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 ABSTRACT
A‘comprehensive theoretical descriptionvié given fgr the effects of
magnetic resonance on the angular distribution of radiation emitfed from oriented
nuclear states. The formulation;is.madevin a general way. It may be applied to
an ensembleléf'nuclei oriented by any method: ‘for example, nuclear reactions,

angular correlations, and low-temperature nuclear orientation may be treated.
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Iﬁ_fact the‘thédry‘cén aléo be‘applied to oﬁtical double resonance experiments.
Statistical:ténsors are defined to deécribe nuclear ofientation in the "resonant"
state. Intéracfions of the oriénted énsembie ﬁith eXﬁraﬁucléér fields are then
considefed; and #hé effect of a radio~frequency (rf) field on the angular dis-
tribution Of.radiatibn is éiven.. o | _" | o _ ,
vTﬁo‘fofmulafions are.given for the "pure magnetic" caée, for whiéh
nﬁmerical caiculations were dbné; One employs aﬁgﬁlai éorrelation formalism;
fdllowihg fhe:e;olutidﬁ of thevdensity_matrix in the labofatory frame S, while
the other ié”moré”éloéely related tovconventional NMR. vIn the'latter appfoach
" the tféhéfdrmafion into the frame S"';'wheréin the‘ététistical:tensbfs are
time-invariant, is described in terms of a "Generalized Torque.Equafion" gov-
erning the motion of a unit vector along the symmetry axis iﬁ S”'f Both for-
nulations sre exact.

Time—dépéndént‘distfibution functions are worked 6ut in detail;‘both
with fixed arnd random éhase angle between the rf field'ana the iﬁitial,symﬁetry
directioh, Fﬁst osciliations'due to theﬁéonstaht magnetic field aré médulated
by’élow oscilléfions due to the rf field. Time—intégrél c@rvés were calculated.
These shbw'great'Seﬁsitiiiﬁy to the rank of the relevant statistiégl tensor,
to geoﬁétry,-and to the phese of the rf field._ Multipole structuré is predicteé
fpr cerﬁain'geometries, with the resonance line showihg a number of ﬁaxima equal
‘to the rank of the statistical tensqr. Under ce;tain conditions t%o types of
asymmetry afe obsérVable. A "transient" asymmetry appears for low rf field
values: this éymmetry is gensitive to tﬁe sign of the nuclear momeﬁt, but it "
disappears in high rf fieldé. Odd-rank ététistical'tensdrs can aléO'givglréspoﬁée
functions ﬁith'"persistent" asymmetf&_fhat-remainsvat highﬁrf.fields. This is |
' a.parityveffeét and is not sensifive to the s;gn of_the’nucleai QOent. Effécts

of relaxation ére also discussedvbriefly.




-1~ v UCRL-18413

I. INTRODUCTION

Recent plr'o-g:r'essl_rr in nuclear radiation detection of NMR (NMR/RD) has
stimulated ﬁs to devéiop a theoretical'description of this method, which is
.presented here. We have two principal aims: (1) to provide a descripﬁion that
is sufficiently exéct and complete as to be immediately useful to anyone plan-
ning ekperiménfs in this area; énd (2) to give a uhifiéd description that
stresses the essential similarities in the various experimentai Léchniques
that may be combined with NMR. The three such techniques that we shall con-
sider are nuclear orientatioh, perturbed angular correlations, and angular
distributions following nuclear reactions. We denote the combindtions of these
with NMR as NMR/ON, NMR/PAC, and NMR/NR, respecfively. Experiments of these
types havévtypical double resonancévéharacter, with the "effect" being observed
by the spatial multipole.intensity'pattern of the nuclear transition rather
than by.its eﬂergy absorption. For all experiments ofvthis type it is desirable
to achieve a sizeable degree of polarization or élignment of the nuclear state
such that it exhibits a non-isotropic radiation pattern of the general form

w(e) = Z BX G)\ A)\ P)\ (éos 9)

A

Here; BX is;thé orientation parameter, GX is the perturbatibn factor, and Ak is
a parametef that depends only on the nuclear transition. The three methods
mentioned above each apply to a éertain'lifetime range:

1. MMR/PAC will involve states.Vith lOf8 sec < Tl/2 < 10—5 sec;

2. MMR/NR appliesbto isomeric states in the rangek10f8 sec < Tl/2 <

~minutes;
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3. NMR/ON requires Tl/ 2 hours, except for reorientatlon in 1nter-
medlate states with T 1/2 ?=Tl,_‘where~Tl 1e the nuclear sp;n lattice relaxatloe
time. | | |

The origiﬁs of the NMR/RD field.are'divefse:. tﬁis fact hes probably
delayed 1ts development. :indeed.'the.oasie knowledge and techﬁology.for experi-
ments of the types cited above were available in 1960 or earlier: they:only |
awaited,being»put together.‘ In 1952-Deut9ch and Brown8 dsed annihilation
radiaédoﬁvfo deteet MR in positfoniﬁﬁ; Alfeady in 1951 BroeSel and

Bitterg'had'calculated NMvaineshapes forlopticel double;feeonance-lines, in
which etomic“excited siates'wefedoriented.by.0p£ical ﬁumping and resonance
aosorptdoh‘ﬁeé deteeted Bj:deiolarization of de—excitiné dipole‘radiation:
Guichon; Biemoﬁt; and Brossello feborted thedeffect in atomic mercufy in 1956.
'Theee'eiberimepts'are Qery.similar to the'NMR/RD methods, and it cen r‘
be.shoﬁn tﬁ&tjour theofetieel descriptioﬁ is sufficiently geherel to
iﬁcludevtﬁe’oﬁtieal?doﬁble‘fesohenee work. | |

Two peﬁers eppeafed in 1953 in which Bloembergen and Temmer suggested

12 »Neither of these suggestions

NMR/ONll andlAbrageﬁ and Poﬁnd suggested NMR/PAC.
was quite specific enough to ;ead directly tOve successful expefiment,l3 but
they laid the theoretical groundwork for thevtvo ﬁethods. Between 1953 and
1966 several very. 1nterest1ng experlments were reportedl)+ =20 in the general
area of NMR/RD Unfortunately, they all depended on rather speCLal - S
propertles (sueh as beta:asymmetry, gaseous samples,,spec1al latt;ces,-ete.),

‘and in any case none of them wae very close to the 1953 proposalsg Thus the

applicability of NMR/RD was rather limited.

oy
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With the success of recent'ekperiments on both solutes in host metal

lattices and free atoms,l”7 the scope of NMR/RD has become much broader.

The MMR/PAC, MMR/ON, and MMR/NR methods have all been shown to work. An impres-

21-26

sive number of resonances have already been observed. Although several

discussions havebappeared in which theoretical aspecﬁs of NMR/RD were
treated,27—30 if is clear that the growth of the field calls for a more general
and thorbugh treatment, aé given below. In particular, the following points will
be carefully considered: flineshape, powér dependencé, rf-phase, favorable
géomeﬁries; and time-~differential effects.

‘Before considering the theory of MMR/RD, it is useful po consider its
rénge of application, and particularly to def'ine the limits of its applicability.

NMR/RD and conventional NMR are complementary rather than competitive. In fact

it is inconceivable with present technology to do both conventiovnal MMR and

NMR/RD on the same nuclear state. It appears that NMR/RD alone is applicable
tovmost huclear states of lifetime less than years. At the other end of the
stability spectrum the MMR/RD methods might be able to produce observable effeets
for sﬁates heving lifetimes down to 10—9 sec or perhaps even shorter. It would,
however, be pointless to study such_very»short—lived states (i.e., 1 <10~ sec)
by MMR/RD, because the natural linewidths would preclude measurements of higher
accur#cy than that obtainablé with time-integral PAC. For slightly longer-lived
states, in the T 2710—8 sec range, time-differential PAC becomes applicable. Uéing,
for example, the stroboscopic observation technique,Sl'time-differential PAC

can be made not only as‘accurate as MME/PAC, but actuaily a little better. This
advantage arises because the stroboscopic method yields the Fourier transform |

of the time spectrum, which is essentially eqﬁivalent to an NME line, but with
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no rf brqadeniné. To do MMR/PAC éfficiently onrthe_same state would require,
as we sﬁow‘1gtér,‘a'radioffequéncy field of sufficient intensity to increase

‘the linewidth by about & factor of two. Therefore NMR/RD offers no g_gricfi

3

advantage of accuracy for states in the 107> +to 10“8 sec range. Tt may, however,

|-

be appiiéd"tbvcaQes.in thch the re:én@ﬁt fre@uency is so higﬁ as.to preclude
fast ti@ing‘ as for 100Rh§é,21 In‘an& event NMR/RD isuuniikeiy to be of much
value for Sféﬁésuof lifééiﬁe T < 10;8 sec‘becauéeIOffnatural line~width, or for
states'#iﬁh T > 106'yedrs.f§£'intenéitj réaaons; For nucleérVStatéé in the range
(1058 séc) < T <'(year3); NMR/Rﬁ coﬁﬁiﬁes the advantages of MR with the extremely
bhigh sensifiviﬁy:of sihgiewéuantum detection. Iﬁ comparison with coqveﬁtional |
NMR, NMR/Rﬁ ﬁas much higher sensitivify. | |

The éssential equivalenée of the three NMR/RD‘methods'is established
and discussed in Sec. II, énd the density matrix formalism is introduced.
General equations.for pe%turbation oann angular diétribuﬁion by an rf field
are derived‘in Sec. III; In Sec. IV the "pgre" magnetic resonange.case is
treated by-anbther geometrical apprbach more familiar in the NMR field. Sectionm
A preéenfs a’disctssion of se#eial pr§perties of the perturbafion factor. In

Sec. VI the resonance behavior for specific geometries is discussed. In Sec.

VII the influence of relaxation is treated briefly.
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II. PERTURBATION OF ORIENTED STATES

 II.1. Description of Oriented States
An ensemble of oriented nuclei may be prepared in several ways.‘ The

absorptioh of¥ emission of unpolarized radiation in a direction k by a randomly

~oriented ensemble (ordinary source or target) produces an oriented ensemble of

nuclei whiéhvis-axially symmetric about k.. Orientation of nuclei can also be

achieved through the interaétion of external fields with either the (static)
magnetic dipole moment or the (static) elecﬁricvquadrupole moments at low tem-
peratures. Dynamic microwave or opticalvmethods of nuclear orientation, which
depend on the emission and absorption of radiatioﬁ in the electronic environ-
ment of the nuclei,.can also be used. |

| 'If ié éssumed here.that thé oriented ensemb1e of nuclei bossesses an
axis of cylindfical symmetry; thch we shall denote by the unit vectofﬂg‘.
The state of the oriented ensemble at the time of formation t = O will be repre-
sented by the density matrix p(O)z with matrix elements_(im'Ip(O)[Im ’ in the
répresentation ]Iﬁ ), wheré I .i; the angular momentum quantum number of the
individual nuclear states and m and m' are eigenvalues of I‘z with reépect td;
the quantization axis. z. If 2z is paraliel to the symmetry axis 51’ the
density matrix is diagonal in the |Im ) representation at t = O. |

It is convenient to expand the density matrix p(O)Z in terms of

~

irreducible. spherical tensors p;(O)Z of rank A, the so-called "statistical

tensors".32 The statistical tensors are defined by

~

p}'l('o)i" - -Z(-l)”m' <1-m'mlxq> (In'|p(0) |Tm ) - N (1)

m
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Using the orthogonality relation of the Clebsch-Gordan coefficients

(I-m'Im|Aq ) this definition leads to the multipole expansion of p(0) :

2
(Im* > -— Tdm' o v | ) A o v
Im'|p(0) |Im } = (-1) (I-m'Im|Aq pq(O)z . {2) %
: A | z .
. \ : | "
The tensors pq(o)Z are hermitian in the sense that
Mt - i (o) L |
Aot . )

Under a rotation R of'thevquantization coordinate system by the Euler angles
o, B, Y which carries the 2z axis into a new z' axis, g + z', the statisticeal

tensors transform according to the irreducible representation Déé?'(z > z') of
33

e
-

- the threg—dimeﬁsional rotation group R

Aoy X ) A * S
Pr(©,1 = Z pg(0), " Dgr 2z (3)
. | | |

-~

where the indices z and z' represent the quantization coordinate systems.

If the symmetry axis k. is chosen as the quantization axis,’pz(o)k is invariant -
v | 2 | 1 '

“~

under a rotation about k., i.e. under the transformation p? (a,0,0) = & ,eflqa.
ap o ~1 , aq’ aq
Hence, in this representation we have after the transformation
A gy oA - '

and the orientation of the-énseﬁble of'nuclei of spin I is complétely described
: ' . : . . ‘ : ) ' . s
by the 21 parameters pg(o)k . Even values of ‘A mean aligmment of the nuclear
: ' 1 ' '
o v A -
ensemble. The pO(Q)k

are identical (except for a trivial factor) to the
kp o0 | 4 |

g -
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orientation‘parameters BX(I) which are émployed in the:thedry of nuclear

orlentatlon{3 »35 Different sign conventions are used in nuclear orientation

theory. We shell sdopt the relation .

B(@ = e g, o )
or
"BA('I)”= (o1 + 1)1/_2 Z (v~.1)I+m ( I-m _imlAO> P(m) . - (6p)
m ' '

Here P(m) is just P> & diagonal element of the density matrix. The orienta-
tion parameters are normalized such that

B,(I) =1 if Z Pm) =1 .

The orientation parameters can be computed from Eqs. (6) if the popu--

lations P(m) of the axially symmetric m - substates are knbwn from the method

of orientation (e.g; low temperaturé orientation, Coulomb excitation, nuclear

reactions, etc.).

For an ensemble that is orienfed by observing, in the direction,kl = 2z,

a preceding (unpolarized) nuclear radiation X emitted from a (random) state

I,, the orientation parameters are similar (but not identical) to the directional

36

distribution parameters AA(X) ag defined in directional corrélation problems.
Considér s state of spin I ‘oriented byvthe'observation of & preceding gamma

radiation of multipole components (w,L) (ﬁ = E (elecfric) or =M (magnetic))
emitted in‘the decay IO + I.  The ofieht&tion par&metérs‘are given in tefm&‘@f
m)

reduced emigsion matrix elements <IHJN A ”IO ),
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L+L'+) ity (e ' *
Y ) RPN EU AL PRSI S FLLAL PR

LﬁL 7!
Z i JNAWMI ) |2

B (I) , (Ta)  w

where FK(LL'IOI)vare the F-coefficients as defined e.g. in reference 36. For

a pure multipole gamma radiation (L) the.Bx(I) are simply

A

BA(I) = (—1). FA(LLIOI) . | | (o)

The quantization (symmetry) axis_for_the'BX(I) is of course, the observation

direction kl

The orientation parameters of a state I that is oriented by the

observation of radiation X other than gamma radiation is given by

A 41 \ R
(-1) (-1) )\(LL x) Fy(LL1,1) STy 0 Coixn iz, )

L,L'

Bx(_:I:) - , (8)

' | Y- 2
ZbO(LL;X) < Tl Tl I, {
L

where the bX(LL"Xl) and (I"XIHIO ) are the particle parameters and the reduced
‘matrix elements, respectively, for the emission of the partiele X with multi-
polafity .L and L‘,' The partiéle pafameters for B—trénéitions usuglly include
the reduced matrix elemen£siand the féctof (-l))\+L+L'.36

In.nuélear'Orientgtion ekperiments the parent nucieus, a long—li&ed 8
isotope, is.orieﬁted, and the BA(I) may be calculated’frOQ knowledge of the

ambient temperature and the Hamiitonian describing the interaction of the

nuclear maménfs with extranuclear fields.
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Nﬁ?leariréactiéns Pfdduée én'ensemblé of nuclei briénted relative to |
the beém.direction. .The orientatlon is axially symmetrlc if the 1ncom1ng par—
ticles are unpolarlzed and if the ou£g01ng particles are observed at 180° of
not at all. The B (I) parameters thus depend upon- the detailed reactlon mech-
anisms; dften the-assumption is made that the population distribution in mag-
netic substates is Gaussian, w1th maximum populatlon in the substate(s) that

have minimum 3p1n projection in the beam directlon.

'II;2. _Generaereacriptibn of the Perturbation of an Qriented State
"The"céntrai'problem in calculafiﬁg the influence of an extranuclear

perturbatioh on'ﬁhgular diétributions of cOrrelations is the éomputafion.of

the tlme—evolution of the density matrlx p(t) from a glven 1n1t1al state p(0)

for a Specific perturbation HamiltonlanZK

o(0) f**ig;—->,o(t) :

. ) ) : . . . . . 2
The time-evolution of a density operator is given by the von Neumann equatlon3

ihp=[H,pl=Hp-p¥ . A (9)
The operators p and K must be defined in the same reference frame.
Soiﬁtions of Eq.'(9) are found by introducing the time-evolution operator

A(t),'whichvfeprésénts a time-dependent unitary transformation of the density

matrix p:.

p(t) = Alt) o(0) a(e)T . - . (o)
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can be derived. A comparison with Egs. (3) and (16) shows thet the qu(t)
' AA

are actually the expansion coefficients of the hermitian adjoint statistical

. A ¢
tensors p .
q

£

An ensemble of nuclei formed at the time t = 0 with a symmetry axis kl
changes under an extranuclear perturbation into an ensemble that is given at -
time t by the statistical tensor

Ay oo a * . 2 (A) |
olt), = ) o, op(0) * Oy Uy~ 2) (19)
A Asq ~

~

~

where Egs. (4), (5), and (16) have been used. For the representation axis =z

A q # : v
of p_(t)z and qu(t)z a symmetry axis of the perturbing interaction can be
q A '

~ -~

chosen in order to have a particularly simple form of the attenuation coefficient
- (Eq. (17)). If the statistical tensor p.(t) that describes the perturbed ensemble
q

is to be represented in the original kl representation, one has

X w ' A * (X)* ’
pa(t)lfl = 2;' pi'(t)f Do,z (2= k)
(20)
_ A ) qd’ (X)*
"L ol v Dy )

s

. II.3. Perturbation by a Static Magnetic Pield

The Hamiltonian that describes the interaction of & static magnetic field

H
H_ with the magnetic moment p =g I 7?— of a nuclear state has the form
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H=-p-H . | - - | : (21)

It is diagonal if the direction of H_ is chosen as quantization axis 2z, i.e.

HO = H eé,,where ez'is 8 unit vector. Thus
oo Tom' I 1 I
(Im'lﬂﬂlm ) = -H (Im'|u |Im > = -H (-1)" | _ CIuliz 2
. ’ 0 -4 0] . '
. ~m 0 m
= -H_ 3 (Thu1)8 : (22)
0 mm "' f

[(2141)(1+1)1]

1/2

where the Wigner-Eckart theorem and the explicit expression for the 3-j symbol

have been used. With the conventional definition of the magnetic moment

b= Tl |1 1) = I = (mlT) (23)
o 2 [(21+41)(1+1)1]/2 | |

the energy eigenvalues are given by the well-known expression

- gul= -
E ( Im || Im ) - -Hou 3 gyt m ubhm . (2k)

where g 1is the g-factor of the nuclear state and uﬁ is the nuclear magneton.

In this equation we have introduced the larmor frequency
w, = -gguy/h o | (25)

In the {Im} representation, i.e. HO = Hoez, the evolution operator is

diagonal;
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B | legt o L -
(m1A(t)|m ) = e ) 6= ‘ 3 (26)
and after summing over mg) and - m and using the orthogonallty property of
the Clebsch—Gordan coeff1c1ents, the perturbation coeffic1ent (Eq.- (17)) takes

. the 31mple form

LT | | |
(,t) = e §,2 65 - - _ : (27)

 The time-evolution equation (16) for a static magnetic interaction thus becomes

\

’ : +iqwot,‘ A o | : o _
Pa (t) i =e pq(o)go . | (28)

This equation is equivalent to the equation that describes a rotation of the

" quantization coordinate axes about HO through an angle a = -wot:
. : ' . |
(2) -iqa +lawg .
Dgqi (30,00 = T8, =e O - (29)

Hence, if one wfites the statistical tensor pg(t) in a representation with
respect to a coordinate system'S'(t)vthat rotates about HO Hoe with the

angular velocity -w, (i. e., 1n a left-hand sense) one obtalns

e A -iq'w, o o v
_-pq(p)sé(t)_— Z Pq'(t)% e : 6q'q = pq,(o)go . | (30)
) q| . .

W -
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This equation is the quantum-mechanical eQuivalent of the»Larmor thecrem, which
states thaf the influence of a uniform static magnetic field HO on an ensemble
of magnetic dipoles W can be expressed by using the description of the ensemble

for HO = 0 but with reference to a coordinate system that rotates with the Larmor

~

frequency w, about H..

If the ensemble has a symmetry axis k, the effect of a magnetic field

~

H, can be described by a rotation of the symmetry axis k, about HO with the

larmor frequency Wy "This interpretation will be useful in later discussions.

IT.4. Perturbation by Radiofrequency Fields

" ITI.4.1. The Time-Dependent (Differential) Perturbation Coefficient

The presence of a static magnetic field HO causes a splitting of the

energy levels of the nuclear states (Eq. (24)):

Em = hwom s ) . (31)

where the quantization axis is parallel to H,. A radiofrequehcy (rf) field of
proper ffequency and polarization direction will induce transitions between the
magnetic substates and will gltef the degree of orientation of the ensemble of
ﬁuclei.

An rf field, gl(t), is considered whose magnetic vector is perpendicular
to H , i;e.; it lies in fhe x-y plane. A circularly polarized electromagnetic

~Q

field is represented by the magnetic vector

. 3

‘Hrf(m) = Hl[sxcos (lwlt + a) # Eysin (Jwlt + A)]; ' : - (32)
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where nhe'index'+ or - indicates rlgnt or left'cirCUlar polarization,.respec-
tively. The phase Av'accounts’for:the fact=tna£ the réﬁioffeguenoy field has

a partlcular dlrectlon at t = 0, when_nhe nuclear state is formed. If con-
tinuous rf is used with no "phaSe—locking" one has to average over the phase A.
The necessity to:introduce a.phese.angle,distinguishes radlative detection methods

from continuouS—wave NMR in stable nuclei, where no time scale is defined by‘

~ either creation or decay of a nuclear state, although an analogous time scale

exists in pulsed NMR experiments. ,Thus, for shortfllved isomeric states“the
llfetlme,represents a minimum "time window", which results in a'charaoteristic
line width‘ejenvfor very longﬁnnclear,relaxation times.
Fon_a-linearly polarized (&p) field along the x-axis one has

Hp(8) = 28y ecos (Jolt+m) L o (33)
Following £hé usual pracnlce Ve'nay regard g;g(t)las being composed of.righte
and.leftéoironlarly pOlarized components grf(t) (see Eq. (32)). Only the com-
ponent rotatlng with the same sense as the nuclear Larmor precession can induce
resonance. Thls component is determined by the sign of the nuclear g- factor
Allowing'for w to have the sign defined by w= - TgTﬂwl ve may write:the

resultant magnetic field acting on the nuclear state as

”. § R | .y ‘ N S __h
B(8)g = Bog, + Byle,cos (w4 8) +epstn (e e )] o (30) )
The interaction Hamiltonian in the laboratory system S is: ' g . 5

Jf(t) = -u - H(E) | E - . | (35)
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e.g. for a circularly polarized rf field:
| My - - '
H(t) = e (I + H [T cos (wt +4)+ Isin (wt+A)]} .  (36)

This expression féllows from the fact that the effective magnetic moment operator -

u’ is'proportional to the total angular momentum operator I

=g -ﬁ-z . - (37)

By using the operator identity>'

S -1129/h ' +iiz6/h
T cos 6 +1Isinb=ce I e . ' (38)

the Hamiltonian (Eq. (36)) can be written in the form:

' -'11;((»1; +A)/h o HI (wt + A/

L
K (t) = -g + [H,I_ + H | e 1. (39)

The Hamiltonian (Eq. (39)) is expressed with respect to the laboratory system
s.

For the computation of the perturbation coefficient Gi;(t)z of Eq. (17)

~

the matrix elements of the evolution operator A(t) (Eq. (12)) in the {Im}z
representation with respect to the laboratory frame _S are required. In~order
to apply Eq. (iZS_the Hamiltonian ¥ (t) of'Eq. (39) must first be transformed
to‘a freame of réference S' gsuch that H'_-does not contain the time t expli=-
citly. This transformatiéﬁ is accomplished by introducing a.system S'  that

rotates with the angular frequency w abdut the z-axis of the laboratory sys-

tem. This trensformation is representéd by the time—dependent unitary trans-

formation operator
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u(s) = emitelet H AT | (0)

and the Hamiltonian ¥ ' in S' is

ot

]

5" = uTee) uie) - 1 nutee) BWEL | )

«r

The term -1hU'3U/3t, which must be added because the transformation is time-

dependent,'cOrresponds to the classical Coriolis force.

Thé'execution’of the transformation (Eq. (L1)) leads to

R T
H'=-gg [(1-29

o I+ HlIx,] - (42)

o 9

This "time-independent" Hamiltonian is not diagonal. It describes an inter-
action of the nuclear ensemble with an effective'magnetib'field He in the x'-z'

plane of - S': -

]l/2

’ 2 .2
H =[(1-%92%524+5x : | (43)
e wy' 70 1

The direction z" of H, is given by the angle B with respect to the z'-axis.

~

(see Figs. 1 and 2)

_%'x Hl .
ten B = — . . (Lk)
(1 - GE)HO‘ _ .

Hence, by a furthér_rotation'V(B) of the coordinate system S'(t) about the y' axis

~

through the Euler angle B the new z" axis is made to coincide with the.

-~

direction of He:
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- _ i1 8/h -iI_B/h ,
" =v@) T x'vE)=e VY H'e T . (45)
The explicit evaluation of.ZK" by USing opérator identities similar to
- Eq. (38) gives
- My oy o 2,1/2
=g g (-2 B + 877 10 . (46)

Wo

This Hamiltonian is diagonal and has the matrix elements in the angular momentum
represent&tion;{ln}zn

~

Lt '
(n}# |n' ) = E 8, =D wné .

. S N ., w2 . 2 2,1/2 :
with - W = 8 K [(1 7—.)' Hyo + Hl] . | (47)

At resonance w = w_, the energy splittings are given by

0’

AE = _guN Hl = wl h | ()48)
They are independent of Hy. The solution of the Schrddinger equation (Eq. (ll))
in the system S" is now given by

AM(t) =e . ' ' (k9)
Since we want to find an expression for the matrix elements (m|A(t)|m?,
- ~ the time-evolution dperator A"(t) must be transformed back to the laboratory

system S:
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]T

A(t) = [U(t) v(B)] A™(t) [u(t) V(B) 3
—-iI_B/h iI g/h ' ‘
=U(t) e Y A"(t) e ¥ U+“5= 0) . (50) - =
The operator U+ acts on the initial state and hence must be evaluated at : s

t = 0. The evolution operétor is now expressed in the angular momentum repre-

sentation {Im}zz

~

‘ i 1T (wt + A)/A -iI B/h - iI B/h iI A/
AmA () m) = (mle P e Y A(t)e ¥ e ?
- - , -iI_g/M i1 B/h
- e-—i[m wt + (m - m)A] (fﬁle Y A"(t) e b ‘lm) . (s1)
Using the closure relation j{:’n Yn| =1 twice, one obtains
_ . 4
: - j== ;..iI‘ B/h ‘
(E|A(t)|m ) = Z grilmwt + (m - )AL (o YT 5 ) (R (4) |n )
B nn ' '
_ iI B/h - _ , .
x{nle ¥ |m)> . (52)

" . . ! .
Since ¥ is diagonal in the representation {In}z", the evolution operator

~

A"(t) is diagonal:
GIAME)|n) = e PR s I (53) .

Introduqing'the D-functions (Ref. 33, p. 22)
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| ‘ ‘ 41 g - S
Dii)(o.s,o? - a{He) - (mle ¥ fad) . (54)

eq. (52) can be expressed in the explicit form:

. - ‘ - ) -iE t/h
(aIA(t)lm Yy = e-l[mwt + (m —»m)A] Zdé:r[l)(s) d(I)(B) e + n ) (55)

mn

I

B »
Here, the relation d‘ )
.. mn

(B) = d(I)(B) has been used.
mn v :
The perturbation coefficient that describes the interaction of a cir-
cularly polafized radio-frequency field plus a static magnetic field with an
ensemble of nuclei with spin I is now easily constructed from Eqs; (17) and

(55):

-~ -

S m,m,n,n'

S, - S PR Y E (& T e Tmlag)

(D gy 4(Iay 4(D) (1) (gy -i(3-a)d

x a2 (B) d'(B) a7 ,(B) dzi ,(B) e 1T e
For a further reduction of this expression the perturbation coefficient

is written in terms of the Wigner 3—j»éymbols instead of Clebsch-Gordan Coef-

"ficients:

I I AMN/1 1 X
qu = [(2x + 1)(2) + l)]l/2 E: ( 1)21 +m+m+ A+ A 4
| AX(t)E-; L - A\m'-m gqf\m'-m q
: m,m,n,n' ' '
: N : o= -i[(E -E ,) + quhlt/h.
< agn (8) a0 (8) agl) 8y g7 8y 7O R - 51

3]

e
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The summations over m and m can now be performed by using

déi)(ﬁ) = (-1)m’n-diizn(3) and the contraction relation for the D-functions

(Ref. 33, p. 123):

- |
p Mgy, (s8)

‘and Simiiafly'for the sum over m. The result is:

I I A\[1 1 X

T, 1/2 < AR (M) py 4(X)
S8y (@0 + 1)K+ 1)) Y DM a2 (8) gt (8)
L, o

« o~Ha-)a THEE) ¢ qle/m

(59)

It is important to recognize that the perturbation coefficient (Eq. (59)) is givén
in a‘répresentation where the quantization axis. Ef is. chosen in the diréction

of go' A.similar approach applies to any perturbation thﬂt‘is described.by a
Hamiltpniaﬁ_of the form:

atatic ~ B\'Erf(t)v s ' _ | -~ (60)

where m;tatic

the xy"plane. For static quadrupole interactions with aXially éymmetric field

- is symmetrical about the z-axis and H (t) is periodic and in

gradients, however, each_trénsition frequency must be treated iﬁdividually.
Thrqﬁghdut this diécussion it was assumed that relaxation interactibns

~ are negligiblé, i.e.; it was assumed that all relaxation times are:long com-

pared ﬁith.the lifetimé of the épate‘pfvinterest. The ihflgenée of relaxation

phenomens, will be discussed in Chapter VII.

{



23~ | | ' UCRL-18U13

"It should be noted that the perturbation.coefficient (Eq.»(§9)) describes
the situation in which the circularly polarized rf component is rotating in a
plane perpendicular to the static fleld HO The sign of W refers_to‘the cir-
cular polarization'of the rf field that induces resoﬁance.i For a linearly
polarized rf -field the sighﬂremains undetermined.v The ensemble reeponds pri-
marily tolonl& one-of the two'circulaf polarizaﬁion componenﬁs‘that‘constitute’
the linearly polarized rf field, but 1t is only poss1ble to determlne which
component is respon81ble by using the phase A. _The effects of the other com-

ponent have‘been considered by Lewis.38

Ir.4.2. The Time-xntegi-ated Perturbation Coefficient
If thevnucleer states under consideration have a finite lifetime T,
the obsefvation of the infiuence of ektranuclear perfurbations on the ehsemble
is limited to time-intervals of a few T after formation of the states at
t ='0. If ell nuclear states are observed, independent of the actual time when
they happen to decay, the weighted average is observed; with the decay factor
t/T '

e as weighting factor. Such a "time-integrated" observation is described

‘by the integral perturbation coefficient:

~qa 1 [Z.qd -t/1 . : : ,

G == G (%) at . _ (61)

Ak T f AX < .
0

After performing the integration over the differential perturbation coefficient

(Eéo (59)) one obtains: .
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a2 o r(an + 1)k + 1012 2: () A a gy aX) ()
AN o B ey n' -n pfin'-n p gp ap
Ca(m l—.'uE—E, + quh h 
o tlon L7 ) ST (62)

1+ LE-E ) + quh)%(3)°

II.4.3. The Role of Phases in the Differential Perturbation Coefficient

Thé ?hﬁse_ A that waéhihtrdducéd by Eq. (32) defines the state of thev
fadiofrequéﬁcy field ét.tﬁé time ofvfhe creaﬁion.of the nublear‘state, t = 0. -
The‘phaSe angle‘ A appears in the transfofmétion (Eq. (hd)) from the laboratory
frame S to the~rotatihé frame S'(t) as the aﬁgle 5e£weenv x and x'at a
t =0 (see Fig. 1). h | |

Two cases of phase rélatiOnships must be distinguished:

a)-vRandom'PhaSe Distribution

Wheh-the rf field is completely unrelated to the formation pf the
’ﬁucleér state;thé ﬁhase distribution is random. This situation corresponds to
cbntiﬁuoqs wéve» rf experiments with radiéactive sourcesvandvapcelerator beams ,
whgre the nuclear.statesvaré prbduced continuously and without any time-relation o
to the rf field.',f ‘
| 'Sipcé'all'phase,angles A arevequaliy prbbable, the corresponding per-

turbation.goefficieﬁts (Eqs.'(59) or (62)) must be integréted over the phase -
e—i(i—q)A

éngle[: The phase A appears only in the factor . Hence the inte-

gration over A reduces to thevintegral
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Thus in random phase obserVations oniy terms with q = g occur.

b) Fixed Phase Angle‘_

Thé fixed fhase anglé situation can be realized in MMR/RD observations
because of tho poséibiliﬁy'of éynchronizing the origin of tioe t = 0 with gl(t)
by for example, phase;lockiog rf trains of proper length to accelerator.pulsea
in IMR/IR, or by sensing the phase and sorting the data into bins in NMR/PAC
experiments. In these cases no festriCtions apply to the general form,of.the
.perturbafion-coefficient in Egs. (59) and (62) and the partiouiar'value of A

that describes  the expérimental conditions must be used.

II.4.4. The ?erturbation’céefficient for Magnetic Interactions

For equidistent splittings caused by a static magnefic-field Hy the
perturbation ooeffioients qu(t)vare independent of the spin I of the nuclear
staﬁes and terms ﬁith A # X vanish. _A.proof of this statement will be given
W)

and an analytical expression for G will be derived.

For a pure magnetic interaction one has (see Eq. (h?))

EnfEn' = (n-n') wh=puh ) (6L4)

and the summations over n 'and n' 'in Eg. (59), can be performed keeping p
fixed. The orthogonality property of the 3-j symbols results then in
S o+ 1)t GAX . Hence, only terms with X =X remain and the final result for

the differential Gii(t)-can be written in the form:
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() = —iqwt -1(g-q)a E: ( )(B) (x)(s) .o (65)
AN _
This expres51on for qu(t) descrlbes a perlodlc pattern in which a fast oscil- el
—1pu) t
-igqut is amplltude—modulated by slowly-varying components e

lation e

For the time-integrated perturbation coefficient one dbtains_

~ql, 1 - ilpw, +aw)T = g0 '< Aoy )
33y = cila-a ) aM@) . (66)
hoN 2;'1 +'[pwé N aw]2T2 , ap S ,

From this equation it can be seen that the perturbation coefficient

~

Gii is independent of the nuclear Epin 1. »This is true because no interference
terms with A ¥ X 'oecur. The physical reeson for tnié is that one deals here
nwith pure magnetic interactions which always give an equidistant splitting, i.e.
one basic frequency. Interference terms with py # XA would occur for quadrupole
and combined magnetic-plus~quadrupole interactions.

In the case of a random rf phase,Athe formula for the perturbation

coefficient is appreciably simplified. Averaging over all phase angles A

leaves only terms with q = q and Eq. (65) reduces to

+
P

g,  _  -iquwt o Tipwgt ) 2 |
Gxx(p) = e x,e | _[dqp (8)] . _ .(67)
p:—

In the follow1ng we note some useful symmetry properties of" GAA(')

that apply for A=
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W .
<]
Wq-

The symmetry about resonance is to terms of order

a4, gq+q ~qq
GAA(@”wO < Q) = (-1)7 Gyx (wfwo > 0)

The symmetry of Ggi with respect to a sign change in q and q is

- . -
A%q _ a+q ,-9-q
Gy = (F1)37% Gy

UCRL-18413

(68)

(69)
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III. ANGULAR DISTRIBUTION OF RADIATION EMITTED FROM PERTURBED ORTENTED STATES

III.1. General Expression

In this chapter we cdnsider'ﬁhe aﬁgular distribution of soﬁe‘nuclear

i‘adiation‘X2 that is emitted from a perturbed'orieﬁted ensemblevof'nuclei. The

emitting oriehted state at the time t is represented by the statistical ten- o

sors of Eqs. (19) or (20). The quantization axis z for the representation of

-~

S _ .
p_(t)Z in Eq. (19) is the quantization axis for the representation in which

-
~

the perturbation coefficients,Gi;(t) are most conveniently expressed.

The emission and observation of the radiation X2 in the direction k2

is described by an efficiency matrix e(k,) or an efficiency tensor eg(k )
which is defined in terms of e(kg) by Eg. (1). The result of this obser#ation,
i.e. the angular distribution or correlation of the radiation Xé with respect

to the symmetry axis kl ofethe uhperturbed ensemble is given by the trace:

W(gi, ks t) = Trip(ky5t), - elk,),) | ' _ (10)

where p(ki) and €(k2) must be expressed in the same representation, e.g. in the

z-coordinate system. Using Eq. (2) and the orthogonality of the Clebsch-Gordan

coefficients, Eq. (70) can also be expressed in the form:

Wk, .k, Z p_ (kl,t) € (k) . | | | (T1)

A .
The eff1c1ency tensors e-(k ) are particularly simple if a representation

is chosen with respect to the observation dlrectlon k2 of the rddlatlon X2 For -

directional observations, i.e. for learization-insensitive detectors, a(k2)k2

A(k ), are simply the

vanishes for q # 0 (axial symmetry about k2) and the e (k)
‘ ~e ~e 22

EUR
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angular distribution parameters AX(XQ) for the radiation X, as detined in angular

correlation problems.36 E}g., for gamma radiation we have

L my) (m5)
FX(L2L212I) <12”£N§L2 1) {IZHQHéLé 1)

_ MolpmoLs

: 2
Z I(IIIJNAL 2_ ||1>|

2L2

The efficiency tensors in the z-representation are:

(k ) (x ) D

@| 1

(ky+2) - o - (73)

fﬁ >
g

A

The angular distribution or correlation function is now easiiy constructed from

Egs. (T1), (19), and (73):

. . L - . T® .
- _ RNV ad (A) ()
Wt = ) oy Ak P pB) ek 0 (p ey L
B P ~1 . Qa0
Qa)‘aQa)\
wherevthe unitary property of the D—function'has been used.
| | 33

-If the D-functions are replaced by the corfesponding spherical harmonics:

oM 4,0,0) = (I 1 000 )

A,q

and if the orientation parameters (Eq. (6a)) are used Eq. (Th) takes the well
36 | | :

- known form:
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o b | ’ BA(I)c : | qq, : | '
Wik, ,k ;t) = — . A—(X ) G (t) 1 (e 9.) Y-=(6,,0,) . (76) -
~-2 211 2; /(1) (Bhe1) ATITR aaeen T

a3 -

The angles ‘61 and ¢i characterize the directions ki

quantization axis 2z 1in system S in which the perturbation coefficient G

with respect to the
qq(t)
is represented (see Fig. 3).

For vanishing perturbation Eq. (17) redpces to

ad . o o ~
0 T dg s -
‘and'the.sﬁmmaticn over q = gq'in Eq. (74) results in D(A)(k +k,) = P, (cos0),

where O {is the angle'between k, and k2.
correlation is given by the usual expression (aftef'droppiﬁg_the'irrelevant

#1/2):

Hence the unperturbed directionalv

factor (2I+1)

WO) = ) B (1) 4,(X,) Bylcos®) . (8
X ' : ' :

II1.2. The Response Function Fx(t)

In order to facilitate the planning and ahalysis of ‘NMR/RD experiménts

the angular dlstrlbutlon functions" w(k O,t) for some typlcal and useful

~1? 2’

experimental arrangements will be given. The formulae are restricted to pure
magnetic dipole'intefactiOns,vi.e. i = A and to directional distributions.

- For a specific choice of the angles 81,¢l and 92,¢2 (see Fig,c3) the

 directional distribution or correlation function ( Eq. (76)) can be written in the

form:

-»



-31- - UCRL-18413

,W(61¢192¢23§ot) = }[:BA(I) AX(X2) r, (t) L (79)

Terms with X > 4 "are of no practical interest. The coefficients: TK are

given by (see Eq. (76)):

Yy _ _bm o a3 * . o
R =g )L ORI Y (6.0 1 2 (8,0 (80)
9.9 - v ' ’ i

~

and a correspénding equdtion for FA’ describing time-integrated experiments.
For random phases q = q; hence the termé with g # q vanish. The definition of
Fx is chosen in such a way that it contains thevperturbation and the geometry.
In the unperturbed_case 'PA reduces to Px(cos@)} |

of particular interest is the geometry in which k, and k_ are parallel

to'HO, becausge it leads to a simple expression for the angular distribution. In

addition, since q = q = 0 for geometrical reasons, there is no difference between

the random and fixed phase case. The I',(t) coefficients are for this geometry

v A
identical with the perturbation factor:

- _ meay _ ~00 :
r. (e, =06, =0;3t) = Gxx(t) . (81a)

In the case of "antiparallel geometry" the odd terms change sign according to

e ey A .00 '
r)\(el = 0;0, = n,;) = (-1) Gxx(t) . | (81b)

For more complicated geometrical arrangements explicit expressions for the

FA—coefficients are given in Tables I-III.
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' ITI.3. Geometrical Interpretation of the Perturbation Formula

IIT.3.1. Static Magnetic Interaction

For a static magnetic interaction with a field H. the perturbafion coef-

ficients are given by Eq (27)‘for z = H_ and the angular distribution. function

~1

~0
(Th)) is of the form: -
_ ] )\ * ()\)* . i ’1qwot ()‘)* » N . .
Wl skpet) = ) 8y () 05(0), Doy (g > ) e (B, > ky)  » (82)

A.q

where the unitary property of the D-functions has been used. Using Eg. (29) the

distribution function (Eg. (82)) can be expressed in the form

v o . % * :
Wik kpit) = Z A k) -oé(o);* c()g) (k, > H,) DO\)‘ (~s.£,0,0) DM (1~ 52)

0"’ q'0 <0
‘:)\'»’qu' = ' v
‘ R - |
= ZAK(X2) Polt) S (83)
) , - «
where
A ® . o ™
o5 ()" = (0>~l D Pog (5 *E) b2, (<ugf0,0) " (B > k) . (84)
' aq’ -

.-The‘ataﬁistical tensor pg(t) is the same as pé(O) , but in a repre-
. k1o &
sentation with respect to the coordlnate system that is obtained by the appll— -

cation of three-su00e351ve rotatlons to the coordinate system with z, = gl: _' é-

flrst kl -+ HO’ then & rotatlon by o = -wot about HO'

!

o .
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This statement is equivalent to the discussion folloﬁiné Eq. (30); i.e.
-that the effeet_dffa stetic megnetic field oh an eriented ensemble can be
described by a rotetipn of the eymmetry axis El ef the ensemble about g by an
ahgle a' = wt. | | |

To reduce Eq. (Bh) the group property of the D—functione can be used.
The succeseive applicatioﬁ»of two rotations Rl‘and RZ? in that order, can be
expressed in terms of ene rdfaiionb R by using the'gfoup property of the D-matrices:
Yoga m) o) wy =) w )

a,q 99, 949,
q | -

Hence, the summation over q and gq' in Eq. (83) results in:

Wk ko3t) = Zpgmgl a,(x,) P lcos n(t)] .. o (86)

A

A comparison with Egs. (79) and (80) shows that Pl[cos n(¢)] = FA(t)' The
angle. n(f)'his’the angle between K(t) and k,, where K(t) is the symmetry axis
of the ensemble at the time t. The symmetry axis is represented by a unit

vector K(t) that is obtained by rotating the original symmefry axis 51 about Hy *

" through + w.t. That is,

0

cos n(t) = K(t) ?'52 (lkzl = 1)

cosﬁ1 cose2 +.sin6l sine2 eos(@ - wot) . (87)

where © =‘¢2 - ¢1 . Using this expression it is simple to derive the angular

cofrelation function for any direction of the magnetic field with respect to the
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detectors. ‘The two most‘common special cases are:
(1) If k and/or k, is parallel or antiparallel to H, the time-dependent
* term vanishes and the-angulér correlation is unperturbeqd : |
‘cos nvz-cosel c0362 .
0’ a geametry that is

éommonly used for the measurement of unidirectional magnetic per-

(2) If k, and k, are both perpendicular to H

turbations,vthe angle n(t) is given by

n(t)ae-mot'.- , (88)

III.3.2; Static Mégnetic Interﬁction in the Presence of a Radiofrequency Field
The aﬁgular‘distribution of radiation X2 enitted from an orientéd‘ensemble
_ that interacts with a static magnetic field H eand a radiofrequency field Hl(t)

is given by Eq. (T4) with the perturbation coefficient of Eq. (65).

. o e oy y o igA ()7
Wik, ,k5t) = Z po(O)’.ﬁl A, (X5) Dog (k) * By) e Dop (0,8,0)
A,9,9,p '

-ipw_t * - 8
X e e Dl()g)(o,_ﬁ,o) e—i‘l(w‘tﬁ"A) Dég) (go *Eg) . (89)

=Y a0y eplo), Ty(e)

= Z Ay (Xp) p_g(t)“ . B _ |
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By meking use of Eq. (29), pé(t) can be written in the form

(¥

' . . * ‘
pg‘(t)f = pg(o); Z Dég) (0,-8;,-¢,) Doq (4,0,0)
"7 qq'pp’ '
5 o
)* o oy () ' (n)* ) |
x Dq,p (O’B'O).Dpp' (-wet,p,o) Dp,q (0,-8,0) Dqﬁ, (-wt-4,0,0)
. .

X Dé%é (¢,,8,,0) . : | (90)

Again the summations over q, q', p, p', @, and g' can be performed and the

result is

D'(“)"<b (t),0) = P.[ ()] = I (t)
OQ ‘,Tl‘ s, .-")\COSU ‘ =

Thus the*angulér correlation function can‘formally be written as

Wik, st) = Zog(o):l_gk(-xe)pk[cos n(e)] . . (91)
ook

-This meansvthét, as in the static case, the influence of the pefturbation can be
described f)y'a time-dependent angle h(t)‘.

| Befofe-leaving this section, let us recapitulate, with emphasis oh the
physical meahing of the ébovévresults,

Referring to Egq. (90), we c;n understand the effect of the rotation
matrices.D(A) in the followihg'way. -At time t = O the ensemble has symmetry
about §1’ and only statistical tensors with q ='b afe nbnzero in.a frame with

]

'z axis along kl,-i.e., only tensors of the form pg(o)k are nonzero (the complex
e _ ' 21
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conjugate notation is used to retain consistency with Eq. (71)). Now in the
pure m&gnetié case it is possible, using successive time-independent rotations,
»
)

to express pé(o__ in a frame S''' wherein the HAﬁiltonian vanishes. For t >0

. . St
the frame S''' rotates relative to the S5 frame. It is thus necessary to
transform back into the § frame'using the (now time-dependent) rotation ' a
matrices in réverse-order, and finally to transform into a frame with z-axis

: : o ’ : A, *® S : : '
alqng §2, in order to obtain the desired pé(t)k To express the symmetry axis

at time t.= 0 (i;e., the k, axis) in the.S"i‘giame the following operations
. must be performed: | | | |
1. Rotation of the']itl frame ﬁhrough thé anglés (o,-el,-¢l), to exﬁress
151 in the § frame at t = 0. |
2. Rbtation'of the S (or xyz) frame about/§  thr@ugh angle A in
order to:aGJUSf ﬁhe rf phase. This operation defihes the new
"xf axis ésvbeiﬁg along H, at time t = 0, and k, is then»expressed
4in the S"(or x'y'z') framé at t = 0 (Fig. 1).
35 Rotation of the S' frame about the y' axis (see Fig. 2a) through
the angle B. The new z" axis tﬁén falls along H_, and k, is
éxﬁressed‘in the S" frame, at t = 0. Now at t = O the S" frame
coincides witﬁ a rotating frame S''' that rotates about z" = z'''
with frequency we, and in which the magngtic field disappears alto-
gether (S¢é Fig. 2b). Thus El-is also exprésséd ins''""at t = 0.
The remaining rétationsbin'Eq. (90) descriﬁevthe time-evolution of the
_Symmetry axis, and express,it in the laboratory frame. Since thevdirection_of
_this axis will no longervéoincide with k , ﬁe sha;l_now-call it K(t). Thus after
the above operations the vector -that ﬁelhave is 5(0)"'. We must now: -

~
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4. Rotate the S'!'' frame.about.ge (i.e.; about z" = z''") through the
| angle -w_t. This gives g(t)". |
5.',Ro£atelthe s" frame about the y" = y' axis through the angle -B
to give K(t)'. |
6. Rotate the S' fraﬁe about H, (i.e., about_z'.= z) thréugh the angle
—wt-A, thereby obtaining g(t);expreésed in the S frame.
The resulting'vector g(t)vmﬁst be felated to the emiésion.directidn ks
in order to obtain the angular distribution in the gyvdifection at_ﬁime t. This
(K)*(

-t

90

is accomplished by theviast rotation, D ¢?,62,0), which expresses K(t) in

the k, frame.
The two ways of éomputing the angular disﬁribution f}om a state that is
perturbed by static and.radiofrequency magnetic fields, as given by Egs. (79)
and (80) on one ﬁand and by EQs; (90) and (91) on the other, are identical.
The rotations which are contained in Fk(t) (see Eq. (80)) in a rather impli-
‘cit manner were discussed one by one in Eq. (90) onlyvtd provide.the reader
with a physical undefstanding of the rather formal derivation of the perturbed
angular.correlation function. In the nexf chapter the same approach will be
made to describe the behaviof of the symmetry axis of an ensemble under the

influence of static and periodic magnetic fields, in complete analogy to the

behavior of the magnetization vector in conventional MMR (Bloch equations).
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IV. THE GENERALIZED TORQUE EQUATION: ,AN ALTERNATE A?PROACH FOR MAGﬁETICY
S INTERACTIONS | o
The fhéory:develbpedbabove is exéct and coﬁplete. It may be uséd to
describe any.NMR/RD experiménf ihvolving magnetic and qﬁadrupole intefdctions,
ete. Howeﬁéf, forvpure #agnefic interactibns, the most important single case,

we have also found another approach to be valuable. This second formulation,

’

which owes its origins'to NMR theory, is derivea below.

The ﬁfénéfgfﬁatibns, descfibed bylEds. (89) and (90) and thé discussion
fblldﬁing, are'éimply'succéssiVe rotatiohs in space. Equation (90)_was for-
mulatéd to,display their spin-independence, fdr-the mggnetic case. It ié aléo
- useful, howevér; to éliminate spécific reference tb_the'ranks of the statistical
tensors. .To do so wé'exploit the stmetfy»bf the éystem by transforming inﬁo
fhe referenég frame‘s""wherein p 1is tiﬁe—independent (except for nuclear
decéy) and~a#ially symmétric (i.é.,'p; =0 for q # 0). oOf course this means
thét we‘mﬁst expresskgl; thebdirectibn of axiél symmetry at t = O, in the
reference frame S''' wherein the paft of the Hamiltonian that describes the
"intergction of the nuclei with the time-dependent magnétic field, which can

be written in the laboratory frame as

gs(t) = Hl(gx cos(wt+A) + e sin(wt+A)) + HO?;__.’ ) - (92)

~y

~is always zero. This is accomplished by three successive rotations,
cos(wt+d) - sin(wt+d) . 0
Rl(S +8') = | -sin(wt+a) cos(wt+A) - 0O

B
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cosf 0 . -sinB
R2(s'j+ s") = 0 1 0
sinf 0 cosf’
cosw t sinw t 0
‘ e T e
R (8" »s8'"') = |-sinw t cosw t 0 .
3 e e
0 0 : 1

The S and S' frames were defined in Sec. II.L.1. and illustrated in Fig. 1.
The S" frame introduced above, has axis z" along'He with B = cos‘l-i(z',z").
Finally S''' is a rotating frame relative to S":  the purpose of R3 is to

"transform out" the remaining magnetic fieldee so that
Hopo(t) =0 . . - | . (93)

Figure 2 illustrates S" and S'''. For A = 0 there is a one to one correspondence

between (S''', 8", w,, H ) and (S', S, w, H

), as a comparison of R, and R, will
~e ~0 ; 1 3

show.
We now denote a unit vector along the symmetry axis of p as g(t),
without reference to the frame in which it is written (see Eq. (87)). Clearly

it must satisfy the boundary condition

K(t=0) =k, , ! (9%)
and it may be written in S''' at t = 0 as

F:o)gl , (95)

§S‘l'. v(t=0) = R3(t=0) RQR:L(

where ki is. referred to the S frame.
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To eXpress g(t) in 8 we need only transform back, bbtaining

PN | -1 -1, 4
,§s(t) =R, (t) Ry T Ry (%) R3(0) R, R, (0) ;. (96)

3

=

The explicit form for K_(t) is

gs(t) =.

{[(cos28 cos (wt+A) céswetl¥ 51528 cos(mt+A) - qbsB sin(wt+A) sinwet)cosA'

(cosB cos(@t+A)vsinwet‘+ Sin(wt4A) coswet)sinA]klx

+

+ [ (-cosB éoé(@t+A) sihwéf éyéin(wt+A) coswei)cosAV

+

(cos?B cos (wt+A) cosw_t -IcosB/sin(wth)'sinwet-+ sin’B cos(wt+A))sinA]kly

[sinB cosB cos(wt+A) - sinB cosB cos(wt+d) coswet + sinB sin{wt+A) sinwet]klz}gx

+

+

{[(c0328 sin(wt+A) cos@ét_#nsin28 sin(Qth) + cosfB cds(mt#A) sinwet)cosA

(costSin(mf+A)_sinwet —’ébs(wth)vcoswet)sinA]le

+

+

[(~cosB sin{wt+A) sinw t + coS(wt+A)_coswet)cosA

+

(cos?B sin(wt+A).cqswet + cosB cos(wt+A) sinw t + sinQB_sin(wt+A))sinA]kly_

+ [~sinB cosB sin(wt+A) cosw t + sin cosB sin(wt+A) - sinB cos(wt+4) Sinwet]klz}fy }

+

{[(sinB cosB ;_sinB cosB coswet) coshA + (-sinB sinmet) sinA]klx =

4+

[(sing sinu_t) cosh + (sinB cosB - sing cosB cosu t)sinalk)

+

'[cos?B + sines cosweﬁ]kii}gz C , o (97)
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Obgervables in conventional NMMR are related to the m&gnetization M,

which obeys the Torque Equation,

"&lzg

where vy =-gu!{h. This property of g is of great ﬁti}ity in visualizing the
beha&ior of & spin ensemble invavconventional:NMR experiment. We.hote that NMR
theory is émbodiéd in the previous seétions:  M is collinear* with K(t) and its
magnitude in.S""is proportional po_pé. In fact Eq. (98) is just a special case
for A =1 of fhe more general transférmation expressed by

dK : |
==yKxHE . - (99)

dt

In many‘NMR/Rb experiments M = 0 because of the parity symmetry of the experi-
ment, whi;h réquires pg = 0 for odd A. For thése caéés a "torque" equation
still'obtains; however, because; aé'ins?ection'of Eq. (98) shdwé, the direction
of'.M; rather than its magnitude, is importént in the Tordue Equation. -Of cburse
Eq. (99) depends on the states of the ipdividual nuclei in the ensemble having
gyromagnefic rétio Y; bﬁt'it in no way reduires é finite magnetization

ensemble. Rather, the torque equétion should be regarded és a transformation of
coordinates that will eliminate g(t) and allow the density matrix to remain time-
independent in 8'''. This is not a new result, of course, but ourvpoint of»view
is of necegsity a little more‘crystallized than is common in the maénetic reso-
nance liférature, where @ is usually nonzero. Thé esgential physical‘content
39

of our épproach is given ih'papers by Rabi, Ramsey, and Schwinger”  and by

Fano.32 We may therefore write a Generalized Torque Eguation,

The case Mlz in a continuous NMR experiment is analogous, then, to k.llz in an

~ ~

angular correlation experiment. Pulsed NMR experiments provide examples in which

a natural time scale exists and for which kqy is not parallel to the z-axis.
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dxs(t)

=y Kgle) x Hgle) . ~ (200)

in a form that indicates explicitly its valldlty in the laboratory frame at any
time t. Of course 1t is valid in any frame. This equation may be confirmed
in detail by substituting the explicit expressions (92) and (97) into (100).

Now n(t), defined in Eq. (87) can be written in this notation as

cos n(t) = k; * K (t) . (101)

~2

It is the angie between the'k direction, to the second detector, and the sym-
mgtry'axiS'of the‘dénsity,matrix, as before. The multipole radiation pattern

can be described by Legendre polynomials in the S''' frame,
. g N, -

To evaluate the counting rate in the laboratory frame, S, at time t, we need

only know n(t), the instantaneous angle between k, and K(t). Thus

w(gl,gz,t) ,= Zpé(o);l AX(XQ) P}\(cos n(t)) . (102)

But this result is identical to Eq.' (91): only the point of view is different.

For the time—integfal funCtiohs
' W(kl,k ) pr(o A (x ) I‘ (k E, ) R o : (103)

we need only evaluate the time-integral Legendre Polynomials,

e,
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fx(5i'§2) = 1t J( e"t/T Py (cos n(t)) at . (10k)
. ’ 0

,A these integrals can be written_as.linear;combinationé of inte-

1‘
: w ~t/T
grals over powers of cos n(t), of the form IO e

"For any k
[cos ni(t)]" dt, with
n §§X. Now cos n(t)'ié itself a linear combination of powers of sines and
cosines of the angleé wet,B, and wt+A. After some trigonometric manipulation

all the neceésary integrals can be written in terms of integrals of the forms
jr et/ T cos(fw t) dt ,  and Jr e /T sin(fw_t) dt
0 ' 0

where . £ 1is an integer.

As an example we shkall work out the angular distribution for a
specific geometry and relate it t&6 the geometrical interpretation. We consider
the case k1ﬂ+z,k2H-z (Geometry no. 1 in Tebles I and II), and calculate T,
and F2. From Eq. (97) we have klx = kly = 0; thus

Fl(t) = cos n(t) = (IES)_z = ~gin“B cosw t - cos g

" and

- T

= P2{cos n(t) 1 = %-sinuB cosgw t + 3s1n S cos B cosw_t + %-coshB - %- .

The time—integrél response function has the form

%2 = - %- % coshs + %asinhs + 3c0§28 sinQB [l+(wet)?]fl'
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"”V%Sinhs'[l#V(Ewer)gl'l . - | _ (105)

For the limiting case wT > .the last two terms approach zero and-we have

N . 7 2 . 2 ) - : B
r2 (wlT + o) = [Pg(cosﬁ)]e = (E_E:ALG%) R : (106)
v ’ u + 1

vwhere u 1s the frequency in units of w,, u = (w~wo)/m1 = cot B. The geo-
metrical'interpfetation of this function is illustrated in Fig. h.: The F2
integral (Eq. (104)) is taken, for each value of w, around a circle on the

unit sphere. The circle must pass ihroﬁgh kl, where the path of integration

~

starts (z' in fhis case), and.ge goes through the center of fhe éifcle. .Far

off reSonange (top of Fig. 4) H is near z' and Pg(cos n(t)) is near unity all
around the qirCle(' At resonance (bottom of Fig. 4) the integral is taken around
a méridian; and ?2(“) has the hard-core value‘

N am v o
T (=) = & f P (cos n) an = 1/b . (107)
. |

2m
At intermediate values of u the integration path (Eq. (104)) heavily weights

the "equatorial" regions, n' v E-, where P

> is negative, and fe drops to a single

2
‘minimum‘in each direction around u = O. vThus we.have & complete geometrical
iﬁterprét&tibn of fhe.curve. Similar arguments can be made for other geometries.
For thg limiting case w;T > ®, an expreséion»for the fk functions
defined in Eq. (80) is easily written down for any arbitrary geometry. We note
that g(t) precesses about §e until_ge is the effective symmetry'éxis'Of the .

system. Thus = 0 for g # 0, and only ng is left. But for any X
. ~e :

bk
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K was>nonzero, and thus only pé(t)K will be nonzero. Hence the

~ ~

general transformation equation for spherical statistical tensors (Eq. (L))

only o%(t=0)

becomes

A

- A . (A) [ ' ' : ;
(ppge) foo(t)E Doo (@'sB'Y') . | | -~ (208)

Here a'B'Y' represent the rotation aﬁgles from the K(t) frame to the H

frame. Now a' and 7Y' are time—dependent, but B' is not: it is the angle

" between ge and K(t). But Dég)'is independent of a' and Yy': in particular,uo
oM (argryt) = P (cos8') . | C 109)
00 A o
Thus
(DOH ) = (po kl P, [conlk 1 )] ‘ . | (110)
where We'ha§e now used pé(t)§ = pé(t O)~1.'.By similar arguments the rotation

of He about H, gives an analogous relation for statistical tensors in the 5
frame, namely

Ao A

P
OH, OH,

PA(COS(Eésgo)J = (Qg) PA(éOS B) e ) (lll)

H
~e

Now the angular distribution of radiation from the oriented state varies in the;

limit, wOT‘* © gg

Wik, Ky, t) Z(.poﬂ AR NC ORI )
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Thus,’for wiT + o

Wity T > ) =»§:¢pg>kl~_ AR NO I (113)
X * .
and we have
fA("f-)v.?-APA[c‘?S-(lfi_’ge)_]. Pilcos B) Pyleos ), (1)

as the limitihg lineshépe fér any geométry andufrequency as wlT > o

In:thié "torque eqﬁation“ approach the épin-indepéndence ié manifest
from the beginﬁiﬁg bec;uSe we'névér use an |Im ) rebrgsent&tion. ‘Theré is
only one response funcﬁién, Fx(t),vfor each tensor rank, rather than the Ggg(t).

FX(t). is alwayé réél.. Of course the-ﬁwo theoretical approaches glve identical

results, and they require about the same amount of computational work. The chief

advantage of the theory developed in Seé. IIT1 is'ifs generality, which permits
ready'extensioﬁ_to_more complicated ﬂ;(t). An advantage of the present apbroach
is the réadily;grasped relationship.between the experimental geometry. and fk(w)'
With the functional forms of the Legendre polynomials in.mind‘oneiéan, with
1itti¢‘or nokactﬁal calculation, predict the syﬁ@etry properties of fA(w) and
even the quaiitative shapes of the reéonance curves for a given éxperiment.

‘The two theoretical approaches have been used interchangeably to obtain

the results given in the following sections..

8
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V. TIME-DEPENDENCE OF ANGULAR DISTRIBUTIONS

V.1l. General Discussion

A time-differential observation shows the periodic motion of the nuclear
magnetic moment under the influence of H_ and H, . The time-dependent pertur-
bation poefficients G%%(t) are essentially the Fourier inverse of the time-

integrated perturbatlon coefficients GAA( ):' Cénsequently the observation of

the timefdependent perturbation factor does.hot lead to any additional infor?
mation as compared to the time-integrated observation, but its discussion is
instructive for the understanding of the resonance behavior.

Thé time-differential perturbation coefficient for a pure magnefic
interaction'isjgivéﬁ by Eq. (65).. Near resonanée the time dependence of qu(t)
e -i[qwt + (3-q)a]

corresponds to a rapidlyéosciliating_function e that is ampli-

tude-modulated by the slowly-oscillating function
: -ipw t '
s33(¢) = Ye o) @) @ . (115)
QP :
b

Tﬁis low—fréquency component can be interpretéd as the rotation of the nuclear
spin. with ffeéuency' we about the effective field Ee in the Larmor frame that
in turn rotates with»frequgncy w about HO (cf. Fig. 1). The high-frequency
‘component originates from the transformation into this ILarmor fréme and repre-
sents physically the spin rotation with frequgncy w. Of course HO and Hl are
the two magnetic fields actually'présent{ Thus any experlment can alternatively

be described in terms of the high and low frequencies Wy and wy rather than

w and W .
- e
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FOr frequencies far off resonance the modulation frequency increases as
given by wg (Eg. (47)). Finally for |w - we|>>|wl| the perturbation coefficient

approaches'the form

aq, . . ~i[(p+q)wt + (g=q)A]
SHOEDIE »

P

and only the high-frequency component is left. Here the limits

Lim B =0 (See Eq. (LL))
= '
|T;—O'| +0
1

and

L ops (A) Y -
B-Limo-[dqp (8) dap(B)]'— 1 s

‘have been used.
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It is pbssible_to perform experiments in such a way that the rapid spin-
rotation térﬁ vanishes for purely geométrical reasohs;_ In Fig. 5 examples of
the low;freqﬁency oscillation afe giveﬁ for X = 1,2.-.For qQ=4q = 0 (Fig. 5a)
the oscillation can‘be oBserved_diréctly in geometry no. 1 (Tables I and II)

. and the timé—dependént angular correlation is determined by

_ 00 ‘
rx(t) = Sxx(t) . : | . (116)

"The expliéit forms at resonance, which can also be evaluated from Eq. (97), are

fl-

Pl(t) -cos w t

- 3 2 .1 ’
PZ(t) 'é-‘COS wet - -2- . : - (117)

If g # 0 and g = 0, as applies to geometries 5, 6, and 8 in Table I, then only
the low frequency w, occurs in Fk(t)' For geometry 5 (Fig. 5b) the explicit

forms at resonance are -

Fl(t‘)- =‘\/§ gin wet (cos A - sin A) .
r2(t) = (3/8)(1 -‘cos2wet) (1 - éineA) -1/2 7 (118)

These functions are plotted in Fig. 5b for A = 3n/Lk and for random A. In the

latter case Tl(t) and Fg(t) are‘bbtained from the above expressions. by

replacing cos A, sin A, and sin2A by their ensemble-averaged values of 0. This

causes Fl(t, random A) to vanish, while the oscillatory part of 'Fz(t) is

reduced by a faetor of two in‘amplitude}
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qu'those cases in which the experimental geometry is such that q#0
(no. 2, 3, 4, 7, 9 through 13), the oscillation with w, forms én envelope f§r
the rapid oscillation of frequenéy. w (Fig. 5c). The phase factor (g-g)A
which is‘added to ﬁhe high—frequenéy term in'Eé. (65) siﬁply'describes a con-
‘ iqwt. The angular correlétion‘can be
calculated byvthe corresponding formule in Tables I and II.

For geometry 13 the specific expressions for A = 1 and 2 at resonance

are

1 L .
S <2 /E.{[cos(wt + A) - sin(wt + A)]Jcos w,t cos A

+ [sin{wt + A) + cos(wt + A)]sin A}

re(t)

i

3/ 2 -1 ’
Heyw)® -3 (1198)
Choosing A aé random,'these exbressions become

T (t) =-% cos(wt + m/k) (1 + cos wet) .

Tg(t) = - %-+ %-cosgwet - %g-sinZwt (1 + gos wet)2 B '(119b)

The behavicor of I'.(t) 1is straightforward. It is simply the product of fast

1

and slow terms. If such a curve were observed with time-resolution much slower

than w—l, then Fl(t)obs would simply vanish. By contrast, Té(t)'exhibits

more interesting behavior. With poor time-resolution only the term in sin2wt

would vanish, leaving the slow component
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= L 3 2
»r2(t)obs =-gtrgeos it

" ooj

as shown in Fig. 5<c);
| Figuré 6 showé the‘rapid éécillafion wt which, ét resonance, near f = 0,
fepresents the spin rotation in the field E (the influehce of gl is nét‘yet
vevident);' Examples afe shown §6r two specific geometries (No. 9 and 11), with
3 S

Hl/HO’= 10"". A number of features are illustrated by this figure: (1) The

' shapés of the curves are'iden£ical‘for the twolgeometrieé chosen. (2) Near

t =0 only terms with q = a contribute since‘%i%jGii(t) = 1. (3) Because of
{2), the starﬁing phase of the spin rotation is determined by the geometry alone.
Although nbt'shown in Fig. 6,.the curves for w/wO = 1.001, 1.000, aﬁd 0.999 are
pfactically indistinguishable on this écaie neaf t = 0. The geometrical‘inter;

pfetation of this behavior is clear, since near t = 0 the limiting value of

Fk(t) for these geometries is

I, (6) = Pylcos n(t)] = pyleoslugt - (6, - 61} . GED

To obsefve.aireSOnanée effect the condition»wlr 2 1 must be fulfilled. Thus,

for Hl/Hé = 10—3, as in Fig. 6, the amplitﬁde of the rapidly oscillating functions
will be appneéiably affected only'after ad wo/wl = lO3 éscillations. An example of
this behévior is given in Fig. 7 where a time ségment of'the-differentiai per-
turbation factor jFA(t)"near Wt = 1073 wyt = 1 is shown. . Thg»folloving features
are apparent: (l) Thelcurves differ foy different values of w/wo, indicating

the fescnance effect. (2) Rahdom and‘fixed-phase curves differ duevto the

~contribution of factors with q # q in the case of fixed phases. (3) When pas-

sing throﬁgh,the resonaﬁce alchange is observed for both amplitude and phase.

|
|
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The behavior of fhe amplitude.and phése near iesonance depends cruciaily dn the
time segment selected and'the specific geometry. For example,.Fig. T repre-
sents a special case. In geométry.9 thg rf field at t - 0 is parallel to El
at thelresonant frequency (@ = wb) and therefore has no effect af all. In fact
rather than inducing trénsitions it preVents them, acting thereby as é hblding
. for any geometry in which ‘is

0 Ky

‘parallel to H,(0) is really an "antiresonance". This effect will be discussed

field. Thus the effect observéd at W= W

further in connectioq_with Figs. 10 and 15.

fhe rapid oscillations shown in Figs. 6 and 7 represent spin rotations
about.the constant field Holwhich are conventionally.measured:with the field
oriented perpendicular to the detector plane. .They are only observable in
lévels with long lifetimés, and Qith reasonably low values of HO‘ This means
that in time-differential eiperiments one must take into account the enveloﬁe
functions only if the time resolﬁtion is sufficiently good to resolve the high-
fréquency component. Should this fast oscillation be averaged outbby the
iﬁstrumental time resolution, only terms with q = O contribute to the final
ﬁertufbation factor (see Fig. S5c). An example can clarify this point. At room
témperature the resonance for lOORh in Ni occurs at about 340 MHz.l The aver-
age period of the X = 2 oscillations in Figs. 6 and 7 is § = w/wo,

or about 1.5 nsec in the case of lOQRh in Ni. An observation of this

fast oscillation requires a time resolution of about 1 nsec. The situation is

100

still more difficult for Rh in Fe which at room temperature has a resonance

frequenéy of 883 MHz.21 This frequency corresponds to a time period of about
' ’ ' . 100

0.57 nsec. Thus, it is difficult to observe the fast spin rotation of "~ "Rh

in Fe or Ni with present experimental techniques. HOWever, this difficulty was
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~the very reason that led to the NMR/PAC method, which is not in any way

restricted by the time-resolution of the equipment.

V.2. Random rf Phase

'If‘the time of formation of the nuclear level is unrelated to the phase
of the radiofrequency field, averaging over all phase angles A leads to q = q

(Eq. (63)). For this situation the modulation function Eq. (115) at w = wg

has the form
qq _ . 1 (T .
S5aFpes = E e [d ~)] . | _ (121)

In the rotating frame S'(t) at resonance the direction of He coincides with Hl’

2 1

sentation in which X" is diagonal is parallel to H; the states |In ) are

which gives B = I ana Wy = w, . Thus , the quantization axis of the repre-

‘stationary with respéct to the x'-axis.
In e#periments where the symmetry axis k (kq) of the oriented ensemble

~c

is parallel to the quantization axis z = HO’ with respect to which G?g(t) is
. ) ~ ~ ¥

given, only terms with q = 0 (g = 0) contribute and Eg. (121) simplifies to

00, . 00° St p)y 12
G)\)\(-Qlt)res = S)\)\(t)res = Ze ?_—Rr{)\ P P:;\)(O»)]
.'= ()\!)2 + 2 ()\ - P)!(A + P)! .' ‘COS(DQ) t) e (122)
(A1) ;O[(k-p)!!(l+p)!!]2 ot '

where the eXpliéit expression for Pf(o)rhas been used. The sum over p includes

only terms with A + p = even.
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In this specific case (¢ = g = 0) the angular distribution of the

radiation X, is given by (compare Eq. (76)):

Wik llH,6,t) = ZBX(I)_ Ay (x,) Gy () P\X(cos 0) (123)
S by : . .

where O 1is the angle between k (HHO)‘and k Equation (123), with expression

2.
(Eq. (122)) for the perturbation coefficient Ggg(ﬁ)res inserted, describes a
'rbtation of the angular distribution pattern about H with a frequency wl; If
the g-factor of the nuclear state is unknown, observation of the time-dependence
of Gig(t)r;es makes it possible to determine the effective amplitude, Hiff

radio-frequency field at the nucleus. In those cases wiere the externally

s Oof the

applied rf field.is enhancea by a paramagnetic or ferromegnetic coupling the
enhancement factor (1 + H, . /H ) can be accurately determined. This possibility

of s direét observation of Heff

1 is a valuable feature of the NMR/RD method .
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VI. MR BEHAVIOR OF TIME-INTEGRATED ANGULAR.DISTRIBUTIONS

VI.l. General Considerations
In tiﬁe—differenfial experiméntslthé total perturbation factor 1is
aiways periodic in time irresbective of the magnitudes of Hl.and HO provided
6nly that thesé fields are sharply definedu Howéver, time—iniegra} méasure~

ments yield attenuation effects which depend sensitivély on Hy, HO and the

lifetime T. in contrast to conventional MMR we find in MMR/RD a wide variety

of line shapeé. There are several reasons for this additional complexity,

notably the extra vector k., higher multipole-order observablés,vand the natural

time scale of the nuclear decéy.

In planning an NMR/RD experiment one often wants the highest possible
sensiti&ity_ébhéisfent with thé geometrical consiraints, if any, imposed by
the apparatus. Clearly thefe are many possible distinct sets of experimental
cohditions. The relaﬁive oriéntatibné of the four vectors kl’ 52, HO, and gl’

~ ~

1T and the option in some cases of fixed or random phase

present an embarrassment of choice. With the observation of a few basic prin-

.theAmagnitdde of w

ciples, however, selection of an optimum geometry is usually straightforward.
There will be important symmetry considerations for a majority of experiments.
The formalism developed in Secs. II and III led to a general formula
(see Eq. (62)) for the time-integrated perturbation coefficient that describes .
an axially syﬁgetrié static interaction in the presence of a radio-frequency
(rf) field. For the special case of pure magnetic dipole interactions the pér—
'.turbation factor has the form given in Eq. (66). This eéuétion can be used to.
describe resonance experiments with various geometries and phase relations. In

order to discuss resonance effects in timé—integrated MMR/PAC measurements, a

il
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few typicdl ﬁumerical résults will be preéented forVSOme specific geometries
and representative'parameférs. Tﬁé discussion wiil distinguish between the
résonance'behaviors for.random— and fixed-rf bhase.

For somé épecific geometries the form of £he angular correlation function
can be obtainéd from Tables I (A = l),bII (X.= 2), ana IIT (X = 4), TIn each .
- table the réspdhsé function Tx(t) is expressed in terms of the timefdependent
perturbétion factors an(w t) (Eq. (80)). The time-integrated response function
f‘(w t) bearé the same functional relationship to the timé-integral factors
G%%( (Eq (61)). Since the phase angle A is included in qu(w t) and G%%( )
(Eq. (65), (66)),‘the relations in thesevtables are valid for any A. The cor-
responding T*(w,t) or %A(w) for random A may be obtained in each case by
sfriking out the terms with q # a (BEq. (67)).

Also given in Table I are the explicit expressions for
Fk(t) = P Lcos n(t)] = §(t)-§2‘ that‘are_féund from Eq. (97’ or by working
out the qu(w,t) factors in detail (Eq. (65)). Time-integral functions %A(w)

AX
-1 -t/1 Pl
may be obtained by integrating on T "e 'dt (Eq. (104)), while response

-1
functions for random A " are obtalned by 1ntegrat1ng over. (2ﬂ) 7 dA. The cor-

responding expressions

ro(t) = Byleos n(t)] = Hx(e) k)% - 5,
and
r(8) = Bleos n(8)] = 32 (k(t)k)" - B (k(e) k)2 + 3,

" are not givén expllcitly in Tables 11 and ITI, but they may be calculated for

each geometry, from the approprlate expression for K(t )'k2 as given in Table 1.

i
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Before starting we note that there are four natural frequency variables
for any experiment: W, Wys W5 and 1/1. We can completely characterize any
experimental situation by calculaﬁing FA as a function of the dimensionless

variable (w—wo)/wl,'with w T held constant. Let us make an observation at

this point about linewidth. For low rf power (wlT << 1) the natural line-

width h/T may be approached, but few nuclei will participate in rf transi-

tions. ﬁFor high power (wlr >> 1) most of the nuclei'may experience rf

transitions,'but the linewidth will broaden to ﬂlhwl. Clearly maximum

efficiency is achieved for W T oL,

- VI.2. Random rf Phase

and/or k2 parallel to HO

VI.2.1l. Resonance Line Shapes for kl

The general expression of the perturbation factor for random rf phase

follows from Eq. (66) with q = §:

R 1-ilpw, +qwt. 2 , o
339(y) = e My . (12

Thié equation can be used to calculate the various terms of fl in Tables I—IIi.
An.inspectioﬁ of these tables shows that whenever E or E’ is parallel to the

g-axis, as is the case in geometries no. 1 through 8, the response function FA'
contains only the one term égg; since q = q. Therefore the discussion will con=

cern mainly these terms. Since the imaginary parts cancel for q = 0, we obtain

from Eq. (124)

. . .
The signs of w, and w, are defined consistently. Thus.(w--mo)/ml is always

understood to mean (w—lwol)/(lwll).
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~00 -~ T ) 2 j |
Gy (w) =. (a7 (B)] . (125)

At resonance the perturbation coefficient becomes (compare Eq. (122))

~00
(

' GXA l)res

= j{: _{Ap)t (A+p)! 5 L > for (A+p) even
D [=p)rt(A+p)t1]° {1+ (pwlT) R

=0 "~ for (M+p) o0dd - . (126)

An interesting feature of MMR/RD experiments is that a nonzero "hard-core"

value of Ggg

amplitudes, 1.e. large values of H

exists at resonance for A even.- In the limit of large rf

., such that w. T >> 1 1is satisfied, only

1 1
the term with p = 0 in Eq. (126) remains:
2 o
~ N
Lim (Ggg)rés = LA;J—E{ for A even . (127a)
W, T > o (A1} : ‘ _

1
Here, Al! = A(A=2)(A=b)--2 or 1. Using a more physical picture the hard core

for B = m/2 comes about by integrating the Legendre polynomial around a meri-

dian in the z' - y' plane.

- . ’ o . > .
X 200 1 : ~ o [ar] »
Lim (Gkk)res = 5= Jr PA(COS n)an = ——77—7: , A even
W T > 0 [X..]
=0 . , A odd . (127v)
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The existence of this lower limit or har@ core for A= e&en implies that, at

resonance,'a fraction of the anisotropy always remains, no matter how large

the imposed' rf amplitude is. This hard-core behavior is illustrated in
U SEAYe (o . ' :

.Flg. 8, in which PA = (le)res of Eq. (126) is plotted Versus-Hl/HO for some

representative values of w

0

It is important to note, however, that at freqﬁencies off resonance

T.

the perturbatibn coefficient Ggg(w) with X =even can actually reach zero for

sufficiently iarge amplitudes of H . The perturbation coefficient (Eq. (125))

(A)(

vanishes,_eveh for p = O,>if dOO

B) = PX(COSSA) = 0. This condition can be

expreésed in terms of the "maximum perturbation frequency" w' by using Eq. (uk):

cos B | .
)Y H
' 1 . | . (128)

w =w, |1~ = et |
0 H.
L : '\/l - cos BA 0

Here Sx are the angles for which the Legendre polynomial PA(QOSBA)'vanishes,
e.g. Bk=l = 906; Bl=2 = Sh.7°, and Bk=h = 30.6°vand 70.1°. Si@ce w' in Eq.
(128) is symmetric about resonanée Wy 822 behaves like a k-fol@ split resonance
line. This structure is.demonstrated.in‘Fig, 9 for'A = 1 through 4. It is a
purely geometricalveffect caused by the fact that multibole radiation with its
characteristic intensity pattern is used to detect the resonance. This effect.
was first observed for the case A = 2 in optical Studies,g?ul and all the.
formulae derived.ébove apply to optical double-resonance experiments as well.

In coﬁnection with optical double resonance work it was pointed out9
that the splitting of the resonance line allows a reliable defermination of Hl;

The distance between the points of maximum perturbation is obtained from Egq.

'(128)
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cos B
) o | (129)
(wo -w') —\j(""“fg" W, ,
- - 1l - cos BA _ :

For A = 2, for example, éos'ée = % l/#§'which gives (wO - w!) = wl//g. Thus,
with the frequency scaie-chosen in Fig; 9 thé two:minima occur at % O.7l.v'0f
course, the nuélear ori¢ntation is n0£ destroyed at thése.ﬁinima, because of
coherence exists améﬁg‘the substates. The nuclel are still oriented aboutlge,
aﬁd an adiabatic frequency shift will restore the orientation in the labératory
frame. By contrast; relaxation effects will destfoy nuclear orientation in the
Ee frame (see Sec..VII).

The fesonance bekavior of aig(w) is shown for A= 1 to b in Fig. 9.
The frequénéy scale was chosén in such a way that the width of the curves is

normalized with respect to H The effect of power broadening of the resonance

1
line which occurs for increasing rf amplitudes is readily deduced from this
figure. Tt is apparent from the figure that for A random and any A, Egg
is an even function of (w—wo)/wl; and hence is insensitive to the sign Qf wo.
This statement also applies to any gecmetry with random A and 0 = g # 0. For
q =0, this result is easily proved from Eq, (125) using the relation

(a5 (817 = [al}) (1-8)% (see mq. (68)).

If the angular distribution of allowed B-radiation emitted from a

polarized nuclear state is used to detect the resonance, the iine shane is

determined by the term in A = 1. In this case Eq. (125) reduces to

400 _ 1 +v(m0aM)212
B 2.2

1+ (wo~w) %+ ()

- . S (130)



-60~ ' " UCRL-18413

Hence the line shape as a function of w 1is a Lorentzian, as was pointed out

by Sugimoto et gigeo

~1

vi.2.2. Résonance Line Shapes for k. and k, Non-Parallel to H

In the case of random phase\theso geometries lead to a response function
which contoins factors of the formrgiven in Eq. (12h). Examples are geometries
9 through 13 in Tables I III. It cah be inferred from Eq. (léh) that the terms
w1th Q # 0 are con51derably smaller than those with q = 0. DNumerical calcu~
latloqs conflro”th;s. Thus_forvcompllcated goometrles the leading terms 822'
defermine'ihe shape .of the reéonanoe.

At resonance Eq. (124) takes the form

ralM ¢

5 L4, Tr/2)]2 . ‘ (131)

o 1 -di(pw +quw)t
(399 - . 1 0
A res 14 (puw +quw )2T

P P % %7

For W T > these perturbation terms show the same hard-core behavior dis- -
cussed in‘oonnection with Eq. (126). In addition, a similar effect may be

achieved even at modest rf. amplitudes for large values of WoT - Keeping

wlT constant the perturbation term (G%%) . vanishes for wOT »+ o | unless q = 0.

large Wy T and w T values can be realized in experiments with large magnetic

fields and long nuclear lifetimes.
In any NMR/RD experlment a natural symmetry axis about k exists at

t = 0. As K(t) evolves there is no symmetry axis fixed in the laboratory frame

until, as w.T > ® , H becomes a symmetry axis. For random-phase cases the

Q
symmetry is very Simple. Whatever the p051t10n of kl’ K(t) will precéss until
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pé,’originally diagonal along kl’ becomes in the time-average diagonal along

HO’ i.e., until the nuclei become oriented along HO, in the ensemble average.
¥ ' . A .
Since 51 and EO gre in general not.parallel,vthe masnltude of po(go) is usually

1ess than that of pg(kl), hecause of averaging. If HO is the only magnetic

field present, we have, for the limit w

OT + w (cf. Eq. (4))

)\ . _ . x ) . : r-
~0 ~1
If a strong radiofrequency field is also present, and wlf > ‘with Wy >> wl
étill, then K(t) must be‘averaged around He before being averaged around H_.

For this case Egs. (110) and (111) give

(02)y = (o)), FTcosThy BT Py (cosB) (133)

~0 ~1
The line over Px[coS(kl,He)] denotes an average over A. TFor frequencies far
off reéondnce, B + 0 and Eq. (133) reduces to Eq. (132).
Now (pé)ﬁ is simply a statistical tensor describing an ensemble of
nuclei oriented relative to H,. Thus thé response function corresponding to

~

Egs. (132) and (133) can be written resPecfively

~

T.

T Pl(cosel) Px(éose2) y ' , } (134)

for wyT >« with no rf field present, and (cf. Eq. (114)):

P, = B, Teon(k;,H )] P, (cosB) P, (cosh,) - - (3s)
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for wlT + o with wo'>> wl . In the average over A, the specific form

gos(gl,ge)'= cosB cosf; + sinB sinf, COS(¢i -4a)

should be used. Because ‘?A(x)l has its maximum value of 1 at x = £ 1, it is

clear from this relation that the strongest angular correlations are obtained

with paraliel geometry; klﬂkguHo‘ Inspection of Tables I-III shows that for

. . 00 . ' N
egch geometry the coeff;cxent of Gyy is Px(cosel) Pk(coseg).

Fihally, for X. odd, random A4, and k in the x,y plane, we note that

Fk(w) vanishes idéntically for all w,T and W because the ensemble average

1
over A must be taken over odd powers of cos(¢>l - A) (see Eq. (135)).

VI.2.3. Comparison with Spin-Rotation Measurements

A few observations can be made about fhe gdvantages and the apﬁlicability
of time~integféted MMR/RD in compériéon'with time-differential PAC measurements
in static fields oriented perpendicular to the detector plane. The latter, also
known as the "épin rotationﬁ method,‘meésures the'inﬁeraction ffequéney as a
function of time. A Fourief analysis of these data yields ﬁhe interaction
freqﬁency.. An elegant derivative of the spin rotation method is the "strobo-
scopic"'teclr’mique,31 which compares the interaction frequency with a known
frequency standard and in this wa; directly measures the frequency transform
.of the time spectrum. | o | o

An ad&ant&ge of spin rotation or stroboscopic methods is that no energy
is absorbed'b& the nuclear ensemble and thus no.power broadening occﬁré; The
width of the frequency frgnsformvis given by the nuclear lifetime and/or any

' rélevant relaxation time. The épplicability of these time—differentiai
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techniques is, hdwever, limited by the resolution time of the detection equip-
ment. Hence for large interaction frequencies NMR/RD is the ornly method that
can be applied. Notice that the conditions for the NMR fechnique to work

effectively are wOT >> 1 and wlT ='1. Thus if a large effect is to be observed,

the resonance line must be broadened by H The ‘extraction of any information

1

by means of Eq.

about the lifetime T or a possible relaxation time T
. ' . relax

(125) then depends crucially on the knowledge of H .

VI.3. Fixed rf Phase (Pulsed rf)

VI.3.1l. Symmetry Properties of FX for k2”z:

Turning now to fixed-phase experiments,'a wide range of behavior of FA
is possible. It is worthwhile to discuss cases in which at least one of the

vectors k (these are the best cases in the sense of providing

~1? 32 0 :
the largest effects). If the rf-phase has a well-defined value with respect

k is aiong g
to the time t = 0 when the nuclear‘level is formed, terms with q # q occur in

the angular correlation function (éee Eq. (66)). The genéral-form of the response
function As defined in Eq. (80) can be obtained from Tables I-III. for a few
interesting geometries. For fixed rf phase A the response functions depend
strongly on phase angle and geometry and have little in common with the énes for
_random phase (Fig. 9). We wish to characterize the impértant symmetry properties
éf FA’ fdr fwo reasoﬁs: (1) It ié of pfactical value to know the relative sensi-
tivities of G%ﬁ for different expérimental configurations;band (2) we want
explore the possibility of determining fhe sign of gHO without using a cir-
cularly-polarizéd rf field g (t). We éhall discuss the sign of gHO or that

of wo rather than that of g alone because for some important cases hyperfine
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fields of'unknown-sign msy playfthe role of H.,. The cases W T =+ o and W T
finite will be discussed separately.
From Eq. (66) it follows that for A fixed the cross-terms of the

perturbation factor, G%%, with q # i,'haﬁe'finite'values as wT > ® .. Thus

even in the saturation limit Fx(w) is strongly geometry-sensitive. ' We shall

first discuss four cases ih‘whi'ch_k2 is parallel to 1z, which gives g = O,

- ) - ! 2)\+l : e g . qo . .
since YX§(0’¢2) = 6@,0 - The llmltlgg value for ka(wlT + @) consists

only of the term for p = 0. Thus, from Eqs. (66) and (80) it follows that in

~this case the response function Fk(wlT + ) can be written in the form:

+\
N ey ) oy () (A) | _
. rx( ) = Px(cog B) }: cos q(A—¢l) qu (B) qu (91) - (136)
‘ vq_--'—.)\ . . ' . v
Figﬁre 10 shows 'f*(m) for 1 <A <L for the cases (6l = »1'r/2,v¢l = A, i.e.,
F I - ' . o : . _ '
51H X at t.= 0), (91,= /2, ¢, = m/2+ 4, i.e., 5ln y' at t = 0), (el = n/2,v
¢l randdm, i;e-, 51 random in thé x'y' plane at t = 0), and; for comparison,

(el =0, i.e., kl” gl). The asymmetryvthat remains, for odd A, as

.wlT > 'will be referred to as persistent asymmetry. It is insensitive to

the sign of gHO iT > o PX depends only on - 8, which is

invariant against a sign change of gH, (compare Eq. (L4)). A physical picture

'since in the limit w

of this result would be the following: In the S' frame §(t) precesses over a
' ‘ t/T

circular path (see Fig. 4); for wlT + o the.factor e approaches constancy

and all segments of the ciréular path are weighted equally. Thus the sense of
the precession is unimportant and the sign of gh, does not affect PX(w).
From Eq. (136) the following rules can be established :

,-(l) For A fixed and A even, Px(m) is an even function of (w—wo)/wl,

as in the case of random phase.
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(2) For A fixed and vk Odd, %A(m)'is either an odd funcfion of
(w—wo)/wl, or else it doesinot depend on frequency at all, and Vanishes for all
frequéncies. |

The ahtifesbnance phenomenon ériées again in Fig. 10, inﬂéonnection
ﬁith the four curves labeléd fk(x,z), beéause'for this case, g(t) and H, are
both_paraliel‘to the X axis in the S'(t) freme at resonance, and H there-
fore acts as & holding field. Because gl induces no transitioﬁs_at w = wo,
the perturbation factors ﬁave the same value a£ resonanée as'they have far off
) = ?A(w = + o),

The remaining category of_experiments, nof covered by the above dis-

B A
resonance; i.e., Fk(w = Wy

cussion, .is that for which A 'is fixed and W T is finite. In the 1limit

W T > ‘the imaginary terms i(p wef) vanish. (See Eq. (66).) For w, T v 1,
however, these .imaginary térms are about the same size as the/real components ,
gnd they can lead to asyﬁmetries.that afe sensitive to thé sign of gHb. Since
in this section we are concerned only with 52“E,Ithe discuséién épplies to

geometries no. 1', 5, 6, and 8 in Tables I-III. For these geometries the

~

response function FA (which is of course real) includes imaginary parts .

Im {Gig} which bring about an asymmetfy. It should be remembered that Re‘{Ggg}
and Im {G%%}‘have opposite symmetries about resonance (see Egs. (68)); for even
(0dd) q, the real (imaginary) part of G%i is symmetric about the resonant fre-

quency , while the imaginary (real) part is antisymmetric.

The response function Fk can be affected in two ways. Both arise

from the sense of precession about Hl and both are transient, disappearing as

W T > It is not feasible to observe the sign of Wy ‘directly in a time-

integral experiment, as this sign will affect FK only in order wl/wo. Thus
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all gH }sigh determinations are made by measuring the sign of 'ml, as the

0

geometries given below will‘indiéaté. Wé shallvrefer to the sign of wy or
wl intefchangeably. This implies that:we know the sign'of g and also the

phase &, which giveé the sign of H ét t‘= 0. Maximdm,sensitiVify in sign
‘deterﬁinations_can,be attaingd by taking ge_along Hq: fhis choice precludes

any possibility’of.determining the sign of w

o . directly, but (as discussed

later) it offers the greatest variation of I, with .
The’first way to infer the sign of the interaction is from asxmmétrx

- can affect‘

of the reépqnse function about the resonance. The sign of wo

I, to render .

A
Wt S 2 W -w A [ w-w :
.~ 0 . X A e O -~ 0
o = (= < . < .
Iy ==, Wy >0 17Ty \ 5 s 8 <o) AT 5 s w < O] . (237)
1 B ! 1
~ . ' Ww=wg oA .
Thus T 1s neither an even nor an-odd furnction of —— , but FX(MO > 0) is
: . : 1 ) i

(—l)x times the reflection of .Fx(wo < 0) through the resonant frequency.

| :As;ah‘examplé Fié; liréhows.the resonance curves which‘aré to be
expected with geometry no. 5. The marked feature of these curves is the asym-
metry'about’ w = w, for opposite signs of w,, or eqﬁivalently (for A even)
for the aﬁgles ¢l = 45° (225°) and 135° (315°).  This asymmetry can be used to

determine the sign of W

| even when linearly-polarized rf is used. The dif-

ficulty in practice, however,:is_that the shift is small and can only_be picked

up in‘éxperimentsvthat'ﬁave great sénsitivity and are freeiof additional broaden-

. : . _ :
To understand the origin of the observable aéymmetry, let us foliow

K(t) as it evolVesvin.the S' frame according to the torque equation (100). At

~
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resonance, with ge”x', FA is insensitive to the sign of wy for even \:
this is a consequénce of the even parity of PA.' Off resonance this is no
longer true. Suppose w is slightly below wo, for example, and He is thus

in the (+ x', + 2') quadranf of the x'z' plane. For 6, =1/2, ¢, = /4 as

1

will decréase rather abruptly from m/2, and Pz(t) will increase rapidly from

shown, and w, > 0, g(t) will start up into the (+ x', + y', + z') octant, n(t)

-1/2. For w, < 0, on the other hand, K(t) will swing down into the

1
(+ x'; +y'y, - z') octant and ‘n(t) will increase rathervsléwly from: m/2.

Thus Tg(t) will remain longer near -1/2. For |wlT| v 1 a large fraction

of the nuclei will decay while the effects of this transient asymmetry are
.stillvlarge, and they will affect ?A' For IwiT|>> 1 .this is no longer true
and the line 5ecomés symmetrical. Clearly éxperiments of the class illustrated
in Fig. 11 are completely equivalent to time—integral‘PAC éxperiments‘in the

S' frame, wiﬁh precession taking place about H.

The second way in which the sign of W, can affect fk .is really very
similar, though sﬁpérficially quite different. In this case FK is an even
function of (w—mo)/wl, but it is a different‘éven function for ml > 0 than
for w; < 0. Figure 12 illustrates this effect for geometry 8 (§1'=-\/%;(gy+gz),
k, = e, A=0). This is the exact equivalent, for NMR/PAC, of the most common
arrangement fof deﬁermining g-factors by time-integral PAC studies. ~In fact,

we find.

(138)

3
—
t
#
las}
>
—
Q
e
[42]
<D

1 1 ’
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| cos 2(6.-0') . | .'
*T}' d - - - (139)
1+ (2w1)2 S : ,

-1 , \ . ' ' o
tan 2wlT. The difference at resonance, due to the X = 2 term,

1>
Nl
T

N

Here 0!

is

Wlw, > 0) - Wlw, < 0)
=2 0 _ 0 .
2 - w(wO > 0) + w(wo < 0)

(1k0)

o -3A
. g L - : = | . = 2 i
612 is maximum for 61 = 7/h, W T = 1/2: (Gag}max = E—;T7E; . These equatlQns

‘are familiar from angularfCorrelation‘theory. Maximum sensitiﬁity is obtained
in time-iﬁfegral PAC by applying and reversing a DC magnetic field (thé ana-

logue of our Hl at resonance) perpendicular to the correlation plane in which
two detectors are placed at a relative angle of 7/L4 (or equivalent). The

"attenuation factor" [1 +‘(2wlT)2]_l/? is well-understood: it leads to a

| T becomes very large. In the NMR/PAC case this

factor makes the effects of the sign of wy on the 1inesha§e_transient.

For A.5_2, 91 should be smaller than T7/4 for maximum CZA’ because

vanishing difference when w

the.largest;amplitude; highest—freguency, cdmponent of Px(cos 8) varies as
cosA@. For example,’%h' is relatively insensitive to the sign of wy for
6, = ﬂ/h,‘but is more sensifive for'el = 7/8 (Fig. 13). |

For A odd,»ﬁhe odd farity of N leadé to more gsymmetries in fo.
In general, however, theéé asymmetries can be divided into & transient type,
that con#eys information abéut the signs 6f wl ahd/or AX’ and a persistent

type, that depends only_dn the sign of AA' In Fig. 1k we illustrate an

experiment that is the A =1 'counterpart of the one illﬁstrated_in Fig. 12.
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Here 6. = T was chosen to maximize the difference

w(wo > Q) - w(wo < b)

1°°2 w(wO >0) + W(wo <Q0) .

L

Wwhen

e 4
1

L=l 01 ese <0y, (141)

T in this case. 62 is maximum for .-T = 1.

: -1
= i ''=
at w wys with 8" = tan " w 1 1

1
The persisteht asymmetry in Fig. 14 happens to be zero. In Fig. 11 (top
panel) we h&ve a casé in which both a ndnzerq_persistent asymmétry and a tran-
sient asymmetry.occur. As |w1T| + © the transient part vanishes and no infor-
ﬁation is available about the sign of W

1

A

VI.3.2. Symmetry Propérties of FA with kl and k2 in the x-y Plane

It is evideht from Table II thaf the magnitude of the-resoﬁance effects
for A =.2 dréps by about'another factor of fwo if neither 5 nor g is any
longer ﬁérallel to the z-axis but both are instead perpendicular to it (geome-
tries 9-13). This can easily be understood from Eq. (11L), since p,(0) = _1/2.
A similar résult is observed for X = L, but with a greatér reduction in the
effect. For odd X, ﬁerpendicular geometry destroys -the integral effect. ~This
Iis'éasily"deduced from Eqs. (97) and (101): the (1~c2)x’y “(gs(f))xy terms in
: cbs n(t) are all ;inear in cos(wt+A) or sin{wt+A): thus all odd-rank Pk have

high-frequency factors with zero average value. They therefore average to zero

in the transformation S' =+ S.  Hence we shall consider only even-) cases further.
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The re8ponse functions FA =2, L for geometries 9, 11, and 13 in Tables IT and
IIT are shown as examples in Figs. 15, 16 and lT All these geonetries are

convenient for beam experiments, with the exception that no. 9 is not suitable

ext

for target f01ls where H and HO

have to be in the plane of the foil. They

differ- only by the angles ¢l and ¢2' for k and k2 Through the factors

e—q¢1 and e ia¢; (compare Eq. (76)) the choice of the angles eensitively affects

the superp031tion of the various terms of the response function in Eq (80).

The phase angle A of the rf. field and the angles ol and ¢2 are egai-

valent in the sense that they occur in Eq. (76) in the form'

expl - i{q(¢l—A) - q(¢ —A)}] A particular value of A can be comtensated by

vrotating the detector system by an angle A about the z-axis (cf. Figs. 1-3).
In Fig. l6 a transient asymmetry around‘the”resonance frequency shows up

for"wlT ol bagain it can be used to determine the sign of W, 5 provided that

‘the phase angle A of‘_Hl at t = 0 is known. Since both detectors are located

in a plane perpendicular to the z-axis, the rotation of K(t) about the effective

field,can.no.longer be visualiied as easily as in the foregoing section in which
.the system wa.s invariant againet rotations about the.z—axis. Clearly, there is
no'rotational invariance with respect to the z-axis in geometries like the ones
shown in Figs. 15-1T7. Thevgeneral response function for tﬂeae complicated
geometries must either be calculated accordihg'to thevformulae‘givenvin Tables
I-TII or»oy calculating Pxfcos_n(t)l with the proper vector g(t) (see Egs.
(91) ana (97)). -

If we are not iﬁterested in a transient asymmetry effect like tﬁe'one
-shown in Fig. 16 and the lifetime of the nuclear state 1s suff1c1ently long to

permit reaching ‘the asymptotic value wlt > o a's1mple form for the’ response
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function can be derived. For any “"perpendicular" geometry with k. and k, in

the x—y‘plane'Eqs. (66) and (80) yield

5 SR ~iq(¢, =) |
I, (=) Al P, (cos B) j{: (-1)¥/2 e TR =) g AN gy
- .

(A11) D) T Owg) 1t %g0

for A and q even

=0 o . ' for X and q odd . (1k42)
. From Eq. (142) or Eg. (114), the limiting value of the )\ = 2 response function
at resonance can be obtained as |

(=), = 3z + 22 cos 2(,-8) . S (143)

' . N ' . A 11
FPor the pqrticular geometries shown in Figs. 15-17 one finds PQ(m)res =g
and - %f, respectively. The values of Fx(w) off resonance are given by Eq.
(11L4).
The fesonance behavior.of geometry no. 9 in Fig. 15 is the most obvious

one for all perpendicular geometries since it has H1 as symmetry axis in the

rotating frame. The rotation wt about the z-axis yields for wlT > oo

@), =[P , )

fhe same hard-core value that was obtained from random: rf phase in parallel
geometry. Slightly off resonance FQ(W) dips to a minimum at a frequency
* between the zeros of Pe[cos(kigge)] and Pz[ébs 8], (see Eq. (114)). As we have

-noted before in discussing Figs. 7 and 10, geometry 9 is a special case because,



Coren o UCRL-18413

0r <1

really an ahtiresdnance._ For cases in which the line is broadened by‘dipolar

for w =uw., H acts as a holding field and the effect at this frequency is

fields, the use of geometry 9 would serve to narrow the llne, in analogy w1th

Lokl

similar applicatlons in conventional NMR However in NMMR/RD the k vector
can e351ly be taken along H w1thout us1ng elaborate pulse technlques -
Asvmentioned above, it is consxderably'more dlfflcult to visualize the
spin motion in the coee H lkilﬁ lHOLk', illuetreted in Fig..iTVfor ¢2 =vﬁ/h
in geometry 13 (although for large wlT it becoﬁeé independent of ¢2). ;This
geometry is important for accelerator experlmeots. Equations (66) and (80), or
(114) are applioable here: ThuS'the "y—z" geometry of Fig. 10 gives a larger
_effect. For technical reasons it may, however , be impractical to count along
' go.(i.e,, Eélgo), An 1nterest1ng feature of this geometry is that the muiti-
pole structure of Fk(w) is. degraded, for even Aé to A/2 minima, which gives
this particﬁlar geoﬁetry the advantege that the resonance.line for A =2 is
conSideraoly_narrowericompered with a normal width as shown in Fig. 10, perhaps
allowing a more accurate frequency determination. »The degradation of multi-
pole structure is a consequence of Ek(w) varying as Pk(cos B) for this geome-
try, i.e.,.

T

A(w)_= Pk(cos'n/Q) P, (cos B) PA(coslee) . ‘ (1k45)

Variation of Tk(@) as.the square of PA(cos B) in parallel geometry (Eq. (106))
'led to the complete multipole structure with A components. For odd A, Px(w)
vanishes for all frequencies because the angle between He and k is mw/2.

To provide the experimehter with an estimate of how large a resonance

effect is to be expected for tpe easiest experimental setup, with H l§l’ three
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possibilities are summarized in Fig. 18. As a measure of the resonance effect

at A =0, W)

T >, and k, along x, y, or z we define the quantity

GFA(w) = FA(@,Iw—wO| >> lwll) - FX(W,w=wO) R | - {1L6)

which gives the change in PA(W) at resonance for a given geometry. For odd

X, er = 0 for all geometries, if kllHO' With even A ; elther Egs. (66) and

(80) or (11k) gives
6T, (=) = P, (0)[1-P, (0)] By (cos 6,) . | (147)

Again the advantages of parallel gedmetry are evident. E&en if 51 cannot be‘
parallel to §o=v52 shbuld still be chosen parallél.

Exampleé for various geometries and rf-phase relations given above
served the purpose of pointing out experimental possibilities. A successful
application of these ideas can be expected only for NMR e#périments on long-
lived isomers. Fixed-phase measurements are hardly feasible for NMR/PAC and

NMR/ON and will probably be confined to aCCelerator experiments where it is

technically possible to pulse the beam synchronously with the rf field.
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VII. RELAXATION CONSIDERATIONS
IA general discussion of the effects of relaxation on angulér correla—-
tions is beyond the scope of this paper. Such a dlscu331on has been given
recently by~Gabr1el s The purpose of this sectlon 1s'to dlscuss exP11c1tly
the 51ngle most 1mportant case of relaxatlon effects on NMR/RD namely the
;nfluence of spln—lgttlce relaxation on llnebshapes and inten31t1es. .Thls-case

is especi&lLy.important'er MR/NR experimehts, in which nuclear lifetimes are

often in the millisecond rdnge and comparable to or longerfthan thévspin—lattice o

| relaxatioh'ttmé Ti.
The analysis in Secs. III and IV led to exact solutions for the ti@é—
dependenCe 6f fadiatibn<from an’ihitially‘axial;y;symmetric dispributiop of
nuplei subJept to»static’gﬁd;rotatihg magnefic fieids.._wa.we shall intro;
duce a'rgnddm:pertﬁrbatioﬁ,‘m%, and;shqw that phe ngw.sqlptions are similar to
those thatlgxist for the;syétéﬁ in the-abéence of ﬁhesepfiélds. The time-

depepdence of‘phe ensemble is n@w-deécribed by (compare'Ed. (9)).
v'mo‘a’[(_écvo'+';%)'_,.p']»v Co | '_ | vi e
The density matrix in a field-free frame may be written
p't1(t) =‘U+(t) p(f)'U(t) . o _ | (149)

where U(t)-is the transformation into acoordinate frame in which ﬂb vanishes.

Tn the case of magnetic interactions U(t) represents the tranaformation into

the S''' frame: it is givenvby the series of rotations described by_Eq(_(90)_0r;

Eq. (96). After substitution of Eg. (1&9) into Eq. (148) and comparison with

Eq. (9), we have

..
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hprer = Ui, e L o (s0)

This equation is exact. Its validity does not depend on the relative sizes of
ﬂb and ﬂ%.' It describes the time-evolution ofvp"' under the influence of only
a relaxation Hamiltonian ﬂ;" = UﬁH%U. In many cases, however, ﬂ%'is invariant

to rotation and we can writev _

Jcé“:ﬂ;?“' - . | o . - (151)
Comb;niné'Egs. (150) aﬁd (151), we get | |

| ihb'j' = fﬂ%, p"'ik R  i o '. | (152)

Let us examine the conditions under which Eq.'(lsi) is valid. For ﬂ%
to be invariant to rotation of only the ﬁucle&r'coordinafes, the interaction
regponsible for-rélaxatioh must be'isotrdpic. This means.tﬁat the extranuclear
environment, ér lattice, must meet certain conditions. The basic requirement
is thgt, in the énsemble,Athe.lattice states available for participation in the
relaxgtion process must not be associated with a particular direction in space.
When the stafic Hamiltonian ﬂb is associated with a.particﬁlar direction in
space, this cbndition-requires "AE << kT, where AE is the energy quantum
transfefréd in the relaxation process. For.eXample;_the problem in the ﬁag;

netic case is that AE is implicitly associated wifh.avdirection defined by

Hd. From the pfinciple of detailed balance any microsc0picvrelaxation process
) : | | -
must be related to its inverse by a proportionality factor eAE/k that thereby

relates the process té HO' Thus unless AE << kT and eAE/kT

tion process cannot be approximated as being isotropic, regardless of other

= 1, the relaxa-.

details of the systemn.
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‘An additional requirement is that the product of»thebéharacteristic

' 2
strength and the correlation time of the random fluctuations be small,l

wDTci<< 1 . : ' i ‘ | - (153)

This insures.that W% 1s small enough to be treatéd'as'a'periurbation} The cor-
relation time of the perturbation must also be:smali'endugh'that the system
remains substantially‘fixed during the period of one correlation time Tos i.e.,
» << . : ’ ' R : ' 4
WoTe -l:, | A DU - - (15_)
It should be noted that thesé felatiqns do not imply anything about the relative
magnitudes ofr_wp “and wo, or of Wy and the relaxation rate,'although a suf-

ficiently strong ferturbation will of‘course mask any resénahce effeét.
vThe unpertﬁrbed density métrix in thevS";:framé ét“t;= 0, i.e., p''t'(0),
. ié diagonal in an m-representation whose z g#is is the El axis.‘ If the per—l'
turbation m% canvbé'takéﬁ as spherically sym@étrical, then p'""(t) will remain
diagonai aiong_g(t) end its timéeevolution may be eXpressea in terms ofvonly.its

diagonal elements along ihe K(t) axis, o =‘<m|p|m ). Ih first-order perturbation

theory, Eq. {152) yields rate equations which can be written

ba(t) = ) P o (6) | ~ (155)
' m' B ' S

In the trangition matrix F, sums on rows or columns are zero. The general

u'solutionxof'Eq. (155) is
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pm(t)rz pm<GQ)'* 2: Smi Ci(O) e L . | ' ' : (156)

Here pm(eq)‘denoﬁes the.equilibrium'Value'of pm(t) that is approached as
t > o, The,set'bf exponeéﬁial'coefficients {—ki} are tﬁe eigenvalues of F.
.(They Shou;d not be confused with the propagafion vectors k andlgg.) The
quantities’ Ci(Q) give_the ini#iai yalugs of the eigenvectofs of F: they

are determined by the imitiel conditions.. The transformation S con-

nects the P bagis set with the eigenvectors and diagonalizes F, i.e.,

21

oa(t) = plea) =) 5, T (t)
o i=0 -

=strs . o | (157)

Fdiag'

The statistical tensors along K(t), (pg)K(t)’ which are constructed from
the diagonal elements of the density matrix in the m—representation,lpm, are
nonzero only if q = 0 (Eq. (1)). The time-evolution of these tensors is

governed by the same set of exponents {ki}:
(oo (t) )yt ‘Z Ba® ’ . | (258)

From Egs. (1), (156), and (158), and the boundary conditions

pé(eq) =0 x>0
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pg = 1, independent of time, e '
Wwe can write, for A = 0,

The constancy of pgylalso requirés L

= Q. For A >0,

Ryy = 2;(0) Z (-1) sy (I-m Im | o.> E : (160)
h -m

and og(t) decays to zero as a sum of exponentials, for A > 0. Substitution,

_ - ' *. ' :
of (pp(t))g(y) -for (b3)y, tn Ba. (91) gives
S © k.t : S
Wik, ,k.,t) = Z R.., e - A.P.[cos n(t)] . L (161)

ALd
‘For thevSPecificvcase of relaxation in metals via 1sotropic magnetic
hyperfine interaction with conduction electrons, the perturbation ﬂ% takes the

form

e T |
JCAz.{x;g-Alzsz+§{1+s_+;_s+] .

We note that this interaction is also isotropic in.the s'"" frame. . The WoT,

condition is easily met: 8t the Fermi energy the cénductiqn electrons have

T, ™ 10712 sec, while even for very large hyperfine fields w, 1s only in the

107 - 1010 sec—l range. The condition w T, << 1 is also satisfied, but by
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& smaller margiﬁ;'because'the instantaneous hyperfine inﬁeraction with a con-
duction'eleetron exceeds the time-average interaction that is manifest as. a
hyperfine rield or (especially) as a Knight shift. Abragam and Pound'® showed
that the A I'S'interaction leads to e single—exponential decay of their

00

quantity IIIkk’ vhich is proportlonal to our G, or, in the s''' frame, to

(po(t)) ThlS is a consequence of the fact that each pé is 1tself an

K(t)
eigenvector Ty bf F. This requires that

5.4 =__-(.1)I+m (I-m Im|i 0y . R _ (162)

The orthogonality of the Clebsch-Gordan chfficients then gives, from Eqs. (160)

and (162),
YRRNCEI - as

Abragam and Pound gave the decay constants explicitly. 'In our notation their
result has the form

2'r (5421(1+1) s(s+1) [1 -'(21+1)w(11AI;II)]

kAA(free atqm) = - i

3 ch
Here the subscript A denotes the A I'S interaction. After evaluation of the

Racah coefficient this reduces to

)2 s(s+1) A (A+1) . (16l

P

: =_2
kXA(free atom)=. 3 CA(

‘Now this result is directly applicable to isolated paramagnetic atoms. In a

solid or liguid metal this expression for kXA'would require multiplication by



-8o- - UCRL-18413 .

.a proportionality'factor to'aﬁcount for conduction-electron statistics. The
relaxatibn constant kXA for either a free atom or a metal varies with A asv'

A(A+1) and for A = 1 the value of k , is just 1/T,,, where T,, is the

. 1A
spin-lattice relaxation time. Thé subscript A denotes the A IS mechanism.

Thus we can write

Kya = VT
ky = : . : : - (165)
T e, , - - 116

Accbrdingly;'ﬁq. (161) becomes
A(+1)
L SO AR

W(glalf2’t) = Zpg(g)kl e'. | YA A‘)\PA[‘C‘O-S n(t)] , (166) .

In time-integral studies the response functions are obtained by multi-

%—e’t/T; where T is

plying the appropriate time-differential functions by
the nuclear lifetime and integrating on dt. Comparisons of Egs. (91) and (166),
however,_shpw that the effect of considering relaxation is simply to‘multiply

each response function rk<t) by

_ At
T
e -
Combining this with the factor %-e‘t/T, we have the factor ;-e b/t , Where

the effective lifetime T' is defined by
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%T = %{+'&é%i£l . : ' "v ' _ ' (167)

T =%- f I‘)\('t) e—t/‘trdt , . | (168)
0 - ,

all have the same functional dependence on T" that the corresponding integrals

in the absence of relaxation had on the true nuclear lifetime T,.except that

the intgggal'regppnse functions are all attenuated by the factors

1 f_.g)\.m)e

1+ (wt')?

Thus relaxation reduces the felative magnitude .of the resonant effect as well
as broadening the linéﬁ It is neéessarj, in the presence of relaxation, to
increase the rf field amplitude by.a ratio T/T' in order that wlT' should
attain a given value.

These'éonéiderations are easily genéralized to include also the effects
of quadrupole‘rélaxation cauéed.by randomiy fluctuatingbelectric field gradients.
The.Hamilfoﬁi&n governing this inﬁeraétion, m@, is inva?iant to a coordinate
transformﬁtién into the S"; framevwhere it can also be treated using first- '
order»pertﬁrbation theory . Taken alone, ﬂa would cause (pé)K(t)'to decay as-

Gy = ohoD, & 2, - (69)

p R
0"k
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wherelz’36. .
| . . _ S .
. cq 2,2 N - - ”
| h ' = 17(21-1) '
Here (eQ) V is the ensemble—averaged square of a. fluctuating, axially- sym?

metrlc electrio field gradient that causes relaxatlon, whlle TcQ 1s Lts cor-

relatlon tlme. Definlng

K Ea?'hzf (eQ) Voo
we can writé :f
L2 2[u1(1+1) 3] | .
i )2 . o - (111)

1@ 1 (21 1

Since both the A I‘S and quadrupole relaxstion mechanisms are treated as first-
order perturbations, the effective spin-lattice relaxation constant is given

by

L1, o | | (172)

The A- dependence of k. - is different ffom that of LVE however: from Eqs. (170)

rQ
and (171) ,
A A+l) |  X(X+l)-2' o ' , 3 N
fra ” 2T, [1 B HIZI+15-3] o - o )
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"Thus the effective nuclear lifetime is given by

A
-
>
S
>
')

I A0+ 1 1 A1) =2
= — + - -
=Tt {T t T [1 LI(T+1)-3 R (A7h)
| 1A 1Q S P ‘
This T' can be used in Eq. (168) as before.
The aboVe discussion of spih—lattice relaxation applies to solids,

liquids, and gases} It is, within the assumptions that M% is isotropic and

that ¥ is both random and axially symmetric, a rather complete treatment of

Q

relaxation effects in NMR/RD. In any magnetic resonance experiment the question

must be considered. Since it is known that angu-

L5

lar correlation patterns in perpendicular geometries are sensitive to Tg,u

of transverse relaxation (T2)

it might be expected that our equation should contain IQ explicitly. However,
relaxation that arises from ﬁk'can be described by a single ?arameter-(A) and
thus by a single relaxation time (TlA)’ and similarly for ﬁé. In a general

discussion of relaxation effects the coefficients kX are functionally dependent

on both T, and T,. For example, Ga.brielu5 gave (in our notation)

1 2

i _
T 4

2

P-B‘H

K = A /en ¢ g . amw

for isotropic magnetic hyperfine interactions. However when the criterion

wyT,, << 1 1is met, he pointed out that T, = T2;'and the kiq)AbeCOmé independent

0] 1
of q. ‘We have avoided this problem altogether by working in the s'"" frame

where there is no transverse relaxation.
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N

Of course this discussion applies only to T2 effects that arise from

ﬂk and ﬂb.' The high dilution of NMR/RD samples precludes T, effects from

2
interactions with like spins, however, except possibly in NMR/ON experiments
on very long-lived states. The remaining T

L

2—like effect, namely inhomogeneous

broadening, is well-known in both NMR/NR andeMR/ON3 experiments.
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Table I. The Response Function Fl(t) = K(t)'k

for Selected Geometries.

o
No. = @ N 0, ¢, ri(t) = K(t) -k,
1 0° 0?_. 180° 0° —Ggg = -coszB --sineﬁ cbewet
1t 0° 0° 0° 0° Ggg: cosas + sin28 cesmet
2 0° 0° 90° 90° - i-{Gol + Go-l] = sinB cosB sin(wt+A)[1l - cosw t] - sinB cos(wt+A)sinw t
. - Jo ©T11 0 T11 _ e _ e

3 OO OO ’ . 900 OO _l_ Ol . O-l - . : y e P . A .
v = P-Gll + G,y 1 = sinB cosB cos(wt+A)[1 - cosw _t] + s1n8_51n(wtfu)s;nwetu

o 0 aro.. ico. 1 01, ,0-1 01 . .0=1y_ . . ° ' T s
Y 0 _o_A 90° 45 5{ Gy * Gy - 1i6yy - 16 ] = sinB cosB[lu ceswetJ81n(Qt + A+ HQ

o . . . m
| - elnB 51nQet cos{wt + A + K)

o o o o 1, ,10., .-10 . . 10 . . =10, - . fo T

5 90 ‘hS 0 0 §{_Gll + Gll + lGll + 1G11 ] = sinB 31nme§ COS(A'+~h)
+ sinB cosBll - coswét]sin(A_+_%0
U N, 1,10 =10 . .10 . . =105 _ . . . LT
6 90 135° 0 0 EiGll - Gll’ +1G), + 16,7 ] = sinB sinw t sin(a + 2)e
- sinB cosB[1 - cosmet]cds(A + EJ

- | o 1.00 i ,.0l . 0-1; _ 1 " -

o o ° o _ 4 _ X : = L ras ;. -
7 0 0 135°  90°. /§'Gll 5 [Gll + ?ll ] V= {sinB cosB 51n(wt+A)[l ceswet]

- sinB‘cos(wt+A)sihwet - cos28 - sin28 coswet}

o o o 0 1 .00 ,1i.,10 -107 _ 1 ... . 2 .2 ‘

8 L5 90 0 0 = Gll +3 [Gll + Gll 1= 5 {sinB sinw t cosA.+ cos B + sin“B coswet

+ 5inB cuspLL - uoswet]sinA}

(continued)
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Table I. (Continued)

No.

1 2 ~ ?2
-9 90 Q‘ | 9Q }80 E{aGll G +.Gll ‘ 11 ] = cosB sinw‘t sinwt
—sm(wt+A) cosw b SlnA + [cos B cosw t - sin B]cos(wt+A)cosA
- ' ' - : /2, 11 141 11 -1l 11 11 g-1-1
[e] [ o . o . - '
10 %0 0% 507 135 TG + Oy Oy -Gy ¢ G11 - 16y =16
= cosB snm) t s:m(wt + F) - cosw,_ t sin(wt + A+ h—)mnA
- [sin B + cos %8 coswét]cos(wt + A+ K—)co’sA_ '
o are peo oo o 1,1-1 , -11 11 elely ,
- 90. Ls 90 135 Sy +-iGll - iGll ] = cosB coswt 31nw?t
+ cosw t. sun(wt +.A + h—)cos(A + 'E')
- [sin B + cos B cosw t]cos(wt + A+ E—)sux(A + H')
: - g ' V2, 1-1 -1l . .-1-1 11 1-1 -11 =11
_ _ o o o o - _ o - - -
12 ‘99 »hS 90 0 -H{Gll Gll G + 6] 1G] + 1677 iGll A+-1G11» I
= —_COSB' sinw_t sin(wt + h-) - sivn(wti-A) cosw_t ?os(A + 1)
2. .2 g - Nwifa L T
+ [sin"g + cos B cosw»t] cos(wt+A)sin(A + ﬂ-)
13 90°  90° 90°  ks® “%k e e R T

11 711 1 11 . 11 11 ‘11 11

. T .
= ""_CQSB sinw_t sin(wt + E) +.co\suuet'i cosA cos (wt + A + )I)

s [sinEB + coseB co_su)et]' sin(wt + A + H—)sinA
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Table II.. The ‘ReSPQnS? Function T,(t) for Various Geometri_es. The angles refer to Fig. 3.
- O | ¢l‘ 6, 9 | Tpt) = (K(t) k) - 5
1 oé 0° ' 180° 0° | ‘_‘G_gg -
EEREE T I T e z:>
300 00 900 oo | -2604 ¢ 62 )
R R e <G22 G‘éﬁ
DR T R e
6 ’go?~ .135° 0° v‘o° - %Ggg + 1@ (_Ggg - Gégo)
7 o 0° 0° _1330. . 90° %Ggg + Jg. (Ggé + G J— (G )
ERRCEE N N 1N I G;;% -z <e22 e -

5 ,90_0 _',Oo e 90° 180° %Ggg MRVER (_Ggg . Gggo + .Gggz . G22> g(uze 0222 . 6522 R 652-2)
e o | bR R s g e o - ot
R i = - - PR
B N e g«@?' e -
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Tsble III. The response function lfu(t) for several selected geometries. The angles refer to'sig._3. The
corresponding formulas for randon phase can be obtained by omitting all terms with q - q.
No. | Ql_ ¢.l 0, ¢.2 | I“h(_t? = -3—5- (If(t)-.-.lfé)uv _%:2 (g(t)-.lfé)z +%
s 00 ftlébé 0 |- Gﬁﬁ
5'. 90°  L5° 0 0° §-th 7;—1[th - Ggic] - J%;[th + th
T R L P 1 I
8 45°  90° 0°  0o° 13 Gﬁg fig 1U; G;io] 5“F—.[G GZEOJ — {%§ 1oy ~‘¢£§Q]'.."
ZZ; (o + thO} | |
9 90° 0°  90° 180° | Zrc)) ‘afmw+cﬁo*%n+Gm]+**%h*%n+Gm + 6,
l%%%u+%u*Gm,*%H‘agk%u*%f*Gﬁ2+G£2+%ﬁ;
et G»j“ v ofh + By oyl + ol Gzﬁ“ et
Loo0T AT 907 135t & o {Guu - Gy - Gung ol - 35 [Guu - G - Gui2 + Gii )
“%Zg Gy + 6 *+ Oy * oyl - gf::i[Guu - Gtﬂe + Gutz - - Giﬁ_h
o - “uih + ”ﬁt} - 35 Loy ; St S O
13 90°  90° - 90% 45° | %ﬂ'G [G A G 1[Guu - 652 e l? - Gii-gl
‘*%g [Guu + th -Gy - oyl - S [iGuu - 16y, + 1Gn32 - 1072

P RPN b bk
* Gy * Gy *%u*Gu] j%wu*Gm *%u*Gm ]
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FiGURE CAPTIONS
Fig. 1. The tfanéformation from tﬁerlaborafory frame s into thé rotating
frame S'(t). | R o |
Fig. 2.' Thevtfénéformations (a) from the.S'bframe into the S" frame, with
ge as the é" axié, and (bj iﬁto S"',.a secdhd’rdtéting'fiame; . The S“ - S"'
‘transformaﬁibn transfqrms gé povzéro.in the S''"!' fraﬁe.

Fig. 3. The unit vectors k. and k in the iaboratory frame.

~ ~,

- Fig. h._ Illustratioh of the way in-which line»éhape follows from. geometry, for

the case . A =»2;-w‘T -+, Both k. and k are.takenvalohg the z (2') axis,

1 ~1
and disgrams at left are in the S' frame. VF2_is evaluated.by integréting
e"t/T Pé [cosn(t)J‘dn_around a qircle described,by §(t)- In case (a);_for
(w-wo) << w;, n(t) is ewvays small, P, is near unity, and ng is thus also

near unity (heﬁvj'porfioh of'line on right).‘ For frequeﬁcies nearer Wy,
the'fofm of P, leéd% fo ﬁinimé and é hard—eore ?alue, as showg in (b) and
(e). - |

Fig. 5. Slow cémpbﬁeﬁt:dfz-fi(tf for thfée.géometries, with 0 = w,. For
geometriés 1 and 5 oniy'the‘sléw_compOnént (precession about Hl) is
obéef#able,_while thé fast COmﬁqnent_of F2 appears in geometry 13. The

curves shown are for w. = lZwi."iﬁ,this case the envelope for random A,

0
indicated‘by dashed éurves,'fanges from +1 to -1/2, while the me&an value
varies from +i/h.to_—l/8. ‘

Fig. 6. Fk(t) near t = 0O for A = 2, H,xfér geometfies'Qband.}l. Only the
phase is different for fhé:two éeometfies.

Fig.AY} Fk(t) for A =f2,’h.in-the time régioﬁ wlt N, wﬁefe the:oscillﬁtidns

have been_substantially affected by precession about H,. Thé curves have

been calculated for geometry 9 at résonance (b) and close to resonance

(a and ¢).
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Fié, 8. Power dependehcé of ?A at resonance for géémetry 1, shéwing hard-
core'behéViér for even ). | |
Fig. 9. :Line shapes.for géometry 1, showing‘multipolélstructure and saturation
behaviof. | :
Fig. 10. Line éhapes in'tﬁe saturation limit W T+ w; Vith»§ along z ahd
El aloné .x with'A = O,valbng Y.bwith_A = O,:inrthe x—y;plaﬁe with A
randoﬁ, and’along z.
'Fig. 1. The approach to saturation for geometry 5, with A b; Note sensi-

tiv1ty to sign of wlT which vanishes, for all X as ]w Tl > o,

Fig. 12. Response function F2 for geometry 8, with A = 0. DNote sensitivity

to sign df,wiT,'wﬁich disappears as'wlTv+ ©, For w = MG this geometry,

is equivalent to the usual method of detefmining gHo by‘épin rotation, but
in the rofatihg frame S'. | |

Fig. 13. ‘ﬁespénse fﬁnéfion ‘%hb for é gébmetry similar to 5, and A = 0, but
with »61. reduced to m/8 in order to enhancé the sensitivity of %h'.to

a

. the sign of w,T.

1
Fig. 14. Response function r, 'for a geometry similar to 5, and A = 0, but

with Gl increased to ﬂ/2 in order to enhance the sensitivity of the sign

of wlT.

Fig. 15. Response functions for geometry 9, with A = 0, and A = 2, L. For odd
Fig. 16. Response functions for geometry 11, with A

A and w, >> W

0 10 I ® o

0, and A = 2, 4, and

~

R

wl,> Of For odd valugs of A, and Wy >> Wys FA 0. Curyes for wl 0

may be obtained by reflection'through w = md.
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Fig. 17. Response functions for geometry 13, with A = 0and A = 2, L. For

odd A, T, 0 if w_ > w..

A 0 1
att

Fig. 18. Summary of the "on-off" effects to be expected for several per-

pendicular geometries..
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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