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 | Environmental Microbiology | Research Article

Drivers of stability and transience in composition-functioning
links during serial propagation of litter-decomposing
microbial communities

Eric R. Moore,1 Dennis Suazo,1 Joany Babilonia,1 Kyana N. Montoya,1 La Verne Gallegos-Graves,1 Sanna Sevanto,2 John Dunbar,1

Michaeline B. N. Albright1

AUTHOR AFFILIATIONS See affiliation list on p. 18.

ABSTRACT Biotic factors that influence the temporal stability of microbial community
functioning are an emerging research focus for the control of natural and engineered
systems. The discovery of common features within community ensembles that differ
in functional stability over time is a starting point to explore biotic factors. We seri-
ally propagated a suite of soil microbial communities through five generations of
28-day microcosm incubations to examine microbial community compositional and
functional stability during plant litter decomposition. Using dissolved organic carbon
(DOC) abundance as a target function, we hypothesized that microbial diversity,
compositional stability, and associated changes in interactions would explain the relative
stability of the ecosystem function between generations. Communities with initially
high DOC abundance tended to converge towards a “low DOC” phenotype within
two generations, but across all microcosms, functional stability between generations
was highly variable. By splitting communities into two cohorts based on their relative
DOC functional stability, we found that compositional shifts, diversity, and interaction
network complexity were associated with the stability of DOC abundance between
generations. Further, our results showed that legacy effects were important in determin-
ing compositional and functional outcomes, and we identified taxa associated with high
DOC abundance. In the context of litter decomposition, achieving functionally stable
communities is required to utilize soil microbiomes to increase DOC abundance and
long-term terrestrial DOC sequestration as one solution to reduce atmospheric carbon
dioxide concentrations. Identifying factors that stabilize function for a community of
interest may improve the success of microbiome engineering applications.

IMPORTANCE Microbial community functioning can be highly dynamic over time.
Identifying and understanding biotic factors that control functional stability is of
significant interest for natural and engineered communities alike. Using plant lit-
ter–decomposing communities as a model system, this study examined the stability
of ecosystem function over time following repeated community transfers. By identify-
ing microbial community features that are associated with stable ecosystem functions,
microbial communities can be manipulated in ways that promote the consistency and
reliability of the desired function, improving outcomes and increasing the utility of
microorganisms.

KEYWORDS bacteria, carbon cycling, fungi, microbial interactions, microbiome
engineering, serial propagations

W ith an increasing body of research describing links between microbial composi-
tion and ecosystem functioning (1–3), there is growing interest in manipulating
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microbial communities to achieve desired functional outcomes. Examples include
altering the microbiome in the human gut for improved health (4), in the plant
rhizosphere for increased crop yield (5), and in soils for carbon storage (6, 7). However,
the reliable manipulation of microbial communities to achieve predictable and persistent
functional outcomes remains a challenge (8, 9). A greater understanding of factors
that shape the temporal stability of microbial community composition and functioning
in different contexts may improve the success of microbiome engineering. This focus
is motivated in part by the idea that variation in community assembly can lead to
alternative states that differ in functioning and stability (10, 11).

Alternative stable states have been a recurring, albeit controversial, theme in ecology
since the 1960s (12–14). In this concept, microbiome composition is not determined
exclusively by the environment, and therefore different community states are possible
under the same environmental parameters (15–18). Alternative stable states can arise
in otherwise identical environments following abiotic (e.g., nutrient addition) (19, 20)
or biotic perturbations (e.g., addition or removal of predators) (21, 22). Alternative
stable microbial community types can account for long-term variation in ecosystem
functioning within a single environment; however, identifying factors that underpin the
stability of microbial ecosystem functioning may offer valuable strategies for microbiome
engineering or improving models of global elemental cycles.

One way to probe the stability of the relationship between microbial community
composition and ecosystem functioning over time is through serial propagation of
communities in highly controlled environments (i.e., community “evolution” experi-
ments). Experimental evolution with single microbial populations has been repeated
with various organisms over thousands of generations (23). These experiments have
shown that evolution can either be highly convergent (24–26) or divergent (27, 28).
Extending to the community level, it is plausible that experimental community evolution,
which we define as changes in community composition and function during serial
propagation over time, may reveal communities that vary in the stability of composition
and functioning (29, 30). While the functioning of communities may inevitably change
over time, differences in the rate of change (i.e., higher or lower relative stability) can
provide insights into the taxa and/or ecological processes that might be augmented
to achieve increased stability. Instead of adaptation occurring via mutation at the gene
level as seen in pure-culture studies, community outcomes may be driven by changes
in ecological processes such as organism interactions that affect the abundance and
activity of individual taxa. This raises two key questions about mechanisms that could
affect and help predict the functional stability of the communities: (i) Do the communi-
ties exhibit variation in the relative stability of composition or functioning over multiple
“generations”? and (ii) Are any microbial traits correlated with the observed degree of
stability in ecosystem functioning?

To answer these questions, we conducted a community evolution experiment with
10 unique microbial communities using a plant litter decomposition system. Under-
standing community factors that are linked to the stability of ecosystem functions in
litter decomposer communities is central to manipulating and modeling soil carbon
(C) cycling. Plant litter decomposition in terrestrial ecosystems is an inherently cyclic
process where new litter is periodically deposited onto the soil surface, creating a natural
opportunity for serial propagation of microbial decomposer communities that assem-
bled previously on prior batches of litter. As microbial communities assemble on new
litter, they undergo ecological succession as the litter is decomposed (31, 32). During the
decomposition process, microbes move C between a number of different pools. Some C
is respired as carbon dioxide (CO2), some C is incorporated into microbial biomass, and
some C is transformed into other organic C compounds (33). Dissolved organic carbon
(DOC), comprising plant and microbial residues, is a C pool of particular interest in soil
carbon cycling because it has the potential to be transported to deeper soil horizons
where stabilization and long-term sequestration can occur (34, 35). Changing DOC fluxes
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may be a route to boost soil C accumulation (36). Recent work has shown that microbial
community composition impacts DOC abundance during litter decomposition (7, 11).

To set up the experiment, we used 10 communities representing the highest and
lowest DOC abundance among 53 communities originally screened in a preliminary
common garden experiment in sealed microcosms containing blue grama (Bouteloua
gracilis) grass litter inoculated with microbiomes derived from different soils. To examine
community changes following the initial generation, we sequentially propagated four
replicates of the 10 down-selected litter decomposer communities for four “generations”
(28 days per “generation”) in microcosms containing blue grama litter and sand. The
primary metric of community functioning was the concentration of DOC observed
after 28 days of litter decomposition, and CO2 accumulation was also measured. We
hypothesized that microbial diversity, community stability, and associated changes in
interactions would explain the relative stability of community functioning. Our findings
show that litter-decomposing communities varied widely in their functional stability,
and we identified microbial and physiochemical features linked to increased stability in
community functioning. In particular, we found that compositional shifts, interactions
among diversity and environmental parameters, and interaction network complexity
were associated with the stability of DOC abundance between generations. Further,
our results showed that legacy effects were important in determining compositional
and functional outcomes, and we identified taxa associated with high DOC abundance.
Identifying factors that control functional stability will be useful for understanding
variability in carbon flow in plant litter–decomposing communities and may increase
successful applications of microbiome engineering in soils and other systems to achieve
desired outcomes such as increasing soil C sequestration.

MATERIALS AND METHODS

Soil collection and microbial community inoculum

To obtain diverse soil microbial communities, we collected 53 soils from seven elevation
transects in the southwestern USA (Table S1). These soils were used to create complex
microbial community inoculum (20× soil dilution) using the following protocol: 1.0 g
of sieved soil was mixed with 9.0-mL deionized H2O to make a 1:10 dilution, and the
soil suspension was shaken and then allowed to sit for 2 min to allow the largest soil
particles to settle. Five milliliters of the supernatant was removed and added to 5.0 mL
of 10 mg/mL ammonium nitrate (NH4NO3) solution to create a 1:20 soil slurry at a final
concentration of 5.0 mg/mL NH4NO3.

Artificial selection and serial propagation microcosm experiment

To screen the microbiomes for high and low DOC abundance, microcosms were
constructed using 125-mL glass serum bottles with one tablespoon of Quikrete play
sand (~7 g) and 100 mg of 1-cm cut blue grama (B. gracilis) litter. Before use, microcosms
were sterilized via autoclave three times (at 121°C and 15 psi) for 1 hour with at least
8 hours between each sterilization. For the initial generation (G0), we inoculated 1 mL of
each of the 53 different soil slurry inocula obtained from the seven elevation transects
(see Table S1 and Fig. S1 in the supplemental material) into duplicate microcosms (n =
106). Microcosms were sealed with Teflon-lined crimp caps (preventing desiccation) and
incubated in the dark at 25°C for 28 days. CO2 was measured by gas chromatography
five times over the course of 28-day incubation period using an Agilent Technologies 490
Micro GC (Santa Clara, CA, USA), and these measurements were summed to calculate the
total CO2 accumulation during the 28-day incubation period. After each measurement,
the headspace air was evacuated with a vacuum pump and replaced with sterile-filtered
air to prevent CO2 buildup.

At the end of the 28-day incubation period, microcosms were destructively sampled.
Ten milliliters of sterile distilled water was added to the microcosms, and they were
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shaken for 30 s to homogenize and create a slurry. An aliquot of the slurry was filtered
through a 0.22-μM filter, and DOC and total nitrogen (TN) concentrations were measured
on an OI Analytical model 1010 wet oxidation TOC analyzer (Xylem Inc., Rye Brook, NJ,
USA). A subset of the G0 microcosms were selected to propagate microbial communi-
ties based on their DOC concentrations (Fig. S1). Specifically, five source communities
with the highest mean DOC (n = 2), and five others with the lowest mean DOC were
selected for propagation (Fig. S1). Each of these communities were derived from soils
taken from different transects, or elevations within a transect (Table S1 and Fig. S1).
Variation between duplicates of these 10 selected communities was less than those with
intermediate values of DOC abundance (Fig. S1). For the next generation (G1), a new set
of microcosms containing one tablespoon of (~7 g) sterile sand and 100 mg of 1-cm cut
blue grama (B. gracilis) litter were inoculated with an unfiltered 1 mL aliquot of slurry
(20× dilution final concentration of 5 mg/mL NH4NO3) from these down-selected G0
microcosm communities. Each selected individual G0 community replicate was used to
inoculate two new microcosms in G1, for a total of 40 communities (10 communities from
different origins × four replicates). As with G0, the 40 G1 microcosms were incubated
for 28 days at 25°C and then serially propagated through three subsequent 28-day
generations (G2, G3, G4) in microcosms using the same setup and conditions (Fig. S1). The
entire experiment consisted of a total of five 28-day generations and a total of 140 days
of incubation time. As with G0, CO2 was measured five times over the course of each
generation and summed to calculate total CO2 accumulation during each generation to
obtain a more complete view of the carbon cycle. Samples were also collected at the end
of each generation for DOC/TN analysis using the same methods described above for G0.
Sand, litter, and liquid residue were collected from the microcosms at the end of each
generation (G0, G1, G2, G3, G4) and stored at −20°C until DNA extraction.

Microbial community taxonomic profiling

For the microcosm samples, we extracted and sequenced DNA to obtain bacterial (16S
rRNA) and fungal (internal transcribed spacer [ITS]) community profiles. DNA extractions
were performed with a DNeasy PowerSoil Kit 96-well HTP kit (Qiagen, Hilden, Germany)
following the manufacturer’s protocol with the following exceptions, 0.3 g of material
was used per sample extract and all samples were eluted to a final volume of 30 μL.
The DNA samples were quantified with the Invitrogen Quant-iT dsDNA Assay (HS)
kit (Invitrogen, Waltham, MA, USA), following the manufacturer’s protocols on BioTek
Synergy HI Hybrid Reader. The V4 region of bacterial 16S rRNA gene was amplified
with methods previously described by Albright (11). PCR2 amplicons were cleaned with
a 0.9 ratio of Beckman Coulter Agentcourt AMPure XP beads (Beckman Coulter, Brea,
CA, USA). Following cleanup, samples were quantified using the same method as the
extracted DNA and then pooled to 10 ng each. The pool was then cleaned with a 0.9 ratio
of Beckman Coulter Agentcourt AMPure XP beads following manufacturer’s protocol.
Fungal ITS sequences were amplified using an equimolar mixture of three ITS9 forward
primers (ITS9f_FS1: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNGAACGCAG-
CRAAIIGYGA, ITS9f_FS2: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNGAACG-
CAGCRAAIIGYGA, and ITS9F_FS3: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNGA
ACGCAGCRAAIIGYGA) and the ITS4r_FS reverse primer (GTCTCGTGGGCTCGGAGATGTG-
TATAAGAGACAGNNNNNNTCCTCCGCTTATTGATATGC) (37). ITS amplification was set up
using Phusion Hot Start II High Fidelity DNA polymerase (Thermo Fisher Scientific,
Vilnius, Lithuania). In the first PCR, barcoded amplicons were produced over 25 cycles
using gene primers. Cycling conditions were 5 min at 95°C, 25 cycles (95°C for 30 s,
50°C for 60 s, 68°C for 60 s), and a final extension step of 68°C for 10 min. The second
PCR extended Illumina adapter sequences on the amplicons over 12 cycles. Cycling
conditions were 5 min at 95°C, 12 cycles (95°C for 30 s, 50°C for 60 s, 68°C for 60 s),
and a final extension step of 68°C for 10 min. Amplicons were cleaned using 0.9 ratio of
Beckman Coulter Agentcourt AMPure XP beads, quantified using the same procedure as
for the extracted DNA and then pooled at a concentration of 10 ng each. The pooled
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samples were further cleaned and concentrated using a 0.9 ratio of Beckman Coulter
Agentcourt AMPure XP beads following manufacturer’s protocol. Pooled samples were
eluted to a final volume of 30 μL in Qiagen EB Buffer. DNA quality of the amplicon pool
was assessed with a bioanalyzer, and concentration was verified by quantitative PCR.

Amplicon libraries were sequenced using an Illumina MiSeq to generate 300-bp (base
pair) paired-end reads. Bacterial 16S sequence reads were preprocessed and demulti-
plexed using USEARCH (38). DADA2 was used with default settings, unless otherwise
noted, to perform quality filtering, primer removal, and denoising (39). Quality filtering
of bacterial reads was performed with the filterAndTrim command using the following
settings to remove primers and low-quality sequences: truncLen = c(240, 200), truncQ =
2, trimLeft = c(25, 26), maxEE = c(2, 4). Paired reads with a minimum overlap of 100 bp
were merged, and only sequences with 250–265 bp were kept for downstream analyses.
Bacterial and archaeal taxonomy was assigned to the species level using the Silva 16S
rRNA taxonomic database v.138.1 at the 80% confidence level (40, 41).

Fungal ITS reads were processed with the DADA2 workflow in a similar way, with a
few modifications. Initially, sequence primers were removed using Cutadapt v.3.2 (42).
The DADA2 function filterAndTrim command was used with the following parameters:
truncLen = c(240, 200), maxN = 0, maxEE = c(2, 4), truncQ = 2, minLen = 50. Ampli-
con sequences were not size-selected due to the variable length of the ITS region.
Fungal taxonomy was assigned using the UNITE ITS database v.8.2 (43), and a minimum
bootstrap confidence of 80% was required for the assignment.

Statistical analyses

Ecosystem functioning analyses were performed in R (R Core Team). We used a two-way
analysis of variance (ANOVA) analysis to compare the impacts of microbial inoculum
and generation on CO2 production and DOC abundance and estimated the percentage
of variation that could be attributed to each significant term for the ANOVA (44). We
assessed the range in functional variation and calculated the variability (coefficient of
variation [CV]) in DOC and CO2 in each generation.

Microbiome composition analyses were performed in R using the “phyloseq” v.1.32.0
(45) and “vegan” v.2.5-7 (46) packages. Bacterial and fungal amplicon sequence variant
(ASV) abundances were rarefied to the minimum sample size of 5,457 and 6,670
reads, respectively, and most samples approached saturation. Rarefied abundance data
were used to calculate alpha diversity metrics (observed taxa, Shannon diversity),
beta diversity metrics (Bray–Curtis distance, beta-dispersion), and abundance: function
Pearson’s correlations. Alpha diversity measurements were compared using ANOVA
and Tukey’s post hoc statistical tests. Beta diversity differences were compared with a
Permutational multivariate analysis of variance test using the adonis function in vegan
(46), pairwise_adonis package, and beta-dispersion was compared using ANOVA and
Tukey’s tests. Bray–Curtis composition dissimilarities were correlated with DOC or CO2
differences for all pairwise sample combinations using Mantel tests. Briefly, sample
pairwise distance matrices were constructed using the “dist” (“vegan” v.2.5-7), and
the “mantel” function (“ecodist” v.2.0.7) was used with 999 permutations to compute
correlations between compositional dissimilarity and DOC*CO2 dissimilarity for data
subset by DOC stability. Pearson’s correlations between sample stability (DOC change
from previous generation of serial propagation) and community composition (Bray–
Curtis distance) change from previous generation for each individual community were
also calculated. Since many Pearson’s correlations were calculated, the false discovery
rate was controlled at 0.1 using the Benjamini–Hochberg procedure and adjusted
P-values were calculated. Samples were categorized into two groups based on their DOC
stability between generations. The absolute value of the difference in DOC between Gn
and Gn − 1 (ΔDOC) was calculated and used to assign samples in Gn to “most stable” or
“least stable” groups. The median ΔDOC for all communities was 0.56 mg per g of DOC.
Communities assigned to the most stable group were those with a ΔDOC in the 0–25th
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percentile (0 ≤ ΔDOC ≤ 0.28 mg DOC g−1), while communities assigned to the least stable
group had a ΔDOC in the 75th–100th percentile (1.12 ≤ ΔDOC ≤ 3.92 mg DOC g−1).

Microbial co-abundance networks

To examine how microbial interactions differed between the most and least functionally
stable communities, taxa co-abundance networks were calculated using SparCC (47).
Using rarefied data, bacterial ASV abundances were first grouped at the family level
using the tax_glom function in Phyloseq (45) to reduce the total number of taxa used
in the analysis (fungal abundances were analyzed at the ASV level). Then, samples
were split into the most stable or least stable groups as described earlier. To calculate
co-abundances of bacterial families or fungal ASVs, the python package SparCC3 (47)
was run using the standard workflow, except that a custom script (Supplemental File
1) was used to calculate correlation thresholds using randomly shuffled abundance
tables without replacement. Pseudo P-values were calculated using 10,000 bootstraps,
and a P-value significance cutoff of 0.01 was used to identify significant co-occurrences.
Cutoffs were determined independently for each network and represent equal levels of
confidence in edges to account for differences in the distributions of relative abundances
between groups. Networks were visualized using Cytoscape (v.3.9.1).

Feature identification with RFINN machine learning

The machine learning tool RFINN (48) was used to identify microbial community features
associated with high or low DOC abundance in all of the samples, rather than those
subsets by functional stability. Random forest and neural network models were first
trained to a randomly selected subset (80%) of the microcosm sample data to estab-
lish mathematical relationships between the rarefied taxa abundance (features) and
ecosystem variables (DOC, CO2, and DOC Trajectory). Model efficiency and function
predictability were assessed using the remaining 20% of data not included in the
model-training step to compare predicted and measured values and calculate Pearson’s
correlation coefficient (R) (48). Indicator species analysis identified taxa with significant
(P < 0.05) associations with ecosystem functions, and these results were compared to
model outputs.

RESULTS

Drivers of stable versus variable ecosystem functioning

Following four generations of serial propagations of litter-decomposing communities,
DOC abundance changed substantially between generations for some communities,
while in others, DOC abundance remained more stable (Fig. 1; Fig. S2). DOC abundance
across all microcosms decreased from G0 to G4 (median G0 3.6 ± 1.8 to median G4 2.1
± 0.8 mg DOC g−1 litter [Fig. 1; Fig. S3]). However, the range between the minimum
and maximum DOC abundance across all individual communities remained relatively
consistent across generations (5.0, 5.2, 3.2, 4.5, 4.4 mg DOC g−1 litter). The variability in
DOC abundance was greatest within G0 (CV = 0.48) and then decreased but remained
constant across subsequent generations (CV = 0.36, 0.34, 0.34, 0.33). CO2 production
varied twofold across all microcosms, and the overall range of CO2 production did
not change from G0 to G4 (Fig. 1B; Fig. S3). Across generations, CO2 production was
more stable than DOC abundance and remained consistent (G0 median = 37.5 mg
CO2 g−1 litter, G4 median = 40.1 mg CO2 g−1 litter; CV = 0.16, 0.10, 0.11, 0.11, 0.15).
For bacterial communities, compositional change between generations was positively
correlated with the magnitude of change in DOC abundance (stability), but there was
no significant correlation for fungal communities (Table 1A). Functional stability was
negatively correlated with bacterial richness, but not fungal diversity (Table 1B and
C), and compositional change was negatively correlated with bacterial richness and
positively correlated with all three fungal diversity metrics (Table 1D and E).
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To better understand the drivers of functional stability across generations, we split the
samples into two groups (most stable or least stable DOC; see Materials and Methods)
and assessed correlations between community traits, microbial taxa, and ecosystem
function within each group. Bacterial community compositional dissimilarity across all
pairwise combinations of samples was significantly correlated with the pairwise
dissimilarity of DOC abundance for the most stable group but not the ‘least stable’ group,
nor to CO2 in either group (Table 2). Fungal community compositional dissimilarity and
DOC dissimilarity were also only correlated in the most stable group (Table 2) but also
correlated with CO2 dissimilarity in both the most and least stable groups. Despite links
between community composition and DOC in the most stable samples, bacterial and
fungal diversity metrics were not correlated with ΔDOC (functional stability) or other
measurements in the most stable samples (Fig. 2). DOC abundance had a negative
relationship with CO2 accumulation, and ΔDOC was positively correlated with TN in the

FIG 1 Measurements of total DOC and CO2 accumulation during all five generations of microcosms. Microcosms in the initial high and low DOC cohorts

eventually converged in DOC accumulation, but DOC stability between generations varied greatly between microcosms. For DOC, two-way ANOVA showed

significant Generation (F = 37.15, P < 0.001, degrees of freedom [df ] = 4), Initial Community (F = 10.54, P < 0.001, df = 1), and Generation by Initial Community

interaction (F = 9.91, P < 0.001, df = 4). Since there was a significant Generation by Initial Community interaction for DOC, significance bars indicate pairwise

statistical differences (Tukey’s honestly significant difference) between high and low DOC Initial Community cohorts for each generation in the DOC boxplot, ***

indicates P < 0.001, ns = not significantly different (P > 0.05). For CO2, two-way ANOVA showed significant Initial Community (F = 19.57, P < 0.001, df = 1) and

Generation (F = 2.65, P = 0.035, df = 4) main effects only.
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most stable communities. In contrast, for the least stable group, bacterial richness was
negatively correlated with ΔDOC, and DOC abundance was no longer correlated with
CO2 in the least stable group of samples (Fig. 2). In both stability groups, bacterial and
diversity metrics were not directly correlated with each other.

We searched for microbial features that explained DOC abundance and stability
over multiple generations by performing Pearson’s correlations between taxa abundan-
ces, community traits, and functional measurements. Abundances of several micro-
bial families were correlated with DOC abundance (Fig. 3). Among bacterial families,
Microbacteriaceae was positively correlated with DOC abundance in both stability
groups. Some taxa were only correlated with DOC abundance in one stability group.
In the most stable group, Nocardiaceae and Paenibacillaceae (bacteria) were positively
correlated with DOC. In the least stable group, the bacterial families, Xanthobacteriaceae
and Sphingomonadaceae, were positively correlated, and Rhizobiaceae was negatively
correlated with DOC abundance. Interestingly, no bacterial taxa were correlated with

TABLE 1 Pearson’s correlations of metadata associated with individual samplesa

Correlation Pearson’s R P-value (adjusted)

  A
∆Composition (bacterial) ~ functional stability (∆DOC) 0.259 <0.001
∆Composition (fungal) ~ functional stability (∆DOC) 0.010 0.34

  B

Functional stability (∆DOC) ~ bacterial richness −0.196 0.04
Functional stability (∆DOC) ~ bacterial Shannon diversity −0.144 0.16
Functional stability (∆DOC) ~ bacterial evenness −0.046 0.62

  C

Functional stability (∆DOC) ~ fungal richness 0.047 0.65
Functional stability (∆DOC) ~ fungal Shannon diversity 0.079 0.46
Functional stability (∆DOC) ~ fungal evenness 0.054 0.64

  D

∆Composition (bacterial) ~ bacterial richness −0.326 <0.001
∆Composition (bacterial) ~ bacterial Shannon diversity −0.148 0.16
∆Composition (bacterial) ~ Bacterial evenness 0.019 0.83

  E

∆Composition (fungal) ~ fungal richness 0.447 <0.001
∆Composition (fungal) ~ fungal Shannon diversity 0.397 <0.001
∆Composition (fungal) ~ fungal evenness 0.348 <0.001

a∆Composition for each individual community in Gn represents the calculated Bray–Curtis dissimilarity between
Gn and Gn − 1 for a given serially propagated community. Similarly, functional stability (∆DOC) for a sample in
Gn was calculated as the difference in measured DOC values for a given propagated community between Gn and
Gn − 1. Metadata for all samples across all generations were correlated. Significant correlations (Padj < 0.05) are
highlighted in bold.

TABLE 2 Mantel correlation tests comparing community composition differences (pairwise Bray–Curtis
dissimilarity) with pairwise differences in DOC or CO2 accumulation for all possible pairs of samplesa

Bacteria Most stable Least stable

Bacteria

  Composition ~ DOC
R = 0.254
P = 0.010

R = 0.018
P = 0.383

  Composition ~ CO2

R = −0.024
P = 0.574

R = 0.018
P = 0.383

  Composition ~ DOC*CO2

R = 0.254
P = 0.010

R = 0.019
P = 0.367

Fungi

  Composition ~ DOC
R = 0.219
P = 0.001

R = 0.076
P = 0.105

  Composition ~ CO2

R = 0.164
P = 0.002

R = 0.149
P = 0.007

  Composition ~ DOC*CO2

R = 0.211
P = 0.001

R = 0.057
P = 0.172

aCorrelation coefficients (R) and P-values are displayed in the table, with significant Mantel correlations (P < 0.05)
printed in bold and italics.
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stability (ΔDOC) in the most stable group, but Xanthomonadaceae abundance was
positively correlated with stability, and Rhizobiaceae was negatively correlated with
stability in the least stable group. For fungi, Chaetomiaceae and Bionectriaceae
abundances were negatively and positively correlated with DOC, respectively, in the
most stable group only. Neither taxa correlated with stability in the least stable group.

Microbial co-abundance networks calculated with SparCC (47) showed different
microbial interaction patterns between the most stable and least stable communities
(Fig. 4). Networks were qualitatively distinct in their form and complexity between the
two groups for both bacterial families and fungal ASVs (Fig. 4). Specifically, co-abun-
dance networks were less complex and more fragmented in samples from the most
stable group, relative to those of the least stable group. In the most stable group, few
taxa co-occurred with many other taxa and multiple discrete interaction clusters were
apparent, especially for the fungi. The least stable group was characterized by many taxa
with links to many other taxa and less fragmentation (Fig. 4). Further, many taxa that
were present in both stability groups were often connected to unique collections of taxa
in each group.

Changes in ecosystem functioning and microbial community composition
across “generations”

Features associated with the temporal stability of ecosystem function prompted us
to examine microbial trends across multiple generations. Overall, community re-assem-
bly stabilized in later generations and legacy effects of microbiome origin were the
largest drivers of diversity and compositional differences among microcosms. Micro-
bial community origin, generation, and origin-by-generation interactions significantly
influenced DOC abundance in all microcosms (ANOVA; origin: F9,150 = 32.2, P < 0.001,
generation: F4,150 = 31.5, P < 0.001, and origin-by-generation: F36,150 = 6.6, P < 0.001).
Microbiome origin explained about 33% of the estimated variance in DOC abundance,
while generation contributed to 16% of the estimated variance (Fig. S4). DOC abun-
dance was significantly correlated between generations for individually propagated
microcosms (Fig. S2).

As with DOC, microbiome origin, generation, and origin-by-generation interactions
significantly impacted CO2 production (origin: F9,150 = 11.7, P < 0.001, generation: F4,150
= 8.8, P < 0.001, and origin-by-generation: F36,150 = 3.1, P < 0.001). Microbiome origin
explained the most variability (24%) in CO2 production (Fig. S4). For propagations of
individual communities, CO2 production was only significantly correlated between later
generations, including G2 to G3 (R2 = 0.76, P < 0.001) and G3 to G4 (R2 = 0.76, P = 0.001)
(Fig. S2).

FIG 2 Pearson’s correlation networks of community diversity and microcosm measurements show distinct relationships among features occurred between the

two community cohorts with the most stable and least stable DOC functions. Note that larger values of ΔDOC (stability) are less stable overall. The color of the

line indicates the strength of the correlation coefficient R, and only significant correlations (Padj < 0.05) are displayed. Refer to Table S3A and B for the complete

results of this analysis in tabular form.
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Bacterial community composition was significantly impacted by microbiome origin
(PERMANOVA, R2 = 0.493, P = 0.001), generation (PERMANOVA, R2 = 0.092, P = 0.001),
and origin-by-generation interaction (PERMANOVA, R2 = 0.182, P = 0.001) (Fig. 5A
and B). All communities were distinct on the basis of microbiome origin (Fig. 5B).
Bacterial community composition was significantly different between G0 and all later
generations, G1 and G3, and G1 and G4 (pairwise adonis [Martinez Arbizu, 2020]) but
was not significantly different between G2, G3, and G4, indicating communities initially
changed rapidly and then stabilized (Fig. 5A). Fungal community composition was
significantly impacted by microbiome origin (PERMANOVA, R2 = 0.570, P = 0.001) and
microbiome origin-by-generation interaction (PERMANOVA, R2 = 0.120, P = 0.001) but not
by generation alone (PERMANOVA, R2 = 0.029, P = 0.14) (Fig. 5C and D).

FIG 3 Pearson’s correlations between bulk measurements and abundances of bacterial or fungal families occurring in >80% of samples within each DOC

stability cohort. Size and shading of dots in the matrices represent the Pearson’s R coefficient and are only displayed for correlations with Padj < 0.05.

Tabular versions displaying R and P values for these matrices are available in Table S3C through D. Note that “Stability” is the ΔDOC for a community

between generations. All bacterial and fungal families listed here were present in both DOC groups, are notated as ‘Fam##’, and the names of these taxa are

indexed as follows: Bacterial taxa: Pseudomonadaceae (1); Xanthomonadaceae (3); Alcaligenaceae (4); Chitinophagaceae (6); Rhizobiaceae (7); Devosiaceae (8);

Flavobacteriaceae (9); Microbacteriaceae (12); Comamonadaceae (13); Sphingobacteriaceae (27); Caulobacteraceae (30); Xanthobacteraceae (37); Paenibacilla-

ceae (44); Beijerinckiaceae (45); Oxalobacteraceae (71); Nocardiaceae (81); Micrococcaceae (131); Sphingomonadaceae (140); Rubritaleaceae (204). Fungal taxa:

Chaetomiaceae (1); Bionectriaceae (3).
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Bacterial and fungal richness both varied by microbiome origin and showed opposite
responses to serial propagation, with bacterial and fungal richness increasing and
decreasing in subsequent generations, respectively (Fig. 6A through D). Despite being
a closed system, these data suggest that some rare taxa may have been undetectable in
the initial generation but proliferated in the microcosm environment. Shannon diversity
and community evenness for both bacteria and fungi showed similar trends on richness
(data not shown). Beta-dispersion was significantly different on the basis of microbiome
origin but did not change across multiple generations for either bacterial or fungal
communities (Fig. S5).

Indicator species analysis with the RFINN program (48) identified 42 and 16 bacterial
ASVs as significant determinants of high and low DOC, respectively (Table S2). Fungi were
not significant determinants of DOC. Predicted versus measured DOC abundances on
test data showed high positive correlations (R2 = 0.840) across all generations (data not
shown), suggesting effective prediction of DOC based on community composition by
the trained RFINN random-forest models.

DISCUSSION

Our data show that differences in carbon flow driven by microbial origin can persist
through successional processes in a common “soil-like” environment. Some communi-
ties showed greater stability of DOC abundance between generations compared to
others, and we identified potential drivers of this phenomenon. Microbial community
composition did not converge over time, but ecosystem function (DOC abundance and
CO2 production) did, demonstrating compositional legacy effects and an increase in

FIG 4 (A) Taxa co-abundance networks created using SparCC display qualitative differences in network structure, suggesting interaction patterns differed

between the most and least stable communities. Bacterial co-abundance networks were calculated based on family level abundances to reduce the number

of nodes, and fungal networks were calculated directly based on ASV abundances. Only significant edges (P < 0.01, 10,000 bootstraps) are displayed. Cutoffs

were independently determined for each network, and edges represent equal levels of confidence while accounting for differences in taxa relative abundances

between groups. Edges are colored and shaded according to the sign and weight of co-occurrence, respectively (blue = positive, red = negative relationship). (B)

Histograms comparing the distributions of the number of edges connected to a single node.
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functional redundancy. Understanding the dynamics of microbial assembly and impacts
on ecosystem function during repeated successional decomposition processes is central
to manipulating and modeling soil C cycling.

Drivers of functional stability

Microbial functional stability is an important factor in the elemental cycles of natural
soils and is essential to microbiome engineering applications that aim to improve
some aspect of microbial community performance (49). We posited that some micro-
bial communities would exhibit greater relative stability in regard to their impacts on
ecosystem functioning. Consistent with our hypothesis, DOC function was more stable
between generations for some of the microcosm communities (Fig. 1). We split individual
microcosms into two groups based on how much DOC abundance had changed from

FIG 5 Non-metric multidimensional-scaled (NMDS) ordinations representing bacterial and fungal community composition. Bacterial community composition

plotted according to generation (A) and soil origin (B). Fungal community composition plotted by generation (C) or soil origin (D). Post hoc analysis by pairwise

adonis indicated all pairwise comparisons of composition were significant (Padj < 0.05), except between the TS4A/TS5A fungal communities in (D).
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the previous generation (see Methods). Dividing the data in this way revealed distinct
community and functional organization between the two stability groups that may help
explain why microcosms behaved differently over the course of the experiment and
allowed us to identify a variety of microbial traits at the community and individual taxa
levels that were linked to greater functional stability.

Our results highlight the potential importance of compositional stability, biotic
interactions, and biotic–abiotic relationships in explaining the stability of DOC abun-
dance during plant litter decomposition (Fig. 7). Given that abiotic parameters were
controlled in the experimental design, observed variation in abiotic parameters between
samples or stability groups is a consequence of functional differences between

FIG 6 Bacterial and fungal alpha diversity. Bacterial richness by generation (A) or soil origin (B). Fungal richness by generation (C) or soil origin (D). ANOVA

indicated significant (P < 0.05) generational and soil-origin effects on richness. Boxplots with unique letters indicate significant pairwise differences between

microbiomes identified by Tukey’s honestly significant difference test. In plots B and D, microbiome sources are grouped by their initial high or low DOC cohorts,

though these groups were not statistically different in species richness for bacteria or fungi.
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communities, while variations in biotic signatures may be either a cause and/or
consequence of functional differences arising during community re-assembly. Across
all samples, compositional stability was correlated with bacterial and fungal diversity
metrics, but only bacterial richness and compositional stability were correlated with
functional stability (ΔDOC) (Table 1 and Fig. 7). Given these relationships, when bacterial
richness is high, composition and function would be expected to be more stable (lower
ΔDOC and Δcomposition). In the most stable communities, Mantel correlations (Table
2) showed that community compositional differences scaled with functional differen-
ces between samples. Intuitively, this suggests that when DOC function was stable,
compositionally similar communities were more likely to accumulate similar amounts of
DOC and highlights composition as a potential driver of DOC abundance. In contrast,
more similar communities were not likely to accumulate similar amounts of DOC in
the least stable group, implying that additional factors may be decoupling composition
and function. This is further supported by differences in correlation patterns between
stability groups, which showed that interactions among biotic and environmental
parameters were altered between the two stability groups (Fig. 2). The most stable group
was characterized by no correlations between metrics of microbial diversity and DOC or
other measurements. In terms of functional characteristics, the most stable communities
were characterized by a clear trade-off between DOC abundance and respiration (CO2).
Further, greater N availability was associated with functional destabilization (increase
in ΔDOC) in the most stable communities. In the least stable group, bacterial richness
interacted with functional stability (ΔDOC), but ΔDOC did not correlate with total N,
nor did DOC and CO2 correlate. Noise in the data driven by inactive cells from eDNA-
based community samples may explain why some of the reported community-level
correlations were relatively weak; but importantly, stability may also be further explained
by fine-scale community features and interactions that are less resolved by broad-scale
community metrics. Multiple studies have suggested that microbial interactions can
impact microbiome stability, where competition and decreased ecological interactions
generally increase microbiome stability (50, 51). Shifts in composition and diversity can
alter interaction networks, changing C and N utilization via modified cross-feeding and
niche availability (52). Differences in fungal: bacterial community structure have also
been linked to changing nitrogen availability and positively correlated with microbial
metabolic efficiency (53), a likely driver of DOC abundance. Thus, the stability of
DOC abundance and carbon flow could be biologically controlled through differential
structuring of microbial community composition and activity via modified interaction
networks relevant to carbon and nitrogen exchange. Observed changes at the commun-
ity level suggest that interaction networks were modified between stability groups.

In agreement with the community-level analyses, taxa co-abundance analysis
revealed striking differences in inferred interaction patterns between the most stable
and least stable communities. Interaction networks were distinct in their structure and
complexity between the most and least stable communities (Fig. 4). Specifically, the
most stable communities had networks that were more fragmented and less complex,
and taxa shared between the most and least stable community networks frequently
interacted directly with different taxa. This distinction shows how differences in microbial
interaction networks may explain variability in functional stability. Greater network
complexity and increased interactions may allow small changes in taxa abundance or
activity to have a rippling effect throughout the network, altering overall composition
and destabilizing function as communities and diversity shift in response (54). A more
fragmented network with fewer connections between taxa may help buffer against
dramatic shifts in DOC function resulting from small changes in the abundances of
taxa. Community compositional stability depends on a balance between richness and
interaction connectivity (Fig. 7), where communities may be stable either when richness
is high but connectivity is low or when richness is low but connectivity is high (54, 55).
Given that species richness did not differ between the most and least stable communi-
ties (data not shown), if the number of interactions increases, the community will be
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more likely to be unstable (54, 55). Destabilization in highly connected networks can be
mitigated by either segmentation of the interaction network or decreasing the strength
of the interactions (55). These predictions are consistent with interaction networks
observed for the two stability levels. In this experiment, bacterial richness was nega-
tively associated with changes in bacterial composition, and compositional stability was
positively correlated with functional stability in the microcosm system. Therefore, with
a clear difference in interaction connectivity, our results strongly agree with interaction-
based predictions of compositional (and functional) stability and show how changes
in microbial interactions may alter diversity and composition, and consequentially,
ecosystem function (Fig. 7).

Identifying taxa that are associated with functional stability or promote “high” or
“low” DOC abundance is important for understanding microbial drivers of soil carbon
storage (7). At the family level, six bacterial families and two fungal families were
correlated with DOC abundance across both stability groups. Only one bacterial family
(Microbacteriaceae) showed similar relationships in both groups, while the remaining
taxa were uniquely correlated with DOC in only one stability group (Fig. 3). All of the

FIG 7 Conceptual plot summarizing how various microbial community traits may relate to functional stability. Functional stability (red to blue gradient) is linked

to a tradeoff in interaction network complexity and bacterial community diversity. In general, lower interaction complexity and higher diversity are linked to

greater interaction-based and composition-based stability, respectively (wedges along axes). The turquoise/square and yellow/circle points in the plot represent

examples of the “most” and “least” stable communities in this study. In both, community composition and legacy effects can dictate where a community falls

in this continuum (white arrows). For the “most stable” communities (yellow/circle), nitrogen availability may affect stability via interaction complexity (yellow

arrows) since N was not correlated with diversity. Diversity may affect compositional and functional stability in the “least stable” communities in particular

(turquoise arrows). A black to white gradient represents the range of possible values for interaction- and composition-based community stability components

and metabolic efficiency (DOC concentration).
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taxa correlating with DOC were present in samples from both stability groups, thus
stability-specific correlations were not a consequence of taxa being absent in one group.
This implies that some taxa are only associated with DOC under certain contexts and is
consistent with the co-abundance analysis results showing that microbial associations
with other features changed between the unique contexts of each stability group. It
is possible that some combination of these taxa directly stabilize or de-stabilize DOC
function over time. Alternatively, other factors may control DOC stability and indirectly
promote the activities of these taxa. Nevertheless, one approach to increase functional
stability when optimizing communities to modify carbon flow may be to promote the
growth of taxa that correlate with DOC abundance under the most stable conditions.
Despite differences in the correlations of key taxa between the most stable and least
stable groups, many of the taxa identified with correlation analysis were also found to be
significant determinants of overall DOC abundance by the RFINN analysis (Table S2). For
example, taxa positively correlating with DOC in either group closely matched to those
identified as determinants of high DOC across all samples (i.e., Paenibacillaceae and
Microbacteriaceae), and those negatively correlated with DOC (Rhizobiaceae) were also
identified as determinants of low DOC by RFINN, although this depended on the specific
sequence variants within the Rhizobiaceae family. Agreement between the two analysis
approaches increases confidence that these taxa are key players in regulating both DOC
stability and abundance during the early decomposition of blue grama plant litter. No
fungi were associated with either high or low DOC by the RFINN analysis, contrary to the
previous litter decomposition studies (7), but this may be a consequence of the serial
community propagation method selection against some fungi.

Community composition and ecosystem function over time

Microbial origin was key in shaping composition, and these legacy effects were stronger
than the generation (temporal) effects in this experiment. Microbial community function
converged to a predominately low DOC phenotype by the second generation, despite
a nearly threefold difference in mean DOC abundance between the original high and
low DOC cohorts during the initial generation (Fig. 1). Although bacterial commun-
ity composition shifted substantially between the first few generations, composition
was stabilized by the second generation, but microbial community composition of
these cohorts did not converge in later generations (Fig. 5). The lack of compositional
convergence suggests that legacy effects, microbial interactions, microbe–environment
feedbacks, and/or stochastic effects were important drivers of composition in this
system. This agrees with previous studies that have demonstrated strong compositional
legacy effects and functional redundancy in succession experiments (30, 56–58). This
result implies that functional convergence towards the low DOC phenotype may be
a more energetically favorable and likely outcome following multiple rounds of serial
propagation, and highlights the likelihood of alternative stable states in community
composition and functioning. An alternative outcome could have been that composi-
tion also converged in later generations; however, this would likely only be expected
under extremely harsh conditions with strong selective community filtering (59, 60).
Our data show that community structure and interactions impacted both functional
stability and the magnitude of DOC abundance, and that fragmentation of microbial
interactions was associated with more stability in DOC abundance. This could lead to
higher DOC abundance by altering a community’s ability to exploit available niches
and resources by disconnecting pathways of metabolite exchange among taxa. Shifts in
community composition following repeated assembly (propagation) events are likely to
fill empty niches and utilize available resources eventually and may explain the observed
functional convergence and why a low DOC phenotype may be favored. Functional
convergence without compositional convergence demonstrates functional redundancy
across multiple plant litter–degrading communities.

Microbiome origin and origin-by-generation interactions impacted community
composition to a greater degree than generation alone for both bacterial and fungal
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communities, and the effects were strongest in fungal communities. Biological legacy
effects have been shown to be major drivers of fungal composition at multi-year
timescales during plant litter decomposition in a field experiment (58); however, the
lack of temporal effects may also be a consequence of niche persistence, slow fungal
growth rates during the short 28-day incubation, or failure of the liquid resuspension-
inoculation method to effectively transfer some fungal taxa could lead to lower fungal
richness and dispersion during later generations. In soils, abiotic effects on bacterial
composition have been reported to be much larger than biotic origin signatures (60).
In this experiment, the repetitive dilution approach used to inoculate the microcosms
over multiple generations would have greatly reduced the carryover and influence
of disparate abiotic factors from each natural soil inoculum, especially in later gener-
ations, leaving microbiome legacy to be a primary driver of community assembly.
The addition of fresh blue grama litter in each new generation of microcosms likely
provided favorable conditions with a relatively high resource supply, allowing many
different types of microbes to thrive and explain why function, but not composition,
converged over time. When source communities are preconditioned to their new habitat,
community development is expected to be more reproducible (29, 30). Continuing
the experiment for more generations may have altered composition and/or function
over longer timeframes (58); however, higher compositional and functional stability in
later generations contradicts this possibility, and in the absence of harsh environmen-
tal conditions that might select for the survival of specific organisms, compositional
convergence would also not be expected (59, 60).

During plant litter decomposition, differences in community composition and
diversity may be important factors that predict the stability and magnitude of micro-
bial ecosystem functions (Fig. 7). Similarly, inoculum-driven differences in methane
production have been shown to persist in bioreactors operated under similar conditions
(57). In contrast, a multi-year study found that microbial origin significantly impacted
plant litter decomposition rates during the first year of the experiment, but these
effects diminished in subsequent years and microbial origin played a less important
role than environment or litter type in the long term (58). The diminishing impacts of
microbial origin as timescale increases may be due to the interaction of evolutionary and
ecological timescales, such as the presence of a time lag in environmental selection (61);
however, the duration of our study was less than 1 year, thus factors associated with
longer timescales may not have been very influential in our plant litter decomposition
system.

In the context of bioengineering, the origin of the microbial community, its overall
composition, and its individual members have a significant potential to dictate the
outcome of ecosystem function. Accounting for microbiome legacies that favor the
formation of communities with stabilizing features and features associated with the
desired function may promote the reliability of the programmed ecosystem functioning.
In our experimental system, choosing an inoculum that favors succession leading to
a less complex network of microbial interactions and high bacterial diversity is likely
to minimize compositional and functional shifts over time (Fig. 7). Managing bacterial
and fungal interactions through manipulations of nutrient availability and control of
community structure may also facilitate functional stability and high DOC abundance
in this system (Fig. 7). Although our experimental design utilized complex communi-
ties from many different soil sources, translating these findings to effectively manage
microbial communities at a field scale still poses major challenges due to additional
factors that we were able to control for in the microcosm system. Our experiment
considered communities that were inoculated into a sterile environment where they
did not encounter or interact with a resident community and were grown under stable,
controlled environmental conditions. Applying our findings to inoculate natural soil
communities with the aim of optimizing stable ecosystem functioning would likely
show different outcomes. In future work, it will be necessary to better understand how
microbial features linked to the magnitude and stability of DOC abundance (or other
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ecosystem functions) interact with factors that permit successful community coalescence
in dynamic natural environments. Alternatively, management methods that attempt to
directly optimize existing communities for features associated with stability and the
desired function may provide another path forward to engineer communities, but this
will also require further experimentation. Nevertheless, our findings provide some clarity
on features of microbial communities that may promote or destabilize DOC abundance
in complex plant litter–degrading communities, which may be useful for predicting
functional stability and carbon cycling in natural soils and informing microbial engineer-
ing strategies to optimize desired ecosystem functions.

Conclusion

Predictability of microbial community function over long timescales and repetitive
community assembly events is essential to achieve a desired stable function. In this
experiment, we assessed the stability and persistence of litter decomposer micro-
bial community composition and function. Serial propagation of high and low DOC
accumulating communities allowed us to repeatedly perturb and reassemble complex
communities to understand how composition and function changed over multiple
generations. We found that community composition and the resulting effects on
interaction networks in microbial communities explained differences in the functional
stability of plant litter–decomposing communities, and that legacy effects were also
important in determining composition and function. Our results suggest that controlling
composition and abiotic factors to limit microbial interactions could increase the stability
and reliability of DOC abundance in plant litter–decomposing communities over the
long term. Understanding these factors will provide clarity on mechanisms controlling
carbon flow in natural soil environments, and potentially allow for the optimization of
engineered communities designed to enhance carbon sequestration or perform other
desired ecosystem functions.
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Supplemental Material

FIG S1 (msystems.01220-22-s0001.tif). Experimental Design. 53 microbial communities
were inoculated into microcosms and incubated for 28 days (G0). Communities from
microcosms that produced the highest and lowest mean DOC were selected for serial
propagation. Each selected microcosm was serially propagated in duplicate for G1, then
each microcosm was directly propagated once in following generations.
FIG S2 (msystems.01220-22-s0002.tif). Pearson’s correlations between successive
generations show that ecosystem function (DOC, or CO2 accumulation) tends to
resemble that of the previous generation.
FIG S3 (msystems.01220-22-s0003.tif). Distribution of DOC and CO2 measurements by
generation.
FIG S4 (msystems.01220-22-s0004.tif). Variance component analysis showing the
contributions of soil origin and generation to the overall variance of DOC and CO2
measurements.
FIG S5 (msystems.01220-22-s0005.tif). Beta-dispersion analysis by generation or source
microbiome.
SUPPLEMENTAL FILE 1 (msystems.01220-22-s0006.txt). Python script used for
calculation of taxa-abundance networks with SparCC3.
TABLE S1 (msystems.01220-22-s0007.docx). Sampling locations of the natural soil
communities chosen for propagation following the initial generation of microcosms
TABLE S2 (msystems.01220-22-s0008.docx). RFINN prediction of DOC function with
random forest and neural-network modeling. Bacterial ASVs significantly (P < 0.05)
associated with high or low DOC accumulation identified through indicator species
analysis. RFINN did not identify fungi as major predictors of DOC function and are not
included in the table. ASVs matching to bacterial families that significantly correlated
with DOC in the ‘most stable’ and ‘least stable’ groups (Fig. 3) are shown in bold and
marked with a star (*).
TABLE S3 (msystems.01220-22-s0009.xlsx). A) Pearson correlation results for data
displayed in Fig. 2. This table displays results for correlations calculated for the “Most
Stable’ communities. Significant correlations (P < 0.05) are shaded. B) Pearson correlation
results for data displayed in Fig. 2. This table displays results for correlations calculated
for the “Least Stable’ communities. Significant correlations (P < 0.05) are shaded. C)
Bacterial Families:Bulk Measurement Pearson's correlations for the "Most Stable" cohort
of samples (Fig. 3). D) Bacterial Families:Bulk Measurement Pearson's correlations for the
"Least Stable" cohort of samples (Fig. 3). E) Fungal Families:Bulk Measurement Pearson's
correlations for the "Most Stable" cohort of samples (Fig. 3). F) Fungal Families:Bulk
Measurement Pearson's correlations for the "Least Stable" cohort of samples (Fig. 3)
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TABLE S4 (msystems.01220-22-s0010.xlsx). A) 16S (Bacterial) combined abundance and
taxonomy table. B) ITS (Fungal) combined abundance and taxonomy table. C) Experi-
mental Metadata
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