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Abstract

Optimal Control of a Noncircular Wheel

by

Paul K. Wintz

A model is developed of a non-circular wheel rolling on a road and colliding with

a short wall. It is modeled as a hybrid dynamical system with a combination of

continuous- and discrete-time dynamics. Input-output feedback linearization is

used to design a controller to stabilize the wheel via the application of torque such

that the wheel is balanced on the wall. A proof of asymptotic stability is provided

for the feedback linearized control. To compute an optimal control signal, the prob-

lem is discretized into a finite-dimensional constrained optimization problem and

solved with a numerical solver. An elliptical wheel is presented as an example and

comparisons between various implementations are provided.

vii



1

Introduction

In this paper, we examine the dynamics and control of a noncircular wheel. In

particular, we will consider a smooth convex wheel rolling over a flat road until it

collides with a short wall, as shown in Figure 1.1. Our goal, then, is to choose the

torque applied to the wheel such that it pivots to the top of the wall with minimal ef-

fort. This system has a combination of continuous-time dynamics, while the wheel

is rolling on the road or pivoting on the wall, and a discrete event when the wheel

impacts the wall. Thus, it lends itself to being modeled as a hybrid dynamical sys-

tem and provides an opportunity to investigate the optimal control of a nonlinear

hybrid system.

Methods for solving optimal control problems are divided between between direct

and indirect methods [1]. Direct methods attempt to approximate the solution by
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Figure 1.1: An elliptical wheel rolling from right to left at a series of time steps.
The wheel is drawn in red at the time of impact with the wall.

discretizing the problem into a finite-dimensional optimization problem that can be

solved with methods for numerical optimization. Direct methods have previously

been applied to hybrid optimal control problems [5]. In contrast, indirect methods

approach the problem by generalizing Hamiltonian-based methods used in calculus

of variations. In particular, a famous result from optimal control theory is Pontrya-

gin’s maximum principle (PMP), which gives necessary conditions for solutions to

optimal control problems. PMP was later generalized to hybrid systems [2]. In this

work, however, we will utilize a direct method.

We begin, in Chapter 2, by formulating a mathematical model for the wheel and

road. The system is modeled as a hybrid dynamical system to allow for continuous-

and discrete-time dynamics. To that end, Section 2.1 introduces fundamental con-

cepts of hybrid dynamical systems that are necessary for the following work. The

details of the model for a generic wheel are developed in Section 2.2 and an example
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of an elliptical wheel is presented in Section 2.3.

In Chapter 3, we move to the development of a controller. We use input-output lin-

earization, in Section 3.2, to design analytically a non-optimal controller that moves

the wheel toward the desired configuration. Next, in Section 3.1, we design the cost

function and constraints of the the optimal control problem such that solutions sat-

isfy the hybrid dynamics, reach a desired set point at a given time, and uses minimal

energy to control the wheel. Section 3.3 describes how we discretize the optimal

control problem to convert it into a finite-dimensional optimization problem, then

solve. We investigate several methods for accelerating the calculation of solutions,

then return to the example of the elliptical wheel.

Appendix A includes results relating to the geometry of a rotated ellipse, which are

used in the example of the elliptical wheel, and Appendix B provides details on the

calculation the Jacobian of the cost and constraint functions for the optimization

problem.
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2

Modeling of a Noncircular Wheel

In this chapter, we derive a mathematical model for a noncirclular wheel on a road

with a wall of height h0 > 0. Without loss of generality, we choose to position

the wall at x = 0 and the wheel to the right of the wall. The road has height zero

everywhere except at x = 0. Mathematically, the road h : R→ R, is given as

h(x) =

{
0, x 6= 0

h0, x = 0.

When the wheel impacts the wall, we model the collision as perfectly inelastic, so

the component of the velocity directed toward the wall is lost in the impact. As

a result, the wheel does not bounce off the wall. We assume that the mass of the

wheel is negligible in comparison to the mass of the vehicle. Hence, in our model

the wheel’s mass is concentrated at the axle rather than distributed throughout the
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wheel. We also assume that the wheel does not deform; there is sufficient friction

between the wheel and the ground to prevent slipping; and the wheel is strictly con-

vex. We impose convexity for two reasons. The first is that that it is reasonable from

an engineering point of view: building a non-convex wheel capable of supporting

a vehicle without deformation is impractical. The second reason is that convex-

ity simplifies the problem by eliminating certain undesirable behaviors, such as the

wheel having multiple contact points with a flat section of road, which would cause

discontinuous rolling on flat ground (thus, discontinuous behavior occurs only at

the wall).

To model the dynamics of a rolling wheel, we use a hybrid dynamical system. As

described in [3], hybrid systems include both continuous-time flows and discrete-

time jumps. In our system, flows correspond to intervals when the wheel is either

rolling over a flat portion of the road or pivoting around the corner of the wall. A

single discrete event occurs when the wheel impacts the wall.

2.1 Preliminary Hybrid Systems Theory

Before we model our system, we provide a short introduction to necessary concepts

and vocabulary relating to hybrid dynamical systems. A hybrid system H is spec-

ified by its flow set C, jump set D, flow map1 f , and jump map g. When the state

1In some fields, the flow map is called the flow vector field.
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of the system is in C, the system evolves according to continuous-time dynamics

ẋ = f(x). If x ∈ D, then the state jumps from x to x+ according to x+ = g(x).

The full system is then written as

H =

{
ẋ = f(x), if x ∈ C
x+ = g(x), if x ∈ D.

Solutions to hybrid systems are given in terms of hybrid time domains.

Definition 2.1 (Hybrid time domains). A set E ⊂ R≥0 × N is a compact hybrid

time domain if E =
J−1⋃

j=0

(
[tj, tj+1], j

)
for some finite sequence of times 0 = t0 ≤

t1 ≤ · · · ≤ tJ . A set E ′ is called a hybrid time domain if for all (T, J) ∈ E ′,

E ∩ ([0, T ]× {0, 1, 2, ..., J}) is a compact hybrid domain [3, Definition 2.3].

An interval [tj, tj+1] such that tj < tj+1 is called an interval of flow. Conversely, if

(t, j) ∈ E and (t, j + 1) ∈ E, then (t, j) is a jump time.

An example of a hybrid time domain is
(
[0, t+], 0

)
∪
(
[t+,∞), 1

)
, with a jump time

t+ ≥ 0. If t+ > 0, then [0, t+] and [t+,∞) are both intervals of flow.

Remark. A hybrid time (t, j) ∈ E is uniquely identified by t except at jumps, so

we often write x(t, j) as x(t) when there is no ambiguity.

Definition 2.2 (Hybrid Solution). For hybrid system H, a function x : E → Rn is

a solution of H if E is a hybrid time domain, x(0, 0) ∈ C ∪ D, and during every

interval of flow then x(t, j) ∈ C and evolves according ẋ(t, j) = f(x(t, j)) and

at every jump time (t, j), x(t, j) ∈ D and x(t, j + 1) = g(x(t, j)). For details,
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see [3, Definition 2.6]. If E is unbounded, then x is called a complete solution [3,

Defintion 2.5].

To classify the asymptotic behavior of the system, we define two more terms.

Definition 2.3. Given a hybrid system H, the origin of the state space is said to

be pre-asymptotically stable with regards to H if it is Lyapunov stable and every

complete solution approaches the origin as t + j → ∞. If every maximal solu-

tion to H is complete and the origin is pre-asymptotically stable, then the origin is

asymptotically stable [3].

2.2 Modeling

We are now equipped to design a hybrid model of a rolling wheel. First, we choose

two coordinate systems in R2 with axes shown in Figure 2.1. The first coordinate

system is stationary and has the orthonormal basis B0 = {êx, êy}, where êy points

in the vertical direction. The second coordinate system, with orthonormal basis

Bϕ = {êa, êb}, is centered at the wheel and oriented to the wheel’s angle of rota-

tion, ϕ, as measured from êx to êa (we use the convention that counter-clockwise

direction is positive). Unless otherwise stated, vectors are assumed to be written

relative to B0. The wheel’s mass, m, is concentrated at the origin of Bϕ and the

acceleration g due to gravity pulls in the negative êy-direction.
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x

êb êa

ϕ

(
s, h(s)

)

êy

êx

Figure 2.1: Coordinate systems B0 = {êx, êy} and Bϕ = {êa, êb} for a wheel with
contact point (s, h(s)) and rotation angle ϕ.

We define the wheel by a smooth curve γ : R → R2 with coordinates in basis Bϕ

given as [γ(τ)]Bϕ =
(
γ1(τ), γ2(τ)

)
. The derivative of γ with respect to τ is written

γ′(τ). Vectors γ and γ′ in the Bϕ reference frame are shown in Figure 2.2a. We also

define the horizontal and vertical components of γ relative to the stationary basis

B0 as xϕ(τ) and yϕ(τ). That is, [γ(τ)]B0 = (xϕ(τ), yϕ(τ)).

As mentioned above, we require that γ encloses a strictly convex set.2 For the model

to be physically plausible, we also assume that the center of mass is strictly inside

the wheel.

We then define the state space of our system as X := R4 × {−1, 0, 1} and the state

vector as x := (ϕ, ω, s, τ, k) ∈ X where ϕ ∈ R is the rotation angle,3 ω ∈ R is

the angular velocity, s ∈ R is the x-coordinate of the contact point, τ ∈ R is the

parameter value such that γ(τ) points from the center of the wheel to the contact

2A set is called strictly convex if for every pair of points in the set, the line segment between
them is in the interior of the set.

3For ϕ, we do not identify multiples of 2π. That is, if ϕ1 := 0, and ϕ2 := 2π, then ϕ1 6= ϕ2.
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γ(τ)

γ′(τ)

êb

êa

θ

(a) Diagram of γ and γ′ in the
wheel’s coordinate frame.

r = −γ(τϕ)
ψ
ϕ

êb
êa

γ′(τϕ)

(b) The wheel γ rotated and
translated to align tangentially
with the road.

Figure 2.2: The wheel γ in its original orientation and rotated and translated to align
tangentially with the road.

point, and k ∈ {−1, 0, 1} are modes of the system. When the wheel is rolling over

flat ground k = 0, when the wheel is pivoting around the top of the wall, k = 1,

and when k = −1, solutions terminate.

The initial state of the system is x0 = (ϕ0, ω0, s0, τ0, k0) with ϕ0 and ω0 arbitrary,

and s0 > 0 chosen such that the initial position of the wheel does not intersect with

the wall (0, h0). The wheel is initially rolling so k0 = 0 and the initial value of τ

must satisfy τ0 = τϕ0
where

τϕ = argmin
τ

yϕ(τ). (2.1)

Due to the strict convexity of the wheel, τϕ is unique. When the wheel is at angle

ϕ on a flat portion of road, then γ(τϕ) is the contact point between the wheel and

the road.

9



In order to specify the dynamics of the wheel, it useful to define several more vari-

ables. We define r(τ) to be the vector from the contact point to the center of

the wheel, shown in Figure 2.2b. (If γ∗ is the contact point on the wheel,4 then

r = −γ∗.) We write the length of r as

r(τ) = ‖r(τ)‖ . (2.2)

We define the angle from êa to γ(τ), shown in Figure 2.2a, as

θ(τ) = atan2
(
γ2(τ), γ1(τ)

)
, (2.3)

where atan2 is the 2-argument arctangent function. We also define the angle from

êx to r as ψ. Angle addition provides the following identity,

ψ ≡ ϕ+ θ − π. (2.4)

Equation (2.4) holds for all ψ, ϕ, θ, even if the choice of values does not cause the

wheel to align tangentially with the road. Thus, we define ψ
ϕ

, shown in Figure 2.2b,

to be the value of ψ such that the bottom of the wheel contacts the road tangentially

when the wheel is at angle ϕ (assuming the necessary translation). For this to occur,

the vectors γ′ and êx must align. Hence, ψ
ϕ

is the angle from γ′(τϕ) to−γ(τϕ) and,

4If the wheel is on flat road, then γ∗ = γ(τϕ), but this is not necessarily true while the wheel is
pivoting.
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from the cosine dot product formula, we find

ψ
ϕ

= cos−1

(
−γ′(τϕ) · γ(τϕ)∥∥γ(τϕ)

∥∥∥∥γ′(τϕ)
∥∥

)
. (2.5)

2.2.1 Jump and Flow Sets

The jump set D is chosen to detect when the wheel impacts the wall. That is, if

x ∈ D then the wheel has collided with the wall. To construct D, we define an

indicator function

I(x) =





1, if (0, h0) is at or above the lower edge of the wheel in state x.

0, otherwise
(2.6)

With this definition, if the wheel has collided with the wall, then I(x) = 1, other-

wise, I(x) = 0, as shown in Figure 2.3.

(s, 0)

(0, h0)

I(x) = 1

(s, 0)

(0, h0)

I(x) = 0

Figure 2.3: The indicator function has value 1 if the wheel has collided with the
wall and 0 otherwise.

The wheel can only impact the wall if it is rolling and I(x) = 1, so the jump set is

D := {x ∈ X | k = 0, I(x) = 1} . Conversely, the flow set will consist of any state

11



where the wheel is rolling (k = 0), the wheel is not in contact with the wall (I(x) =

0) and the contact point is tangentially aligned with the road (τ = τϕ), or the wheel

is already pivoting (k = 1). Thus, C :=
{
x ∈ X

∣∣ k = 0, I(x) = 0, τ = τϕ
}
∪

{x ∈ X | k = 1} .

An attentive read might question whether there are some discrete events that are

unaccounted for. In particular, what happens if the wheel is pivoting and rotates

far enough that it collides with the road on either side of the wall? Such events are

physically possible but our results in Chapter 3 show that the optimal control keeps

the wheel far from colliding with the road, so we omit such cases from our model

for the sake of simplicity.

2.2.2 Flow map

Next, we determine the continuous dynamics of the wheel. By definition, the an-

gular velocity of the wheel is ω ≡ ϕ̇. We can compute ω̇ from conservation of

energy because the system is free of dissipative forces. Let u be the torque with

corresponding power

P = uω. (2.7)

The total energy of the system is E = K + V, where K is the kinetic energy and

12



r

(
s, h(s)

)

ψ

h(s)

r sinψ

Figure 2.4: The height of the center of mass is the sum of h(s) and r sin(ψ).

V is the potential energy. Energy conservation gives that

Ė = K̇ + V̇ = P. (2.8)

The mass of the wheel is concentrated at the center of mass, so we use the formula

for kinetic energy of a point-mass K =
m

2
(rω)2. We then find K̇ to be

K̇ = mrω(ṙω + rω̇). (2.9)

Similarly, the potential energy is V = mg
(
r sin(ψ) + h(s)

)
, where h(s) and

r sin(ψ), illustrated Figure 2.4, are the heights of the contact point and the center of

mass above the contact point. The value of V̇ is then

V̇ = mg
(
r′(ϕ) sin(ψ) + rψ′(ϕ) cos(ψ)

)
ω, (2.10)

where r′(ϕ) :=
dr

dϕ
and ψ′(ϕ) :=

dψ

dϕ
. Expressions for r′(ϕ) and ψ′(ϕ) can be cal-

culated from Equations (2.1), (2.2), (2.4) and (2.5). Details for the general case are

13



omitted but results for an elliptical wheel are given in Section 2.3. By substitution

of Equations (2.7), (2.9) and (2.10) into Equation (2.8) and solving for ω̇, we find

ω̇ =
u

mr2
− g

r2

(
r′(ϕ) sin(ψ) + rψ′(ϕ) cos(ψ)

)
− ṙω

r
. (2.11)

Then, because τ = τϕ when rolling, we find τ̇ =
dτϕ
dϕ
ϕ̇ = τ ′ϕω where τ ′ϕ :=

dτϕ
dϕ

.

The wheel does not slip, so the change in s equals the curve length of the portion of

the wheel rolled,

ṡ = ‖γ′(τ)‖ τ̇ . (2.12)

We then have fully specified the continuous rolling dynamics

f0(x, u) =




ω
u

mr2
− g

r2

(
r′(ϕ) sin(ψ) + rψ′(ϕ) cos(ψ)

)
− ṙω

r
‖γ′(τ)‖ τ ′ϕω

τ ′ϕω

0




.

When pivoting, the contact point is stationary, so τ̇ = ṡ = ṙ = 0 and Equa-

tion (2.11) simplifies to

ω̇ =
1

mr2
(u−mgr cosψ). (2.13)

14



Hence, the flow map while pivoting is

f1(x, u) :=




ω
1

mr2
(u−mgr cosψ)

0

0

0



.

We can write the flow map in a unified expression for all x ∈ C as

ẋ = f(x, u) :=

{
f0(x, u), k = 0

f1(x, u), k = 1.

2.2.3 Jump map

When the wheel collides with the wall, it loses kinetic energy and either starts

pivoting about the wall, or comes to a full stop. We construct the jump map x+ =

g(x) to capture these behaviors. Values immediately prior to impact are notated

with superscript “−” and after the impact with superscript “+.”

At the jump, the angle of the wheel is continuous, so ϕ+ = ϕ−. The location of the

contact point jumps to the wall, which is at x = 0, hence s+ = 0.

The angular velocity ω is discontinuous at the impact and the computation of ω+

will consist of four steps:

1. Convert from angular to linear velocity.

15



v−

v+

r−
r+

p− =
(
s−, 0

)

p+ =
(
0, h0

)

c

Figure 2.5: Vectors p−,p+, and c at the time of impact, along with linear velocities
before v− and after v+ and the radial vector before r− and after r+. The velocity
v+ is the orthogonal projection of v− onto r+.

2. Decompose the linear velocity into components that are parallel and orthog-

onal to the radial vector from the new center of rotation to the center of mass.

3. Set the new linear velocity to the orthogonal component.

4. Convert back to rotational velocity.

The actual computation of ω+ is as follows: Let p− := (s−, 0) be to the contact

point immediately before impact, p+ := (0, h0) be the contact point after, and

c := p−+ r− = p+ + r+ be the center of the wheel. By definition, r− is the vector

from p− to c and r+ is the vector from p+ to c. Thus, by vector addition we find

r+ = r− +

[
s−

−h0

]
. Let v be the linear velocity of the center of mass. Converting

rotational velocity to linear velocity, we find v− = ω−
[
−r−2
r−1

]
. The component of

v− that is parallel to r+ is absorbed by the wall and the component perpendicular to

r+ is preserved, as seen in Figure 2.5, so v+ = orthr+ v− = v−− 〈r
+,v−〉
‖r+‖2 r+. Then,

ω+ = ‖v+‖ / ‖r+‖ (the angular velocity is positive because the wheel is rotating

16



counter-clockwise at impact).

The value of τ jumps such that the contact point is on the corner of the wall. The

computation of τ+ will depend on the choice of γ.

If 〈r−, r+〉 ≤ 0, then v− is directed at or below the corner of the wall so the wheel

comes to a full stop. We wish to exclude this case, so we set k+ = −1, causing

solutions to leave C ∪ D and terminate. Otherwise, we set k+ = 1 indicating the

wheel begins to pivot. We can unify these cases by writing

k+ = sgn′(
〈
r−, r+

〉
) :=

{
−1, if 〈r−, r+〉 ≤ 0

1, if 〈r−, r+〉 > 0.

Collecting all the jump values, we have

x+ = g(x) :=




ϕ

‖v+‖ / ‖r+‖
0

τ+

sgn′(〈r−, r+〉)



.

We write the hybrid plant with control law u as Hγ(u) or simply Hγ depending on

whether the choice of control is relevant,

Hγ(u) :=





ẋ = f(x, u), x ∈ C :=
{
x ∈ X

∣∣ k = 0, I(x) = 0, τ = τϕ
}
∪ {x ∈ X | k = 1}

x+ = g(x), x ∈ D := {x ∈ X | k = 0, I(x) = 1} .
(2.14)
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2.3 Example: Elliptical wheel

For a concrete example, consider an ellipse with semi-axes a and b, given by

[γ(τ)]Bϕ = (a cos τ, b sin τ). We choose, without loss of generality, that a ≥ b

(if b > a, the wheel can be rotated by π
2
). Differentiation of γ produces [γ′(τ)]Bϕ =

(−a sin τ, b cos τ).

By Equations (2.2) and (2.3), we find θ = atan2(b sin τ, a cos τ) and the radius is

r =
√
a2 cos2 τ + b2 sin2 τ . Differentiating r, we find ṙ =

b2 − a2
r

(cos τ sin τ)τ̇ .

Then, from Equation (2.12), ṡ =
√
a2 sin2(τ) + b2 cos2(τ) · τ̇ . We use Equa-

tion (A.3) to compute that τϕ = 3π / 2 − atan2 (a sinϕ, b cosϕ) which has the

derivative τ ′ϕ = −ab
a2 sin2(ϕ)+b2 cos2(ϕ)

.

Next, we construct the indicator function I(x). For an ellipse centered at the origin

and rotated by angle ϕ, Equation (A.6) gives the height of the lower branch of

the ellipse as a function of x. Shifting the variables to correspond with an ellipse

centered at (cx, cy) = (s, 0) + r, we find

yϕ(x) = Cy sin

(
− cos−1

(
x− cx
Cx

)
− ϕ̂x + ϕ̂y

)
+ cy, (2.15)

with the constants Cx, Cy, ϕ̂x, ϕ̂y defined in Lemma A.1. If h0 ≥ yϕ(0), then the

wheel has collided with the wall. Thus for the elliptical wheel the indicator function
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is

I(x) =

{
1, h0 ≥ yϕ(0,x)

0, h0 < yϕ(0,x) or (0,x) 6∈ dom yϕ.

Finally, at the jump, τ+ can be found via Equation (A.5): τ+ = cos−1 (cx / Cx )−

ϕ̂x.

We compute solutions with the HyEQsolver function in the Hybrid Equations

Toolbox [7]. Figure 1.1 shows the wheel at various times for a = 4, b = 3, ϕ0 =

0, ω0 = 10, s0 = 10,m = 1, g = −9.8, and h0 = 2.0. The state of the wheel at the

time of impact is shown in red.
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3

Stabilization and Optimal Control

We now move from modeling the system to designing a controller that will produce

desired system behavior. In particular, we want to use minimal control effort to

move the wheel to top of the wall with the center of mass balanced directly above

the wall.

First, we develop the optimal control problem formulation in Section 3.1. Then, in

Section 3.2, we use input-output linearization to derive, analytically, a non-optimal

controller that moves the wheel asymptotically toward the desired set-point. Finally,

Section 3.3 describes our method for computing, numerically, an approximation of

the optimal control.
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3.1 Problem formulation

Our goal is to move the wheel from its initial state x0 onto the wall with the center of

mass directly above the contact point (0, h0) and no angular velocity. Additionally,

we want the wheel to arrive at the set point at a given time T > 0. For a particular

x0, the desired configuration corresponds to a unique angle, ϕ∗, because the wheel

rolls without slipping. Thus, we are interested in controlling the first two compo-

nents of the state vector: ϕ → ϕ∗ and ω → 0. To this end, we define an output

vector, y(x) = (y1, y2) := (ϕ− ϕ∗, ω) and we want ‖y(x(T ))‖ = 0. Additionally,

at the set point, r points directly upwards, so ψ = ψ∗ := π
2
.

êb

êa

ϕ∗
r

(0, h0)

Figure 3.1: The wheel at the set-point ϕ∗ with the center of mass directly above
(0, h0).

To calculate the set point ϕ∗ for a given initial condition x0, we modify the initial

condition by setting ω0 > 0 and we modify system Hγ by making ω̇ = 0. We

then propagate the dynamics of the modified system from x0 using HyEQsolver
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until the wheel hits the wall—which is guaranteed to happen because the wheel is

moving toward the wall at a constant rate. Once the collision occurs, we calculate

the angles ϕ+ and ψ+. Additionally, because the contact point is a fixed point on

the wheel while pivoting, ϕ̇ = ψ̇, so, by the fundamental theorem of calculus,

ϕ∗ − ϕ+ = ψ∗ − ψ+. Therefore, the set point is ϕ∗ = π / 2 − ψ+ + ϕ+.

Assumption 1. For initial state x0, let ϕ− be the unique angle of the wheel such that

wheel would contact the wall when rolling from x0. We assume that x0 is chosen

such that s0 > 0 and ϕ0 < ϕ− < ϕ∗

Simply stated, this assumption requires that the wheel is not initially in contact with

the wall and that it is not immediately at the set point the moment it hits the wall.

Thus, if we let t+ be the jump time when the wheel hits the wall, then there will

be an interval of flow before t+, and another interval of flow t+ before the wheel

reaches the set point.

Additionally, while the wheel is pivoting on the wall, there are minimum and max-

imum angles, ϕmin and ϕmax, respectively, that the wheel can rotate without collid-

ing with the ground on either side of the wall. The values of ϕmin and ϕmax can be

calculated via method similar to the one used to calculate ϕ∗. In fact, the value of

ϕmin is the angle at which the wheel hits the wall, ϕ+. In practice, however, we find

that the angle constraints can often be omitted from the optimal control problem

without changing the solution.
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Next, we design a cost function that represents total energy expenditure. Recall that

the power applied to the wheel is P = ω · u. Thus, for the cost function we choose

the total work used to control the wheel,

∫ T

0

|P (t)| dt =

∫ T

0

|ω(t)u(t)| dt. (3.1)

The full problem is then written as

Problem 3.1 (Optimal Control).

minimize
u

∫ T

0

|ω(t)u(t)| dt

subject to x(0) = x0

ẋ = f(x, u), ∀x ∈ C
x+ = g(x), ∀x ∈ D
y(x) = (ϕ− ϕ∗, ω)

‖y(x(T ))‖ = 0

ϕmin ≤ ϕ(t) ≤ ϕmax ∀t ∈
[
t+, T

]

3.2 Construction of Stabilizing Controller

We see in Equation (2.14) that the continuous dynamics of Hγ are nonlinear, com-

plicating the design of a controller. Therefore, before searching for an optimal con-

trol, we use input-output linearization, as described in [6], to analytically construct

a non-optimal controller that will asymptotically stabilize the wheel to the set point.

The resulting controller gives a baseline for comparison of the cost-improvement of
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the optimal solution and allows for long-term stabilization of the wheel.

3.2.1 Input-Output Linearization

Recall that ϕ̇ = ω and the dynamics for ω, given in Equation (2.11), are

ω̇ =
u

mr2
− g

r2
(
r′ sin(ψ) + rψ′ cos(ψ)

)
− ṙω

r
.

We see that the dynamics are linear for ϕ but not for ω. Therefore, we want to

linearize ω̇ such that

ω̇ = ν(y), (3.2)

where ν : R2 → R is a function we can choose. Then, ν will act as feedback

control law for the output dynamics. To this end, we combine Equation (2.11) and

Equation (3.2) and choose u = u` such that

ν =
u`
mr2

− g

r2
(r′ sin(ψ) + rψ′ cos(ψ))− ṙω

r
.

Solving for u` produces

u`(ν,x) = mr2ν + gm(r′ sinψ + rψ′ cosψ) +mrṙω. (3.3)

Remark. If we expand the composition of functions in Equation (3.3) we find the

notation is quite cumbersome: u`
(
ν(y(x)),x

)
. Therefore, to simplify references

to the composite control law, we write, by abuse of notation, that (u` ◦ ν)(x) :=
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u`
(
ν(y(x)),x

)
.

We then have that the output dynamics of Hγ(u` ◦ ν) during intervals of flow are

given by

S(ν) :=




ϕ̇ = ω

ω̇ = ν(y)
=




ẏ1 = y2

ẏ2 = ν(y).
(3.4)

Now, because S(ν) is a linear system, y can be controlled using proportional feed-

back. In particular, let κ ∈ R>0 and let νκ(y) be

νκ(y) := −κ2y1 − 2κy2. (3.5)

with κ > 0. We write S(νκ) as a linear system,

ẏ =


 0 1

−κ2 −2κ


y. (3.6)

We find that (3.6) has one eigenvalue λ = −κ with multiplicity 2. Therefore, for

κ > 0, the origin y = 0 is globally asymptotically stable with respect to S(νκ).

Note that the preceding result only describes the behavior of the output during inter-

vals of flow, but since we are interested in the behavior of the full system, including

jumps, we must considerHγ with control law u` ◦νκ. To this end, we introduce two

lemmas regarding the discrete jumps ofHγ , which lead to a theorem that concludes

that origin is pre-asymptotically stable with respect toHγ(u` ◦ νκ).

Lemma 3.1. For any control u, the set S = {x ∈ X | k 6= 0} is forward invariant
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with regards toHγ(u).

Proof. For every x ∈ D, we have that k = 0. Thus, S andD are disjoint. Addition-

ally, k̇ = 0 for all x ∈ C. Thus, if k = 1, jumps are impossible and k is constant.

Therefore if x is a solution to Hγ such that x(0, 0) ∈ S, then x(t, j) ∈ S for all

(t, j) ∈ domx. That is, S is forward invariant with regards toHγ(u).

Lemma 3.2. Every solution to Hγ(u` ◦ νκ) with initial condition x0 satisfying As-

sumption 1 has at exactly one jump.

Proof. Let x be any solution with initial condition x0 that satisfies Assumption 1.

First, we will prove that x cannot have multiple jumps. The jump map g dictates

that after a jump, the mode is k+ ∈ {−1, 1}. Thus g(D) ⊂ S = {x ∈ X | k 6= 0}.

The set g(D) ⊂ S is disjoint from D and, by Lemma 3.1, S is forward invariant,

therefore x can have at most one jump.

Now, assume x has no jumps. In this case, the system behaves as a purely con-

tinuous system, so the output dynamics of y in Hγ(u` ◦ νκ) are given by S(νκ).

Furthermore, by Assumption 1, ϕ0 < ϕ− < ϕ∗. But ϕ is continuous and ϕ → ϕ∗,

so there is a time when ϕ = ϕ−, hence a jump occurs. Thus, by contradiction,

each solution to Hγ(u` ◦ νκ) has at least one jump and therefore has exactly one

jump.

Theorem 3.1. For κ > 0, y = 0 is pre-asymptotically stable with regards to

Hγ(u` ◦ νκ) for all x0 satisfying Assumption 1.
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Proof. By Lemma 3.2, every solution x with x0 satisfying Assumption 1 has ex-

actly one jump at some time t+. There are two cases after the jump, x either ter-

minates immediately or behaves only according to its continuous dynamics for all

t > t+. The continuous output dynamics of Hγ(u` ◦ νκ) are given by S(νκ) and

y = 0 is asymptotically stable with respect to S(νκ). Thus, after an impact, every

solution toHγ(u` ◦ νκ) either terminates after finite time (which means the solution

is not complete) or it converges asymptotically to y = 0. Therefore the origin is

pre-asymptotically stable for all x0 satisfying Assumption 1.

Remark. In general, not all maximal solutions of Hγ are complete because when

〈r−, r+〉 < 0 then k+ = −1, causing solutions to jump out of C ∪ D and termi-

nate. In fact, if the height of the wall is taller than the wheel, then no solutions are

complete. Thus, we can only say that y = 0 is pre-asymptotically stable, but not

asymptotically stable.

3.2.2 Example: Elliptical Wheel

We apply the linearized controller to the elliptical wheel developed in Section 2.3.

The parameters we use here are a = 1, b = 4, m = 1, g = 9.8, and h0 = 2, with

initial conditions ϕ0 = 0, ω0 = −1 and s0 = −10. The trajectories of ϕ, ω and P

are shown in. Figure 3.2. We see that ϕ → ϕ∗, ω → 0, as expected. We note that

P → 0, as well.
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Figure 3.2: Trajectories of the system Hγ(u` ◦ νκ) with κ > 0. We see the conver-
gence of ϕ→ ϕ∗ and ω → 0, as well as P → 0.

We note, however, that the maximum value of P is large—on the order 104—and P

oscillates prior to the impact, which indicates that a portion of the control effort is

being wasted by forcing y to behave according to linearized dynamics. Hence, this

motivates the search for an optimal control.
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3.3 Numerical Computation of Optimal Control

In order to compute a solution to Problem 3.1, we convert the optimal control prob-

lem into a discrete optimization problem, then solve.

3.3.1 Discretization of Optimal Control Problem

We discretize time into two intervals of flow, [0, t+] and [t+, T ], with jump time

t+ ∈ (0, T ). Each interval has M discretization nodes evenly distributed with

spacings of

∆t1 :=
t+

M − 1
and ∆t2 :=

T − t+
M − 1

.

We write the times at each discretization node as t1 := (t11, t21, ..., tM1) and t2 =

(t12, t22, ..., tM2) and the state value at time tij as xij , so we want xij ≈ x(tij) for

i = 1, 2, ...,M and j = 1, 2. Then, the state vectors at each time step are written as

columns of matrices X1 := [x11 x21 · · · xM1] , and X2 := [ x12 x22 · · · xM2] .

Similarly, we discretize the control signal as u1 := (u11, u21, · · · , u(M−1)1) and

u2 := (u12, u22, · · · , u(M−1)2). We consolidate X1, X2,u1,u2 into two variables

X := [X1 X2] ∈ Rn×2M and u =
[
u1
u2

]
∈ R2(M−1). All together, the decision

variables are (t+, X,u).
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We approximate the cost function (3.1) using a Riemann sum,

∫ T

0

|P (t)| dt =

∫ T

0

|ω(t)u(t)| dt ≈
2∑

j=1

∆tj

M−1∑

i=1

|ωijuij| . (3.7)

Now, we construct the constraints of our optimization such that solutions approx-

imate Problem 3.1. The initial state is given as a constraint x11 = x0. To com-

pute numerical solutions to ẋ = f(x, u), we use an explicit one-step numeri-

cal method in the form xn+1 = L(f,xn, un,∆t), where L is an operator deter-

mined by the choice of method. A simple example is the forward Euler method:

LE(f,xi, ui,∆t) := xi + ∆t · f(xi, ui). We then include the constraints x(i+1)j =

L(fj,xij, uij,∆tj) for i = 1, 2, ...,M − 1 and j = 1, 2.

Next, in order to implement collision detection in discrete time with fixed time

steps, we must change the method for how impacts are modeled. Recall that in

Chapter 2, jumps were modeled by defining a set D such that if x ∈ D, then an

impact has occurred. Roughly speaking, this is implemented within HyEQsolver

by propagating trajectories until x ∈ D. The solver then backtracks to pinpoint

the time that x entered D. In our optimization scheme, such a process is infeasible

and, thankfully, unnecessary. We replace the jump set D with an impact detection

function d : X → R which satisfies the following criteria, as shown in Figure 3.3,





d(x) < 0, if the wall is inside the wheel
d(x) = 0, if the wall is on the boundary of the wheel
d(x) > 0, if the wall is outside the wheel.

(3.8)
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(s, 0)

(0, h0)

d(x) < 0

(s, 0)

(0, h0)

d(x) = 0

(s, 0)

(0, h0)

d(x) > 0

Figure 3.3: The three cases in the definition of the impact detection function d.

We then impose a constraint d(xM1) = 0, forcing the wheel to impact the wall at

the end of the first interval of flow. We also include the the jump map as a constraint

x12 = g(xM1).

Returning to the example in Section 2.3, we construct an impact detection function

d for the elliptical wheel. For an unrotated ellipse with semi-major a and semi-

minor axes b, the foci of the ellipse are at ±(a2 − b2, 0). Then, for an ellipse in an

arbitrary configuration, let d1, d2 be the Euclidean distances from each foci of the

ellipse to (0, h0). It is a well-known property of ellipses that (0, h0) is on the ellipse

if and only if d1 + d2 = 2a. For a wheel in state x with angle ϕ, and center (c1, c2),

the vectors from (0, h0) to each foci are given by

d1,2(x) =



c1

c2


±




cosϕ sinϕ

− sinϕ cosϕ






a2 − b2

0


−




0

h0


 .

Therefore, we choose d(x) = ‖d1(x)‖ + ‖d2(x)‖ − 2a. The full optimization

problem is then given as follows.
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Problem 3.2 (Optimization).

minimize
t+,X,u

2∑

j=1

∆tj

M−1∑

i=1

|ωijuij|

subject to 0 ≤ t+ ≤ T

x11 = x0

x(i+1)1 = L(f0,xi1, ui1,∆t1) for i = 1, 2, ...,M − 1

d(xM1) = 0

x12 = g(xM1)

x(i+1)2 = L(f1,xi2, ui2,∆t2) for i = 1, 2, ...,M − 1

‖y(xM2)‖ = 0

ϕmin ≤ ϕi2 ≤ ϕmax, for i = 1, 2, ...,M.

We write a solution to Problem 3.2 as (t+∗, X∗,u∗).

3.3.2 Computation of Discretized Solution

To compute a numerical solution to Problem 3.2, we use fmincon, Matlab’s solver

for constrained nonlinear optimization. We find, however, that calculating a solu-

tion is not as straightforward as merely plugging in the data to fmincon and im-

mediately getting a good solution. Our problem has a high number of dimensions,

so iterations can be computationally expensive. Additionally, the nonlinearity of the

problem means that good convergence to an optimum is not ensured. As a result,

we must be careful in our implementation of the numerical optimization. Therefore,
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in this section, we will discuss two aspects of the implementation that significantly

affects the quality of results, namely the method used to compute the Jacobians of

the cost and constraint functions, and the choice of ODE operator L.

First, however, we construct a means to check that our results accurately represent

the dynamics ofHγ . To evaluate the accuracy of the dynamics of the solution found

with fmincon, we compare the results to trajectories produced by HyEQsolver,

which provides a good baseline because it uses a high-order adaptive numerical

ODE solver to compute solutions. In order to run HyEQsolver, however, we need

to evaluate the control at arbitrary times. Thus, we interpolate u∗ using constant in-

terpolation. The result is an open-loop hybrid control function ũ∗ : R×{1, 2} → R.

For the control signal, we use constant interpolation to interpolate the values of u1

and u2. That is, the value of the control u is constant, equal to uij , throughout each

interval [ti, ti+1], as shown in Figure 3.4. We then compute a solution to Hγ(ũ
∗)

0 0.5 1 1.5 2
-1500

-1000

-500

0

500

1000

1500

interpolated

discrete

Figure 3.4: A control signal interpolated using constant interpolation in a discretiza-
tion with M = 15 steps per interval.
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with HyEQsolver and use spline interpolation to evaluate the solution at each

discretization time, producing x̃ij for i = 1, 2, ...,M and j = 1, 2. If the fmincon

solution is accurate, then x̃ij ≈ x∗ij for each i and j. Thus, the error at each step is

given by eij :=
∥∥x∗ij − x̃ij

∥∥ and the final error is ef := eM2.

To evaluate the optimality of solutions, we rely on the numerical optimality condi-

tions used in fmincon (namely, the KKT conditions). For a more rigorous consid-

eration of optimality, it would be necessary to apply Pontryagin’s maximum prin-

ciple adapted for hybrid control systems, as described in [2]. This is left for future

work.

An important facet of our implementation is how to efficiently handle the large num-

ber of nonlinear constraints in our system. Numerical optimization methods rely on

the Jacobian of the cost function and constraint functions to choose the values of the

decision variables at the next step of the iteration. By default, fmincon uses finite

differences to compute the Jacobians but this is computationally expensive—for

example, if M = 100, then the constraints Jacobian contains 807, 192 entries, so a

finite difference calculation requires over 1.6 million function evaluations each time

the Jacobian is computed. For our constraints, however, the Jacobian is sparse and

the number of nonzero entries grows linearly whereas the number of total entries

grow quadratically. Therefore, in order to shorten the computation time, we calcu-

late and provide the Jacobians to fmincon, making use of the sparsity patterns. In

Table 3.1, we see that providing the Jacobian improves the number of iterations and
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amount of real time required to compute solutions. Our Jacobian calculations are

provided in Appendix B.

M = 50
Jacobian Iterations Time (hh:mm)

Finite Differences 811 02:06
Analytical 131 00:01

M = 100
Jacobian Iterations Time (hh:mm)

Finite Differences 166 01:56
Analytical 56 00:02

Table 3.1: Comparison of optimization with and without providing the Jacobian to
fmincon.

Another factor that will affect the quality of solution is the choice ODE numerical

method operator L. In particular, in Table 3.2 we compare the accuracy of the

forward Euler method to the classic Runge-Kutta method (RK4) with M = 20 and

with M = 100 time steps per interval. As expected, we find that RK4, which is

fourth-order, vastly outperforms the first-order forward Euler method. Surprisingly,

however the error of RK4 does not appear to improve greatly as M increases. The

reason for this is that the HyEQsolver solution itself, which is used to calculate

ef , has numerical errors that are on the order of 10−5.

ef error
M = 20 M = 100

Euler 3.8 9.0× 10−1

RK4 7.2× 10−4 2.4× 10−5

Table 3.2: Comparison of numerical ODE methods.

From these results, we conclude providing the Jacobian to the fmincon and us-
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ing the RK4 method operator provide significant advantages when calculating the

optimal control.

3.3.3 Results for Elliptical Wheel

As a concrete example, we again consider an elliptical wheel, with parameters a =

4, b = 3, h0 = 2.0, and T = 2.0; initial conditions ϕ0 = −1.0, ω0 = 10.0, s0 =

10.0. In Figure 3.5, the state and control trajectories are shown for a solution with

each interval of flow discretized into M = 50 time steps. The solver converged to a

solution in 131 iterations after 116 seconds, the control cost was 295.2 and the final

error was ef = 1.5× 10−5.

Examining the graph of power in Figure 3.5, we see that the choice of control

makes intuitive sense. The wheel is initially rolling toward the wall so no power is

necessary prior to the impact—if the controller were to accelerate the wheel toward

the wall, then a portion of that energy would be lost in the collision. Once the

wheel hits the wall, torque is applied, as needed, to lift the wheel onto the wall then

gradually declines as the wheel nears the set point, where only a small amount of

effort is required to stabilize it.

For comparison, we use the linearized feedback controller u` ◦ νκ with κ = 3.0,

which achieves the set point reasonably well, with ‖y(T )‖ = 0.08. We could

reduce ‖y(T )‖ further by choosing a larger κ, but even for κ = 3.0, the control cost
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Figure 3.5: Control and state trajectories for an optimal solution with a = 4, b =
3, ϕ0 = −1.0, ω0 = 10.0, s0 = 10.0, h0 = 2.0.

is 945.0, which exceeds the optimal control cost by more than a factor of three. A

comparison of the power curves is shown in Figure 3.6.
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Figure 3.6: Comparison of the power used by feedback linearized control and the
optimal control. The control cost for u` ◦ νκ, with κ = 3.0, is 945.0 and the optimal
control cost is 295.2.

Now, in light of the power savings, it might seem that the optimal control is always

preferable to the linearized feedback control τϕ◦νκ, but τϕ◦νκ has several benefits.

First, the computation is much faster, requiring a fraction of a second to compute,

compared to several minutes for the optimal solution. Additionally, τϕ ◦ νκ is a
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feedback controller, so it is robust to perturbations of the state, whereas the optimal

controller is open-loop, which means it will not adapt the control signal to account

for deviations from the expected trajectories. In practice, if the optimal solution is

used to control the wheel to the set point, we would switch to u` ◦ νκ once the set

point is reached to provide long-term stability.

38



4

Conclusion

In Chapter 2, we modeled a noncirclular wheel using a hybrid dynamical system

and presented an elliptical wheel as an example.

Next, in Chapter 3 we used input-output linearization to analytically construct an

asymptotically stabilizing controller, which is useful as a baseline for comparing the

optimal control as well as providing infinite-horizon stability, after the set point is

reached. By discretizing the optimal control problem into an finite-dimensional op-

timization problem, we calculated an optimal control signal and the corresponding

state trajectories such that solutions closely match trajectories produced by simply

propagating the dynamics with HyEQsolver. We implemented the optimization

problem in the case of the elliptical wheel and provided comparisons that showed

that providing the Jacobian significantly improves performance and using the RK4
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ODE solver method provides a large improvement to accuracy.

There are a number of ways that this work can be further developed. The model

itself can made more physically accurate by including slipping, elasticity, or defor-

mation. The setting of the problem can also be expanded by requiring that the wheel

traverses a series of steps and walls, which would result in a more challenging opti-

mal control problem due to a longer time horizon and increased number of intervals

of flow. In fact, for our method to have broad applicability, it would need to be

extended to allow for an arbitrary number of jumps, which are not known a priori.

The process of calculating optimal solutions could also be improved. A particu-

larly efficient class of direct methods are pseudospectral methods, which improve

convergence by careful selection of the discretization nodes and using polynomial

interpolation [4]. By using a pseudospectral method we could achieve faster con-

vergence of the numerical results.
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Appendix A

Properties of a Rotated Ellipse

Let B0 and Bϕ be orthonormal bases of R2 such that Bϕ is rotated by angle ϕ relative

to B0. Consider the ellipse γ(τ) with coordinates (a cos(τ), b sin(τ)) relative to the

Bϕ.

Lemma A.1. The coordinates of γ in B0 are

[γ(τ)]B0 :=



xϕ(τ)

yϕ(τ)


 =



Cx · cos (τ + ϕ̂x)

Cy · sin (τ + ϕ̂y)




where Cx :=
√
a2 cos2 ϕ+ b2 sin2 ϕ, Cy :=

√
a2 sin2 ϕ+ b2 cos2 ϕ,

ϕ̂x := atan2 (b sinϕ, a cosϕ) , and ϕ̂y := atan2 (a sinϕ, b cosϕ) .

Proof. The change of basis matrix fromBϕ toB0 is the rotation matrix
[
cosϕ − sinϕ
sinϕ cosϕ

]
.
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We then compute

[γ(τ)]B0 =



xϕ(τ)

yϕ(τ)


 =




cosϕ − sinϕ

sinϕ cosϕ






a cos(τ)

b sin(τ)


 =



a cosϕ cos τ − b sinϕ sin τ

a sinϕ cos τ + b cosϕ sin τ


 .

To simplify xϕ(τ) and yϕ(τ), we define Cx =
√
a2 cos2 ϕ+ b2 sin2 ϕ and ϕ̂x :=

atan2(b sinϕ, a cosϕ). It follows from identities that sin ϕ̂x = b
a

tanϕ cos ϕ̂x. We

then find

Cx sin ϕ̂x =

√
a2 cos2 ϕ sin2 ϕ̂x + b2 sin2 ϕ sin2 ϕ̂x

=

√
a2 cos2 ϕ

(
b

a
tanϕ cos ϕ̂x

)2

+ b2 sin2 ϕ sin2 ϕ̂x

=

√
b2 sin2 ϕ cos2 ϕ̂x + b2 sin2 ϕ sin2 ϕ̂x

= b sinϕ

Similarly, Cx cos ϕ̂x = a cosϕ. Then, substitution of Cx sin ϕ̂x and Cx cos ϕ̂x into

xϕ(τ) produces xϕ(τ) = Cx(cos ϕ̂ cos τ − sin ϕ̂ sin τ). Then, by an additive cosine

identity xϕ(τ) = Cx cos(τ + ϕ̂).

By the same process, if we choose

Cy =

√
a2 sin2 ϕ+ b2 cos2 ϕ and ϕ̂y = atan2 (a sinϕ, b cosϕ)

then Cy sin ϕ̂y = a sinϕ and Cy cos ϕ̂y = b cosϕ, thus yϕ(τ) = Cy sin(τ + ϕ̂y)
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Therefore

[γ(τ)]B0 =



Cx · cos (τ + ϕ̂x)

Cy · sin (τ + ϕ̂y)


 .

Corollary A.1. The values of τ that give the extreme values of xϕ(τ), and yϕ(τ) are

τx,min = π− ϕ̂x, τx,max = −ϕ̂x, τy,min = 3π
2
− ϕ̂y, and τy,max = π

2
− ϕ̂y, respectively.

Proof. It follows directly from Lemma A.1 that the values of the parameter τ at

extrema are as follows

τx,max = argmax
τ

cos(τ + ϕ̂x) = −ϕ̂x (A.1)

τx,min = argmin
τ

cos(τ + ϕ̂x) = π − ϕ̂x (A.2)

τy,min = argmin
τ

sin(τ + ϕ̂y) =
3π

2
− ϕ̂y (A.3)

τy,max = argmax
τ

sin(τ + ϕ̂y) =
π

2
− ϕ̂y (A.4)

Lemma A.2. For the rotated ellipse centered at the origin, the lower branch of yϕ

as a function of x is

yϕ(x) = Cy sin

(
− cos−1

(
x

Cx

)
− ϕ̂x + ϕ̂y

)

Proof. From Lemma A.1, it follows that range(xϕ) = [−Cx, Cx], and range(yϕ) =
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[−Cy, Cy]. Thus, for a given x, we can solve for τ .

τ(x) = − cos−1
(
x

Cx

)
− ϕ̂x. (A.5)

From Lemma A.1, we have yϕ(x) = Cy sin (τ(x) + ϕ̂y), therefore,

yϕ(x) = Cy sin

(
− cos−1

(
x

Cx

)
− ϕ̂x + ϕ̂y

)
. (A.6)
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Appendix B

Jacobian Calculations

In order to discuss the Jacobian of the cost and constraints, we can write our opti-

mization variable t+, X,u as single vector

z =
[
x>11 · · · x>M1 x>12 · · · x>M2 u>1 u>2 t+

]>
.

The cost function for Problem 3.2 is

I(z) :=
2∑

j=1

∆tj

M−1∑

i=1

|ωijuij| .

Computing the Jacobian is complicated by the fact that the derivative of the absolute

value function is undefined at the origin. We mitigate this issue, however, by using
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the following generalization of the derivative,

d |x|
dx

= sgn(x) :=





−1, x < 0

0, x = 0

1 x > 0.

.

This works well for our purposes because the only nonsmooth point in the absolute

value function is also the minimal point and is where ∂|x|
∂x

= 0, allowing fmincon

to correctly choose its search directions. We then find

∂I

∂t+
=

1

M − 1

M−1∑

i=1

|ωi1ui1| −
1

M − 1

M−1∑

i=1

|ωi2ui2|

∂I

∂ωij
= ∆tj sgn(ωijuij)uij

∂I

∂uij
= ∆tj sgn(ωijuij)ωij

Then the Jacobian is

∇zI(z) =




∇x11I(z)

...

∇xM1
I(z)

∇x12I(z)

...

∇xM2
I(z)

∇u1I(z)

∇u2I(z)

∂I
∂t+



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Next, we write the nonlinear constraints as G(z) = 0 where

G(z) =




x11 − x0

x21 − L(f0,x11, u11,∆t1)

...

xM1 − L(f0,x(M−1)1, u(M−1)1,∆t1)

x22 − L(f1,x12, u12,∆t2)

...

xM2 − L(f1,x(M−1)2, u(M−1)2,∆t2)

d(xM1)

‖y(xM2)‖




Let Fi1 = −∇xL(f0,xi1, ui1,∆t1). If the Euler method L = LE is used, then

Fi1 = −(I4 + ∆t1∇xf1(xi, ui)). Similarly, Ti1 := −∇t+L(f0,xi1, ui1,∆t1) =

1

M − 1
f>0 (xi1, ui1). We then find

Ui1 := −∇uL(f0,xi1, ui1,∆t1) =
1

mr2i1



0 ei 0 0

0 0 0 0




where ei ∈ RM−1 is the vector containing 0’s in every entry except a 1 in the i-

th entry. The definitions of Fi2, Ui2 and Ti2 are similar. Finite differences is used

to calculate the values of ∇g(xM1) and ∇x ‖y(xM2)‖. The Jacobian ∇zG is then

shown in Figure B.1.
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