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Abstract

Cosmological Data Generation with Generative Adversarial Networks

by

Kapil Gupta

Cosmological data is comprised of dark matter and ordinary matter forming halos,

filaments, sheets and voids under the influence of gravity over large periods of time,

termed as the “Cosmic Web.” Direct observations and experiments over the cosmic

web are not possible, making computational models of the underlying processes ex-

tremely important in studying evolution of the universe. N-body simulations, which

are the ubiquitously used model, are computationally expensive, having to evolve the

position of millions of particles of matter over cosmic time while considering effects of

various physical interactions. Thus, N-body simulations are a major bottleneck in such

cosmological experiments. Generative Adversarial Networks (GANs), which have been

successfully used to generate synthetic data from sparse inputs, are proposed as a pos-

sible alternative to such simulations in this thesis. We perform the training of GANs in

three separate experiments, first training over normalized 2D slices, then over 2D slices

of high-dynamic range data, and finally training over 3D voxels of data. We use a 10243

block of data of size 180 Mpc generated using Bolshoi-Planck simulation as the input to

train all the models. All the trained models take much less amount of time to generate

synthesized data with high visual quality. We also discuss several metrics that can be

used to compare summary statistics of synthetic data with the input.
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Chapter 1

Introduction

The Cosmic Web is an intricate multiscale interconnected network composed

of all galaxies in the universe and massive thread-like formations that connect these

galaxies together [29]. The cosmic web is comprised of long filaments of hydrogen and

other gases that act as warm-hot intergalactic medium (WHIM) [23]. The largest known

structure in the observed universe is the Hercules–Corona Borealis Great Wall, which is

about 10 billion light years in length [16]. With no direct observations or experiments

possible, researchers mostly depend upon N-body simulations in order to study the

properties of the universe. The N-body simulations consider dark matter, ordinary

matter and dark energy to model inter-galactic structures over cosmic time [4]. They

use millions of particles with varying mass in a large volume of space with specific initial

parameters such as gravitational constants, Planck’s constant, redshift value among

others [44]. With 95% of the mass of the universe believed to consist of unknown

particles collectively called dark matter, which has no significant interactions other
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than gravity, gravitational interactions are necessary and sufficient to understand galaxy

formation and evolution. Gravitational N-body simulations are thus an extremely vital

tool in gaining a better understanding of the large-scale structure of universe.

Figure 1.1: A single slice of size 1024x1024 from the simulated dataset, generated using
Bolshoi-Planck simulation algorithm. Here, the bright points are the clusters of galaxies
termed as halos and the thin strand-like structures connecting halos are the galaxy
filaments

EAGLE [40] and Bolshoi-Planck [39] are widely accepted method for generating

cosmological simulations, which include using a Monte Carlo Scheme and an equation

that guides the statistical behavior of particles in given thermodynamic system (such

as Boltzmann transport equation). These methods are computationally expensive, hav-

ing to follow the N number of particles with specific properties over cosmic time while

they are affected by various physical processes within the system. Generative Adver-

sarial Networks (GAN) are one of the alternative methods that can be used to generate

synthetic data that shows virtually the same properties as data generated from such
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simulations, but with a much easier generation process.

Generative Adversarial Networks (GANs) are a type of deep generative model

that can be fit to a data distribution [14, 47]. GANs consist of two different neural

networks that act as adversaries in a zero-sum game setup, where the resolution is ob-

tained using a well-defined loss function. One of the networks, termed as the Generator,

is trained over the dataset such that it can actively generate samples that are supposed

to resemble data from the input distribution. The other network, termed as the Dis-

criminator, is trained to be able to accurately judge and classify the input data between

the original data and the adversarial sample. Both Generator and Discriminator are

trained together in a step-wise manner. The input train set is first used by the Gen-

erator to train itself to generate unique samples. Then the discriminator is trained by

providing a mix of input set and adversarial samples created by the generator. The

loss function for generator is defined according to the ability of the generator to fool

the discriminator. Similarly, Discriminator’s loss function is defined according to its

accuracy in predicting the correct class of input data.

The remaining chapters in Part I (Background) provide a deeper look into

previous investigations about the Cosmic Web, N-body simulations and GANs as a

method of generating synthetic data. Part II (Experiments) describes the experiments

performed in detail, explaining data processing and model design, the process of model

training, and providing visual evidence to demonstrate the possible usage of GAN for

generating cosmic data. Part III (Discussion and Analysis) describes the metrics used

to compare the quality of generated data in terms of summary statistics generally used

4



in cosmology, and discusses methods of analyzing how GANs generate new data after

the training process.
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Chapter 2

Previous Work

2.1 Generative Adversarial Networks

Generative Models are widely used in various fields such as image enhancement

[7, 10, 8], high quality image generation [5, 13, 27], style transfer (image translation)

[21, 19, 49], image inpainting [48, 18], adversarial data generation [25, 17] among many

others. Such models are able to create novel and representative samples from high

dimensional input data distributions. Commonly used generative models include Vari-

ational Autoencoders [22], Recurrent Neural Networks [41], Autoregressive Language

models such as Generative Pre-trained Transformer (GPT) [36, 43] and Generative Ad-

versarial Networks [14].

2D Data Generation is performed using two-part neural network architecture

composed of Generator and Discriminator models.

6



J (D) = −1

2
Ex pdata logD(x) − 1

2
Ex pdata log(1 −D(G(x))) (2.1)

In Equation 2.1, JD is defined as cost function for the discriminator model

and in equation 2.2, JG refers to the cost function for the generator model.

J (G) = −J (D) (2.2)

2.2 Cosmological Data Generation

Cosmic web shows self-similarity in its large-scale structures [12, 11] and hence,

several procedural methods have been used to generate cosmological data such as us-

ing physarum polycephalum slime mold model [6], geometrical models using voronoi

tesselations [15, 34], delaunay tessellation field estimator (DTFE) [42] among others.

Deep Learning based methods of data generation have also become popular due

to the ease of computation [28]. Mustafa et al. [30] used GANs to generate projected

matter distribution and were able to achieve high accuracy in terms of non-gaussian

summary statistics such as mass histograms and power spectra. Rodriguez et al. [37]

used a generative model to create 2D slices for the N-body simulation data. Perraudin et

al. [33] considered this problem in terms of upsampling, first generating a low resolution

slice, and then upsampling it to the same resolution as input data. Kodi Ramanah et

al. [24] worked on using GAN to create super-resolution maps of low resolution data.

Inpainting missing data by using nearest neigbour and generative models was considered

7



by Puglisi et al. [35].

8



Part II

Methods
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Chapter 3

Data Processing

The project uses data generated using Bolshoi Planck simulation algorithm.

The data is in the form of a 3D numpy array of shape (1024x1024x1024). It was gener-

ated using 94795 points as initialization to the algorithm(which were listed along with

their mass and density values, and their positions were tracked to create a halos’ cata-

log), with about 10 million agents running in parallel on a supercomputer to generate it.

The simulation grid had a resolution of 12003 voxels, which was processed and reduced

to 10243 grid. The data contains 10243 particles’ intensity values which are directly

correlated to the mass and density values as provided in the halos catalog. Given data

has high dynamic range, with 64-bit floating point value and intensity value range being

[ 0.017891133176195093, 448.9362993707059 ].

The intensity distribution in the input data is as shown in Figure 3.2. Although

the range of intensity can vary from 0.01 to 448.9, most of the points have intensity in

the range of (0.0, 2.0]
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Figure 3.1: 3D cube from the input data generated using Volume Visualization using
Paraview

Figure 3.2: Number of points in the input data with intensity value close to given values.
Most of the points are in the lower spectrum of intensity, showing that the intensity
distribution is approximately logarithmic in nature.
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Figure 3.3: Percentage value of points that fall within a mass value range. As shown
here, about 80% of the points fall in the [0, 2] range, while less than 10% points have a
mass value that falls in range [5e0, 5e3].

Figure 3.4: 2D Histogram of density distribution of points (from the halo catalog) and
intensity distribution (from the 3d data cube). As can be observed from the histogram,
there is a linear correlation between density and intensity of points in given data.
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As can be observed from the histogram in fig 3.4, there is a direct (linear)

correlation between intensity and density values of given data. The histogram was

plotted by first sorting the density values (as taken from the halo catalog), sorting the

intensity values and then finding the corresponding intensity values of pixels from the

3D input cube. The reason for sorting being that the linear correlation is only observed

in top 90% of the data, while the data with mass in range [5e0, 5e3] not showing such

correlation. The correlation between density and intensity values in given data is used

in this project, as it is assumed that a model that can predict large-scale structures well

(and hence, intensity values of pixels) is able to correctly predict the density values too

(density values represent the physical interactions of halos).
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Chapter 4

Generative Adversarial Networks

Model training is separated into three parts according to how the data was

preprocessed. For the first experiment, the data was normalized into the RGB range

of [0, 255] in order to avoid the HDR property of data. For the second experiment,

the model was trained over 2D slices with no normalization performed. For the third

experiment, model was trained over voxels constant dimension less than the original

data cube.

4.1 2D Image GAN

The idea for this experiment was to understand how the HDR property affects

the GAN and provide a baseline for further experiments. In order to do that, the input

data cube was first divided into 2D slices of size (1024x1024) and then the intensity

values were normalized into the RGB range [0, 255]. The input for the generator is a

halo map, an image that contains a constant value of 100 for pixels where there are no

14



corresponding halos in the data cube slice, and normalized intensity value in range [100,

255] where the halo are present.

The generator model used in this experiment is Resnet-6 model, which consists

of 6 resnet layers with alternate downsampling and upsampling layers. Each of the resnet

layers employ skip connections. The discriminator model is the Pixel Discriminator,

which provides a 0/1 value according to fake/real classification of each pixel.

4.2 2D Tensor GAN

In this method, the 2D slices from the data cube were not normalized before

being fed into the model to be trained. The Generator network used here is the Unet-

256 model, which is a fully-convolutional model with upsampling and pooling layers.

Although Unet-256 was initially proposed for segmentation tasks, it has been success-

fully used in image generation tasks as well as the usage of upsampling layers in the

later layers allows for increased resolution of the output. The Discriminator is the Pixel

discriminator, same as the one used in the previous experiment. The reason for using

a different generator from the previous experiment is partly empirical, as better visual

output was observed from unet-256 model. Another reason for using a different model is

that unet-256 requires less computational resources as well as training time in compari-

son to resnet-6 and resnet-9 models, both of which were tried before moving to unet-256

model.

Although the data was not pre-processed, the precision of data was reduced

15



from its original 64-bit floating point to 16-bit floating point value. There was no

apparent difference in the output that could have been caused by reduced precision.

4.3 3D Tensor GAN

For the 3D training, instead of getting slices from the 3D cube, voxels of size

(256x256x256) were sampled. A stride of 128 was chosen to allow the network to be able

to understand and learn the interconnected nature of data. The Generator model used

here is the 3D Unet-256 model, which has the same architecture as the 2D Unet-256

model except with 3D convolutions. The Discriminator used is pixel discriminator.

Data precision was dropped from 64-bit floating point to 16 -bit floating point

value for this model in order to fit the model into available GPUs. Since the model

was still too large to fit into a single GPU, the discriminator and generator models had

to be trained on separate gpus. This lead to longer training time, as the discriminator

model had to wait for the generator model to finish training and vice-versa.
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Chapter 5

Evaluation Metrics

In order to understand and use any cosmological model, the two most impor-

tant astronomical observations are the cosmic microwave background and large scale

structure of the universe. In this work, the focus is on comparing the large scale struc-

ture of generated data with input data from physics based simulations.

5.1 Mass Histogram

Mass Histogram is the average (normalized) histogram of the pixel value in

the image. As shown in the chapter on data, the pixel intensity value is correlated to

the matter density. Hence, the mass histogram is able to give a good estimate of the

matter density distribution and is a good metric of comparison. A matching histogram

signifies that the algorithm was able to generate correct intensity values, and hence the

correct matter distribution in the output data.

17



5.2 Peak Histogram

Peak Histogram represents the distribution of maxima in the density distribu-

tion. Peaks are defined as pixels with Signal-to-Noise ratio higher than their 8 neighbors

using mass / density values from the halo catalog. The Peak S/N distribution is mea-

sured and the variation of the peak measurements are plotted in a histogram. Peak

Histogram is able to capture the non-Gaussian features present in the data.

5.3 Two-Point Correlation

The Two-Point Correlation function is used to measure the galaxy density

distribution in the given data [9] by tracing the amplitude of galaxy clustering as a

function of a specific variable (here, density). The correlation function calculates the

value of excess probability of pair of galaxies being separated by this distance (excess

over and above the probability that would arise if the galaxies were simply scattered

independently and with uniform probability) [1].

ξ(r) in equation 5.1 refers to the correlation function, which measures the

excess probability dP of finding a galaxy in a volume element dV above the expected

poisson distribution at a distance r from another galaxy, where n is the mean number

density of the galaxy sample in question.

dP = n[1 + ξ(r)]dV (5.1)

In order to calculate the two-point correlation function ξ(r), first a catalog

18



with same dimensions with randomly distributed points is constructed. The ratio of

pairs of galaxies observed in the data relative to pairs of points in the random catalog is

then used to estimate ξ(r). The most commonly used estimator is by Landy and Szalay

[26] represented by equation 5.2 where DD and DR are counts of pairs of galaxies (in

bins of separation) in the data catalog and between the data and random catalogs, nD

and nR are the mean number densities of galaxies in the data and random catalogs and

RR is the count of pairs of galaxies as a function of separation in the random catalog.

ξ =
1

RR
[DD ∗ (

nR
nD

)2 − 2 ∗DR ∗ (
nR
nD

) +RR] (5.2)

5.4 Power Spectrum

Power Spectrum is the Fourier transform of Two-Point Correlation function.

It defines the density contrast in the data, that is, the difference between local density

and mean density.
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Part III

Results and Discussion
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Chapter 6

Results

6.1 2D Image GAN

Figure 6.1: Output from the Image based model at the 69th epoch from the validation
set. Here, the leftmost image is the input halo map, the rightmost is the original image
and the image in the middle is the output. Although structurally similar, the output
has a different intensity values from the real image, because the GAN is not able to
reproduce the range of intensity distribution of the input data.

In this experiment, the model was able to create a visually high quality sample

with similar large filament structures seen in the output as present in the real slice, as
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shown in Fig 6.1. The model was not able to match the local, small scale structures

of the input data, which might be because of normalizing the input data into [0,255]

range. The major inconsistency shown by the outputs tends to be in the areas where the

filaments are present without any halos at the beginning or end of given filament. Such

results are incorrect as filaments cannot exist if not connected by halos. The reasoning

for such results can be that since the filaments are 3D structures, a 2D slice is incapable

of containing all the information about them. The experiment was repeated with the

slices having a small depth value (by concatenating and then averaging multiple slices),

but that didn’t remove this problem.

Figure 6.2: Output from the Image based model at the tenth epoch from the validation
set. Here, the leftmost image is the input halo map, the rightmost is the original image
and the image in the middle is the output. This image is present as a reference to the
intermediate steps in training and how the ouput looked like at those epochs.

Fig 6.2 shows the output of the same model at the fourth epoch. The output

shows that the model is able to recreate the most evident structures at the fourth epoch

in training.
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6.1.1 Loss Functions

Figure 6.3: Evolution of generator’s GAN and L1 loss functions from Train(blue) and
Test(Orange) sets as a function of Epochs.

The training in Fig 6.3 shows a stable loss for the generator model at the train

set, with a slighly varying loss shown in the test set. Both sets show the same behavior

over a few epochs, thus showing that the training is stable. Very similar behaviour can

be observed in the discriminator loss in Fig 6.4.
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Figure 6.4: Evolution of loss value from the discriminator while classifying over the real
and synthesized input from train (blue) and test (orange) sets as a function of epochs.

6.1.2 Comparison Metrics

6.1.2.1 Mass Histogram

The Mass histogram in Fig 6.5 shows that the majority(75%) of the particles

have similar pixel values and hence intensity values, while the particles that have differ-

ent intensity values vary by about 30% at average. This shows that although majority of

particles in synthetic data have a matching distribution as the real data, some particles

which do not match vary by a statistically significant value.
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Figure 6.5: Mass histogram

6.1.2.2 Peak Histogram

Figure 6.6: Peak histogram of real and synthesized samples from the 2D image model.
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The Peak histogram in Fig 6.6 shows that majority of peak intensity pixels

from the original data do not match the synthetic data. This finding is also supported

by the resulting output image, where the high intensity filament structures do not show

the same intensity distribution in synthetic data. This result is correlated to the colors

in fig 6.1 and not the large scale structures.

6.1.2.3 Power Spectra

Figure 6.7: Power spectrum of real and synthesized samples from the 2D image model.

As can be observed in the fig 6.7, the peak power spectral density of synthesized

data matches the real sample while for the rest of the points, there is an increasing

difference between the two samples’ values.
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6.2 2D Tensor GAN

Figure 6.8: Output from the Tensor based model at the 39th epoch from the validation
set. Here, the leftmost image is the input halo map, the rightmost is the original image
and the image in the middle is the output from the generator. The model is able to
generate correct shapes of the structures, but the intensity distribution is different from
the original image which can be observed in the different color values of filaments in the
two images.

The 2D HDR GAN model was able to understand the major filament structures

present in the data and accurately recreate such structures when working with variable

number of halos. The GAN model does have a clamping effect on the High Dynamic

Range property of the data, cutting off the extremely high and extremely low values

in the data to such effect that the output is closer to the normalized input rather than

the true values. Moreover, the intensity values were not consistently generated by the

model. When calculating the difference image to observe the difference between real

and synthesized 2D tensors as shown in fig 6.9, we observed that no multiples of the

output lead to a subtracted value close to 0. This shows that the synthesized sample’s

intensity values are not matched to the input, but since the difference image doesn’t

have a gradient, it shows that the offset is a consistent, linear value.
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Figure 6.9: Leftmost image is the synthesized sample from the 2D HDR GAN, the
middle image is the real image and the rightmost image is the difference between the
first two images plotted using the same colormap. As can be seen here, all filament
structures have a consistent offset in intensity values.

When concatenating the output generated using different axes-aligned halo

maps (XY vs YZ vs XZ maps), the outputs were seen to be consistent and having main-

tained the filament structures. Interestingly, even though 2D slices with no depth were

considered as data for training, some 3D structure was seen on concatenating contigu-

ous slice outputs and generating a 3D output. The data’s inherent 3D structure and

the self-symmetric fractal like property might be the reason for such output. Running

model on non-contiguous halo maps might indicate if the model is biased towards trying

to generate 2D vectors that form some structure or not.

6.2.1 Loss Functions

Although both the generator and discriminator remain stable upto the 39th

epoch, mode collapse was observed after 40th epoch.

As shown in fig 6.11, the discriminator loss for synthesized tensor is stable
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for the train set and shows the same average pattern over multiple epochs for the test

set. The same can be said for the generator model’s L1 and GAN loss in fig 6.12. At

40th epoch, discriminator’s loss for both real and synthesized data shoots down while

generator’s loss shoots up, indicating a mode collapse at these epochs.

In order to avoid mode collapse, we tried to use an autoencoder to create a low

dimensional encoding that could then be passed to the generator. The results were very

similar to the ones without autoencoder and no apparent benefit to using the encoding

was observed.
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Figure 6.10: Real and Generated samples. As shown here, although the structure is
well reconstructed, the generated sample’s intensity distribution is not the same as the
real input slice.
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Figure 6.11: Evolution of loss value from the discriminator while classifying over the
real and synthesized sample from train (blue) and test (orange) sets as a function of
epochs.
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Figure 6.12: Evolution of generator’s GAN and L1 loss functions from Train(blue) and
Test(Orange) sets as a function of Epochs.
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6.2.2 Comparison Metrics

6.2.2.1 Mass Histogram

Figure 6.13: Mass histogram of real and synthesized samples’ pixel counts with same
mass values mapped over the number of particles.

As shown in fig 6.13, mass histogram of real and synthesized samples matches

upto a specific number of particles. The rest of the particles show a stable piecewise

linear plot in synthesized sample, while non-existent values in the real sample. This

is observed because the synthesized sample’s filament structures have an offset in their

intensity values, and since mass histogram compares the two values by first creating a

threshold, the real sample’s particles are not able to cross the high threshold. For the

non filament particles, the histogram shows that they are closely matched.
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Figure 6.14: Peak histogram of the real and synthesized samples from 2D Tensor model.

6.2.2.2 Peak Histogram

Peak histogram of real and synthesized samples in fig 6.14 shows that the

intensity values although not exactly matched, tend to be at a very small offset from

each other. This shows that for the peak intensity values, the synthesized sample is able

to recreate the intensity (and hence density) distribution of the input.

6.2.2.3 Power Spectra

As shown in fig 6.15, shape of power spectral density (psd) of synthesized

sample matches the shape of psd of real sample.
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Figure 6.15: Power spectra of real and synthesized samples from 2D tensor model.

6.3 3D Tensor GAN

Figure 6.16: Output from the 3D tensor based model at the 30th epoch from the
validation set. Here, the image at the top is the input slice and the image at the bottom
is the synthesized output. The colorbar at the right of both images represents the
correlation of gradient to the intensity values of pixels. The intensity values have been
normalized into [0,1] range. As can be observed from the figure, the synthetic sample
has a higher intensity distribution compared to the original image.
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6.3.1 Loss Functions

Although the loss function for both discriminator and generator was more

unstable than the 2D models, no mode collapse was observed. The plot for discriminator

in fig 6.17 for both real and synthesized samples shows a downward trend, while the

generator’s loss in fig 6.18 shows an upward trend. This shows that discriminator had an

easier time of figuring out real from synthesized samples over multiple epochs. Although

not the ideal loss function, the output synthesized were in high visual quality, so it can

be assumed that the initial low values of loss must be because of the initial values of

synthetic sample being close the mean of the intensity distribution in real sample.

Similarly, the generator’s GAN loss as shown in fig 6.18 shows an upward

trend, showing that the generator had a harder time creating similar outputs to real

sample over the epochs.
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Figure 6.17: Output from the 3D tensor based model at the 30th epoch from the
validation set. Here, the image at the top is the input slice and the image at the bottom
is the synthesized output. The colorbar at the right of both images represents the
correlation of gradient to the intensity values of pixels. The intensity values have been
normalized into [0,1] range. As can be observed from the figure, the synthetic sample
has a higher intensity distribution compared to the original image.
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Figure 6.18: Evolution of loss value from the discriminator while classifying over the
real and synthesized sample from train (blue) and test (orange) sets as a function of
epochs.
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Figure 6.19: Evolution of generator’s GAN and L1 loss functions from Train(blue) and
Test(Orange) sets as a function of Epochs.
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6.3.2 Comparison Metrics

6.3.2.1 Mass Histogram

Figure 6.20: Mass Histogram of real and synthetic samples from 3D tensor model.

6.3.2.2 Peak Histogram
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Figure 6.21: Peak histogram of real and synthesized samples from the 3D tensor model.

6.3.2.3 Power Spectra

As shown in fig 6.22, shape of power spectral density (psd) of synthesized

sample matches the shape of psd of real sample with a much lower difference than as

seen in psd plot of the 2D image model and measurably lower value from 2D tensor

model.
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Figure 6.22: Power Spectra of real and synthesized samples from the 3D tensor model.
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Chapter 7

Analysis

7.1 Dissecting GANs on same input

In this experiment, we used the same input sample over all the three models,

and using NetDissect [3] observed the activations in all three models at the relevant

(hidden) layers. NetDissect is a program by CSAIL Vision Lab which can be used to

interpret visual representations of the hidden layers of trained models.

As can be observed in fig 7.1 and fig 7.2, there are some overlaps in the activa-

tion maps of 2d image and 2d tensor models. The 2D tensor model shows a much more

complex activation map, and considers much more area when synthesizing the output

in comparison of the 2D image model. This observation is consistent with better match

in both large-scale structures and intensity distribution synthesized by the 2D tensor

model.
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Figure 7.1: Activation Map for 2D Image model

Figure 7.2: Activation Map for 2D Tensor model

7.2 Variations in Halo Count

In this experiment, we changed the number of halos in the input halo map.

The idea was to observe how many minimum halos are needed for the gan model to

be able to generate a high quality synthesized output. This experiment is also useful
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in determining how well the model understands the structure formations and what the

model looks for when generating the filament structures.

The results of this experiment showed that the models were able to synthesize

large-scale structures in the output when the halo count was varied by 20% (increase or

decrease) from the initial value at which the model was trained (5000 halos per slice).

Beyond that, there were major changes in the structure formed, with lowering the halo

count leading to loss of the structures, while increasing the halo count leading to more

complex structures.

45



Chapter 8

Conclusion

This thesis aimed to find a method for generating data that can represent large

scale structures of universe, colloquially termed the cosmic web with lower computa-

tional requirements than n-body simulations (which are the most widely used algorithms

to synthesize such data). Based on visual and quantitative analysis, we have shown that

generative adversarial networks are a valid approach to generate such data. GANs are

able to generate the cosmological data with evident large-scale structures, while having

low variation from the original intensity distribution of the real (simulated) data. Thus,

GANs can be used to generate both 2D slices as well as 3D voxels of cosmological data

in a fraction of the time taken by computational algorithms with comparable quality.

There are quite a few obvious extensions to this project. Currently the model

can generate new data with same parameters as the data it has been trained on. Given

models could be trained such that along with the halo map, they take in as input the

initial parameters which would guide the model while synthesizing the data. It is also
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important to have a model with more explainability so that it is easier to use as well

as to change according to the requirements. So, another possible extension could be to

create models with inbuilt properties such as mapping the gradients to output data in

order to map changes in the output to the gradient values, or adding attributes in the

model.
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Appendix A

Detailed Architecture

Sequential Upsampling Layer (SUL) in fig A.1 and Sequential Downsampling

Layer(SDL) in fig A.2 are used by the UNet-256 model in fig A.3. All code for this

project was written in pytorch library [32].

In all SUL layers, the negative slope value for leaky relu layer is 0.2, while the

inplace parameter is set to True. The kernel size for convolutional layer is (4 x 4), while

the stride size is (2 x 2) and padding is (1 x 1).

In all SDL layers, the inplace parameter for relus is set to True. The kernel

size for transposed convolutional layer is (4 x 4), while the stride size is (2 x 2) and

padding is (1 x 1). The probability of trainable parameter being made 0 (p) is 0.5.

The same architecture is used in the 3D GAN as well, while the 2D convolutions

and 2D transposed convolutions are replaced by 3D convolutions and 3D transposed

convolutions respectively.
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Leaky ReLU

Sequential Upsampling Layer

2D Convolution

Batch Norm

M @ N x N

Figure A.1: Sequential Upsampling Layer (SUL) as used in unet-256 for 2d experiments
consists of three layers; leaky relu, 2d convolution and batch norm. The bottom left tag
mentions number of layers (M) and the shape of layers (NxN).

ReLU

Sequential Downsampling Layer

2D Transposed Convolution

Batch Norm

M @ N x N

Dropout

Figure A.2: Sequential Downsampling Layer (SDL) as used in unet-256 for 2d experi-
ments consists of relu, 2d transposed convolutions, batch norm and a dropout layer.
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Input Layer

UNet-256 Architecture

2D Convolution

1 @ 1024 x 1024

64 @ 512 x 512

SUL

128 @ 256 x 256

SUL

256 @ 128 x 128

SUL

512 @ 64 x 64

SUL

512 @ 32 x 32

SUL

512 @ 16 x 16

SUL

512 @ 8 x 8

SUL

512 @ 4 x 4

2D Transposed Convolution

SDL

SDL

SDL

SDL

SDL

SDL

SDL

Output Layer

512 @ 8 x 8

512 @ 16 x 16

512 @ 32 x 32

512 @ 64 x 64

256 @ 128 x 128

128 @ 256 x 256

64 @ 512 x 512

1 @ 1024 x 1024

Figure A.3: UNet-256 Architecture as used in 2D experiments. The 3D experiment
used the same model, except for using 3D convolutions and transposed convolutions.
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