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Abstract

Structures of the magnetic field and velocity in the sun are discussed based on the
mean field MHD equations. A specia case is presented, where the solution is
constructed by the Beltrami solution in the convection zone with the symmetry in the
azimuthal direction. Magnetic field lines form concentric toroidal magnetic surfaces.
Relation of thistoroidal magnetic structure with the polarity rule of the sunspotsis
discussed. The cross-helicity dynamo mechanism induces a mean flow of plasmas. The
structure of this driven flow is also shown to constitute toroidal surfaces. Considering
the symmetry, it is shown that the latitudinal component of thisflow is pole-ward in the
northern as well as southern hemispheres. This gives an insight into the role of magnetic

field for the meridional flow in the sun.



1. Introduction

Structure of the sun, especially the magnetic and flow structure, has attracted
attentions. The progress of the helioseismology has shown a new aspect of the flow such
as the tachocline, periodic torsional oscillation and the meridiona flow, and has provided
challenges for the solar physics. [1]

The magnetic structure and flow structure in convection zone have been subject to
intensive studies in relation with the dynamo problems. (See, e.g., reviews[2-8].) The
effect of the magnetic field on the flow is reconsidered asis recently summarized [9], and
requires further studies. Besides the conventional turbulent dynamo mechanismslike
alpha- and beta dynamo (i. e., the turbulent helicity effect and turbulent resistivity), the
gamma-dynamo (turbulent cross-helicity dynamo) has been predicted [10]. Inthis
mechanism, the electromotive force is driven in proportion to the fluid vorticity. The
counterpart of this process appearsin the equation of the fluid dynamics. That is, the
turbulence force, which isin proportion to the inhomogeneous mean magnetic field,
appears when the turbulent cross-helicity does not vanish.

This mechanism is applied to the solar plasmas. One exampleisgiveninthe
problem of generation of toroidal and poloidal magnetic field in the sun and the reversal
of magnetic field. The other example discusses the relationship between the solar
magnetic activity (asis revealed as sun spots) and the torsional oscillation. In addition to
the Lorenz force model [11], the gamma-dynamo mechanism has been discussed [12].
Not only the activity of solar rotation on the surface, but aso their internal structure in the
convection zone show the similar structure of oscillating component, although their entire
pictureis not observed at high precision. It was shown that, on top of the stationary
velocity structure of the solar tachocline, the toroidal plasmaflow can be induced by the
solar magnetic field.

This article reports the possible magneto-fluid structures of the convection zone of
the sun in the presence of strong gamma-dynamo process. Possible stationary structures
are discussed, but dynamics are not treated. Based on the turbulent electromotive force, a

toroidal structure of magnetic field isexplained. Then the plasmaflow driven by this



magnetic field through the cross-hdlicity dynamo mechanismisdiscussed. It isshown
that the meridional flow can be induced by the toroidal magnetic structures. When the
magnetic field satisfies the polarity rule (i. e., the symmetry property across the equatorial
plane), the meridional flow driven by the gamma-dynamo mechanism directs pole-ward
both in the northern and southern hemispheres.

In 82, basic equations to start with are shown, together with the imposed
boundary conditions. Assumptions are introduced. Then, the formal solutions of
magnetic field and the flow structures are obtained in a spherical geometry. In 83, the
solutions are shown and the structures of the magnetic field and flow velocity are
illustrated. Implications of the solution are discussed. In thefinal section, summary and

discussions are given.

2. Basic equations

One way to explain the meridiona flow is based on the Eddington-Sweet
mechanism [13] which is caused by the temperature gradient of the latitudinal direction.
(Such acaseisdiscussed in the Appendix A.) Wein thisarticle study arole of coupling
between the magnetic field and flow. In order to study this mechanism, we assume, for
the transparency of the argument, that the barochrinicity isignored and the thermal wind
balance holds. The basic equations we start with are the mean-field MHD equationsin

the following [14], i.e.,

% +aaXJ_Uin :_((;))2 + 2(u X mF)i + (J X B)I +aaxj(— Rl]) +VV2ui , (1)

inthe frame rotating with angular velocity g , and the induction equation

§=VX(uxB+ET)+nvzs. #)

where the turbulent electromotive force and Reynolds stress are given as
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Er =(UxB)=0B-pJ+y(w+2w), (3)

R =y BB - - (w22, +VT(E{'+W _VML_u__).

Here, Eq.(1) isthe global flow equation in the presence of microscopic MHD turbulence,

u istherdative velocity in the rotation frame, p isthe pressure per unit mass with
effects of microscopic pressure fluctuation included, B isthe magnetic field,
J (= V x B) istheelectric current, v isthe kinematic viscosity, and 7 isthe magnetic

diffusivity. These equations are given in the Alfven unit, where the magnetic field is

normalizedto y/ugp andismeasuredin m/s ( p isthe massdensity). Quantitieswith
prime (') indicate the fluctuating elements. Turbulent transport coefficients are defined as
a :Ca<—u’ VXU +B'-Vx B’>1:C B=Cg <%u’2+%8’z>rc ,
y=C, <U/ : B,>Tc , v =CuB, vu =Cpy,

where T isthe correlation time of turbulence, and C,, , Cg, C,, C,, andC, g ae
positive numerical coefficients, details of which aregivenin[7]. Equation (3) illustrates
the conventional o -dynamo (helicity dynamo),  -dynamo (turbulent resistivity), and the
Y -dynamo (cross-hdlicity dynamo). Note that the symbol v indicates the cross-hedlicity

dynamo in this article, and does not denote the anti-symmetric part of o whichisusedin,

e.g., [2]. Thegradient of the mass-weighted pressure appearsin Eq.(1) asatota
derivative Vp . Mean field dynamical equations have been studied in rotating system

(e.g., [19]), and thismodel of mean field equations is consistent with the line of thoughts
in[15].



In order to obtain the possible solution with a global structure, we consider the
case where the turbulent viscosity is large enough in comparison with the molecular
viscosity, and the resistive diffusion of the magnetic field is neglected. For the
transparency of the argument, the stationary solution dB/dt =0 for the case of constant
dynamo coefficients of (a, B, v) is considered. Under this circumstance, substitution of
Eqg. (3) into Eq. (2) givestherelation

B

E=Vx(u><B+aB—/3J+y(m+2m,:)). 5)

We areinterested in the case of u // B, and employ the approximation of dropping

ux B. Thevelocity fields are separated into two categories. The former isthe flow
velocity Ug which exists without the induction by the magnetic field. The other isthe
response of the flow velocity U owing to the appearance of the dynamo magnetic field.
Properties of flowsin the sun has been reviewed in [16]. We, inthisarticle, are
interested in and study the latter flow. The quasi-stationary sate of B may occur through

the condition
1
J =E(aB+y(m+2mF)). (6)
We substitute Eq. (6) into Eq. (1). We take the curl of the resulting equation, and have
the equation of the velocity which is driven by the magnetic field as

0w —
ot V %

Z(U —EB)X(DF+VTV2(U —EB)) . (7)

The source of the torque vtV 2(y/ B) B in Eq.(7) isthe counterpart of they -related term
in the right-hand side (RHS) of Eq. (5). (Note that other type of solutions, withu L B -
components, also are able to exist. We focus here to the specia solutionsof u// B . The

structure obtained here shows analytic insight to the problem asis discussed later in this

article.) It has been well known that the turbulent transport coefficient o is quenched, in

comparison with the evaluation based on the kinematic evaluation, by the generated mean

magnetic field [6]. Itis possible that the turbulent viscosity v isaso quenched by the



generated mean magnetic field. Inthisarticle, we assume that the quenching rate of v

(for given generated mean magnetic field) is not stronger than the quenching of o .

Under these assumptions and conditions, the solutions which satisfy

oaB —pJ +y(u)+2(o|:)20 (8a)

and

B (8b)

==

are searched for. From Eq.(8) and therelationJ =V x B |, we have

_ 2y
V x B—%uﬁB— kuﬁm': (99)
where
I Y)2
qu_B—Bu_(1—(B) )B (9b)

The homogeneous solution of Eq.(9) leads to the Beltrami solution of
(B, J, u, u)) ,

-

V x
uP

(10)

gcuw
Ecuw

Inhomogeneous solutions are obtained accordingly, and the solution of our interest is
shown after introducing the spherical coordinates.

In order to obtain the typical structures, we introduce the spherical coordinates
(r, 0, C) , Where 6 =0 corresponds to the rotation axis, and the coordinates are shown in



Fig.1. The symmetry isimposed on the T -direction (toroidal direction, or latitudinal
direction) /0T =10,
In the beginning, we seek for the homogeneous solutions. Taking the rotation of

Eq.(9a), we readily obtain

(0]

2
MB) B=0. (11)

VZB +(

Thetoroidal (longitudinal) component of the magnetic field B satisfies

2
10(24d 1 9 (snadp. | 1L I .
r26r(r ar BC)+r29ne 86(5‘”686 BC) r23inzeBC+(Mﬁ) Pz

(12)

General solutionsfor B¢, and By are formally written in terms of the n-th order

spherical Bessall functions (j, and ny, ) and the associated L egendre function of P,(,m) as

B(r,0)= Z (anj )+ bnnn(y)>Pr(,1)(cos 0) (133)

B, 9):_;\(3[32 an(nj;(ZY)_J'n+y1<Y))+bn(nnyn2(YJ_nnerl(Y)) P,Ql)(cose)

(13b)

8.1, 0] Z (anj )+ bnnn<y>>y_l (28?3569 PiY cos6) - P2 cos 6)) (130)

where

o, (13d)



Theflow velocities, | Uy, Ug, Uz | , are also given by using Eq.(8b) and Eq.(13).
o

Thorough description of the representation in terms of spherical harmonics has been
discussed in, e.g., [17].)

Inhomogeneous solution of B, namely, the toroidal field BioC , comes from the

rigid rotation and is given in aform of toroidal (longitudinal) magnetic field by

Y oshizawa[18]. Taking into account of the screening effect A, here, aformisgiven
2y .
BCO:TUB(DFrSne, (14&)
and Ugq isalso obtained as

Uzo = (v/B) Bro . (14b)

Thetotal fieldsare given as Byg; = B + Bl and Uy = U + Ugol |, respectively.

3. Possible solutions for toroidal structure
L et us analyze possible magnetic and associated flow structures based on the
solutionsin 82. Here, plausible boundary conditions aswell as the constraints are given,

and the solutions are illustrated.

3.1 Magnetic torus
3.1.1 Toroidal structure

We here choose the lower order structure of poloidal harmonicsn (n= 1) which
is even from the up-down symmetry. (That is, the form of toroidal structure is symmetric
with respect to the equatoria plane. The up-down symmetry of the sign of the magnetic
field isdiscussed later.) The boundary conditioninradiusis given at the lower and upper

boundaries, r =, andr =rq;: . Onthese surfaces, the radial magnetic field vanishes.

[Note that this condition is chosen for the case that the Taylor number is not very high.



In the limit of the large Taylor number, structures are expected to become homogeneous
in the z-direction. If thisisthe case, the boundary condition is given in terms of the

cylindrical radiusr inFig.1] (The solution whichisregular at the center,r =0, is

discussed in the Appendix B.)
Interms of thevariabley of Eq.(13d), the boundary conditions are given at

Yin= 0t /AyB) Tin and You =t /A B T ot . Thecondition Be[r, 8)=0 ar=r;, and

[ =Tou Vields
inl Yin)n Yout) = in Yout el Yin) = O . (159)
and
3;‘?‘: = rrfl": . (15b)

This eigenvalue equation (15) provides a series of solutions, even if the poloidal mode

number N is chosen. (For instance, Yqut = 3.46m, 6.73w, 10.04 - - - - forn=2 and
lin/ out = 0.7 .) The eigenvalueis chosen here as the minimum eigenvalue which
satisfies EQ.(15). The plausibility argument for thisis given later in conjunction with the

guenching of the dynamo coefficients[6]. (Seethe note[19].) Oncethe eigenvalue
(yi m yout) is obtained, the magnetic field solution is given (putting

by ==inYin) "7 Y Yin) @ into Eq.(13) as

By(r.0)=a, jn(y)—r.] v )nn(y) P,(ll)(cose)+iw,:rsin6 (164)

AB

ST njyngy) inedly)_ , :((yyi;)) (nnyg(y) s 1(y)) H—

(16b)



B/(r,0)=ay jny(,y) —Jrii::g;:f;/ ) 22080 p|1) cos ) - P|2) cos )

(16c)

Now the coefficient a,, represents the magnitude of the magnetic field of the
homogeneous sol ution.
The result Eq.(16) shows that the magnetic field lines congtitute concentric

toroidal surfaces. Theradial and poloidal magnetic field is expressed as

B 21 R

r|_| résing d0

= (17)
(Be) TTEAL

wherey =1 sin8B;. |, and B 1, isthelongitudinal component of the homogeneous

solution of the magnetic field. Theradial and poloidal components of magnetic surface

satisfy the relation

[Br.Bg) V1w =0, (18)

where V | representsthe derivative in radial and poloidal directions. Thus, y isthe
stream function (flux function) of the magnetic field. The contour of 1 represents the
cross-section of the toroidal magnetic surface. The cross-sections of the toroidal
magnetic surfaces are shown in Fig.2. The lowest order number N =2 represents the
solution (shown in Fig.(2a), in which the toroidal structure extends from the equator to
the pole, and the one magnetic axis exists in both of the northern and southern
hemispheres, respectively. The case of N =4 stands for the case that apair of tori is
sustained in both the northern and southern hemispheres (fig.2b). Two magnetic axes
appear in both the hemispheres. In this casethe eigenvalue Yot 1S given as,

Yout = 3.73, 6.88m, 10,147 - - - - for I/ gy =0.7 .

10



3.1.2 Magnetic field in lower-latitude region

We here discuss the polarity of the magnetic field. Noting the fact that the
turbulent resigtivity B isascalar quantity but the turbulent helicity . and turbulent cross-

hlicity Y are pseudo-scalar, theratios o/ and y/f change the sign under the mirror

transformation. Thus, we take that o/ and y/B have the property of anti-symmetry
across the equatorial plane. Equation (16a) showsthat B change sign between the

upper and lower hemisphere. (So istheradial component of the magnetic field.) The
poloidal magnetic field (magnetic field component in the longitudinal direction) hasthe
same sign across the equatorial plane. Figure 3 illustrates the polarity of the magnetic
field on the magnetic surface. In the case of Fig. 3, therotationa transform of the
magnetic field is chosen to be right-handed in the northern-hemisphere. Then, it isleft-
handed in the southern-hemisphere. The sign of the toroidal magnetic field is opposite,
but the sign of the latitudinal magnetic field is common.

Thisresult of the sign of the rotational transform is related to the polarity rule of
the sunspot. The observations of the sunspots have shown that (i) the sign of the
(toroidal) magnetic field is opposite between the northern and southern hemisphere. (ii)
In addition to it, the latitudinal location of a pair of sunspots shows an inclination with
respect to the latitude. That is, asis shown in Fig.4, the eastern sunspot is at the lower
latitude (i.e., closer to the equatoria plane) compared to the western sunspot. (iii) This
property aso holds for the southern hemisphere. (iv) When a magnetic flux tube deviates
from the toroidal magnetic surface (owing to certain instabilities, which are not specified
here), the flux tube retains the memory of the rotational transform of the magnetic
surface. Thus, the magnetic rotational transform in the Fig.3 naturally induces the
latitudinal inclination of the pair of sunspots on the solar surface. The sign of the
magnetic field in Fig.3 corresponds to the one in the right figure of Fig.4. If the magnetic
field changesthe sign in Fig.3, then the resultant sunspots are inclined as the left figure of

Fig.4.
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Before closing this subsection, we note the possible quenching effect of dynamo
coefficients owing to the induced magnetic field. The magnitude of the magnetic field is

simultaneously determined from the global structure. Let us consider the case that the

large values are given for ratios o/f and y/P in the kinematic theory of dynamo. That is,
from Eq.(15a), alarge number of radial nodes are allowed in betweenrj, and g, for
these values. Asthe generated magnetic field increases, the dynamo coefficient o is
known to be quenched

o= bl
1+RyB2v~2"

(19)

where a.g isthe estimate in the kinematic model, Ry is the magnetic Reynolds number

and V2 isacharacteristic mean square velocity [6]. Thereduction of o indicatesthat the

eigenvalue (yi n yout) takes the minimum value when the growth of the magnetic field is

saturated. The eigenvalue (yi ns yout) determines the magnitude of the magnetic field.

The coefficient B is quenched dower than o [6, 20]. Therefore, the ratio of
mean dynamo coefficientsa / B becomes smaller when the magnitude of the mean
magnetic field increases. Asisshown in Eq.(13), the scale length in the real spaceisin
proportion to p/a , the reduction of o/ means that the scale of the generated mean field
becomes larger as the magnetic field becomes stronger. Accepting this consideration, we
conclude that the radia scale of the toroidal structure becomes larger as the magnetic field
becomes stronger. Therefore, the requirement, that the minimum of Y;j,, isselected from
Eq.(15), determines the magnitude of the magnetic field.

It isnot yet concluded whether the coefficient vy andy are quenched slower than
o . Thepossibility of the quenching of v isinvestigated, suggesting a slower quench

than o . Thisissue will be discussed in a separate article [21].

3.1.3 Magnetic field in higher-latitude region
Observation of the magnetic field has shown that the magnetic field has different

property in the higher latitude region. The projection of the poloidal (latitudinal) and

12



toroidal (longitudinal) magnetic field on the surface isillustrated in Fig.5(a). This
indicates that the magnetic field in the higher-latitudinal region is attributed to the second
torus which has an opposite helicity in comparison with the fundamental torusin the
lower latitudinal region. For instance, the toroidal magnetic field in the lower-latitudinal

region of the upper hemisphereis right-handed for the case of Fig.3. (The helix of
magnetic field lineis right-handed, i.e., B¢ isin the same direction as

V x (Brr + Beé) .) Thetoroidal magnetic structure in the higher-latitudinal regionis

|eft-handed.
A pair of toroidal magnetic structure can be imbedded in a hemisphere asis
illustrated in Fig.2(b). The change of helicity (i.e., right-handed in the lower-latitude

torus and left-handed for the higher-latitude torus) occurs when the sign of the coefficient

o isdifferent. Thatis, o ispogtivein thelower-latitudina region and is negativein the

higher-latitudinal region. The difference of the sign of o is plausible owing to the

geometrical consideration. The temperature gradient is perpendicular to the rotation axis
in the lower-latitudinal region, and is paralldl to the rotation axisin the higher latitudinal
region. Thisleadsto the difference in the turbulent convection asis discussed in [22].
The dependence of the coefficient o on the poloidal angle has also been discussed in
literature, e.g., [23, 24]. Figure 5(b) indicates the pair of torus and direction of magnetic
field in the upper hemisphere corresponding to the case of Fig.3. The magnetic field in
the southern hemisphere has a parity relation in comparison with the northern
hemisphere. Theright (Ieft)-handed torusis transformed into the left (right)-handed
torus, respectively asis shown in Fig.6(a). When the direction of the magnetic field is
changed (with the period of 22 years), the structure of magnetic field is shown in
Fig.6(b).

3.2 Induced flow with toroidal structure
Equation (8b), u = (y/[i) B , shows that the induced flow, which is driven by

gamma-dynamo effect, has the same pattern asthe toroidal magnetic field. The stream

function of the flow constitutes the concentric toroidal surfaces.
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The flow velocity, which isinduced by the gamma-dynamo effect, is parallel to
the magnetic field line. However, the direction of the flow is different from the magnetic
field asisillustrated in Fig.6. The symmetry property of the magnetic field reflects the

symmetry of the flow pattern. First, the relation of apair of torusin the northern

hemisphere is considered. In the main torus (lower-latitude torus), ¥ is chosen positive.
In the second torus, the sign of o isreversed. In addition, the direction of the magnetic
field isreversed, compared to the main torus. Therefore the coefficient Y recoversthe

positive sign. Thusthe coefficient y remains positive in the northern hemisphere. This

leads to the conclusion that the flow that is driven by the cross-helicity dynamo has the
same direction as the magnetic field in the northern hemisphere when the magnetic field
takesthe sign of Fig.6(a). That is, the poloidal flow (latitudinal flow) velocity istowards
the pole, but the toroidal flow (longitudina flow) velocity changes sign between the
lower-latitude and higher latitude regions. The cross-helicity dynamo process drive a
toroidal flow. Therefore, the meridional flow closesitself on atorus. The poloida flow
is connected to the radial flow. The other property of the flow isthat direction of the
radial flow changes near the latitude where the toroidal flow changesits sign.

Next, the flow velocity in the southern hemisphereis considered. According to
the parity consideration, the coefficient y has an opposite sign in the southern
hemisphere. The flow velocity isindicated in Fig.7(a). Thetoroidal flow is symmetric
across the equatorial plane, but the latitudinal flow is anti-symmetric. That is, the
poloidal flow (latitudinal flow) directs to the north pole in the northern hemisphere, and to
the south pole in the southern hemisphere. The meridional flows are pole-ward in both
hemispheres. This solution naturally reveals the meridional flow. The direction of the
magnetic field changes associated with the solar magnetic cycle.

The case, where the sign of the magnetic field is changes, isillustrated in
Fig.7(b). Owing to the change of the sign of the cross-helicity, the direction of the
induced flow with respect to the magnetic field isreversed. Asaresult of this change, the

flow velocity keepsthe same direction. 1n both phases of the positive and negative

14



magnetic field, the latitudinal component of the induced flow is pole-wards in the
northern and southern hemispheres.

It isinteresting to note that the plasma current J and the flow vorticity ® arealso

paralel to the magnetic field, and the proportionality coefficients between them are
/A and o/f , respectively:

- Y
u=5B
B (229)
J:7\.JB >\.J :Ot/ﬁ}\.u (22b)
o=\,B Ay =Ahg=alp (22c)

The whole structures of B, J, U, ® are simultaneously determined from this particular

mechanism. And the strengths are determined by the balance between ., f,and y .

4. Summary

In thisarticle, the toroidal structure of the magnetic field and velocity in the sun
was discussed in the case that the cross-helicity dynamo (gamma-dynamo) processis
present. The mean field dynamo equations are solved in the convection zone. A special
case is presented, where the solution is constructed by the Beltrami solution in the
spherical coordinates with the symmetry in the longitudinal direction. Magnetic field lines
were shown to form toroidal magnetic surfaces. Multiple toroidal magnetic surfaces,
which are concentric, constitute atorus. Solution with two magnetic axesin the northern
hemisphere (and in the solution hemisphere as well) was presented. The cross-helicity
dynamo mechanism induces amean flow of plasmas. The structure of this driven flow
was also analyzed. Theflow is parallel to the magnetic field line, and constitute toroidal
surfaces. Considering the parity with respect to the equatorial plane, it was shown that
the latitudinal component of the flow, which is driven by the cross-helicity dynamo, is

pole-ward in the northern as well as southern hemispheres. This gives one possible

15



explanation for the meridional flow in the sun. The toroidal flow (longitudinal flow),
which isdriven by the cross-helicity dynamo changes its sign between the lower
latitudinal region and the higher-latitudinal region. The sign of the torsional oscillation
differs between the lower and higher latitudinal regions. This difference may be attributed
to the dependence of toroida flow velocity on the latitude. The other property of the
predicted flow isthat direction of theradial flow changes near the latitude where the
toroidal flow changesitssign. This might be able to examine in a near future.

The coupling between the magnetic field and flow has been discussed. In the
vorticity equation, the rate of vorticity change hastheterm like V x vV Z(U -yB/ [:’)) .

One way to reduce this term is to quench the coefficient vt by the mean magnetic field.
Thisisthe Q -quenching mechanism [25]. In thisarticle, the elimination of the difference
u—vB/p was studied in the context of the cross-helicity dynamo mechanisms.
Therefore, these two mechanisms are not mutually exclusive.

Thisway of thinking provides additional insightsinto the solar physics. The

relation with the polarity rule of the sunspot is discussed. In addition, the toroidal
magnetic structure occupies alarge portion of the plasma, the toroidal surfaces arein the
equilibrium under the gravity. [If only athin tube is magnetized, this tube may be subject
to buoyancy motion and will be carried to the surface where the dynamo effect may be
weak.] The stability of the established toroidal magnetic field structure is an important
issue for future studies. For instance, a small resistivity can lead to the deviation of the
magnetic field from the Beltrami solution. The deviation can cause instabilities, which
then tend to restore the Taylor state [26]. The occurrence of small-scale symmetry-
breaking perturbation at the edge of the torus has been observed on laboratory plasmas, a
characteristic example of which was known as edge |ocalized modes (ELMs) [27].
Future study of such MHD instabilities of the possible solar toroidal magnetic structure
will enrich the understanding of the origin of sunspots. There are other solutions of the
higher order n -th poloidal eigenmode structures. Higher n-components are included in
the solution if the realistic boundary condition in the sun isfulfilled. However, in this

paper we focus upon indicating a prototypical solution which can explain the flows

16



towards the Arctic and Antarctic poles from the equator. More realistic solutions with
precise boundary conditions are left for future work.

In brief, the essence of the argument presented here is that turbulence cross-
helicity (<\7 : 3> , Which appearsiny ) and mean potential vorticity (m + Zmp) may
conspire to produce large scale magneto-fluid Beltrami structures (i.e., field-aligned
flows) in stellar convection zones. While such structures are of possible relevance to the
sun - aswe discuss - they are of much greater potential interest in the context of young,
rapidly rotating stars (Y RRS), which have rotation periods of (at most) 1-2 days. YRRS
exhibit several features which appear consistent with the sense of the discussion
presented above. Convective YRRS exhibit both fast rotation and heightened magnetic

activity, the latter increasing with rotation rate [28]. Y RRS exhibit 'star spot’
photospheric filling factorsf  as high as 30-50%, in dramatic contrast to the case of the

sun (f <1%)[29]. YRRS also seem to be slightly larger than expected, according to

standard stellar structure theory, and to exhibit concomitantly higher photospheric
temperatures [30]. Thus, the internal magnetic field of YRRS may be strong enough to
directly impact the spatiotemporal structure of their convective heat transport process. In
addition, star spots are of general utility as photospheric flow 'marker particles, and the
large spot filling factor should facilitate improved spatial resolution. 1t may thus be
possible to map photospheric meridiona flowsin YRRS in the near future. Existing
observations indicate that spots migrate toward the polar regions, again in contrast to the
sun. In summary, then, YRRS combine large potential vorticity, convective turbulence,
enhanced magnetic activity, and non-trivial meridional flow structure, al of which are
linked by the theory presented in this paper. It seems quite reasonable, then, to speculate
that such YRRS are prime candidates for manifesting the global magneto-fluid structures

discussed in this paper. We will explore this speculation in future research.
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Appendix A: Hydrodynamic picture for meridional flows

The cause of the meridional flow has been considered, within aframework of the
hydrodynamics, to be that the rotation frequency wg depends on (r, 8) : u),:( r 6) , hot
wp(rc) . (Herer refersto the cylindrical radius, and (FC, G Z) constitute the cylindrical
coordinates, see Fig.1) Alternatively put, dwg/ 0z= 0 , so that the sunisnot in a Taylor-
Proudman state. Asaresult, the equilibrium condition from EQ.(7) is rewritten
(neglecting gamma-dynamo effects) as

%:VX —VTP"'ZUX(DF'FVTVZU (Al)

where p : mass density , P : total pressure.

Further smplification is used as

Vp_ _ VT (A2)

o T

where 6T denotes the temperature variation away from adiabatic relation. [In case of

perfect adiabatic stratification, Vp xVP =0 and Vp xVT =0 hold.] When the
hydrostatic balance in the radial direction, i.e., VP = pg , issatisfied (g isthe

gravitational acceleration, g = gr ), the equation
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d
Q08T POF_ 4 (\ 92y)=0 3

gives the balance relation for the poloidal flow.

Note that the relation

g 98T _, O0f
T a0 ¢ oz (A4)

has been known as the thermal wind balance. According to the hydrodynamics, the
poloidal flow (meridional flow) isinduced if the therma wind balanceisviolated. Inthe
sun, the rotation frequency is observed that €2 islarger at the equator than at high
latitudes. So that

800,@

97 < 0 (A5)

holds. Thefirst term,% term, actsin opposite direction if

9 98T
T a0 <0 (A6)
i.e., the pole must be warmer and the equator cooler. [9, 13]

The discussion in the main text corresponds to the case of perfect adiabatic

stratification, and the flow is driven by the gamma-dynamo process.

Appendix B: Solution which is regular at the center.
The maininterest of thisarticle isthe study of toroidal structure in a shelluar
domain such as convective zone. Recently, aproposal of the magnetic field in the central

core of the sun has been given [31]. The domain where the magnetic field is generated is
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considered to include the center. Then toroidal structure, if it exists, issingular at the

center. Insuch acase, the toroidal solution isgiven as

Be(r,6)=ayjq(y) P&l)(cose)+ (Bla)
_ o iy iy (1)
By(r, 0)= 2 o 2y Pitcos6) + (B1b)
B/r.0)=a; 113(/)’) (2;,':3898 PV cos6) - P{2cos 6)) +.+ (Blc)
where + - - - indicates the higher harmonics. The eilgenvalue condition isgiven at a

radius where the radial magnetic field vanishes.

This solution has a dipole component asin [31], but has atopology of atorus. It
isforce free, so that the globa magnetic energy which is associated with the mean
magnetic field takesa (local) minimum. Therefore it is more stable in comparison with

the solution with a pure dipole magnetic field.

20



References

[1] See, e. g., for introductory monograph, Lang, K. R. 2001, The Cambridge
Encyclopedia of the Sun (Cambridge: Cambridge University Press)

[2] Moffat H K, Magnetic field generation in el ectrically conduncting fluids (Cambridge
University Press, Cambridge 1978)

[3] Krause F and Raedler K-H 1980, Mean Field Electrodynamics and Dynamo Theory
(Pregamon Press 1980).

[4] Priest, E. R. 1982, Solar Magnetohydrodynamics (Dordrecht: Reidel)

[5] Parker, E. N. 1993, ApJ, 408, 707

[6] Diamond, P. H., D. W. Hughes and E.-J. Kim: "Self-consistent mean field
electrodynamics in two and three dimensions' in The Fluid Mechanics of Astrophysics
and Geophysics eds. A. M. Soward, C. A. Jones, D. W. Hughes and N. O. Weiss,
(CRC Press, London, 2004) Vol 12, 145

[7] Yoshizawa, A, Itoh, S. -I., Itoh, K., & Yokoi, N. 2004, Plasma Phys. Contr.
Fusion, 46, R25

[8] Shibahashi, H. 2002, J. Plasma Fusion Res., 78 497

[9] H. Shibahashi: "Solar cycle variations of the internal structure and dynamics’, in
Proceedings IAU Symposium No. 223, 2004 (A.V. Stepanov, E.E. Benevolenskaya &
A.G. Kosovichev, eds, 2004 International Astronomical Union)

[10] Yoshizawa, A. 1990, Phys. Fluids, B 2, 1589

[11] Yoshimura, H. 1981 Ap.J. 247, 1102-1112.

[12] Itoh S, et al. 2005 Astrophys. J. 618 1044

[13] Sweet P A, 1950 M.N.R.A.S. 110 548

[14] Yoshizawa, A., Itoh, S. -I., & Itoh, K. 2003, Plasma and Fluid Turbulence: Theory
and Modelling (Bristol: Institute of Physics)

[15] Rudiger R and Kitchatinov L L 1990 A& A 236 503

[16] Thompson M J, Christensen-Dalsgaard J, Miesch M S, Toomre J 2003 Annu.
Rev. Astrophys. 41 599

[17] Yoshimura, H. 1972 Ap. J. 178, 863

21



[18] Yoshizawa, A., Kato, H., & Yokoi, N. 2000, ApJ, 537, 1039

[19] Thisisalso related to the consideration of minimum principle. Under the
circumstance of the fully developed MHD turbulence, the final state is conjectured as the
minimum energy state for given helicity (J. B. Taylor state). (See: J. B. Taylor: Rev.
Modern Phys. 58 (1986) 741.) If thisis so, the radial node numbers tend to decrease.
At this moment, it is not clear whether the final stateis completely free from other
constraints. For instance, if the Taylor number is high, then the constraints of the Taylor-
Proudman theorem may prohibit the accessto the J. B. Taylor state. Thus, we do not
require the minimum principle of magnetic energy for given magnetic helicity, but accept

the smallest eigenvalue from Eq.(15).

[20] Gruzinov A V and Diamond P H 1994 Phys. Rev. Lett. 72 1651

[21] Diamonf PH, Itoh SI and Itoh K, 2005 "Zeldovich theorem for cross-helicity and
momentum transport in 2D MHD", paper in preparation

[22] F. H. Busse: Chaos 4 123 (1994).

[23] Rudiger R and Brandenbrug A 1995 A& A 296 557

[24] Covass E, Tavakol R, Moss D 2001 A&A 371718

[25] Kitchatinov L L, Rudiger R and Kueker M 1994 A& A 292 125

[26] J. B. Taylor: Rev. Modern Phys. 58 (1986) 741

[27] S-I. Itoh, K. Itoh, H. Zushi, A. Fukuyama.: Plasma Phys. Contr. Fusion 40
(1998) 879

[28] Donati JF, et a. 2003 M. N. R. A. S. 345 1145

[29] O'Nea D, Neff JE, Saar SH 1998 ApJ 507 919

[30] BanesJR, eta.2004 M. N. R. A. S. 352 589

[31] D. O. Gough, M. E. McIntyre Nature 394 (1998) 755

22



r
'c
0
0
>
@) equitorial plane
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Fig.2 Cross-sections of the toroidal magnetic structure in the convective zone. The case
of n=2 (@ andn=4 (b).
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Fig.3 Schematic view of toroidal flux surfaces: onein the northern hemisphere and the
other in the southern hemisphere.

Fig.4 Polarity rule of the sunspot. With the period of 22 years, the state like left and that
like right appears periodicaly. (From [12])
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@ (b)

Fig.5 Observed magnetic field direction on the surface of northern hemisphereis shown

by dotted linesin (a). A pair of tori with opposite helicity in the northern hemisphere.

@ (b)

Fig.6 Schematic drawing of the toroidal magnetic field. (a9 and (b) illustrates the two

phases of opposite sign of magnetic field.
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@ (b)

Fig.7 Schematic drawing of the toroidal magnetic and flow structures. Black arrow
indicates the magnetic field and the red arrows indicate the flow velocity. The case of the
sign of the magnetic field in the case of Fig.3 isshown in (). (b) shows the case when
the sign of the magnetic field is reversed, owing to the solar magnetic cycle. In both
cases, the poloidal flow which is driven by the cross-helicity dynamo is pole-ward.
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