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A novel improved model for building energy consumption prediction based
on model integration
Ran Wanga,b, Shilei Lua,b,⁎, Wei Fengb

a School of Environment Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
b Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

A B S T R A C T

Building energy consumption prediction plays an irreplaceable role in energy planning, management, and
conservation. Constantly improving the performance of prediction models is the key to ensuring the efficient
operation of energy systems. Moreover, accuracy is no longer the only factor in revealing model performance, it
is more important to evaluate the model from multiple perspectives, considering the characteristics of en-
gineering applications. Based on the idea of model integration, this paper proposes a novel improved integration
model (stacking model) that can be used to forecast building energy consumption. The stacking model combines
advantages of various base prediction algorithms and forms them into “meta-features” to ensure that the final
model can observe datasets from different spatial and structural angles. Two cases are used to demonstrate
practical engineering applications of the stacking model. A comparative analysis is performed to evaluate the
prediction performance of the stacking model in contrast with existing well-known prediction models including
Random Forest, Gradient Boosted Decision Tree, Extreme Gradient Boosting, Support Vector Machine, and K-
Nearest Neighbor. The results indicate that the stacking method achieves better performance than other models,
regarding accuracy (improvement of 9.5%–31.6% for Case A and 16.2%–49.4% for Case B), generalization
(improvement of 6.7%–29.5% for Case A and 7.1%-34.6% for Case B), and robustness (improvement of
1.5%–34.1% for Case A and 1.8%–19.3% for Case B). The proposed model enriches the diversity of algorithm
libraries of empirical models.

1. Introduction

The building and construction sector together are responsible for
36% of global final energy consumption and nearly 40% of total direct
and indirect carbon dioxide emissions [1]. Building energy savings can
be achieved by improving the building’s dynamic energy performance
in terms of sustainable construction management in urban-based built
environments [2]. Meanwhile, building operations are information-in-
tensive, due to the popularity of smart sensors and the adoption of

intelligent building management systems [3]. A large amount of
building operational data has been recorded to provide a basis for
building performance analysis. Therefore, a promising strategy to ad-
dress energy savings is to develop big data-driven approaches to
building smart energy management.

Prediction models for building management systems have raised
concerns. The predicted targets are mainly building energy consump-
tion (building internal heat gains [4], building cooling loads [5], dis-
trict heating load [6], electricity demand [7], peak power demand [8]),
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indoor temperature (commercial buildings [9] and residential buildings
[10]), thermal sensation votes [11], and system or unit performance
indicators [12]. The service objectives of prediction models in the en-
ergy management system mainly include optimized control [13] and
fault detection [14]. Optimized control includes matching the supply
and demand of building energy [15], maintaining the indoor thermal
comfort [9], and operating the unit and system in an optimal state
(HVAC systems [16], energy recovery systems [17], and radiant floor
systems [18]). With the support of sufficient training data, fault de-
tection helps to distinguish whether the patterns of monitoring data are
similar to those of the normal training data [19]. Hence, improving the
accuracy, robustness, and generalization performance of the prediction
algorithm is key to ensure efficient building operations [20].

The data-driven model has become the most popular method used in
the field of building energy due to its low time consumption and good
prediction performance [21]. Commonly used data-driven models can
be classified as single prediction models, integration prediction models,
and improved prediction models.

The single prediction model, which is the type of most traditional
models, has single algorithm architectures such as support vector re-
gression (SVR) [22], artificial neural network (ANN) [23], and multiple
linear regression models (MLR) [24].

In contrast, integration prediction models integrate single predic-
tion algorithms into a more accurate model by combining strategies,
which can be divided into various types in view of the order between
base models (in parallel or in series) and whether base models are the
same kind of algorithms (homogeneous or heterogeneous integration)
[25]. For example, the Random Forest (RF) model is a parallel homo-
geneous integration model, while Gradient Boosted Decision Tree
(GBDT) and Extreme Gradient Boosting (XGBoost) models are series
homogeneous integration models.

Improved prediction models use auxiliary algorithms or frameworks
to make up for the deficiencies of the original prediction algorithm.
There are generally three forms: (1) the pre-assisted algorithm, which
improves the data quality to make up for the specific requirements of
the prediction algorithm [26]; (2) the assisted optimization algorithm,
which is used to perform hyperparameter tuning of a prediction algo-
rithm [27]; and (3) nesting of an auxiliary improvement framework on
the base prediction algorithm, to improve model performance [7]. Most
of the existing research is based on single or integration models, which
lack improvements in the essence of the algorithm. However, the im-
proved prediction model can enrich the algorithm library and con-
tinuously improve the overall accuracy level of building energy fore-
casting, which is crucial for scheduling and managing energy usage
[15]. Therefore, it is quite important to develop improved prediction

models.
This paper proposes a novel prediction method for building energy

prediction based on the principle of algorithm integration. The method
is applied to two actual cases as a demonstration, and the results verify
its reliability in short-term building energy prediction. Moreover, the
method is compared with some state-of-the-art or popular prediction
methods from the perspectives of robustness, accuracy, and general-
ization performance, and its superiority is verified. The proposed
method enriches the library of energy consumption prediction models.
Hence, this study has a unique significance.

2. Literature review

The most important two modules for the prediction model are
model inputs and prediction algorithms. The model inputs section
mainly summarizes the input types found in existing research and looks
forward to the development trend. The prediction algorithm is sum-
marized from three algorithm types: single prediction, integration
prediction, and improved prediction. The literature related to the al-
gorithms’ performance comparison and performance evaluation di-
mensions is also reviewed.

2.1. Selection of model inputs

Input data can be classified into meteorological data, occupancy
data, historical data, and time type information. Meteorological data
are relatively easy to obtain by means of weather stations. Occupancy
data mainly affects the building energy consumption by changing the
energy supply status, which refers to human behaviors and building
usage schedules. Due to the great uncertainty and high requirements for
the monitoring system, few studies have directly taken occupancy data
as input data for the prediction model; according to the literature, the
proportion of meteorological and occupancy data used in related re-
search articles is 60% and 29%, respectively [25]. In addition, some
researchers utilized time type information (e.g., time of the day, day of
the week, day type) to remedy the information lost from the omission of
occupancy data [28]. Historical data such as historical energy is a
popular input because it indicates the trend of the load profile in a
mathematical way. The model inputs in most studies generally involve
a combination of two or more of these types.

For example, meteorological data and historical energy consump-
tion were used for daily building electricity forecasting [29]. Only
historical energy consumption was used in yearly building electricity
forecasting [30] and daily building electricity forecasting [31]. Me-
teorological data and day type were used in hourly electricity

Nomenclature

Abbreviation

AI Artificial intelligence
RMSE Root mean squared error
MAE Mean absolute error
MAPE Mean absolute percentage error
CVRMSE Coefficient of variation of the root mean square error
R2 Coefficient of determination
x Input
y Output
P Output of the train set of the base model
T Output of the test set of the base model

Method

RF Random forest

SVR Support vector regression
kNN k Nearest Neighbors
GBDT Gradient boosting decision tree
XGBoost Extreme gradient boosting
ANN Artificial neural network
MLR Multiple linear regression
ARIMA Autoregressive integrated and moving average
BPNN Back-propagation neutral network
GRNN Generalized regression neural network
RBFNN Radial basis function neural network
OLS Ordinary least squares
MARS Multivariate adaptive regression splines
GPR Gaussian process regression
ES Exponential Smoothing



based on SVR and ANN [52]. Chae et al. constructed an integration
model based on three ANN algorithms and applied it to predict sub-
hourly electricity usage in commercial buildings [28]. In contrast,
homogeneous models are constructed by the same single models on
different training sets. RF has been effectively applied to peak power
demand [8], electricity load forecasting [53], and heating and cooling
loads [54]. In recent years, GBDT and XGBoost have also gradually
been applied in the field of building energy. The GBDT model exhibits
the highest performance in the prediction of energy consumption by
appliances in a low-energy house [55], electricity load forecasting for
utility energy management systems [56], and electricity load fore-
casting for utility energy management systems [57]. The XGBoost
model has been used to construct a prediction model for early detection
of faults in HVAC systems [58] and building energy performance
grading [59]. In general, integrated algorithms are becoming increas-
ingly popular in the field of energy prediction.

2.2.3. Improved prediction models
Some studies have focused on the improved prediction model to

achieve better accuracy.
Auxiliary algorithms can be applied to improve data quality before

the prediction algorithm is established. For example, Ding et al. used K-
means and hierarchical clustering methods to classify input variables to
improve prediction accuracy [60]. Yuan et al. proposed a sample data
selection method based on a grey correlation method integrated with an
entropy weight method; the result demonstrated that the accuracy of
BPNN had improved [26]. Ding et al. divided the sample data by ten-
fold cross-validation to improve the accuracy of the SVR model in short-
term and ultra-short-term predictions of cooling load [61]. A hybrid
SVR was applied to predict the hourly electric demand intensity; the
multi-resolution wavelet decomposition was introduced to divide the
initial series into several parts, to alleviate the interferential influence
on modeling [62].

Optimization algorithms can be used for hyperparameter tuning to
improve base model performance. For example, Li et al. applied an
improved particle swarm optimization algorithm to adjust the structure
weights and threshold values of ANN [63]. Zhong et al. proposed a
novel vector field-based SVR method, which improves the performance
of SVR, including accuracy, robustness, and generalization capabilities
through multi-distortions in the sample data space or high-dimensional
feature space mapped by a vector field to find the optimal feature space
[15]. An evolutionary-based ANN algorithm has been proposed for
short-term load forecast of electricity, and optimal network parameters
are found to reduce the forecasting error [27].

Some integration strategies and frameworks can be used to improve
the structure of the base algorithm to enhance its performance. For
example, Fan et al. exploited the potential of deep learning and com-
pared its performance in cooling load prediction with typical feature
extraction methods and popular prediction techniques in the building
field. Results showed that deep learning can enhance the predictive
performance, especially when used in an unsupervised manner [64].
Jatin et al. proposed a Long Short Term Memory based deep learning
framework to forecast electricity demand by taking care of long-term
historical dependencies, and proved the method’s effectiveness by
comparing it with ANN and SVR [7]. Alessandro et al. proposed a
Bayesian deep learning-based method to predict electricity price, and
proved the method’s robustness in out-of-sample conditions [65]. On
the whole, improved prediction models enrich the algorithm library of
the prediction model and promote the accuracy of the energy prediction
field overall.

2.3. Comparison of prediction models

From the perspective of algorithm types, existing studies compare
the same, as well as different, types of models.

Many studies have conducted comparisons between the same type

forecasting [32] and sub-hourly electricity forecasting [33]. Meteor-
ological data and occupancy schedules were used in the prediction of 
heating/cooling consumption for a solar house [34]. Few studies used 
other variables as inputs; for example, indoor environmental factors 
(temperature and relative humidity) and meteorological data were used 
together to predict building cooling energy consumption [15]. Other 
than meteorological data, occupancy and hour-type/day-type pre-
treated air unit operation schedule were used for cooling load predic-
tion [35].

Most researchers collected input data based on their knowledge of 
the prediction model and data availability [25]. Whether it is in the 
establishment of the model or the actual maintenance of the model 
later, collection of meteorological data is relatively easy. Additionally, 
day types and historical data are deterministic prior information; so the 
use of these three types of data is still dominant. Meanwhile, the 
number of inputs for each input data type has increased as modeling 
techniques have developed [5]. For example, meteorological data were 
only related to outdoor temperature in early studies [36], but this 
gradually expanded to outdoor temperature, relative humidity, and 
solar radiation [37]. Currently, wind speed and wind direction also 
serve as indicators [15].

2.2. Evolving prediction models

2.2.1. Single prediction models
The single prediction model’s main feature is that it consists of only 

the base prediction algorithm. Early research related to building energy 
predictions generally involves single prediction models, which are 
mainly divided into statistical and artificial i ntelligence m odels [38]. 
Statistical models are an established, simple tool for long-term predic-
tion [39]. MLR, Exponential Smoothing (ES), and auto-regressive in-
tegrated and moving average (ARI MA) models are popular statistical 
approaches that are applied in the prediction model. The MLR model 
was used to forecast the daily peak load [40] and monthly electricity 
demand [41]. The ES model was used for hourly load forecasting, with 
a lead time of 1–24 h [42]. The ARI MA model was used to predict 
hourly electricity load and daily peak load [43]. The kNN is also a 
simple and effective s tatistical m odel, w idely a pplied t o w ind speed 
forecasting [44], electricity forecasting [45], and solar power fore-
casting [46].

Due to high accuracy, artificial i ntelligence ( AI ) a lgorithms are 
widely used; the transition from statistical to AI methods occurred 
around 1991 to 2001 [39]. The SVR and the ANN series of algorithms 
are commonly used predictive models [47]. SVR is based on the 
structural risk minimization principle, which performs well in time 
series and non-linear prediction [48]. I t was first u sed i n t he fi eld of 
building energy consumption forecasting in 2005 [49]. ANN is a non-
linear statistical learning technique inspired by biological neural net-
works, applied to various types of building energy consumption fore-
casts, such as overall building energy consumption, cooling and heating 
loads, and electricity consumption. Back-propagation neural network 
(BPNN) and Generalized regression neural network (GRNN) are two 
representative types of ANN. Ben et al. used GRNN to predict the 
cooling load [36]. Ekici et al. proved the reliability and accuracy of 
BPNN in building heating load forecast [50].

2.2.2. Integration prediction models
A more advanced data-driven method called integration learning 

was introduced in the early 1990s. I ntegration learning is also called 
fusion learning, aggregation, combination, ensemble, and other names 
[25]. An integration model is defined as a framework that combines the 
advantages of multiple single models to improve overall performance. It 
is divided into two types: heterogeneous and homogeneous. Hetero-
geneous models use the same dataset to construct single models by 
training different a lgorithms o r t he s ame a lgorithm w ith different 
parameter settings [51]. Chou et al. constructed an integration model



models included linear regression with ordinary least squares (OLS),
RF, SVR, multivariate adaptive regression splines (MARS), Gaussian
process regression (GPR), and ANN. The comparison shows that GPR
produced the best precision and robustness, and was easy to implement,
but it became inefficient for large training sets compared to ANN and
MARS [74]. Both studies have shown there was no consensus on a
“best” model after considering all their performances. Zhong et al.
verified the performance of an improved SVR algorithm from three
aspects of prediction accuracy, generalization ability, and robustness by
comparing it with commonly used data-driven models and state-of-the-
art models [15]. Cai et al. compared two deep neural network models
with the Seasonal ARIMA model for accuracy, computational efficiency,
generalizability, and robustness [20]. Fan et al. investigated and com-
pared the usefulness of advanced recurrent neural network-based
strategies for building energy predictions in terms of prediction accu-
racy and computation load [75].

2.4. A summary of the previous research

Most studies have established prediction models using base data
mining algorithms. Among them, the traditional single prediction
model is the most widely used because of the simple algorithm in-
volved. The integrated model is becoming increasingly popular for
building energy use prediction due to its remarkably improved pre-
diction accuracy [25]. The integrated model uses multiple base models
to predict the results, and the diversity among these base models will
reduce the prediction error of the overall system. In terms of building
energy consumption prediction, the accuracy improvement of the in-
tegrated model in the reviewed research can be up to 50% based on the
MAPE index [8] and up to 4.9% based on the RMSE index [71].

Improved algorithms can effectively improve the accuracy of pre-
diction models; however, related research is rarely compared with basic
data-mining algorithms. Therefore, it is of great significance to propose
an improved prediction model with better performance for enriching
the empirical model library of energy consumption prediction.

The horizontal comparison between different models can be con-
ducive to the intuitive display of relative advantages and disadvantages,
and most of the current research has evaluated models based solely on
accuracy. Moreover, from the perspective of practical engineering ap-
plications, the model performance should be evaluated from multiple
perspectives, including accuracy, generalization, and robustness, in

Fig. 1. The research framework.

of model. For example, Li et al. compared SVR with several ANN models 
for predicting hourly building cooling load [66]. Massana et al. used 
SVR, MLR, and ANN to predict short-term load for non-residential 
buildings [67]. Wang et al. compared SVR and three ANN models 
(BPNN, radial basis function neural network [RBFNN], and GRNN) for 
predicting hourly residential electricity use [68]. These studies have 
shown that SVR improved building energy use prediction better than 
other AI-based prediction methods. ANN was compared with regression 
models for annual urban residential buildings’ energy consumption 
[69] and HVAC hot water energy consumption [70]; both studies in-
dicated that ANN could perform better than regression methods for 
short-term forecasting. Comparisons have also been made between 
single and integrated models. For example, three neural network 
models and their integrated forms were used for heating consumption 
prediction, and the results showed that the integrated model has better 
prediction accuracy [71]. Ahmad et al. compared ANN and RF models 
for predicting the hourly HVAC energy consumption of a hotel, and 
ANN performed with marginally better precision than RF, but RF has an 
advantage in processing multi-dimensional complex data due to its ease 
of tuning and modeling [72]. RF was compared with RT and SVR to 
validate its superiority in building energy prediction [53]. One example 
of a comparison between a single model, integrated model, and hybrid 
model is the study by Zhong et al., which compared an improved SVR 
algorithm with the MLR, BPNN, SVR, deep learning, and GBDT models 
[15].

I t is important to note that most prior research studies have only 
compared model performance in terms of precision, although a small 
number of research studies have compared model performance from 
multiple perspectives. For example, SVR and three ANN models (in-
cluding BPNN, RBFNN, and GRNN) were applied to hourly cooling load 
forecasting of an office building; the result demonstrated that the SVR 
and GRNN could achieve better accuracy and generalization than the 
BPNN and RBFNN [66]. Wang et al. compared five models (SVR, ANN, 
RF, GBDT, and XGBoost) with respect to interpretability, accuracy, 
robustness, and computational efficiency wh en ap plied to  hourly 
heating energy consumption. BPNN exhibited the lowest precision, ef-
ficiency, robustness, and interpretability, while RF showed the highest 
overall performance, with the highest accuracy, robustness, and inter-
pretability. However, RF efficiency wa s le ss th an th e XG Boost model 
[73]. Ostergard et al. compared six prediction models with respect to 
accuracy, efficiency, ease-of-use, robustness, and interpretability. These



3. Framework and methodologies

This study seeks to contribute to the existing state of the art by
focusing on the following:

• This paper proposes a novel improved prediction algorithm. Its core
is to build an integration framework and apply it to the basic models
to improve overall prediction performance. The improved predic-
tion model includes two main features: it enables comprehensive
data observation and reduces overfitting. Based on the character-
istics of different prediction algorithms, it can observe sample data
from different spatial and structural perspectives. This study com-
bines the observations of various base models into the form of
“meta-features” to enable the overall model to more comprehen-
sively observe the sample data. And this method reduces overfitting
by distorting the sample data space.

• The superiority of the proposed model is verified by several state-of-
the-art or popular prediction models. Model performance is eval-
uated from three dimensions: accuracy, generalization, and robust-
ness.

3.1. Research framework

This study is dedicated to obtaining a novel method of high preci-
sion, high robustness, and high generalization capabilities for building
energy prediction. Subsequently, the proposed method is applied to a
real case to establish a prediction model and verify its effectiveness.
This section focuses on the construction of the novel model and case
introduction. The research framework is shown in Fig. 1.

3.2. Proposed method

3.2.1. Algorithm framework
Based on the idea of model fusion, this paper presents a new energy

consumption prediction model. Single models can observe data in dif-
ferent spatial and structures angles, the proposed model (called the
stacking model hereafter) can synthesize the observations of all single
models to achieve an improved prediction performance by constructing

a novel integration framework. Overall, the stacking model has a
structure with two layers, as shown in Fig. 2. The first layer is the
construction of base models, and their output constitutes “meta-fea-
tures” as an input to the second layer. The second layer is a combined
strategy model.

The detailed components are as follows:
Each base model trains the training set to predict the tag columns of

train and test, and the predicted results of the training set and test set
are taken as P and T, respectively. For base model 1 to base model 5,
corresponding P and T are obtained, respectively.

P T1 1

(1)

P1–P5 and T1–T5 are combined separately to obtain a new training
set “trainset 2” and test set “testset 2”.

(2)

The model of the second layer “model 6” is used to train “Trainset2”
and predict “Testset2” to get the final output.

Fig. 2. The global working flow of the stacking method.

order to adapt to the status of prediction models becoming more and 
more important in energy management systems.



(3)

3.2.2. Construction of base models
In order to avoid overfitting, fivefold cross-validation is used for

each base model. As shown in Fig. 3, divide “trainingset 1” into five
non-intersecting sets and mark them as traina to traine. Assume that the
training set is a matrix of M rows and N columns. The matrix of the five
train sets is as shown in Eq. (4).

(4)

Taking base model 1 as an example, base model 1 is trained by the
combination of traina–traind to build Modele. And the dataset traine is
predicted by Modele to obtain Prede as shown in Eq. (5).

Similarly, Modela–Modeld are built, and Preda–Predd are obtained by
using traina, trainb, trainc, and traind as prediction sets, respectively.

(6)

Finally, Preda–Prede is combined to form P1.

+ + + + = =Pred Pred Pred Pred Pred

Pred
Pred
Pred
Pred
Pred

Pa b c d e

a

b

c

d

e

1

(7)

Using the established Modela–Modele to predict the testset to get
Testa–Teste separately, and finally average the five results to get T1.

(8)

+ + + + =Test Test Test Test Test P( )/5a b c d e 1

(9)

3.2.3. The selection of base models
These base models are selected based on two principles: popularity

and diversity. First, all the selected algorithms should have been widely
used in solving complex modeling and prediction problems, and studies
should have proven their performance to be encouraging. Second, the
maximized integration diversity will make the integration results more
robust and more accurate [8], and it is best to “cross the space” between
the selected base models. That means algorithms with large differences

in principle should be selected. Therefore, this study selects five com-
monly used models (RF, kNN, SVR, GBDT, and XGBoost) as base
models. These differ in their non-linearity handling abilities, model
architectures, and inference mechanisms.

The RF model was developed by Breiman in 2001 for both

Fig. 3. The construction of the base model (Taking Base model 1 as an example).

(5)



The detailed calculation formula is shown in [82].

3.3. Model performance evaluation

3.3.1. Accuracy
To ensure the reliability of the evaluation results, a variety of ac-

curacy metrics can be used, including mean absolute error (MAE), root
mean squared error (RMSE), mean absolute percentage error (MAPE),
and the coefficient of variation of root mean square error (CVRMSE).
Each of these indicators has a different emphasis. MAE is based on
absolute error, which can visually show the average distance between
the predicted value and the actual value. RMSE is used to identify large
errors and evaluate the fluctuation of model response regarding var-
iance. The metric punishes large errors severely because it geome-
trically amplifies the error [53]. MAPE expresses accuracy in percen-
tage and reduces the effect of absolute errors caused by individual
outliers. CVRMSE normalizes the prediction error and can provide a
unitless metric that is more convenient to compare [38]. For all four
indicators, the smaller the value, the better the model performance. In
this article, four indicators are used in conjunction with each other.
MAE is mainly used to show the difference between absolute errors,
RMSE is used to identify large errors, and MAPE and CVRMSE are
mainly used to compare the accuracy differences between different
models.

= ×=CVRMSE
y y

y

( )

¯
100%

n
i

n

i i
1

1

2

(10)

=
=
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n

y y1 ( )
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n

i i
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2

(11)

= ×
=

MAPE
n

y y
y

1 100%
i

n
i i

i1 (12)

=
=

MAE
n

y y1 | |
i

n

i i
1 (13)

where yi, yi , and ȳ represent the actual value, the predicted value, and
the average actual value, respectively.

3.3.2. Generalization
Generalization performance refers to the model’s ability to predict

samples beyond the training range.

Fig. 4. Exterior view of the case buildings: (a) Case A; (b) Case B.

classification and regression problems [76]. It consists of many decision 
regression trees but is not a simple average of the predictions of all 
decision trees. I ts four features are bootstrap resampling, random fea-
ture selection, out-of-bag error estimation, and full-depth decision tree 
growing. Repeated sampling of the original datasets generates each of 
the regression trees. The samples of about one-third are not extracted at 
each repeated sampling, which forms a control dataset. RF is not easy to 
overfit and has good noise immunity [77].

The kNN model is a non-parametric learning algorithm used for 
either classification o r r egression. k NN r egression u ses t he averaging 
method, which is the average output of the most recent K samples, as 
the regression prediction. I t is non-parametric, as it does not learn an 
explicit mapping relationship between inputs and outputs. The para-
meter k, which defines t he n umber o f c onsidered n eighboring ob-
servations, is important for model performance. The larger the k value, 
the better the generalization ability of the model, but it is easy to fit; the 
smaller the k value, the better the fitting effect of  th e model, bu t the 
generalization ability is not enough. kNN is regarded as one of the 
simplest learning algorithms [78].

The concept of the SVR model derives from the computation of a 
linear regression function in a high-dimensional feature space, where 
the input data are mapped through a non-linear function [79]. The most 
prominent advantage of SVR is the uniqueness and global optimality of 
the generated solution, as it does not require non-linear optimization 
with the risk of sucking in a local minimum limit. The Gaussian radial 
basis function is adopted as the kernel function because it can map the 
low-dimensional input space into the high-dimensional space, and only 
one parameter needs to be set [37].

GBDT is also called multiple additive regression trees (MART) or 
gradient boosting machine (GBM), and it is an iterative decision tree 
algorithm [80]. I ts implementation logic is to build the weak learner 
(regression tree) in turn and try to reduce the deviation of the com-
biner. GBDT, based on numerical optimization, uses the fastest descent 
method to solve the optimal solution of loss function; fitting t he ne-
gative gradient using the regression tree and calculating the step length 
using the Newton method. This makes it possible to reduce the loss 
function as fast as possible for each training and converge to the local 
optimal or global optimal solution as quickly as possible [81].

XGBoost is an improved algorithm based on the GBDT algorithm. It 
has the following improvements: First, XGBoost is based on analytic 
thinking. The loss function is expanded to the second-order derivatives 
to obtain the analytic solution as the gain to establish trees so that the 
loss function is optimal. Second, XGBoost adds regular terms to control 
model complexity. From the point of bias-variance trade-off, the regular 
terms reduce the model’s variance and prevent overfitting. Third, 
XGBoost supports parallel learning and is relatively faster in computing.



70% and 30%, respectively. The training set can be used to construct
the prediction model, and the test set, which contains values outside the
training set, can be used to examine the generalization ability.
Prediction models were implemented in the Python environment (Ver.
3.6). The base model of the first layer is RF, XGBoost, GBDT, SVR, and
kNN, and the combined model of the second layer is GBDT. The main
parameters affecting the RF model include the maximum depth of the
tree (MD), the number of trees (NT), and the maximum of features
(MF). Compared to the RF model, the GBDT model includes the hy-
perparameter of the learning rate (LR) as well. When constructing a
tree, XGBoost can subsample the original datasets. Unlike RF, the
sample here is not placed back. The hyperparameters that affect the
XGBoost model are mainly MD, NT, LR, and subsample. The SVR model
has two crucial parameters: c and γ. The c is the penalty factor, which is
the tolerance for the error. The γ is the coefficient of the kernel func-
tion, which implicitly determines the distribution of the data after
mapping to the new feature space [73]. The k and the p of the Min-
kowski distance formula are the main hyperparameters affecting the
kNN model [78]. To intuitively prove the improvement effect of the
improved algorithm, the prediction results of base models also output
separately. The base models in the stacking model were tuned in turn,
and their optimized hyperparameters are summarized in Table 3.

5. Results and discussion

5.1. Model accuracy

Fig. 7 shows fitting results between the predicted and the corre-
sponding measured value for each prediction model. The scatter of
measured data—predicted data—is distributed on the sides of the
baseline. Furthermore, the stacking model fits better than the other
models, with R2 equal to 0.86 and 0.92 for cases A and B, respectively.
The R2 of RF, GBDT, SVR, XGBoost, and kNN are 0.79, 0.82, 0.79, 0.82,
and 0.84, respectively, for Case A, and 0.73, 0.85, 0.9, 0.89, 0.96, re-
spectively, for Case B. Fig. 8 shows the relative error distribution of all
models for the two cases. When based on the mean relative error, the
stacking method achieves higher accuracy than all the other five
models, with accuracy improvement being about 9.5%–31.6% for Case
A and 16.2%–49.4% for Case B. The x-axis is the heating load, so it can
visually show the variation of the relative error with the heating load
level. As shown, the error of the stacking model is not the smallest
compared to other models when the heating load was relatively low,
but the error is smallest when the heating load is in the middle position.
The pattern of actual heating loads is considered to be a normal dis-
tribution with the characteristics of “more in the middle and less at both
ends” (as shown in Fig. 9). Therefore, from the perspective of en-
gineering practice, the stacking model has better practicability in terms
of cumulative error. Table 4 summarizes four error metrics of each
model calculated using Eqs. (10)–(13). For the stacking model, the
CVRMSE, RMSE, MAE, and MAPE are 10.60%, 23.53, 16.14 and 7.66%,
respectively, for Case A, and 8.96%, 13.81, 10.61, and 7.51%,

Table 1
Basic information on the case study buildings.

Items Case A Case B

Size (m2) 10,762.0 12,236.2
Insulation type Self-insulation External insulation

Shape Coefficient 0.18 0.22
Window-wall ratio South 0.34 0.53

East 0.13 0.29
West 0.15 0.42
North 0.43 0.37

U-value (W/(m2⋅K)) Roof 0.17 0.55
External wall 0.46 0.55

External window 2.5 2.5

3.3.3. Robustness
In the field of machine learning, robustness is defined as the ability 

of the model to resist external environmental disturbances to ensure the 
stability of its working performance. For building energy, there are 
many reasons why the collected operational data may deviate from 
reality, such as monitoring system failure, instrument damage, sudden 
stopping of the unit, and so on. Additionally, in the actual operation of 
the prediction model, weather forecasting is generally used to obtain 
meteorological data, but the error in weather forecasting will affect the 
model performance. Many studies have used the method of adding 
different intensities of noise to the testing data to measure the model’s 
robustness. For example, Gaussian white noise was used to con-
tinuously enhance noise intensity [20]. R2 reflects the proportion of the 
total variation of the dependent variable that can be explained by the 
independent variable. Therefore, it can be used as the main indicator of 
the model’s robustness.

4. Case studies

4.1. Building information

Operation data retrieved from two educational buildings in the 
coastal city of Tianjin, China, is employed for the case study. The case 
study buildings mainly contain classrooms for students and offices for 
university staff. Case A is a three-star green building with three stories, 
and Case B is a conventional building with four stories. Their elevations 
are shown in Fig. 4. Table 1 summarizes the basic information of the 
case study buildings, including shape coefficient, insulation level of the 
envelope, and window-to-wall ratio. The insulation level of Case A is 
much better than that of Case B. Both buildings use district heating to 
maintain an indoor thermal environment during winter, and the 
heating energy is supplied by the energy station in the school.

4.2. Input data and data collection

The input variables can be divided into three general categories: (1) 
meteorological data (including outdoor dry bulb temperature, wet bulb 
temperature, relative humidity, wind direction, wind speed, air pres-
sure, horizontal total radiation), (2) time variable (hour of the day, day 
type), and (3) historical data (energy consumption at the same time as 
the previous day). We conducted an on-site collection of the actual 
operational data, and obtained integrated datasets of Case A ranging 
from Dec. 1, 2017 to Jan. 20, 2018, with a time interval of 1 h, and Case 
B ranging from Dec. 5, 2017 to Dec. 14, 2017, with a time interval of 
0.5 h. Fig. 5 shows the meteorological data and heating load data for 
the two buildings.

The total building heating load can be calculated based on the water 
flow rate, the supply, and the return water temperature. A portable flow 
meter was installed on the return manifold at the thermal inlet of each 
case building. The two probes of the wall-mounted dual-temperature 
self-recording instrument were placed inside the insulation layer of the 
water supply and return pipes. Fig. 6 shows the field test, and Table 2 
shows the instrument parameters such as measurement accuracy.

Meteorological data were obtained from an on-campus weather 
station located approximately 100 m from the test building. The 
weather station consists of a complete set of weather sensors, including 
temperature, humidity, wind speed, wind direction, rainfall, and solar 
intensity. Table 2 shows their measurement accuracy.

4.3. Model implementation

The operational data in the previous section has revealed that there 
are differences in the energy use characteristics of the two case build-
ings; so we can apply the prediction algorithm to each building sepa-
rately to verify the method scalability. For each case, the entire dataset 
can be divided into training and testing datasets, with proportions of



respectively, for Case B. Overall, the predictive performance for Case B
is better than that of Case A. One potential reason is that the envelope
insulation of Case A is better than that of Case B, so its heating load is
relatively less affected by outdoor weather conditions. In any case, all
four error metrics for both cases reveal that the proposed improved
integrated algorithm has the best accuracy level compared to other
advanced predictive models.

5.2. Model generalization

Table 5 summarizes the evaluation indicators of generalization
performance. Fig. 10 shows the relative error fluctuations for each
model, and the x-axis represents the number of each sample.

According to Fig. 10, the stacking model has the smallest general-
ization error fluctuation, with accuracy improvement achieving about
6.7%–29.5% for Case A and 7.1%-34.6% for Case B, in comparison to
the other five models. According to Table 5, the ranking of the gen-
eralization abilities of the six models reflected by the four indicators is
consistent. The CVRMSE, RMSE, MAE, and MAPE of the stacking model
are 12.86%, 28.69, 20.88, and 9.90%, respectively, for Case A, and
12.79%, 18.40, 13.98, and 10.70%, respectively, for Case B. Each of
these indicators is lower than it is in the other five prediction models.
For Case A, the kNN model has the worst generalization performance;
although it has higher precision for the training dataset, the accuracy
on the testing dataset is poor. For Case B, the kNN model performs
relatively well. This indicates that the model is less stable for different
cases. The GBDT model has superior generalization performance for
both cases. The SVR model’s generalization for Case B is better than for

Case A, compared to other models—basically the same as that of the
GBDT model. Overall, the stacking model has better generalization
performance compared to the other five models.

5.3. Model robustness

Multiple testing datasets with different noise intensities can be
formed by adding Gaussian distribution white noise to different number
samples randomly selected from the original testing datasets. There are
four levels of noise intensity: 20%, 40%, 60%, and 80%. The stacking
model and five base models were re-run on datasets of cases A and B,
using four noise-introduced input profiles.

The variation of R2 with noise intensities is used as an indicator to
reveal model robustness. Fig. 11 shows the R2 of various models at dif-
ferent noise intensities and reveals that R2 has a decreasing trend as the
noise intensity increases. For the stacking model, when the noise intensity
reaches 80%, the R2 of the stacking model changes from 0.825 to 0.795
(Case A) and from 0.830 to 0.789 (Case B). The kNN and SVR models
result in the worst performance. From the perspective of the attenuation
rate, the performance of the RF model is the best, especially for Case A; R2

is only changed from 0.779 to 0.776 when the noise level is increased to
80%. Although the attenuation rate of the stacking model is not mini-
mal—in fact, it is greater than that of the RF, GBDT, and XGBoost models
for Case A and greater than that of the RF model for Case B—the absolute
performance is optimal at each noise intensity based on R2. In addition,
the average R2 of the model under different noise intensities is also op-
timal, with the promotion rate being 1.5%–34.1% for Case A and
1.8%–19.3% for Case B, compared to other models.
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Fig. 5. The meteorological data and the energy load: (a) Case A; (b) Case B.



5.4. Generalizability of the proposed method

Some existing studies have confirmed the effectiveness of using
machine learning algorithms to build meta-models of building perfor-
mance in early building performance evaluation [74]. Similar to the
SVR and ANN algorithms, the proposed stacking model also can be used
to build meta-models. The biggest difference between building energy
prediction and meta-model problems is model inputs. The input of the
former usually involves some variables that affect the actual building
energy consumption, including the outdoor temperature, relative hu-
midity, etc. It can be obtained through actual testing. The input of the
latter usually relates to some building design parameters, which can be
obtained via a sampling algorithm. By using the meta-model built by
the stacking algorithm, designers can quickly predict energy building

performance based on a set of design options.
The meta-model established by the proposed stacking algorithm can

be further extended to the problem of building performance optimiza-
tion. In building performance optimization design, especially for multi-
objective problems, meta-models based optimization algorithm is often
performed to solve the optimization model [83]. At present, algorithms
such as SVR, ANN, and RF have been involved in many building per-
formance optimizations [84]. They can be adopted to build meta-
models of building design parameters and performance indicators.
Then, meta-models can treat as the fitness function of the optimization
algorithm to participate in the optimization process, avoiding long
calculation times caused by invoking simulation software.
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Fig. 5. (continued)

Fig. 6. Collection of operational data. 



6. Conclusions

Even as building energy consumption prediction becomes more
critical in building energy management systems, it is still a challenge to
continuously improve the performance of prediction models in con-
junction with engineering applications. Based on the idea of model
integration, this paper has proposed a novel model (the stacking model)
for building energy consumption prediction.

Name (type) Measured Parameters Measured Accuracy Measured Range

Portable ultrasonic flowmeter (TDS-100P) Velocity ≥1% –
Dual probe (TR004) Water temperature ± 0.5 °C −30 ~ 125 °C

Weather station (Onset-U30) Outdoor air temperatures ± 0.2 °C −40–75 °C
Relative humidity levels ± 2.5% 0–100%

Global solar radiation levels ± 10 W/m2 0–1280 W/m2

Table 3
Optimized hyperparameters of all models.

Model Parameter Case A Case B

RF MD 10 3
MF 15 9
NT 1000 100

XGBoost MD 2 5
NT 1000 100
LR 0.1 0.5

subsample 0.9 0.9
GBDT MD 3 5

MF 10 9
NT 500 100
LR 0.01 0.05

SVR c 100 100
γ 0.1 1

kNN k 3 5
p 2 2
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Fig. 7. The fitting characteristics of measured and predicted data: (a) Case A;
(b) Case B.
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Fig. 8. The distribution of relative errors: (a) Case A; (b) Case B.
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Fig. 9. The distribution of heating load in two cases.

Table 4
Accuracy metrics of different models.

Stacking RF GBDT SVR XGBoost kNN

Case A CVRMSE (%) 10.60 12.93 12.09 12.76 12.02 11.28
RMSE (kW) 23.53 28.70 26.83 28.33 26.67 25.03
MAE (kW) 16.14 20.05 18.41 22.67 19.11 17.30
MAPE (%) 7.66 9.71 8.72 11.20 9.30 8.47

Case B CVRMSE (%) 8.96 17.08 12.45 9.97 10.45 11.55
RMSE (kW) 13.81 26.34 19.20 15.37 16.12 17.81
MAE (kW) 10.61 21.21 14.73 13.52 12.99 12.89
MAPE (%) 7.51 14.84 10.21 9.64 9.31 8.96

Table 2
Monitoring instrument and accuracy.



The core idea of the stacking model is to collect the differentiation
of various base algorithms (each of which can observe data from dif-
ferent spatial and structural perspectives) by constructing an integrated
framework. Based on popularity and diversity, several algorithms, in-
cluding the RF, GBDT, XGBoost, SVR, and kNN models, are selected as

base models in the first layer. The stacking model develops each base
model via fivefold cross-validation and fuses outputs of base models in
the form of “meta-features”. The application results in two real campus
buildings show that the proposed model can provide more accurate
energy consumption than the other models.

The results of model accuracy are as follows:

• The stacking model has higher accuracy than any of the other five
base models, showing a CVRMSE, RMSE, MAE, and MAPE of
10.60%, 23.53, 16.14, and 7.66%, respectively, for Case A, and
8.96%, 13.81, 10.61 and 7.51%, respectively, for Case B. The
stacking model has the best fit between predicted and measured
data, with R2 equal to 0.86 for Case A and 0.92 for Case B.
Additionally, the stacking model exhibits superior characteristics
when the heating load is in the middle position; although it is not
optimal with lower heating load, which matches the distribution of
the actual heating load of “more in the middle and less at both

Case Indicators Stacking RF GBDT SVR XGBoost kNN

Case A CVRMSE (%) 12.86 14.40 13.76 15.28 13.87 17.55
RMSE (kW) 28.69 32.13 30.69 34.09 30.94 39.14
MAE (kW) 20.88 23.32 22.40 26.36 22.84 27.11
MAPE (%) 9.90 11.07 10.61 13.10 11.04 14.03

Case B CVRMSE (%) 12.79 17.27 13.71 13.50 15.55 15.32
RMSE (kW) 18.40 24.85 19.73 19.42 22.38 22.04
MAE (kW) 13.98 20.05 15.10 14.83 17.62 16.39
MAPE (%) 10.70 16.35 11.87 11.51 13.54 12.76

Fig. 10. Fluctuations in relative errors: (a) Case A; (b) Case B.

Table 5
Generalization performances of different models.



ends.” When based on the mean relative error, the stacking method
achieves higher accuracy than any of the other five models, with
accuracy improvement being about 9.5%–31.6% for Case A and
16.2%–49.4% for Case B. Therefore, from the perspective of en-
gineering practice, the improved integrated algorithm has better
practicability.

Furthermore, model performance is evaluated from the perspectives
of generalization and robustness by comparing it with five base models.
The main conclusions are as follows:

• From the aspect of generalization, the stacking model performs best.
The CVRMSE, RMSE, MAE, and MAPE are 12.86%, 28.69, 20.88,
and 9.90% for Case A, and 12.79%, 18.40, 13.98, and 10.70% for
Case B. When based on the mean relative generalization error, it
achieves an accuracy improvement of about 6.7%–29.5% for Case A
and 7.1%-34.6% for Case B, compared to other models.

• From the aspect of robustness, the absolute performance of the stacking
model is optimal at different noise intensities, although the attenuation
rate is not the lowest. When the noise intensity reaches 80%, the R2 of
the stacking model changes from 0.825 to 0.795 (Case A) and from
0.830 to 0.789 (Case B). The promotion rate of the average R2 of the
model under different noise intensities reaches 1.5%–34.1% for Case A
and 1.8%–19.3% for Case B, compared to other models.

The proposed model can enrich empirical model databases of
building energy consumption prediction and improves the overall
performance of energy consumption prediction through actual case
verification.
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Fig. 11. Accuracy reduction of different models under various noise: (a) Case A;
(b) Case B.
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