC2
i + 2σ2K log(2T/δ)) + 2ϕn

1/3
i C

2/3
i (G.89)

≤ 4 max{niC
2
i , ϕn

1/3
i C

2/3
i }+ 4σ2K log(2T/δ)), (G.90)

with probability at-least 1 − δ/(T ). In line (a) we used the following facts: i) Due
to Hoeffding’s inequality, ∥prev − E[prev]∥22 ≤ σ2K log(4T/δ))/ℓ ≤ 2σ2K log(2T/δ))/ni

with probability at-least 1−δ/(2T ); ii) ∥E[prev]−θj∥2 = ∥1
ℓ

∑ℓ
i=b θi−θj∥2 ≤ 1

ℓ

∑ℓ
i=b ∥θi−

θj∥2] ≤ Ci; iii) ∥θ̃j−θj∥22 ≤ ϕn
1/3
i C

2/3
i with probability at-least 1−δ/(2T ) due to condition

in Theorem 236; iv) Union bound over the events in (i) and (iii).
Since the condition in Line 5 is satisfied at round t, Eq.(G.90) will imply that

5Kσ2 log(2T/δ) ≤ 4 max{niC
2
i , ϕn

1/3
i C

2/3
i } + 4σ2K log(2T/δ)). Rearranging the above,

we find that

Ci ≳ K/
√
ni, (G.91)

where we suppress the dependence on constants and log T .
Let the condition in Line 5 be satisfied M number of times. By union bound, we have

that with probability at-least 1− δ

VT ≥
M∑

i=1

Ci (G.92)

≳
M∑

i=1

K/
√
ni (G.93)

≳(a) KM
1√

(1/M)
∑M

i=1 ni

(G.94)

≳ KM3/2/
√
T , (G.95)

where in Line (a) we used Jensen’s inequality. Rearranging we get that

M = Õ(T 1/3V
2/3
T K−2/3), (G.96)

with probability at-least 1− δ.
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Now we proceed to bound the total squared error (TSE) incurred by Algorithm 7.
Let θ̂j be the output of Algorithm 7 at round j. Suppose at times b − 1 and c + 1, the
condition in Line (5) is satisfied. Observe that the condition in Line 5 is not satisfied
for any times in [b, c]. Then we can conclude that within the interval [b, c] we have that∑c

j=b ∥θ̂j− θ̃j∥22 ≤ 5Kσ2 log(4T/δ) log(T ), since there are only at-most log T times within
[b, c] where condition in Line 9 is satisfied. So we have that

c∑

j=b

∥θ̂j − θj∥22 ≤
c∑

j=b

∥θ̂j − θ̃j∥22 + ∥θj − θ̃j∥22 (G.97)

≤ 5Kσ2 log(2T/δ) log(T ) + ϕ · n1/3
i C

2/3
i , (G.98)

with probability at-least 1− δ/T . Here ni := b− c+ 1 and Ci := TV[b→ c]. Further we
have that ∥θ̂c+1 − θc+1∥22 ≤ 2B2 due to the boundedness condition in Definition 72.

Thus overall we have that
∑c+1

j=b = Õ(K + n
1/3
i C

2/3
i ), with probability at-least 1 − δ

for any interval [b,c+1] such that condition in Line 5 is satisfied at times b− 1 and c+ 1.
Thus we have that

T∑

t=1

∥θ̂j − θj∥22 ≾
M∑

i=1

K + n
1/3
i C

2/3
i (G.99)

≾(a) T
1/3V

2/3
T K1/3 +

M∑

i=1

n
1/3
i C

2/3
i (G.100)

≾(b) T
1/3V

2/3
T K1/3 +

(
M∑

i=1

ni

)1/3( M∑

i=1

Ci

)2/3

(G.101)

≾ T 1/3V
2/3
T K1/3, (G.102)

with probability at-least 1−δ. In line (a) we used Eq.(G.96). In line (b) we used Holder’s
inequality with the dual norm pair (3, 3/2). This concludes the proof.

We now present the tweak of Algorithm 4 by instantiating ALG with Algorithm 7
and prove its regret guarantees. The resulting algorithm is described in Algorithm 8.

Theorem 240. Assume the same notations as in Theorem 77. Suppose we run Algorithm
8 (see Appendix G.3) with ALG instantiated using Algorithm 7 with σ2 = 1/N and
predictions clipped as in Theorem 77. Further let the online regression oracle given to
Algorithm 7 be chosen as one of the candidates mentioned in Remark 237. Then with
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Algorithm 8 Lazy-TrainByWeights: handling label shift with sparse ERM calls

Input: Instance ALG of Algorithm 7, A hypothesis ClassH
1: At round t ∈ [T ], get estimated label marginal q̂t ∈ RK from ALG(s1:t−1).
2: if q̂t == q̂t−1 then
3: ht = ht−1

4: else
5: Update the hypothesis by calling a weighted-ERM oracle:

ht = argmin
h∈H

t−1∑

i=1

N∑

j=1

q̂t(yi,j)

q̂i(yi,j)
ℓ(h(xi,j), yi,j) (G.103)

6: end if
7: Get N co-variates xt,1:N and make predictions according to ht
8: Get labels yt,1:N
9: Compute st[i] = 1

N

∑N
j=1 I{yt,j = i} for all i ∈ [K].

10: Update ALG with the empirical label marginals st.

probability at-least 1− δ, we have that

RH
dynamic = Õ

(
T 2/3V

1/3
T +

√
T log(|H|/δ)

)
. (G.104)

Further, the number of number of calls to ERM oracle (via Step 5) is at-most Õ(T 1/3V
2/3
T )

with probability at-least 1− δ.

Sketch. The proof of this theorem closely follows the steps fused for proving Theorem 77.
So we only highlight the changes that need to be incorporated to the proof of Theorem
77.

Replace the use of Proposition 238 in the proof of Theorem 77 with Theorem 236.
For any round t, where Step 5 of Algorithm 8 is triggered, we can use the same argu-

ments as in the Proof of Theorem 240 to bound the instantaneous regret by Eq.(G.80).
i.e:

Lt(ht)− Lt(h
∗
t ) ≤

2B
√
K

µ2

(
∥q̂t − qt∥2 + E[|q̂t − qt∥2] + ϕ · V

1/3
T

(t− 1)1/3
+

√
log(3T |H|/δ)

(t− 1)

)
,

(G.105)

with probability at-least 1− δ/T .
For a round t, where Step 5 is not triggered, we proceed as follows:
Let t′ be the most recent time step prior to t when Step 5 is executed. Notice that
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the population loss can be equivalently represented as

Lt(h) =
1

N(t′ − 1)

t′−1∑

i=1

N∑

j=1

E

[
qt(yij)

qi(yij)
ℓ(h(xij), yij)

]
, (G.106)

where the expectation is taken with respect to randomness in the samples.
We define the following quantities:

Lemp
t (h) :=

1

N(t′ − 1)

t′−1∑

i=1

N∑

j=1

qt(yij)

qi(yij)
ℓ(h(xij), yij), (G.107)

L̃t(h) :=
1

N(t′ − 1)

t′−1∑

i=1

N∑

j=1

E

[
q̂t(yij)

q̂i(yij)
ℓ(h(xij), yij)

]
, (G.108)

and

L̃emp
t (h) :=

1

N(t′ − 1)

t′−1∑

i=1

N∑

j=1

q̂t(yij)

q̂i(yij)
ℓ(h(xij), yij). (G.109)

We decompose the regret at round t as

Lt(ht)− Lt(h
∗
t ) = Lt(ht)− L̃t(ht) + L̃t(ht)− L̃emp

t (ht) + Lemp
t (h∗t )− Lt(h

∗
t ) (G.110)

+ L̃emp
t (ht)− Lemp

t (h∗t ) (G.111)

≤ Lt(ht)− L̃t(ht)︸ ︷︷ ︸
T1

+ L̃t(ht)− L̃emp
t (ht)︸ ︷︷ ︸

T2

+Lemp
t (h∗t )− Lt(h

∗
t )︸ ︷︷ ︸

T3

(G.112)

+ L̃emp
t (h∗t )− Lemp

t (h∗t )︸ ︷︷ ︸
T4

, (G.113)

where in the last line we used Eq.(8.4). Now we proceed to bound each terms as note
above.

By using the same arguments as in Proof of Theorem 77 and replacing the use of
Proposition 238 with Theorem 236, we can bound T1-4. This will result in an instanta-
neous regret bound at round t (which doesn’t trigger step 5) as:
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Lt(ht)− Lt(h
∗
t ) ≤

2B
√
K

µ2

(
∥q̂t − qt∥2 + E[|q̂t − qt∥2] + ϕ · V

1/3
T

(t′ − 1)1/3
(G.114)

+

√
log(3T |H|/δ)

(t′ − 1)

)
, (G.115)

≤ 2B
√
K

µ2

(
∥q̂t − qt∥2 + E[|q̂t − qt∥2] (G.116)

+ ϕ · 41/3 · V
1/3
T

(t− 1)1/3
+

√
4 log(3T |H|/δ)

(t− 1)

)
, (G.117)

with probability at-least 1−δ/T . In the last line we used the fact that t′−1 ≥ (t/2)−1 ≥
(t− 1)/4 for all t ≥ 3.

Now adding Eq.(G.105) and (G.117) across all rounds and proceeding similar to
the proof of Theorem 77 (and replacing the use of Proposition 238 with Theorem 236)
completes the argument.

We next prove the matching (up to factors of log T ) lower bound.

Theorem 79. Let VT ≤ T/8. There exists a choice of hypothesis class, loss function, and

adversarial strategy of generating the data such that RH
dynamic = Ω

(
T 2/3V

1/3
T +

√
T log(|H|)

)
,

where the expectation is taken with respect to randomness in the algorithm and adversary.

Proof. First we fix the hypothesis class and the data generation strategy. In the problem
instance we consider, there are no co-variates. The hypothesis class is defined as

H := {hp : hp predicts a label y ∼ Ber(p); p ∈ [|H|]}. (G.118)

Further we design the hypothesis class such that both h0, h1 ∈ H. Next we fix the
data generation strategy:

• Divide the time horizon into batches of length ∆.

• At the beginning of a batch i, the adversary picks q̊i uniformly at random from
{1/2− δ, 1/2 + δ}.

• For all rounds t that falls within batch i, the label yt ∼ Ber(qt) is sampled with
qt := q̊i.

• Learner predicts a label ŷt ∈ {0, 1} and then the actual label yt is revealed (hence
N = 1 in the protocol of Fig.3).
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• Learner suffers a loss given by ℓt(ŷt) = I{ŷt ̸= yt}.

It is easy to see that the losses are bounded in [0, 1]. Now let’s examine the two
possibilities of generating labels within a batch. Let’s upper bound the variation incurred
by the label marginals:

T∑

t=2

|qt − qt−1| =
M∑

i=2

|̊qi − q̊i−1| (G.119)

≤ 2δM (G.120)

≤ VT , (G.121)

where the last line is obtained by choosing δ = VT/(2M) = VT∆/(2T ).
Since at the beginning of each batch, the sampling probability of true labels is in-

dependently renewed, the historical data till the beginning of a batch is immaterial in
minimising the loss within the batch. So we can lower bound the regret within each batch
separately and add them up. Below, we focus on lower bounding the regret in batch 1
and the computations are similar for any other batch.

Suppose that the probability that an algorithm predict label yt = 1 is q̂t, where q̂t
is a measurable function of the past data y1:t−1. Then we have that the population loss
Lt(q̂t) := E[ℓt(ŷt)] = (1−q̂t)qt+q̂t(1−qt). Here we abuse the notation L(qt) := L(hqt). We
see that the population loss Lt(q̂t) are convex and its gradient obeys ∇Lt(q̂t) = 1− 2qt =
E[1− 2yt] since by our construction yt ∼ Ber(qt). Thus the population losses are convex
and its gradients can be estimated in an unbiased manner from the data.

We use the following Proposition due to [15].

Proposition 241 (due to Lemma A-1 in [15]). Let P̃ denote the joint probability of the
label sequence y1:∆ within a batch when they are generated using Ber(1/2− δ). So

P̃(y1, . . . , y∆) = Π∆
i=1(1/2− δ)yi(1/2 + δ)1−yi . (G.122)

Similarly define Q̃ as

Q̃(y1, . . . , y∆) = Π∆
i=1(1/2 + δ)yi(1/2− δ)1−yi . (G.123)

According to the above distribution the data are independently sampled from Bernoulli
trials with success probability 1/2 + δ. Let q̂t be the decision of the online algorithm qt
round t so that the algorithm predicts label 1 with probability q̂t.

Let P denote the joint probability distribution across the decisions q̂1:∆ of any online
algorithm under the sampling model P̃. Similarly define Q. Note that any online algo-
rithm can make decisions at round t only based on the past observed data y1:t−1. Further
after making the decision q̂t at round t, an unbiased estimate of the population loss can be
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constructed due to the fact that ∇Lt(q̂t) = E[1− 2yt]. Under the availability of unbiased
gradient estimates of the losses, it holds that

KL(P||Q) ≤ 4∆δ2. (G.124)

By choosing δ = VT/(2M) = VT∆/(2T ) and ∆ = (T/VT )2/3, we get that KL(P||Q) ≤
1.

Since VT ≤ T/8, the above choice implies that δ ∈ (0, 1/4).
For notational clarity, define LP(q) = (1 − q)(1/2 − δ) + q(1/2 + δ) and LQ(q) =

(1−q)(1/2+δ)+q(1/2−δ). These corresponds to the population losses according to the
sampling models P and Q respectively. Observe that minq L

P(q) = minq L
Q(q) = 1/2− δ.

The minimum of LP and LQ are achieved at 0 and 1 respectively. Note that both h0, h1 ∈
H. So there is always a hypothesis in H that corresponds the minimiser of the loss.

Further whenever q̂ ≥ 1/2 we have that

LP(q) = (1/2− δ) + q(2δ) (G.125)

≥ 1/2. (G.126)

Similarly whenever q < 1/2 we have LQ(q) ≥ 1/2. So we define the selector function
as ϕt := I{q̂t ≥ 1/2}. Let q∗t ∈ {0, 1} be the minimiser of the loss at round t. Now we
can lower bound the instantaneous regret similar as

E[Lt(q̂t)− Lt(q
∗
t )] =

1

2
(EP[LP

t (q̂t)− LP
t (0)] +

1

2
(EQ[LQ

t (q̂t)− LQ
t (1)] (G.127)

≥ 1

2
(EP[LP

t (q̂t)− LP
t (0)|ϕt = 1]P(ϕt = 1) (G.128)

+
1

2
(EQ[LQ

t (q̂t)− LQ
t (1)|ϕt = 0]Q(ϕt = 0) (G.129)

≥ δ/2 max{P(ϕt = 1),Q(ϕt = 0)} (G.130)

≥ (δ/8)e−1, (G.131)

where the last line is obtained by Propositions 241 and 235.
Thus we get a total lower bound on the instantanoeus regret as

T∑

t=1

E[Lt(q̂t)− Lt(q
∗
t )] ≥ Tδ/(8e) (G.132)

= ∆VT/(16e) (G.133)

= T 2/3V
1/3
T /(16e), (G.134)

where the last line is obtained by using our choices of δVT∆/(2T ) and ∆ = (T/VT )2/3.
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The second term of of Ω(
√
T log |H|) can be obtained from the existing results on

statistical learning theory without distribution shifts. (see for example Theorem 3.23 in
[141]).

G.4 More details on experiments

In Algorithm 9, we describe the FLH-FTL algorithm from [23] when specialised to
squared error losses. When specialized to squared error losses, this algorithm runs FLH
with online averages as the base experts.

Algorithm 9 An instance of FLH-FTL from [23] with squared error losses

1: Parameter α is defined to be a learning rate
// initializations and definitions

2: For FLH-FTL instantiations within UOLS algorithms (as in Algorithm 2), we set
α ← σ2

min(C)/(8K), where C is the confusion matrix as in Assumption 1. For
instantiations within SOLS algorithms (as in Algorithm 4) we set α← 1/(8K)

3: For each round t ∈ [T ], vt := (v
(1)
t , . . . , v

(t)
t ) is a probability vector in Rt. Initialize

v
(1)
1 ← 1

4: For each j ∈ [T ], define a base learner Ej. For each t > j, the base expert outputs
Ej(t) := 1

t−j

∑t−1
i=j zj, where zj to be specified as below. Further Ej(j) := 0 ∈ RK

// execution steps

5: In round t ∈ [T ], set ∀j ≤ t, xjt ← Ej(t) (the prediction of the jth base learner at

time t). Play xt =
∑t

j=1 v
(j)
t x

(j)
t .

6: Receive feedback zt, set v̂
(t+1)
t+1 ← 0 and perform update for 1 ≤ i ≤ t:

v̂
(i)
t+1 ←

v
(i)
t e

−α∥x(i)
t −zt∥22

∑t
j=1 v

(j)
t e−α∥x(j)

t −zt∥22
(G.135)

7: Addition step - Set v
(t+1)
t+1 to 1/(t+ 1) and for i ̸= t+ 1:

v
(i)
t+1 ← (1− (t+ 1)−1)v̂

(i)
t+1 (G.136)

Rationale behind the learning rate setting at Line 2 of Algorithm 9 The
loss that is incurred by Algorithm 9 and any of its base learners at round t is defined
to be the squared error loss ℓt(x) = ∥zt − x∥22. Whenever ∥zt∥22 ≤ B2 and ∥x∥22 ≤ B2,
the losses ℓt(x) are 1/(8B2) exp-concave (see for eg. Chapter 3 of [40]). The notion of
exp-concavity is crucial for FLH-FTL algorithm since the learning rate is set to be equal
to the exp-concavity factor of the loss functions (see Theorem 3.1 in [23]).
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For the UOLS problem, from Algorithm 2, we have
∥zt∥2 = ∥C−1f0(xt)∥2 ≤

√
K/σmin(C). Since the decisions of the algorithm is a convex

combination of the previously seen zt, we conclude that the losses ℓt(x) are σ2
min(C)/(8K)

exp-concave.
For the SOLS problem, let zt = st where st is as defined in Algorithm 4. We have

that ∥zt∥2 ≤
√
K. Hence arguing in a similar fashion as above, we conclude that the

losses ℓt(x) are 1/(8K) exp-concave for the SOLS problem.
This is the motivation behind Line 2 in Algorithm 9, where the learning rates are set

according to the problem setting.

Dataset and model details.

• Synthetic: For the synthetic data, we generated 72k samples as described in [97].
There are three classes each with 24k samples generated from three Gaussian dis-
tributions in R12. Each Gaussian distribution is defined by a randomly generated
unit-norm centre v and covariance matrix 0.215 · I. 60k samples are used as source
data, and 12k samples are used as target data to be sampled from during online
learning. We used logistic regression to train a linear model. It is trained for a single
epoch with learning rate 0.1, momentum 0.9, batch size 200, and l2 regularization
1× 10−4.

• MNIST [105]: An image dataset of 10 types of handwritten digits. 60k samples are
used as source data and 10k as target data. We used an MLP for prediction with
three consecutive hidden layers of sizes 100, 100, and 20. It is trained for a single
epoch with a learning rate 0.1, momentum 0.9, batch size 200, and l2 regularization
1× 10−4.

• CIFAR-10 [106]: A dataset of colored images of 10 items: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. 50k samples are used as source
data and 10k as target data. We train a ResNet18 model ([112]) from scratch. It is
finetuned for 70 epochs with learning rate 0.1, momentum 0.9, batch size 200, and
l2 regularization 1× 10−4. The learning rate decayed by 90% at the 25th and 40th
epochs.

• Fashion [107]: An image dataset of 10 types of fashion items: T-shirt, trouser,
pullover, dress, coat, sandals, shirt, sneaker, bag, and ankle boots. 60k samples are
used as source data and 10k as target data. We trained an MLP for prediction. It
is trained for 50 epochs with learning rate 0.1, momentum 0.9, batch size 200, and
l2 regularization 1× 10−4.

• EuroSAT [108]: An image dataset of 10 types of land uses: industrial buildings,
residential buildings, annual crop, permanent crop, river, sea & lake, herbaceous
vegetation, highway, pasture, and forest. 60k samples are used as source data and
10k as target data. We cropped the images to the size (3, 64, 64). We train a
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ResNet18 model for 50 epochs with learning rate 0.1, momentum 0.9, batch size
200, and l2 regularization 1× 10−4.

• Arxiv [109]: A natural language dataset of 23 classes over different publication
subjects. 198k samples are used as source data and 22k as target data. We trained
a DistilBERT model ([113]) for 50 epochs with learning rate 2 × 10−5, batch size
64, and l2 regularization 1× 10−2.

• SHL [110, 111]: A tabular locomotion dataset of 6 classes of human motion: still,
walking, run, bike, car and bus. 30k samples are used as source data and 70k as
target data. We trained an MLP for prediction for 50 epochs with learning rate
0.1, momentum 0.9, batch size 200, and l2 regularization 1× 10−4.

For all the datasets above, the initial offline data are further split by 80 : 20 into training
and holdout data, where the former is used for offline training of the base model and the
latter for computing the confusion matrix and retraining (e.g. updating the linear head
parameters with UOGD or updating the softmax prediction with our FLT-FTL) during
online learning. To examine how well the algorithms adapt when holdout data is limited,
we use 10% of the holdout data (i.e., 2% of the initial offline data) in the main chapter
unless stated otherwise. In App. G.5.2, we ablate with full hold-out data.

Types of Simulated Shifts. We simulate four kinds of label shifts to capture different
non-stationary environments. These shifts are similar to the ones used in [97]. For each
shift, the label marginals are a mixture of two different constant marginals µ1, µ2 ∈
∆K with a time-varying coefficient αt: µyt = (1 − αt)µ1 + αtµ2, where µyt denotes the
label distribution at round t and αt controls the shift non-stationarity and patterns. In
particular, we have: Sinusoidal Shift (Sin): αt = sin iπ

L
, where i = t mod L and L is

a given periodic length. In the experiments, we set L =
√
T . Bernoulli Shift (Ber):

at every iteration, we keep the αt = αt−1 with probability p ∈ [0, 1] and otherwise set
αt = 1 − αt−1. In the experiments, the parameter is set as p = 1/

√
T , which implies

Vt = Θ(
√
T ). Square Shift (Squ): at every L rounds we set αt = 1−αt−1. Monotone Shift

(Mon): we set αt = t/T . Square, sinusoidal, and Bernoulli shifts simulate fast-changing
environments with periodic patterns.

Methods for UOLS Adaptation.

• Base: the base classifier without any online modifications.

• OFC: the optimal fixed classifier predicts with an optimal fixed re-weighting in
hindsight as in [96].

• Oracle: re-weight the base model’s predictions with the true label marginal of the
unlabeled data at each time step.
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CT
(base)

CT-RS (ours)
w FLH

CT-RS (ours)
w FLT-FTL

w-ERM
(oracle)

MNIST
Cl Err 5.0±0.5 4.71±0.2 4.53±0.1 3.2±0.4

MSE NA 0.12±0.01 0.08±0.01 NA

Table G.1: Results on SOLS setup. We report results with MNIST SOLS setup runs
for T = 200 steps. We observe that continual training with re-sampling improves over
the base model which continually trains on the online data and achieves competitive
performance with respect to weighted ERM oracle.

CT-RS (ours)
w-ERM
(oracle)

CIFAR 145±3.7 1882±14

MNIST 20±2.7 107±3.6

Table G.2: Comparison on computation time (in minutes). We report results with
MNIST and CIFAR SOLS setup runs for T = 200 steps. We observe that continual
training with re-sampling is approximately 5–15× more efficient than weighted ERM
oracle.

• FTH: proposed by [96], follow-the-history classifier re-weights the base model’s
predictions with a simple online average of all marginal estimates seen thus far.

• FTFWH: proposed by [96], follow-the-fixed-window-history classifier is a version of
FTH that tracks only the k most recent marginal estimates. We choose k = 100
throughout the experiments in this work.

• ROGD: proposed by [96], ROGD uses online gradient descent to update its re-
weighting vector based on current marginal estimate.

• UOGD: proposed by [97], retrains the last linear layer of the model based on current
marginal estimate.

• ATLAS: proposed by [97] is a meta-learning algorithm that has UOGD as its base
learners.

The learning rates of ROGD, UOGD, and ATLAS are set according to suggestions in
the original works. The learning rate of FLH-FTL is set to 1/K. This corresponds to a
faster rate than the theoretically optimal learning rate given in Line 2 of Algorithm 9. It
has been observed in prior works such as [71] that the theoretical learning rate is often
too conservative and faster rates lead to a better performance.
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G.4.1 Supervised Online Label Shift Experiment Details

For each dataset, we first fix the number of time steps and then simulate the label
marginal shift. To train the learner with all the methods, we store all the online data
observed giving the storage complexity of O(T ). We observe N = 50 examples at every
iteration and we split the observed labeled examples into 80:20 split for training and
validation. The validation examples are used to decide the number of gradient steps at
every time step, in particular, we take gradient steps till the validation error continues
to decrease.

Dataset and model details.

• MNIST [105]: An image dataset of 10 types of handwritten digits. At each step, we
sample 50 samples with the label marginal that step without replacement and reveal
the examples to the learner. We used an MLP for prediction with three consecutive
hidden layers of sizes 100, 100, and 20. It is trained for a single epoch with a learning
rate 0.1, momentum 0.9, batch size 200, and l2 regularization 1× 10−4.

• CIFAR-10 [106]: A dataset of colored images of 10 items: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. At each step, we sample 50 samples
with the label marginal that step without replacement and reveal the examples to
the learner. It is finetuned for 70 epochs with learning rate 0.1, momentum 0.9,
batch size 200, and l2 regularization 1× 10−4.

We simulate Bernoulli label shifts to capture different non-stationary environments.

Connection of CT-RS to weighted ERM Before making the connection, we first
re-visit the CT-RS algorithm. Step 1: Maintain a pool of all the labeled data received
till that time step, and at every iteration, we randomly sample a batch with uniform label
marginal to update the model. Step 2: Re-weight the softmax outputs of the updated
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model with estimated label marginal. Below we show that it is equivalent to wERM:

ft = argmin
f∈H

t−1∑

i=1

N∑

j=1

q̂t(yi,j)

q̂i(yi,j)
ℓ(f(xi,j), yi,j)

= argmin
f∈H

K∑

k=1

q̂t(k)
t−1∑

i=1

N∑

j=1

I (yi,j = k)

q̂i(k)
ℓ(f(xi,j), k)

= argmin
f∈H

K∑

k=1

q̂t(k)

(1/K)

t−1∑

i=1

N∑

j=1

I (yi,j = k)

K · q̂i(k)
ℓ(f(xi,j), k)

= argmin
f∈H

K∑

k=1

µ̂t,k

t−1∑

i=1

N∑

j=1

I (yi,j = k)

µ̂i,k

ℓ(f(xi,j), k)

︸ ︷︷ ︸
Lt−1,k

where µ̂t,k = q̂t(k)/(1/K) is the importance ratio at time i with respect to uniform label
marginal. Similarly, we define µ̂i,k = q̂i(k)/(1/K). Here, Lt−1,k is the aggregate loss at
t-th time step for k-th class such that at each step the sampling probability of that
class is uniform. By continually training a classifier with CT-RS, Step 1 approximates
the classifier f̃t trained to minimize the average of Lt−1,k over all classes with uniform

proportion for each class. To update the classifier f̃t according to label proportions at
time t, we update the softmax output of f̃t according to µ̂t.

The primary benefit of CT-RS over wERM is to avoid re-training from scratch at
every iteration. Instead, we can leverage the model trained in the previous iteration to
warm-start training in the next iteration.
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G.5 Additional Unsupervised Online Label Shift Ex-

periments

G.5.1 Additional results with Monotone and Square Shifts and
Low Amount of Holdout Data

Methods Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Mon Squ Mon Squ Mon Squ Mon Squ Mon Squ Mon Squ

Base 8.7±0.1 8.5±0.2 4.7±0.0 4.4±0.2 17±0 17±0 13±0 13±0 15±0 15±0 22±0 21±0

OFC 6.9±0.1 6.6±0.3 4.1±0.1 3.9±0.2 14±0 14±0 11±1 11±0 9.0±0.0 9.6±0.5 18±1 18±0

Oracle 5.2±0.2 3.6±0.2 2.5±0.1 2.2±0.1 7.7±0.1 6.8±0.2 5.3±0.2 4.4±0.0 5.1±0.1 4.1±0.1 6.9±0.3 6.6±0.2

FTH 7.1±0.3 6.8±0.4 4.1±0.1 4.0±0.0 13±1 13±0 11±0 11±0 9.3±0.6 8.9±0.4 19±1 18±0

FTFWH 6.3±0.2 7.0±0.0 4.0±0.0 4.1±0.1 12±0 13±0 9.9±0.2 11±0 8.4±0.3 9.1±0.5 18±1 18±0

ROGD 7.8±0.3 7.8±0.3 4.5±0.2 5.4±1.7 14±1 15±0 11±0 14±1 8.9±0.4 10±1 19±1 21±1

UOGD 8.1±0.3 8.1±0.5 4.9±0.1 4.8±0.4 15±1 15±0 10±1 11±1 11±2 12±2 20±1 19±0

ATLAS 8.0±0.0 8.2±0.5 4.6±0.2 4.5±0.3 15±1 15±0 10±1 11±1 12±2 12±1 20±1 19±1

FLH-FTL (ours) 6.3±0.3 5.6±0.4 4.0±0.0 4.0±0.0 12±0 12±0 10±0 10±0 8.6±0.4 8.4±0.4 18±1 17±0

Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Mon Squ Mon Squ Mon Squ Mon Squ Mon Squ Mon Squ

FTH 0.11±0.00 0.21±0.01 0.14±0.00 0.27±0.00 0.15±0.01 0.28±0.00 0.14±0.01 0.28±0.00 0.16±0.02 0.28±0.01 0.18±0.00 0.30±0.00

FTFWH 0.05±0.00 0.23±0.01 0.07±0.00 0.30±0.00 0.07±0.00 0.30±0.00 0.07±0.00 0.30±0.00 0.08±0.01 0.31±0.01 0.09±0.00 0.32±0.00

ROGD 0.18±0.01 0.29±0.01 0.28±0.05 0.41±0.04 0.22±0.04 0.37±0.03 0.27±0.03 0.41±0.02 0.21±0.01 0.37±0.01 0.21±0.01 0.36±0.01

FLH-FTL
(ours)

0.05±0.00 0.11±0.00 0.07±0.00 0.15±0.00 0.09±0.01 0.17±0.00 0.08±0.01 0.17±0.01 0.09±0.01 0.18±0.02 0.11±0.00 0.24±0.00

Table G.3: Results for UOLS problems with monotone and square shifts using low
amount of holdout data. Top: Classification Error. Bottom: Mean-squared error in
estimating label marginal.
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G.5.2 Additional results with All of Holdout Data

Methods Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

Base 8.6±0.3 8.2±0.3 3.8±0.3 3.9±0.0 17±0 16±0 13±0 13±0 15±0 15±0 23±0 19±0

OFC 6.7±0.2 5.5±0.2 3.4±0.4 3.4±0.2 13±0 11±0 11±1 9.8±1.3 8.3±0.5 6.8±0.2 21±1 14±0

Oracle 3.7±0.1 3.7±0.1 1.7±0.2 1.5±0.1 6.3±0.1 5.9±0.1 4.0±0.0 4.1±0.1 3.5±0.2 3.6±0.1 7.8±0.2 5.1±0.1

FTH 6.8±0.2 5.5±0.3 3.2±0.2 3.2±0.2 12±0 10±0 11±0 9.5±0.1 8.0±0.0 6.8±0.2 20±0 14±0

FTFWH 6.6±0.3 5.5±0.2 3.3±0.2 3.2±0.1 12±0 10±0 10±0 9.4±0.2 7.9±0.0 6.9±0.2 20±0 14±0

ROGD 7.8±0.3 7.2±0.3 4.7±0.3 3.3±0.2 15±0 11±0 11±0 10±0 14±5 8.2±0.2 23±0 16±1

UOGD 7.6±0.4 7.0±0.0 3.2±0.2 3.2±0.2 11±0 10±0 7.7±0.0 7.3±0.2 9.6±0.2 8.6±0.1 19±0 14±0

ATLAS 7.5±0.3 6.8±0.3 3.2±0.3 3.2±0.2 12±0 11±0 9.1±0.0 8.3±0.2 12±0 11±0 21±0 16±0

FLH-FTL (ours) 5.4±0.3 5.3±0.2 3.2±0.2 3.3±0.2 11±0 10±0 9.4±0.2 9.3±0.1 7.5±0.1 7.0±0.0 19±0 14±0

Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

FTH 0.20±0.00 0.10±0.00 0.25±0.00 0.14±0.00 0.28±0.00 0.14±0.00 0.27±0.00 0.14±0.00 0.27±0.00 0.14±0.00 0.29±0.00 0.15±0.00

FTFWH 0.19±0.00 0.09±0.00 0.24±0.00 0.13±0.00 0.24±0.00 0.13±0.00 0.26±0.00 0.13±0.00 0.24±0.00 0.13±0.00 0.28±0.00 0.15±0.00

ROGD 0.29±0.00 0.23±0.00 0.43±0.00 0.33±0.00 0.31±0.00 0.21±0.00 0.41±0.00 0.34±0.00 0.45±0.08 0.31±0.00 0.34±0.00 0.28±0.00

FLH-FTL
(ours)

0.09±0.00 0.08±0.00 0.13±0.00 0.12±0.00 0.15±0.00 0.13±0.00 0.15±0.00 0.13±0.00 0.15±0.00 0.13±0.00 0.22±0.00 0.15±0.00

Table G.4: Results for UOLS problems using all hold-out data. Top: Classification
Error. Bottom: Mean-squared error in estimating label marginal. Compared to the
result in the main paper (Table 8.1), we observe that the performances of ROGD,
UOGD, and ATLAS depend more on availability of holdout data that FLH-FTL.
Notably, UOGD becomes competitive in the majority of the datasets when abundant
holdout data are available.
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G.5.3 Ablation over Number of Online Samples

Here we examine how different algorithms perform as the number of online samples
varies. We introduce an additional baseline BBSE, which simply uses the label marginal
estimate provided by black box shift estimator to reweight the predictions of classifiers.
Figure G.1 shows an interesting trend that as number of online samples increases, the
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Figure G.1: Performances of online learning algorithms with different number of
online samples. CIFAR-10 results with bernouli shift and limited holdout data. Solid
line is the classification error (Error) and the dotted line is the marginal estimation
mean squared error (MSE).

simple baseline BBSE becomes more competitive and eventually outperforms UOGD,
whereas our algorithm remains competitive.

G.5.4 Ablation over Types of Marginal Estimates

All the algorithms examined in this work use black box shift estimate (BBSE) [91]
to obtain an unbiased estimate of the target label marginal. However, two alternative
methods exist: Maximum Likelihood Label Shift (MLLS) [90] and Regularized Learning
under Label Shift (RLLS) [94]. Table G.5 presents additional results using these two
estimates. The results shows using the alternative estimates do not substantially change
the performances of the algorithms considered in this work.
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Datasets Synthetic CIFAR Fashion

MARG EST. BBSE MLLS RLLS BBSE MLLS RLLS BBSE MLLS RLLS

Bernouli

Base 8.6±0.2 8.6±0.2 8.6±0.2 16±0 16±0 16±0 15±0 15±0 15±0

OFC 6.4±0.6 6.4±0.6 6.4±0.6 12±1 12±1 12±1 7.9±0.1 7.9±0.1 7.9±0.1

FTH 6.5±0.6 6.5±0.7 6.5±0.7 11±0 11±1 11±0 8.5±0.3 8.0±0.0 8.6±0.2

FTFWH 6.6±0.5 6.7±0.5 6.6±0.5 11±1 11±1 11±1 8.2±0.6 7.9±0.2 8.3±0.6

ROGD 7.9±0.3 7.9±0.3 7.9±0.2 16±3 16±3 15±2 10±1 10±1 9.6±1.2

UOGD 8.1±0.6 8.0±1.0 8.0±1.0 14±0 13±0 14±0 11±2 10±1 11±1

ATLAS 8.0±1.0 7.9±0.5 8.0±1.0 13±0 13±0 13±0 12±2 11±1 12±1

FLH-FTL (ours) 5.4±0.7 5.4±0.8 5.4±0.7 10±0 10±1 10±0 7.7±0.4 7.3±0.3 7.6±0.3

Sinusoidal

Base 8.2±0.3 8.2±0.3 8.2±0.3 16±0 16±0 16±0 15±0 15±0 15±0

OFC 5.5±0.2 5.5±0.2 5.5±0.2 11±0 11±0 11±0 7.1±0.1 7.1±0.1 7.1±0.1

FTH 5.7±0.3 5.7±0.2 5.7±0.2 11±0 11±0 11±0 6.9±0.4 6.6±0.2 6.8±0.4

FTFWH 5.7±0.3 5.6±0.2 5.7±0.3 11±0 11±0 11±0 6.9±0.4 6.6±0.3 6.9±0.4

ROGD 7.2±0.6 7.2±0.6 7.2±0.6 13±0 13±0 13±0 8.2±0.7 8.9±0.6 8.2±0.3

UOGD 7.5±0.6 7.4±0.5 7.4±0.5 14±1 13±1 14±1 11±2 9.4±0.9 11±2

ATLAS 7.5±0.6 7.4±0.6 7.4±0.6 13±1 13±1 13±1 12±2 11±1 12±2

FLH-FTL (ours) 5.4±0.4 5.4±0.3 5.4±0.4 11±0 10±0 11±0 7.0±0.0 6.6±0.2 6.9±0.4

Table G.5: Performances of online learning algorithms with different types of
marginal estimates with low amount of holdout data.
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G.5.5 Additional results and details on the SHL dataset
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Figure G.2: Additional results and details on the SHL datasets with real shift. (a)
and (b): The accuracies and mean square errors in label marginal estimation on
SHL dataset over 7,000 time steps with limited amount of holdout data. (c): Label
marginals of the six classes of SHL dataset. Each time step here shows the marginals
over 700 samples.

G.5.6 Reweighting Versus Retraining Linear Layer

Here we compare the efficacies of re-weighting (RW-FLH-FTL) and retraining (RT-
FLH-FTL) given the marginal estimate provided by FLH-FTL; the latter retrains the last
linear layer on the loss of the holdout data re-weighted by the marginal estimate. Note
that RW-FLH-FTL corresponds to FLH-FTL in the main text. We retrain RT-FLH-FTL
for 50 epochs at each time step. To compare against the best possible retrained classifiers,
we used all the holdout data for retraining. Table G.6 shows that retraining is often worse
and at best similar to re-weighting in performance, despite greater computational cost
and need for holdout data.

Datasets Synthetic CIFAR

Shift Mon Sin Ber Squ Mon Sin Ber Squ

Base 8.7±0.1 8.2±0.3 8.6±0.3 8.5±0.2 17±0 16±0 17±0 17±0

OFC 6.8±0.1 5.5±0.2 6.7±0.2 6.7±0.3 14±0 11±0 13±0 13±1

FTFWH 7.0±0.0 5.5±0.3 6.8±0.2 6.8±0.3 13±0 10±0 12±0 13±0

UOGD 7.4±0.1 7.0±0.0 7.6±0.4 7.6±0.2 12±0 10±0 11±0 13±0

RW-FLH-FTL
(ours)

6.3±0.2 5.3±0.2 5.4±0.3 5.5±0.2 12±0 10±0 11±0 12±0

RT-FLH-FTL (ours) 6.7±0.1 6.2±0.2 6.0±0.0 6.3±0.4 12±0 10±0 11±0 12±0

Table G.6: Comparison of performances of re-weighting and retraining strategies with
high amount of holdout data.

404



Appendix H

Supplementary Materials for
Chapter 9

H.1 Detailed Proof

H.1.1 Proof of Lemma 86

Proof. To begin with, we know that

ht(θ) = −It ·
f(ω)

1− F (ω)
+ (1− It) ·

f(ω)

F (ω)
,

where ω = vt − x⊤t θ. Since ∃θt ∈ Dt such that vt = J(x⊤t θt), given that J ′(u) ∈ (0, 1)
[118], we know that ω ∈ [J(−B) − B, J(B) + B] is bounded in a closed interval. Since
we assume that f(ω) > 0,∀ω ∈ R, we know that fmin = infω∈[J(−B)−B,J(B)+B] f(ω) > 0
and F (ω) ∈ [F (J(−B) − B), F (J(B) + B)] ⊂ (0, 1). Remember that we denote Bf :=
supω∈R f(ω) < +∞. As a result, we have

0 < fmin ≤
f(ω)

1− F (ω)
≤ Bf

1− F (J(B) +B)
< +∞

0 < fmin ≤
f(ω)

F (ω)
≤ Bf

F (J(−B)−B)
< +∞.

(H.1)

Since ht(θ) = f(ω)
1−F (ω)

for It = 1 or h(t) = f(ω)
F (ω)

for It = 0, we know that |ht(θ)| ∈
[fmin,

Bf

min{1−F (J(B)+B),F (J(−B)−B)} ]. Let hmax =
Bf

min{1−F (J(B)+B),F (J(−B)−B)} and hmin =
fmin, and the lemma is therefore proved.
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H.1.2 Proof of Lemma 92

Proof. We have that for any θ ∈ DB
∞,

|ℓ̂t(θ)− ℓ̂t(θ̂t)| =
∣∣∣1/
√
β +

√
β · ∇ℓt(θ̂t)⊤(θ − θ̂t)

∣∣∣ ·
∣∣∣
√
β∇ℓt(θ̂t)⊤(θ − θ̂t)

∣∣∣ (H.2)

≤
(

1 + 2GBβ
√
d
)
|∇ℓt(θ̂t)⊤(θ − θ̂t)|, (H.3)

where in the last line we apply triangle inequality and the facts that |∇ℓt(θ̂t)⊤(θ− θ̂t)| ≤
G∥θ − θ̂t∥2 with ∥θ − θ̂t∥2 ≤ 2B

√
d.

Putting G′ = 1 + 2GBβ
√
d completes the lemma.

H.1.3 Proof of Lemma 93

Proof. For the simplicity of notation, we denote ∇t := ∇ℓt(θ̂t), and we have: St(θ) =
minx∈Dt |∇⊤

t (x− θ)|. Since St(θ) is convex in Rd, we have:

St(θ2) ≥ St(θ1) + ⟨∇St(θ1), θ2 − θ1⟩,∀θ1, θ2 ∈ DB
∞.

Now we conduct an orthogonal decomposition: ∇St(θ1) = µ1∇t +∇⊥
t , where ∇⊤

t ∇⊥
t = 0.

Let θ3 = θ2 + µ2∇⊥
t , and we have |∇⊤

t (x− θ2)| = |∇⊤
t (x− θ3)|,∀x ∈ Rd. In other words,

we have St(θ2) = St(θ3) and therefore we have:

St(θ2) = St(θ3) ≥ St(θ1) + ⟨∇St(θ1), θ3 − θ1⟩
= St(θ1) + ⟨µ1∇t +∇⊥

t , θ2 + µ2∇⊥
t − θ1⟩

= St(θ1) + ⟨∇St(θ1), θ2 − θ1⟩+ µ2⟨∇⊥
t ,∇⊥

t ⟩,∀θ2 ∈ Rd, µ2 ∈ R

In other words, µ2∥∇⊥
t ∥22 ≤ St(θ2)−St(θ1)−⟨∇St(θ1), θ2−θ1⟩. Denote η1 = argminx∈Dt

|∇⊤
t (x−

θ1)|, and η2 = argminx∈Dt
|∇⊤

t (x− θ2)|. Notice that

St(θ2)− St(θ1) =|∇⊤
t (η2 − θ2)| − |∇⊤

t (η1 − θ1)|
≤|∇⊤

t (η1 − θ2)| − |∇⊤
t (η1 − θ1)|

≤|∇⊤
t (θ1 − θ2)|

≤∥∇t∥2 · ∥θ1 − θ2∥2
≤G · ∥θ1 − θ2∥2.

(H.4)

Here the first inequality comes from the definition of η2, the second inequality is an
application of the triangular inequality, the third inequality is derived from Cauchy-
Schwarz Inequality, and the last inequality is from Assumption A5 on the Lipschitzness
of ℓt(θ) over Dt. Therefore, St(θ) is G-Lipschitz as well over DB

∞, and we have:
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µ2∥∇⊥
t ∥22 ≤ St(θ2)− St(θ1)− ⟨∇St(θ1), θ2 − θ1⟩
≤ 2G∥θ2 − θ1∥2.

This holds for any θ1, θ2 ∈ DB
∞. However, we may fix θ1 and θ2 while also let µ2 → +∞

since it holds for any µ2 ∈ R. If ∥∇⊥
t ∥2 ̸= 0 then it will fall into a contradiction.

Therefore, we know that ∇⊥
t = 0 and ∇St(θ) is always in the same direction of ∇t.

Without losing generality, denote ∇St(θ1) := λ · ∇t. In the following, we will prove
that λ = ±1 or 0. From Eq. (H.4) line 3, we know that St(θ2)− St(θ1) ≤ |∇⊤

t (θ1 − θ2)|.
Combined with the convexity of St(θ), we have:

|∇⊤
t (θ1 − θ2)| ≥St(θ2)− St(θ1)

≥∇St(θ1)
⊤(θ2 − θ1)

=λ · ∇⊤
t (θ2 − θ1).

(H.5)

Notice that we can choose arbitrary θ2 without changing λ, we may let θ2 = 0 and
θ2 = 2θ1 in Eq. (H.5):

±λ · ∇⊤
t θ1 ≤ |∇⊤

t θ1| (H.6)

If ∇⊤
t θ1 ̸= 0, then we have λ ∈ [−1, 1]. Otherwise, we know from Eq. (H.5) that

|∇⊤
t θ2| ≥ λ · ∇⊤

t θ2,∀θ2, and similarly we have λ ∈ [−1, 1]. Now we denote θ4 := θ1+η1
2

,
and we have:

⟨∇St(θ1), θ4 − θ1⟩+ St(θ1) ≤ St(θ4) (H.7)

from the convexity of St. And we also have:

St(θ4) = min
x∈Dt

|∇⊤
t (x− θ4)|

≤ |∇⊤
t (η1 − θ4)|

= |∇⊤
t

θ1 − η1
2
|

=
1

2
St(θ1)

= |∇⊤
t (θ1 − θ4)|

= St(θ1)− |∇⊤(θ1 − θ4)|.

(H.8)

Combine Eq. (H.7) and (H.8), we have:

⟨∇St(θ1), θ4 − θ1⟩ ≤ St(θ4)− St(θ1) = −|∇⊤
t (θ1 − θ4)| (H.9)

Plug in ∇St(θ1) = λ∇t to Eq. (H.9), and we have:

λ · ∇⊤
t (θ4 − θ1) ≤ −|∇⊤

t (θ1 − θ4)|. (H.10)

According to Eq. (H.10), if ∇⊤
t (θ4 − θ1) > 0, then we have λ ≤ −1; if ∇⊤

t (θ4 − θ1) < 0,
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then we have λ ≥ 1. Since we already know that λ ∈ [−1, 1], then for the two case we
should have λ = −1 or λ = 1.

Finally, what if ∇⊤
t (θ4 − θ1) = 0? In this case, it means that ∇⊤

t (η1 − θ1)/2 = 0.
Since η1 = argminx∈Dt

|∇⊤
t (x− θ1)|, we know that St(θ1) = 0 at this time. Since St(θ) ≥

0,∀θ ∈ Rd, we know that St(θ) ≥ St(θ1) + 0⊤(θ − θ1) and as a result 0 ∈ ∂St(θ1). This
in fact holds the lemma.

H.1.4 Proof of Lemma 94

Proof. We begin by noticing that ℓ̂t(θ) is exp-concave over DB
∞. To see this, note that

by the triangular inequality and Cauchy-Schwarz Inequality,

|∇ℓt(θ̂t)⊤(θ − θ̂t)
√
β + 1/(2

√
β)| ≤ |∇ℓt(θ̂t)⊤(θ − θ̂t)|

√
β + 1/(2

√
β) ≤ 2GB

√
dβ + 1/(2

√
β),

(H.11)

where we use the fact that ∥∇ℓt(θ̂t)∥2 ≤ G by Assumption A5 and ∥θ− θ̂t∥2 ≤ 2B
√
d as

θ ∈ DB
∞ and θ̂t ∈ Dt ⊂ DB

∞.
With γ as defined in the statement of the lemma, we have that the losses ℓ̂t(θ) are

2γ exp-concave over DB
∞. [?, see]Section 3.3]BianchiBook2006.

Now we proceed to show that the losses ft(θ) are in-fact exp-concave with appropriate
exp-concavity factor.

For the sake of brevity, let us denote

∇ℓ̂t(u) = 2
√
β

(
∇ℓt(θ̂t)⊤(u− θ̂t)

√
β +

1

2
√
β

)
∇ℓt(θ̂t) (H.12)

:= p(u)∇ℓt(θ̂t). (H.13)

We have that for any u, v ∈ DB
∞,

ℓ̂t(v) ≥ ℓ̂t(u) + p(u)∇ℓt(θ̂t)⊤(v − u) (H.14)

+ γ
(
p(u)∇ℓt(θ̂t)⊤(v − u)

)2
. (H.15)

Due to convexity, we have

St(v) ≥ St(u) + λ∇ℓt(θ̂t)⊤(v − u), (H.16)

for some λ ∈ {−1, 0, 1} as per Lemma 93.
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Adding Eq.(H.15) and (H.16), we obtain

ft(v) ≥ ft(u) +∇ft(u)⊤(u− v) (H.17)

+ γp(u)2
(
∇ℓt(θ̂t)⊤(v − u)

)2
(H.18)

= ft(u) +∇ft(u)⊤(u− v) (H.19)

+ γ

(
p(u)

λ+ p(u)

)2 (
∇ft(u)⊤(v − u)

)2
. (H.20)

Next, we proceed to obtain a lower bound on the exp-concavity factor. Note that

p(u) ≥ 2
√
β

(
−2GB

√
dβ +

1

2
√
β

)
≥ 2
√
β · 1

4
√
β

=
1

2
(H.21)

where the first inequality is via Cauchy-Schwarz Inequality and the second inequality
holds due to the fact that β ≤ 1/(8GB

√
d) due to the setting in Theorem 90

Similarly we have that

|p(u) + λ| ≤ 4GBβ
√
d+ 2 ≤ 5/2, (H.22)

where in the last line we used β ≤ 1/(8GB
√
d).

Combining the last two displays, we have that

γ

(
p(u)

λ+ p(u)

)2

≥ γ/25. (H.23)

Applying this lower bound to Eq.(H.20) now yields the exp-concavity of ft(θ) claimed
in the lemma.

Next, we proceed to calculate the Lipschitz constant of ft. Since ∥∇ℓt(θ̂t)∥2 ≤ G, by
Lemma 93 we conclude that G′St(θ) is G′G Lipschitz in L2 norm across Rd. Now using
Lemma 92 we conclude that the losses ft are 2G′G are Lipschitz in L2 norm across DB

∞.

H.1.5 Proof of Lemma 97

[?, ]Lemma 7]xu2021logarithmic has proved the Cdown

Cexp
-exp-concavity. Here we prove

the other claim on Lipschitzness.

Proof. Notice that ℓt(θ) is a continuous function. Therefore, for any θ1, θ2 ∈ Dt, there
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exists a θ3 = ϵθ1 + (1− ϵ)θ2 for some ϵ ∈ [0, 1] such that

ℓt(θ1)− ℓt(θ2) = ∇ℓt(θ3)⊤(θ1 − θ2)
= ht(θ3)x

⊤
t (θ1 − θ2)

≤ hmax∥xt∥2∥θ1 − θ2∥2
= hmax∥θ1 − θ2∥2
= G∥θ1 − θ2∥2

(H.24)

where hmax is defined in Appendix H.1.1. In Eq.(H.24), the first equality is by Lagrange
interpolation, the second equality is by definition of ht(θ), the third inequality is by
Cauchy-Schwarz Inequality, the fourth equality is by the assumption that xt ∈ D1

2, and
the last inequality is from the fact that hmax = G. Since Dt is convex, we know that
θ3 ∈ Dt. Therefore, the lemma is proven.

H.1.6 Lower Bound Proof (Proof of Theorem 99)

Here we present and prove the following theorem, which is sufficient to show a

Ω(T
1
3C

2
3
T ) lower bound for CT >

1√
T

.

Theorem 242. Consider a feature-based dynamic pricing problem with d = 1, xt =
1, Nt ∼i.i.d. N (0, 1), t = 1, 2, . . . , T and CT > 1√

T
For any algorithm A there exists a

specific setting such that A suffer Ω(T
1
3C

2
3
T ) expected regret even with yt observable.

The sufficiency comes from the fact that we cannot observe any realized yt’s in the
pricing problem (but a binary indicator instead). In comparison, the lower bound in
Theorem 242 even works for observable yt’s, which is sufficient to derive the binary
feedback (by comparing yt with vt).

Proof. To summarize the procedure of proof: Denote [n] := {1, 2, . . . , n} for any positive

integer n. Define θ0 = 1, θ1 = 1 + δ(T,CT ) where δ = 1
40

(CT

T
)
1
3 is an additional amount.

Then we construct a set S ⊂ {0, 1}T consisting of randomly-sampled β(i) ∈ {0, 1}T , i =
1, 2, . . . , N that we will use to construct θ∗t (i) series (each i indicating a specific {θ∗t }
series) later. Afterward, we will show that the {θ∗t (i)} and the {θ∗t (j)} series are hard to
distinguish by any algorithm, and we will further show that a large enough regret caused
by this misspecification. In this way, we can prove an expected lower regret bound (where
the expectation is also taken over different {θ∗t (i)}).

The process to sample each β(i) is as follows: We split [T ] uniformly into m = CT

4δ

intervals, with each length 4Tδ
CT

. Since δ = 1
40

(CT

T
)
1
3 and CT ≥ 1√

T
, we know that m ≥

10. Denote these intervals as I1, I2, . . . , Im. For any β(i) ∈ S, we construct it in a
stochastic process: For each index interval Ik, k = 1, 2, . . . ,m, we generate a random
variable Z

(i)
k ∼ Ber(1

2
) independently, and then let β

(i)
l = Z

(i)
k , ∀l ∈ Ik. Denote the
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vector Z(i) = [Z
(i)
1 , Z

(i)
2 , . . . , Z

(i)
m ]⊤ ∈ {0, 1}m, and we know that E[∥Z(i) − Z(j)∥1] = m

2
.

Accordingly, we have E[∥β(i) − β(j)∥1] = m
2
· 4Tδ

CT
= T

2
.

Therefore, according to Hoeffding’s inequality, we have:

Pr[|∥Z(i) − Z(j)∥1 −
m

2
| ≤ m

6
] ≥1− 2 · e−

(m6 )2

2m

⇔ Pr[|∥β(i) − β(j)∥1 −
T

2
| ≤ T

6
] ≥1− 2 · e−m

72 ,∀i, j ∈ [N ].

(H.25)

By applying a union bound over all
(
N
2

)
pairs of i, j ∈ [N ], we have:

Pr[|∥β(i) − β(j)∥1 −
T

2
| ≤ T

6
,∀i, j ∈ [N ]] ≥ 1−N2 · e−m

72 . (H.26)

Also, we know that Pr[β(i) ̸= β(j)] = Pr[Z(i) ̸= Z(j)] = 1 − 1
2m

for i ̸= j. By applying a

union bound over all
(
(N
2)

)
pairs of i, j, we have Pr[β(i) ̸= β(j)] ≥ 1 − N2

2m+1 . Combining
these two probability bounds, we know that in this way we can find a satisfactory set S
with probability at least Pr ≥ 1 − N2 · (e−m

72 + 2−(m+1)). Let N = e
m
200 (and therefore

logN = m
200

= CT

800δ
), and then Pr ≥ 1−N2·(e−m

72 +2−(m+1)) ≥ 1−(e−
m
300 +e−

3
5
m). Since the

total number of possible S (i.e., any set consisting N (repeatable) vectors β ∈ {0, 1}T ) is
(2m)N and we are uniformly sampling from this whole family, the expected total number

of satisfactory S is at least (2m)N · (1 − (e−
m
300 + e−

3
5
m)). Since m ≥ 10 as we showed

above, we have (2m)N · (1 − (e−
m
300 + e−

3
5
m)) ≥ 210×1 · (1 − e− 1

30 − e−6) = 31.0325 > 1.
As a result, there must exist at least one satisfactory S in the whole possible set family,
such that: (1) T

3
≤ ∥β(i) − β(j)∥1 ≤ 2T

3
, and (2) β(i) ̸= β(j),∀i ̸= j ∈ [N ]. We here pick

this satisfactory S and in the following we use it for further proof.
Now, for each β(i) ∈ S, we generate a sequence of parameter {θ∗t (i)} according to β(i):

For t = 1, 2, . . . , T , we let θ∗t (i) = 1 + δ · β(i)
t , i.e., if β(i) = 0, then θ∗t (i) = θ0 = 1; if

β(i) = 1, then θ∗t (i) = 1 + δ. Therefore, we have the following result:

TV({θ∗t (i)}) ≤ m · δ =
CT

4
< CT . (H.27)

This is because ∥θ∗t (i)−θ∗t+1(i)∥ > 0 only if ∃k ∈ [m] s.t. t ∈ Ik, t+ 1 ∈ Ik+1. As a result,
the total variation of this {θ∗t (i)} satisfies the upper bound CT .

Now, let us consider the realized valuation sequence {yt}. For any i ∈ [N ], denote

y(i) := [x1(1 + β
(i)
1 δ) +N1, x2(1 + β

(i)
2 δ) +N2, . . . , xT (1 + β

(i)
T ) +NT ]⊤

Let us denote the distribution of y(i) as Pi, i = 1, 2, . . . , N . Recall that xt = 1 and

Nt ∼ N (0, 1),∀t, and we have Pi = [N (1 + β
(i)
1 δ, 1),N (1 + β

(i)
2 δ, 1), . . . ,N (1 + β

(i)
T δ)]⊤.

Consider the difference between Pi and Pj while fixing β(i) and β(i), and for any i, j ∈
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[N ], i ̸= j we have:

KL[Pi||Pj] =
T∑

t=1

KL[N (1 + β
(i)
t δ, 1)||N (1 + β(j)δ, 1)]

=
T∑

t=1

(β
(i)
t − β(j)

t )2δ2

2

=
δ2

2
· ∥β(i) − β(j)∥22

=
δ2

2
· ∥β(i) − β(j)∥1.

(H.28)

Again, the KL-divergence is conditioning on β(i) and β(j). Here the first line is from the
fact that yt’s are independent for every t, the second line is by xt = 1, the third line is

from the fact that KL[N (µ1, σ1)||N (µ2, σ2)] = log σ2

σ1
+

σ2
1+(µ1−µ2)2

2σ2
2

− 1
2
, the fourth line is

by calculation and the fifth line is from that |β(i)
t − β(j)

t | ∈ {0, 1}.
Here we introduce a Fano’s Inequality as the following proposition:

Proposition 243 (Fano’s Inequality). Let X1, X2, . . . , Xn ∼i.i.d. P where
P ∈ {P1,P2, . . . ,PN} is a distribution family. Let Ψ be any function of X1, X2, . . . , Xn

taking values in {1, 2, . . . , N}. Let α = maxj ̸=kKL(Pj||Pk).1 Then

1

N

N∑

j=1

Pj(Ψ ̸= j) ≥ 1− nα + log 2

logN
. (H.29)

According to Fano’s Inequality, we have:

inf
Ψ:RT→{1,2,...,N}

sup
i∈{1,2,...,N}

Pi(Ψ ̸= i) ≥ inf
Ψ

1

N

N∑

i=1

Pi(Ψ ̸= i) ≥ 1− nα + log 2

logN
≥ 1

2
− nα

logN
.

(H.30)
Here n = 1 since only one specific y(i) covers the whole time series and is only sampled
once, and α = maxi,j∈[N ],i ̸=j KL[y(i)||y(j)] = maxi,j∈[N ],i ̸=j

δ2

2
· ∥β(i) − β(j)∥1 ≤ δ2T

3
is the

upper bound of KL-divergences on different distributions. Now we specify the function
ΨA for any pricing algorithm A: At each round t = 1, 2, . . . , T , suppose the algorithm A
proposes a price vAt . Define a vector w = [w1, w2, . . . , wT ]⊤ where wt = I[vAt ≥ J(θ0)+J(θ1)

2
]

1Usually it is denoted as β, but here we denote it as α for clarity, since we have already defined β(i)

as vectors in S.
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is a Boolean value. Then we let ΨA = argmini ∈ [N ]∥w − β(i)∥1. Therefore, we have:

2 · ∥w − β(j)∥1 ≥∥β(ΨA) −w∥1 + ∥w − β(j)∥1
≥∥β(ΨA) − β(j)∥1,∀j ∈ [N ], j ̸= ΨA

≥T
6

(H.31)

Here the first inequality is from the optimality of ΨA, the second inequality is from the
triangular inequality, and the third inequality is from the Hoeffding bound in Eq. (H.25).
Therefore we know that if ΨA ̸= i then we have ∥w− β(i)∥1 ≥ T

12
, which further leads to

T∑

t=1

(vAt − J(xtθ
∗
t (i)))2

≥
T∑

t=1

(I[wt = 1]I[β(i)
t = 0] + I[wt = 0]I[β(i)

t = 1])(vAt − J(xtθ
∗
t (i)))2

=
T∑

t=1

I[vAt ≥
J(θ0) + J(θ1)

2
]I[β(i)

t = 0](vAt − J(θ0))
2+

I[vAt <
J(θ0) + J(θ1)

2
]I[β(i)

t = 1](J(θ1 − vAt ))2

≥
T∑

t=1

I[|wt − β(i)
t | = 1](

J(θ1)− J(θ0)

2
)2

= ∥w − β(i)∥1(
J(θ1)− J(θ0)

2
)2

≥ T

12
· (J(θ0)− J(θ1)

2
)2.

(H.32)

Here the first line is because we omit the case where I[wt = β
(i)
t ], the second line is from

the definition of wt, the third line is from the facts of θ0 < θ1 and J ′(u) > 0,∀u ∈ R, the
fourth line is by the definition of L1-norm and the last line is from the fact we mentioned
prior to this equation. Now we propose a lemma of properties:

Lemma 244 (Properties of g(v, u) and J(u)). For g(v, u) and J(u) with Nt ∼ N (0, 1),
we have:

1. J(u) > u when u ∈ (0,
√

π
2
) and J(u) < u when u ∈ (

√
Π
2
,+∞).

2. ∃cJ > 0 s.t. J ′(u) ≥ cJ , ∀u ∈ [−B,B].

3. ∃cg > 0 s.t. g(J(u), u)− g(v, u) ≥ cg(J(u)− v)2, ∀v ∈ [0, B + J(B)].
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We will show the proof of Lemma 244 by the end of this section. With Lemma 244,
when ΨA ̸= i, we have:

RegA =
T∑

t=1

g(J(xtθ
∗
t (i)), xtθ

∗
t (i))− g(vAt , xtθ

∗
t (i))

≥
T∑

t=1

cg(v
A
t − J(xtθ

∗
t (i)))2

≥cg ·
T

12
· (J(θ0)− J(θ1)

2
)2

≥cg ·
T

12
· c

2
J

4
· (θ1 − θ0)2

≥cgc
2
J · Tδ2
48

.

(H.33)

Finally, let δ = 1
40

(CT

T
)
1
3 , and according to Eq. (H.28),(H.30) and (H.33), we have:

E[RegA] ≥ sup
i∈[N ]

Pi(ΨA ̸= i) · (
T∑

t=1

g(J(xtθ
∗
t (i)), xtθ

∗
t (i))− g(vAt , xtθ

∗
t (i)))

≥ sup
i∈[N ]

Pi(ΨA ̸= i) · cgc
2
J · Tδ2
48

≥(
1

2
− nα

logN
) · cgc

2
J · Tδ2
48

=(
1

2
−

δ2T
3
CT

800δ

) · cgc2J
·Tδ2
48

=cgc
2
J(

1

2
− 800

3
· δ

3T

CT

) · ·Tδ
2

48

=
cgc

2
J

48
(
1

2
− 1

240
)
T · (CT

T
)
2
3

144

≥ cgc
2
J

307200
· C

2
3
T T

1
3 .

This holds the theorem.

Also, since our upper regret bound w.r.t. T and CT is Õ(1) when CT ≤ 1√
T

, which
is trivial up to log T and d factors, we may conclude that our upper regret bound of

Õ(T
1
3C

2
3
T ∨ 1) is optimal with respect to T and CT .

Proof of Lemma 244. We here prove each of them.

1. According to [118], we know that u−J(u) is monotonically increasing since J ′(u) ∈
(0, 1). Also, since ∂g(v,u)

∂v
|v=J(u) = 1−F (J(u)−u)−J(u) · f(J(u)−u) = 0, we have
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J(
√

π
2
) =

√
π
2
. Therefore, u − J(u) > 0 when u >

√
π
2

and u − J(u) < 0 when

0 < u <
√

π
2
.

2. From [118], we know that J ′(u) = 1 + 1
ϕ′(ϕ−1(u))

∈ (0, 1),∀u ∈ R where ϕ(ω) =
1−F (ω)
f(ω)

− ω is invertible and smooth for standard Gaussian distribution. Therefore,

we know that J ′(u) is continuous. Therefore, ∃cJ > 0 such that infu∈[−B,B] J
′(u) =

cJ .

3. From the optimality of J(u) we know that ∂g(v,u)
∂v
|v=J(u) = 1−F (J(u)− u)− J(u) ·

f(J(u) − u) = 0. Define q(u) := 1 − F (J(u) − u) − J(u) · f(J(u) − u). Since
q(u) = 0, ∀u ∈ R, we have:

∂q(u)

∂u
= 0

⇔
(
J ′(u)(J(u)2 − u · J(u)− 2)− (J(u)2 − u · J(u)− 1)

)
f(J(u)− u) = 0

⇔J ′(u) = 1 +
1

J(u)2 − u · J(u)− 2
.

(H.34)

The second line is by standard Gaussian noises and some calculations, and the third
line is from the fact that f(x) > 0 for standard Gaussian distribution. Since we
already know that J ′(u) ∈ (0, 1), we may then realized that J(u)2−u·J(u)−2 < −1.

Notice that ∂2g(v,u)
∂v2

= (v2− vu− 2)f(v−u) for standard gaussian noise. Therefore,

we have ∂2g(v,u)
∂v2

= (J(u)2 − u · J(u)− 2)f(J(u)− u) ≤ (−1) · fmin¡0 where fmin has
been defined in Appendix H.1.1 as the universal lower bound of f . This means that
g(v, u) is fmin-strongly concave at v = J(u), which further leads to the fact that
there exists a neighborhood v ∈ [J(u)−Bu, J(u)+Bu] with constant2 Bu such that
∂2g(v,u)

∂v2
≤ −fmin

2
. As a result, for v ∈ [J(u)−Bu, J(u) +Bu] we have

g(J(u), u)− g(v, u) = −∂g(v, u)

∂v
|v=J(u)(J(u)− u)

− 1

2
· ∂

2g(v, u)

∂v2
|v=v′∈[J(u),v] or [v,J(u)](J(u)− v)2

≥ −1

2
(−fmin

2
)(J(u)− v)2

=
fmin

4
(J(u)− v)2.

Now, let us consider the case when v ∈ [0, B+J(B)] but v /∈ [J(u)−Bu, J(u)+Bu].
On the one hand, (J(u)−v)2 ≤ (B+J(B)− (−B))2 = (2B+J(B))2. On the other
hand, g(J(u), u)−g(v, u) ≥ g(J(u), u)−max{g(J(u)−Bu, u), g(J(u)+B(u), u)} >
0. Denote cu := infu∈[−B,B]{g(J(u), u)−max{g(J(u)−Bu, u), g(J(u) +B(u), u)}},

2Bu can be defined as the inferior of all Bu over all u ∈ [−B,B] and is still a positive constant.
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and we have cu > 0. Therefore, we have:

g(J(u), u)− g(v, u) ≥ cu ≥
cu

(2B + J(B))2
(2B + J(B))2 ≥ cu

(2B + J(B))2
(J(u)− v)2.

(H.35)
Finally, let cg = min{fmin

4
, cu
(2B+J(B))2

}, and we have proved the lemma.
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Supplementary Materials for
Chapter 10

I.1 Omitted Proofs

In this section we use the notations defined in Fig.10.1.
The lemma below shows how the surrogate losses ℓt can be used to upper bound the

regression losses ft.

Lemma 245. Assume the notations in Fig.10.1. Let G be such that supw1,w2∈D∞(R̃) ∥At(w1+
w2)− 2bt∥1 ≤ G for all t ∈ [n]. We have that:

• ft(ŵt) ≤ ℓt(wt),

• ft(u) = ℓt(u) for all u ∈ D

Proof. For any w1, w2 ∈ D∞(R̃)

ft(w1)− ft(w2) = ∥Atw1 − bt∥22 − ∥Atw2 − bt∥22 (I.1)

= (At(w1 + w2)− 2bt)
T (At(w1 − w2)) (I.2)

≤ ∥At(w1 + w2)− 2bt∥1∥At(w1 − w2)∥∞ (I.3)

≤ G max
i=1,...,p

|aTt,i(w1 − w2)|, (I.4)

for a G such that supw1,w2∈D∞(R̃) ∥At(w1 + w2)− 2bt∥1 ≤ G holds true.
In particular we have that:

ft(ŵt) ≤ ft(wt) +G max
i=1,...,p

|aTt,i(ŵt − wt)| := ℓt(wt) (I.5)

For any u ∈ D, we have that St(u) = 0. Hence ft(u) = ℓt(u).
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The lemma below establishes certain useful properties of the barrier function St(w).

Lemma 246. The function St(w) satisfies the following properties:

1. St(w) = maxi=1,...,p minx∈D |aTi,t(x− w)|.

2. St(w) is convex over Rd.

3. Let i∗ be such that St(w) = minx∈D |aTi∗,t(x− w)|. Let Π(w) ∈ argminx∈D |aTi∗,t(x−
w)|. Let gt ∈ ∂St(w), When aTi∗,t(Π(w)− w) ̸= 0 we have:

gt =

{
ai∗,t, if a⊤i∗,t(Π(w)− w) < 0

−ai∗,t, if a⊤i∗,t(Π(w)− w) > 0.

If aTi∗,t(Π(w)− w) = 0 then we take gt = 0.

Proof. We set out to prove the first statement. Let ∆p be the p dimensional simplex.
We have that

St(w) = min
x∈D

max
i=1,...,p

|aTi,t(x− w)| (I.6)

=(a) min
x∈D

max
v∈∆p

p∑

i=1

vi|aTi,t(x− w)| (I.7)

=(b) max
v∈∆p

min
x∈D

p∑

i=1

vi|aTi,t(x− w)|. (I.8)

For line (a) we observed that for a given x maxv∈∆p

∑p
i=1 vi|aTi,t(x − w)| is attained by

putting all the weights of v to an i∗ ∈ argmaxi=1,...,p |aTi,t(x− w)|.
For line (b) we observe that the function r(x, v) =

∑p
i=1 vi|aTi,t(x − w)| is a convex

function of x and concave function of p. So by applying Sion’s minimax theorem we
arrive at line (b).

Next we set out to prove that:

max
v∈∆p

min
x∈D

r(x, v) = max
i=1,...,p

min
x∈D
|aTi,t(x− w)| (I.9)

Let (x∗, v∗) be a solution that attains maxv∈∆p minx∈D r(x, v). Further, for the sake
of contradiction, let’s assume that v∗ ̸= ek for any k ∈ [p]. (ek is the unit vector with 1
at entry k). Let the index j be such that |aTj,t(x∗−w)| > |aTi,t(x∗−w)| for all i ∈ [p]\{j}.
Then we can find a solution ej such that r(x∗, ej) > r(x∗, v∗). This contradicts the fact
that (x∗, v∗) is a valid solution.

In the alternate case let j be an index in [p] such that |aTj,t(x∗−w)| ≥ |aTi,t(x∗−w)| for
all i ∈ [p] \ {j}. Suppose for all i ∈ Q ⊆ [p] \ {j} we have |aTj,t(x∗ − w)| = |aTi,t(x∗ − w)|.
By earlier arguments, we must have v∗[k] must be equal to zero for all k ∈ [p]\ (Q∪{j}).
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Then putting all the weight to j produces an equally valid solution in the sense that
r(x∗, ej) = r(x∗, v∗)

Combining the above two cases, we conclude that there exists maximizers v∗ such
that v∗ = ek for some k ∈ [p]. This leads to Eq.(I.9).

Next we prove statement 2. For any given i we have that |aTi,t(x − w)| is a convex
function of both x and w. Hence the point-wise maximum maxi=1,...,p |aTi,t(x−w)| is also
convex in both x and w. Since partial minimisation preserves convexity, we have that
minx∈D maxi=1,...,p |aTi,t(x− w)| remains convex in w ∈ Rd.

Next we prove statement 3. We know that sub-gradient set of point-wise maximum of
convex functions is the convex hull of sub-gradients of the active functions. Applying this
result along with the sub-gradient characterization of the function minx∈D |aTi,t(x−w)| in
Lemma 248 leads to the third statement.

The next lemma establishes the exp-concavity of the surrogate losses ℓt over the
decision domain of the surrogate algorithm A.

Lemma 247. Assume the notations in Fig.10.1. Let L be such that supw∈D∞(R̃),j∈[p] 2∥Atw−
bt∥22 + 2G2 ≤ L for all t ∈ [n]. Then the losses ℓt are exp-concave over D∞(R̃) with pa-
rameter 1/4L.

Proof. Observe that ∇ft(w) = 2AT
t (Atw − bt) and ∇2ft(w) = 2AT

t At.
We have that for any w1, w2 ∈ Rd

ft(w2) = ft(w1) + ⟨∇ft(w1), w2 − w1⟩+
1

2
∥w2 − w1∥22AT

t At
. (I.10)

Due to the convexity of St(w) over Rd from Lemma 246, we have that

St(w2) ≥ S(w1) + ⟨∇St(w1), w2 − w1⟩. (I.11)

Combining Eq.(I.10) and (I.11) we have that

ℓt(w2) ≥ ℓt(w1) + ⟨∇ℓt(w1), w2 − w1⟩+
1

2
∥w2 − w1∥22AT

t At
(I.12)

Observe that ∇ℓt(w1) = 2AT
t (Atwt−bt)+GhAT

t ej, for some h ∈ {−1, 0, 1} and j ∈ [p]
due to Lemma 246. Now, let’s focus on points w1, w2 ∈ D∞(R̃). We have

∇ℓt(w1)∇ℓt(w1)
T = 4AT

t (Atw1 − bt +Ghej)(Atw1 − bt +Ghej)
TAt (I.13)

≼ 4LAT
t At, (I.14)
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L is such that:

sup
w∈D∞(R̃),j∈[p]

∥(Atw − bt +Ghej)∥22 ≤ L. (I.15)

Hence for all w1, w2 ∈ D∞(R̃), we have the relation

ℓt(w2) ≥ ℓt(w1) + ⟨∇ℓt(w1), w2 − w1⟩+
1

4L
∥w2 − w1∥2∇ℓt(w1)∇ℓt(w1)T

. (I.16)

Thus the losses ℓt remains exp-concave over D∞(R̃) with parameter 1/4L.

We are now ready to prove Theorem 104.

Theorem 104. Let u1:n ∈ D be any comparator sequence. In Fig.10.1, choose G
such that supw1,w2∈D∞(R̃),t∈[n] ∥At(w1 + w2) − 2bt∥1 ≤ G. Let α be as in Assumption 2.

Let L be such that supw∈D∞(R̃),j∈[p] 2∥Atw − bt∥22 + 2G2 ≤ L for all t ∈ [n]. Choose

A as the algorithm from [120] with parameters γ = 2GαR̃
√
d/8L +

√
2L and ζ =

min{ 1
16GαR̃

√
d
, 1/(4γ2)} and decision set D∞(R̃). Under Assumptions 1 and 2, a valid

of assignment of G and L are 2pχ+ 2σ and 6(pχ+ σ)2 respectively.
Then the algorithm ProDR.control yields a dynamic regret rate of

n∑

t=1

ft(ŵt)− ft(ut) = Õ(d3n1/3[T V(u1:n)]2/3 ∨ 1), (10.11)

where (a ∨ b) := max{a, b}.

Proof. From Eq.(I.4) we have that for any w1, w2 ∈ D∞(R̃)

ft(w1)− ft(w2) ≤ Gα∥w1 − w2∥2, (I.17)

for a G such that supw1,w2∈D∞(R̃) ∥At(w1 + w2)− 2bt∥1 ≤ G holds true.
From Lemma 246 we have for any subgradient ∥∇St(w)∥2 ≤ α (where α is as in

Assumption 1). Thus the losses ℓt are 2Gα-Lipschitz in L2 norm over D∞(R̃). Now
combining Lemma 247 and Theorem 10 in [120] we have that

n∑

t=1

ℓt(wt)− ℓt(ut) = Õ
(

(d3G2α2R̃2/L+ d2G2α2R̃2 + d2L)(n1/3[T V(u1:n)]2/3 ∨ 1)
)

)

(I.18)

= Õ(d3n1/3[T V(u1:n)]2/3 ∨ 1). (I.19)

Applying Lemma 245 now concludes the proof.
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Lemma 248. Let f(x) = minu∈D|aT (u−x)| for a compact and convex set D. Let 0 ∈ D.
f(x) is convex. Let s ∈ argminu∈D|aT (u− x)|.

∇f(x) =





−a aT (s− x) > 0

a aT (s− x) < 0

0 o.w

(I.20)

Proof. First we argue the convexity of f . Observe that

f(x) = min
u∈D
|aT (u− x)| (I.21)

= min
u∈D
∥u− x∥aaT . (I.22)

The norm ∥u − x∥aaT is convex in both u and x across Rd. So we have that f(x)
which is obtained by partial minimization of a convex function across a convex domain
remains convex over Rd. It follows that for any x, y ∈ Rd,

Now let x be such that ∇f(x) = 0. Existence of such a point is guaranteed since D
in the definition of f is compact.

f(y) ≥ f(x) +∇f(x)T (y − x). (I.23)

We proceed to show the Lipschitzness of f . Let w ∈ argminu∈D|aT (u− x)|. We have

f(y)− f(x) = min
u∈D
|aT (u− y)| −min

u∈D
|aT (u− x)| (I.24)

≤ |aT (w − x)| − |aT (w − y)| (I.25)

≤ |aT (x− y)| (I.26)

≤ ∥a∥2∥x− y∥2. (I.27)

Since ∥a∥2 ≤ κ, we conclude that the function f is κ Lipschitz.
We argue that ∇f(x) = λa for some scalar λ. Let b be a such that aT b = 0. Let

z = y + σb. Notice that by the definition of f , we have that f(y) = f(z). So,

f(z) = f(y) (I.28)

≥ f(x) +∇f(x)T (z − x) (I.29)

= f(x) +∇f(x)T (y − x) + σ∇f(x)T b. (I.30)

The above inequality must hold for any σ. Note that both f(y) and f(x) is bounded for
any two points in x, yRd. Further, ∇f(x)T (y−x) is also bounded due to the Lipschitzness
of f . So if ∇f(x)T b is not zero, we can choose a σ such that inequality is violated, leading
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to a contradiction in the convexity of f across Rd.
So ∇f(x)T b = 0. This implies that ∇f(x) = λ(x)a for some scalar λ(x) and for any

x ∈ Rd.
Next, we argue that λ(x) ∈ [−1, 1]. Combining Eq.(I.23) and (I.27) we have

|aT (x− y)| ≥ ∇f(x)T (y − x), (I.31)

for all x, y ∈ Rd. So taking y = 0 followed by y = 2x leads to

|aTx| ≥ ±λ(x)aTx. (I.32)

Suppose x is chosen such that aTx ̸= 0. Then the above inequality implies that
λ(x) ∈ [−1, 1].

Let w ∈ argminu∈D|aT (u− x)|. Let s = (x+ w)/2. We have that

f(s) ≥ f(x) + λ(x)aT (s− x). (I.33)

Moroever,

f(s) ≤ |aT (w − s)| (I.34)

=
1

2
|aT (x− w)| (I.35)

= f(x)− |aT (x− s)|. (I.36)

Combining Eq.(I.33) and (I.36), we obtain

−|aT (s− x)| ≥ λ(x)aT (s− x). (I.37)

Recall that when aTx ̸= 0 , λ(x) ∈ [−1, 1].
So we conclude that if aTx ̸= 0 and aT (s−x) > 0, then λ(x) ≤ −1. This implies that

λ(x) = −1 as λ(x) ∈ [−1, 1] holds true.
Similarly if aTx ̸= 0 and aT (s− x) < 0, then λ(x) ≥ 1. This implies that λ(x) = 1 as

λ(x) ∈ [−1, 1] holds true.
Now if aTx ̸= 0 and aT (s − x) = 0, we can choose λ(x) = 0 as f(z) ≥ f(x) +

λ(x)aT (z − x) = 0 holds true for any z.
If aTx = 0, 0 ∈ argminu∈D|aT (u − x)| as 0 ∈ D is assumed to be true. So by using

the previous line of arguments we conclude that λ(x) = 0.

Theorem 108. Let xt be the prediction of the algorithm in Fig. 10.2 at time t. Instan-
tiating each ProDR.control instance by the parameter setting described in Theorem 104.
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Let τ be the feedback delay. We have that

n∑

t=1

ft(xt)− ft(ut) = Õ(d3τ 2/3n1/3[T V(u1:n)]2/3 ∨ τ). (10.12)

Further for any interval [a, b] ⊆ [n]:

b∑

t=a

ft(xt)− ft(u) = O(d1.5τ log n). (10.13)

Proof. By following the arguments in [131], we have that

n∑

t=1

ft(xt)− ft(ut) =
τ∑

i=1

⌊1+n−i
τ

⌋∑

k=1

ft(xi+(k−1)τ )− ft(ui+(k−1)τ ). (I.38)

The second summation in the above expression is the dynamic regret of instance i
wrt comparator sequence {ui+(k−1)τ} with k ranging from 1 to ⌊1+ n−i

τ
⌋. Now by triangle

inequality we have that

⌊1+n−i
τ

⌋∑

k=2

∥ui+(k−1)τ − i+ (k − 2)τ∥1 ≤
n∑

t=2

∥ut − ut−1∥1 = T V(u1:n). (I.39)

Thus by Theorem 104 we have

n∑

t=1

ft(xt)− ft(ut) ≤
τ∑

i=1

Õ(d3(n/τ)1/3 ∨ 1) (I.40)

≤ Õ(d3τ 2/3n1/3[T V(u1:n)]2/3 ∨ τ). (I.41)

Next, we provide the version of Corollary 109 indicating the closed form expression
for all the algorithm parameters.

Corollary 249. Let Σ∞ = UT
∞Λ∞U∞ be the spectral decomposition of the positive semi

definite (PSD) matrix Σ∞ ∈ Rdu×du. Assume the notations in Fig.10.1. Let the covariate

matrix At := [wT
t−1 . . . w

T
t−m] ⊗ Λ

1/2
∞ U∞, where ⊗ denotes the Kronecker product. Let

the bias vector bt := Λ
1/2
∞ U∞q

∗
∞;h(wt:t+h). For a sequence of DAP parameters M1:n, let

T V(M1:n) :=
∑n

t=2

∑m
i=1 ∥M

[i]
t − M

[i]
t−1∥1. For a sequence of matrices (M [i])mi=1 define

flatten((M [i])mi=1) as follows: Let M
[i]
k be the kth column of M [i].
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Let’s define

zk =



Mk

1
...

Mk
dx


 ∈ Rdudx , (I.42)

and

flatten((M [i])mi=1) :=



z1

...
zm


 ∈ Rmdudx . (I.43)

Let the decision set given to the ProDR.control (Fig.10.1) algorithm be the DAP space

defined in Eq.(10.3). Let G = 2mdudxRγ
√
dx ∧ du∥Λ1/2U∞∥1 + 2∥Λ−1/2U∞BT ∥2∥P∞∥2

√
du

1−γ
.

Let the delay factor of ProDR.control.delayed (Fig.10.2) be τ = h as defined in Proposi-
tion 101. Choose α =

√
m∥Σ∞∥op and L = 4G2. Let R̃ in Theorem 104 be chosen as

R̃ = Rγ
√
du ∧ dx. Let zt be the prediction at round t made by the ProDR.control.delayed

algorithm. Let Malg
t := deflatten(zt), where deflatten is the natural inverse opera-

tion of flatten defined above. Let π := (M1, . . . ,Mn) define a sequence of DAP policies.
For a sequence of matrices M , define ∥M∥1 :=

∑m
i=1 ∥M [i]∥1. By playing a control

ualgt (xt) = π
Malg

t
t (xt) according to Eq.(10.2), we have that

Rn(M1:n) =
n∑

t=1

ℓ(xalgt , ualgt )− ℓ(xM1:n
t , uM1:n

t ) = Õ
(
m3d4d5x(du ∧ dx)(n1/3[T V(M1:n)]2/3 ∨ 1)

)
,

(I.44)

where M1:n is a sequence of DAP policies where each Mt ∈ M (eq.(10.3)). Further the
algorithm ProDR.control.delayed also enjoys a strongly adaptive regret guarantee for any
interval [a, b] ⊆ [n]:

b∑

t=a

ℓ(xalgt , ualgt )− ℓ(xMt , uMt ) = Õ((mdudx)1.5 log n), (I.45)

for any fixed DAP policy M ∈M.

Proof. Define

Xt = [wT
t−1 . . . w

T
t−m]⊗ Idu , (I.46)

where Idu ∈ Rdu×du is the identity matrix and ⊗ denotes the Kronecker product. Clearly
Xt ∈ Rdu×mdudx .
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With these definitions, it is easy to verify that

qM(wt−1) = Xtz. (I.47)

Now we return back to losses Ât mentioned in Proposition 101. Let Σ∞ = UT
∞Λ∞U∞

be the spectral decomposition of the positive semi definite (PSD) matrix Σ∞ ∈ Rdu×du .
We have that

Ât(M ;wt+h) = ∥Λ1/2
∞ U∞q

M(wt−1)− Λ1/2
∞ U∞q

∗
∞;h(wt:t+h)∥22 (I.48)

= ∥Λ1/2
∞ U∞Xtz − Λ1/2

∞ U∞q
∗
∞;h(wt:t+h)∥22. (I.49)

Define

At := Λ1/2
∞ U∞Xt (I.50)

= [wT
t−1 . . . w

T
t−m]⊗ Λ1/2

∞ U∞ (I.51)

Next, we proceed to compute a box that encloses all DAP policies of interest. We
have for each i ∈ [m],

∥zi∥2∞ ≤ ∥zi∥22 (I.52)

= ∥M [i]∥2F (I.53)

≤ (du ∧ dx)∥M [i]∥2op (I.54)

≤ (du ∧ dx)R2γ2, (I.55)

where the last line is due to the DAP policy set that we are interested in.
Thus the box D∞(Rγ

√
du ∧ dx) := D∞(R̃) encapsulates the DAP policy space that

we are interested in.
We need to compute the parameters in Theorem 104. First, let’s focus on computing

G. We have for any z1, z2 ∈

∥At(z1 + z2)− 2bt∥1 ≤ 2∥At∥1mdudxR̃ + 2∥bt∥1, (I.56)

where bt = Λ
1/2
∞ U∞q

∗
∞;h(wt:t+h).

We have

∥At∥1 = max
i=1,...,m

∥wt−i∥∞∥Λ1/2U∞∥1 (I.57)

≤ ∥Λ1/2U∞∥1, (I.58)

as the disturbances obey ∥wt∥2 ≤ 1.
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We have

∥bt∥2 ≤
t+h∑

i=t

∥Λ−1/2U∞B
T (Acl,∞)i−tP∞wi∥2 (I.59)

≤
t+h∑

i=t

∥Λ−1/2U∞B
T∥2∥(Acl,∞)i−t∥2∥P∞∥2∥wi∥2 (I.60)

(a) ≤ ∥Λ−1/2U∞B
T∥2∥P∞∥2

h∑

i=1

γi−1 (I.61)

≤ ∥Λ−1/2U∞B
T∥2∥P∞∥2 ·

1

1− γ , (I.62)

where in line (a) we used the strong stability criterion and the fact that ∥wt∥2 ≤ 1. Thus
we have

∥bt∥1 ≤
√
du∥bt∥2 (I.63)

≤ ∥Λ
−1/2U∞B

T∥2∥P∞∥2
√
du

1− γ . (I.64)

Putting together Eq.(I.56).(I.58) and (I.64) we arrive at

∥At(z1 + z2)− 2bt∥1 ≤ 2mdudxRγ
√
dx ∧ du∥Λ1/2U∞∥1 + 2

∥Λ−1/2U∞B
T∥2∥P∞∥2

√
du

1− γ
(I.65)

:= G (I.66)

Next we proceed to calculate α in Theorem 104. Denote by Uj the jth column of the
matrix U∞. The squared norm of the ith row of the covariate matrix At is given by

m∑

k=1

∥wt−k∥22
du∑

j=1

λju
2
j [i] ≤ ∥Σ∞∥op

m∑

k=1

du∑

j=1

u2j [i] (I.67)

= m∥Σ∞∥op, (I.68)

where we used the fact the matrix U∞ is orthogonal. Thus we choose

α =
√
m∥Σ∞∥op. (I.69)

By similar arguments used to reach Eq.(I.66), we choose

L = 4G2 (I.70)
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For a sequence of policiesM1, . . . ,Mn, observe that
∑n

t=2 ∥flatten(Mt)−flatten(Mt−1)∥1 ≤
dx
∑n

t=2 ∥Mt − Mt−1∥1. The last relation expresses the dynamic regret incurred by
ProDR.control.delayed in terms of total variation of flatten(Mt) to be bounded by
total variation of the matrices themselves.

Putting all the constants together and applying Theorem 108 and Theorem 104 yields
the Corollary.

Theorem 110. There exists an LQR system, a choice of the perturbations wt and a
DAP policy class such that:

sup
M1:n with T V(M1:n)≤Cn

E[R(M1:n)] = Ω(n1/3C2/3
n ∨ 1), (10.19)

where the expectation is taken wrt randomness in the strategies of the agent and adversary.

Proof. Consider a system with matrices A = 0 ∈ R2×2, B =
[ −1 0

0 −1

]
, Rx =

[
1 0
0 0

]
and

Ru = 0 ∈ R2×2. In this setting K∞ = 0 as per Eq.(10.6). We consider DAP polices (see
Definition 100) with m = 1. Let the starting state be x1 = 0 ∈ R2×2.

Let yt = ±1 with probability half each. Let wt = [yt, 1]T . For a policy that chooses a
control signal ut at time t, its next state is given by xt+1 = wt−ut and ℓt+1(xt+1, ut+1) =
(ut[1]− yt)2. Hence for any algorithm, the loss is given by:

n∑

t=1

ℓt(xt, ut) =
n−1∑

t=1

(ualgt [1]− yt)2. (I.71)

Divide the time horizon into bins of width W . Let the number of bins be M := n/W .
We assume that n/W is an integer for simplicity. Let the ith be denoted by [si, ei] for
i ∈ [M ]. Define

ai :=
1

W

ei∑

t=si

yt. (I.72)

We will uniformly use the same DAP policy within a bin i as the comparator. This
policy will be parameterized by the matrix Mi :=

[
0 −ai
0 0

]

By Hoeffding’s inequality and a union bound across all M bins, we arrive at

ai ∈
[
−
√

log(nM/δ)

2W
,

√
log(nM/δ)

2W

]
, (I.73)

with probability at-least 1 − δ. We will call this high probability event as E . Due to
symmetry we have that P (yt = 1|E) = 1/2. So under the event E , the Bayes optimal
online prediction of any algorithm as per Eq.(I.71) will be to set u = [0, 0]T . So within a
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bin we have that

se∑

t=si

E[ℓt(xt, ut)|E ] ≥ W. (I.74)

Now we need to upper bound the cumulative loss of the comparator within a bin. Since
the policy within a bin is parameterized by Mi, we have that ut = −Mtwt−1 = [ai, 0]T

for all t ∈ [si, ei].
So we have:

E[(yt − ut)2|E ] =
E[(yt − ut)2]− E[(yt − ut)2|Ec]P (Ec)

P (E)
(I.75)

≤ E[(yt − ut)2]
1− δ , (I.76)

where Ec denotes complement of event E .
By bias variance decomposition, we have that

E[(yt − ut)2] = 1− 1/W. (I.77)

So the overall regret is lower bounded by

M∑

i=1

ei∑

t=si

E[(yt − ualgt [1])2|E ]− E[(yt − ai)2|E ] ≥
M∑

i=1

W (1− 1

1− δ ) +
1

1− δ (I.78)

≥M/(1− δ)−Wδ/(1− δ) (I.79)

≥M/2, (I.80)

where the last line is obtained by setting δ = 1/n2

Under the event E with δ = 1/n2, the total variation (TV) of the sequence a1:n is
given by:

TV(a1:n) ≤ n
√

2 log(n4)

W 3/2
. (I.81)

Now setting W = n2/3(8 logn)1/3

C
2/3
n

we obtain TV(a1:n) ≤ Cn with probability at-least

1− 1/n2.
For the sake of brevity let’s denote R(M1:n) (Eq.(10.4)) by Rn.
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Continuing from Eq.(I.80), we obtain that

E[Rn|E ] :=
M∑

i=1

ei∑

t=si

E[(yt − ualgt [1])2|E ]− E[(yt − ai)2|E ] (I.82)

≥ n1/3C
2/3
n

2(8 log n)1/3
, (I.83)

where the event E occurs with probability at-least 1− 1/n2.
Now consider the event Ec. For the purpose of obtaining a lower bound we can restrict

our attention to comparators a1:n such that |ai| ≤ 1 for all i ∈ [n] and TV(a1:n) ≤ Cn.
Using the DAP policy given by Mi :=

[
0 −ai
0 0

]
as comparators, we have that under the

event Ec

Rn ≥ −
n∑

t=1

(yt − at)2 (I.84)

≥ −4n (I.85)

So overall we have that

E[Rn] ≥ E[Rn|E ]p(E) + E[Rn|Ec]p(Ec) (I.86)

≥ Ω(n1/3C2/3
n )(1− 1/n2)− 4n · (1/n2) (I.87)

= Ω(n1/3C2/3
n ). (I.88)

When Cn ≤ 1/
√
n, the static regret bound of Ω(log n) (see Theorem 11.9 in [40]).

This completes the proof of the theorem.

Connections to online non-parametric regression framework of [29]. In
the work of [29], they study the following online regression framework (simplified here
without affecting the information-theoretic rates):

• At each round t, learner plays a decision xt ∈ R.

• Nature reveals a label yt such that |yt| ≤ 1.

• Learner suffers loss (yt − xt)2.

One is interested in finding the min-max rate of regret against a non-parametric
sequence class. We define the space of total variation (TV) bounded sequences as:

TV(Cn) := {θ1:n|TV(θ1:n) ≤ Cn}. (I.89)
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Translated into the setup of [29], one can aim to control the regret against TV(Cn)
which is:

Rn :=
n∑

t=1

(yt − xt)2 − inf
θ1:n∈TV(Cn)

n∑

t=1

(yt − θt)2. (I.90)

The TV class is known to be sandwiched between two Besov spaces having the same
minimax rate (see for eg. [142]). So the results of [29] based on characterizing the
sequential Rademacher complexity of the Besov class leads to O(n1/3) as the minimax
rate of Rn wrt n. The rate wrt Cn was not provided in their work. However, we remark
that they establish an O(n1/3) upper bound also via non-constructive arguments.

In contrast, the lower bound we provided in the proof of Theorem 110 is for
∑n

t=1E[(yt−
ualgt [1])2− (yt−at)2|E ] (Eq.(I.83)) where TV(a1:n) ≤ Cn under the high probability event
E trivially lower bounds Rn in Eq.(I.90) with high probability.
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