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Taking Full Advantage of Multiuser Diversity in

Mobile Ad Hoc Networks

Renato M. de Moraes, Member, IEEE, Hamid R. Sadjadpour, Senior Member, IEEE,

and J.J. Garcia-Luna-Aceves, Fellow Member, IEEE

Abstract

Multiuser diversity has been shown to increase the throughput of mobile ad hoc wireless networks (MANETs)

when compared to fixed wireless networks. This paper addresses a multiuser diversity strategy that permits one of

multiple one-time relays to deliver a packet to its destination. We show that the Θ(1) throughput of the original

single one-time relay strategy is preserved by our multi-copy technique. The reason behind achieving the same

asymptotic throughput is the fact that, as we demonstrate in this paper, interference for communicating among

closest neighbors is bounded for different channel path losses, even when n goes to infinity. We show that a

significant delay reduction is possible by multi-copy relaying when n is finite. Furthermore, we find that the

average delay and delay variance for both the one and multi-copy relay strategies scale like Θ(n) and Θ(n2),

respectively. We derive an approximation of the delay for multi-copy forwarding scheme and demonstrate that this

approximation is very close to simulation results in MANET systems.

Index Terms

Ad hoc network, delay, interference, mobility, multiuser diversity, network capacity, statistics.

I. INTRODUCTION

There has been a considerable effort [1], [2], [3] [4], [5], [6], [7] on trying to increase the performance

of wireless ad hoc networks since Gupta and Kumar [8] showed that the capacity of a fixed wireless
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network decreases as the number of nodes increases when all the nodes share a common wireless channel.

Grossglauser and Tse [1] presented a two-phase packet relaying (forwarding) technique for mobile ad hoc

networks (MANETs) based on multiuser diversity [9], such that a source node transmits a packet to the

nearest neighbor and that relay delivers the packet to the destination when this destination becomes the

closest neighbor of the relay. This scheme was shown [1] to attain Θ(1)

1 source-destination throughput

when n tends to infinity. However, the delay experienced by packets under this strategy was shown to

be large and it can be infinite for a fixed number of nodes (n) in the system, which has prompted more

recent work presenting analysis of capacity and delay tradeoffs [6], [7], [10], [11], [12].

This paper introduces and analyzes an improved two-phase packet forwarding strategy for MANETs

that attains the Θ(1) capacity of the basic scheme by Grossglauser and Tse [1], but provides better delay

behavior than the single-copy technique. Our main objective is to decrease the delay incurred by the

packet to reach its destination in steady-state2 while maintaining the capacity of the network at the same

order of magnitude from that attained by Grossglauser and Tse [1]. Our basic idea is to give a copy of the

packet to multiple one-time relay nodes that are within the transmission range of the sender. By doing so,

the time within which a copy of the packet reaches its destination can be decreased. The first one-time

relay node that is close enough to the destination delivers the packet.

We find an enormous reduction in delay by having a packet more than one possible random route to the

destination. Our approach is analogous to the problem in which Mitzenmacher [13] showed that a small

amount of choices can lead to drastically different result in randomized load balancing. More specifically,

having just two random choices yields an exponential reduction in maximum loading over having one

choice, while each additional choice beyond two decreases the maximum load by just a constant factor.

In our case, by multi-copy forwarding a packet and having only the fastest copy being delivered, it is

analogous to having the packet taking one of the shortest random path to the destination from multiple

random routes (or choices).

An interesting feature of the multi-copy relaying approach is that the additional relaying nodes carrying

that same copy of the packet can be used as backups to protect against node failures, which improves the
1Here we use the Knuth’s notation: (a) f(n) = O(g(n)) means there are positive constants c and k, such that 0 ∑ f(n) ∑ cg(n) 8

n ∏ k. (b) f(n) = Θ(g(n)) means there are positive constants c
1

, c
2

, and k, such that 0 ∑ c
1

g(n) ∑ f(n) ∑ c
2

g(n) 8 n ∏ k.
2That is, after averaging over all possible starting random network topologies so that transient behaviors are removed.
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reliability of the network [14].

Another contribution of this paper consists of an analytical model for interference calculation, which

permits us to obtain the signal-to-interference ratio (SIR) measured by a receiver node at any point in

the network. We show that the receiver SIR tends to a constant if it communicates with close neighbors

when the path loss parameter Æ is greater than two, regardless of the position of the node in the network.

These results are consistent with all previous works, except that earlier works have only considered the

receiver node located at the center of the network [15], [16], [17].

The remaining of the paper is organized as follows. Section II summarizes the network model used in

the past to analyze the capacity of MANETs [1]. Section III explains our multi-copy packet forwarding

strategy. Section IV presents the number of feasible receiving nodes around a sender. Section V presents

the interference analysis. Section VI shows that the new relaying scheme attains the same capacity order

of magnitude as the original two-phase scheme proposed by Grossglauser and Tse [1]. Section VII shows

the delay reduction resulting from our forwarding strategy and presents theoretical and simulation results.

Section VIII concludes the paper summarizing our main ideas and briefly discusses future work.

II. NETWORK MODEL

The network model we assume is the one introduced by Grossglauser and Tse [1]. The network consists

of a normalized unit area disk containing n mobile nodes and to simplify the analysis, we consider that

communication among all nodes are synchronized. The nodes are assumed to be uniformly distributed

on the disk at the beginning, and there is no preferential direction of movement. We consider that

communication occurs only among those nodes that are close enough, so that interference caused by

other nodes is low, allowing reliable communication. The position of node i at time t is indicated by

X

i

(t).

Nodes are assumed to move according to the uniform mobility model [7]. In this model, the nodes

are initially uniformly distributed, and move at a constant speed v with the directions of motion being

independent and identically distributed (iid) with uniform distribution in the range [0, 2º). As time passes,

each node chooses a direction uniformly from [0, 2º) and moves in that direction at speed v for a distance

z, where z is an exponential random variable with mean µ. The process repeats after reaching z. This

model satisfies the following properties [7]:
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• At any time t, the positions of nodes are independent of each other.

• The steady-state distribution of the mobile nodes is uniform.

• Conditional on the position of a node, the direction of the node movement is uniformly distributed

in [0, 2º).

At each time step, a scheduler 3 decides which nodes are senders, relays, or destinations, in such a

manner that the source-destination association does not change with time. Each node can be a source for

one session and a destination for another session. Packets are assumed to have header information for

scheduling and identification purposes.

Suppose that source i has data for a certain destination d(i) at time t. Because nodes i and d(i) can

have direct communication only 1/n of the time on the average, a relay strategy is required to deliver

data to d(i) via relay nodes. We assume that each packet is relayed at most once.

At time t, node j is capable of receiving at a given rate of W bits/sec from i if [1], [8]

P

i

(t)g

ij

(t)

N

0

+

1

M

X

k 6=i

P

k

(t)g

kj

(t)

| {z }

I

=

P

i

(t)g

ij

(t)

N

0

+

1

M

I

∏ Ø, (1)

where P

i

(t) is the transmitting power of node i, g
ij

(t) is the channel path gain from node i to j, Ø is the

signal to noise and interference ratio level necessary for reliable communication, N

0

is the noise power,

M is the processing gain of the system, and I is the total interference at node j. The channel path gain

is assumed to be a function of the distance only, so that [1], [8]

g

ij

(t) =

1

|X
i

(t)°X

j

(t)|Æ =

1

r

Æ

ij

(t)

, (2)

where Æ is the path loss parameter, and r

ij

(t) is the distance between i and j.

Given that the interference coming from other nodes is generally much greater than the noise power for

narrowband communication, the denominator in (1) is dominated by the interference factor. In addition,

we assume that no processing gain is used, i.e., M = 1, and that P

i

= P 8i. Then, combining (1) and

(2) yields the Signal-to-Interference Ratio (SIR)

SIR =

P

r

Æ

ij

I

=

P

r

Æ

ij

·I ∏ Ø . (3)

3Note that the scheduling can be implemented in a distributed fashion by having each node randomly and independently deciding whether

it wants to be a sender or a potential receiver at each time instant [1].
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We will determine an equation relating the total interference measured by a receiver communicating with

a neighbor node as a function of the number of total nodes n in the network. More precisely, we want

to obtain an expression for (3) as a function of n, calculate the asymptotic value of the SIR as n goes to

infinity, and verify that communication among close neighbors is still feasible.

III. MULTI-COPY ONE-TIME RELAYING

Grossglauser and Tse [1] consider a single-copy forwarding scheme consisting of two phases. Packet

transmissions from sources to relays (or destinations) occur during Phase 1, and packet transmissions from

relays (or sources) to destinations happen during Phase 2. Both phases occur concurrently, but Phase 2 has

absolute priority in all scheduled sender-receiver pairs. We extend this scheme to allow multiple copies,

as described below.

A. Packet Forwarding Scheme

We allow more than one relay node to receive a copy of the same packet during Phase 1. Thus, the

chance that a copy of this packet reaches its destination in a shorter time is increased, compared to using

only one relay node as in [1]. Also, if for some reason a relaying node fails to deliver the packet when

it is within the transmission range of the destination, the packet can be delivered when another relaying

node carrying a copy of the same packet approaches the destination.

In Fig. 1(a), three copies of the same packet are received by adjacent relay nodes j, p, and k during

Phase 1. All such relays are located within a distance r

o

from sender i. At a future time t, in Phase 2,

node j reaches the destination before the other relays and delivers the packet. Note that relay node j need

not be the closest node to the source during Phase 1.

B. Enforcing One-Copy Delivery

There are several ways in which the delivery of more than one copy of the same packet to a destination

can be prevented. For example, each packet can be assigned a sequence number (SN) [10]. Before a

packet is delivered to its destination, a relay-destination handshake can be established to verify that the

destination has not received a copy of the same packet and to inform the relay to delete a packet copy

that has already been delivered.
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Fig. 1(b) depicts the situation in which node j finds the destination node d(i) first and delivers the

packet. The other copies are dropped from the queues at p and k at a later time after handshaking

with destinations, and only one node out of the three potential relays actually delivers the packet to the

destination.

To ascertain if this multi-copy relaying strategy provides any advantages over the single-copy strategy

proposed by Grossglauser and Tse [1], we need to answer two questions: a) How many nodes around a

sender can successfully receive copies of the same packet? b) What is the delay d

K

for the new packet

transmission scheme compared to the delay d in the single-copy strategy [1] when the network is in

steady-state?

Because we address the network capacity for any embodiment of the multi-copy relaying strategy, we

assume in the rest of this paper that the overhead of the relay-destination handshake is negligible.

IV. FEASIBLE NUMBER OF RECEIVERS IN Phase 1 AND CELL DEFINITION

A fraction of the total number of nodes n in the network, n

S

, is chosen randomly by the scheduler

as senders, while the remaining nodes, n

R

, operate as possible receiving nodes [1]. A sender density

parameter µ is defined as n

S

= µn, where µ 2 (0,1), and n

R

= (1 ° µ)n. In the proposed multi-copy

relay strategy each sender transmits to all the nodes in the feasible transmission range, these additional

packet copies follow different random routes and find the destination earlier compared to the single-copy

strategy of Grossglauser and Tse [1].

If the density of nodes in the disk is

Ω =

n

total area

=

n

1

= n, (4)

then, for a uniform distribution of nodes, the radius for one sender node is given by

1 = µΩºr

2

o

= µnºr

2

o

=) r

o

=

1p
µnº

. (5)

Thus, the radius r

o

defines a cell (radius range) around a sender.

Assuming a uniform node distribution, the average number of receiving nodes within r

o

, called K, is

K = n

R

ºr

2

o

=

1

µ

° 1, (6)
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which is a function of µ and does not depend on n. The main idea behind the multi-copy scheme stems

from the fact that µ can be smaller than 0.5 and, consequently, there is more than one relay available

for many senders for any sender node on average. Grossglauser and Tse [1] showed that the maximum

capacity is obtained for µ < 0.5 (for Æ ∑ 4), so that we can have K > 1 and be very close to the

maximum capacity, as shown later. Note that (6) provides a benchmark to choose a value for K based

on µ. However, the actual number of receiving nodes, called K, for each sender node varies.

Referring to the recent work by El Gamal et al. [11], each cell in our strategy has area a(n) =

1

n

S

=

1

µ n

.

By applying random occupancy theory [18, Chapter 3], the fraction of cells containing L senders and K

receivers is obtained by

P{senders = L, receivers = K} = P{senders = L}P{receivers = K | senders = L}

=

0

B

@

n

L

1

C

A

≥

1

n

S

¥

L

≥

1° 1

n

S

¥

n°L

0

B

@

n°L

k

1

C

A

≥

1

n

S

¥

K

≥

1° 1

n

S

¥

n°L°K

=

0

B

@

n

L

1

C

A

°

1

µ n

¢

L

°

1° 1

µ n

¢

n°L

0

B

@

n°L

K

1

C

A

°

1

µ n

¢

K

°

1° 1

µ n

¢

n°L°K

. (7)

Given that we are interested in very large values for n, and using the limit
°

1° 1

x

¢

x °! e

°1 as x!1,

we have the following result for n >> L,K

P{senders = L, receivers = K} º n

L

L!

°

1

µn

¢

L

h

°

1° 1

µn

¢

µn

i

1/(µ)

n

K

K!

°

1

µn

¢

K

h

°

1° 1

µn

¢

µn

i

1/(µ)

º 1

L!

°

1

µ

¢

L

e

°1/µ

1

K!

°

1

µ

¢

K

e

°1/µ

. (8)

For example, for L = 1, K ∏ 2, and µ =

1

3

, we have that the fraction of the cells containing one sender

and at least two receivers equals 1

µ

e

°1/µ

(1° e

°1/µ° 1

µ

e

°1/µ

) º 0.12. Therefore, for K ∏ 2, approximately

12% of the cells can forward packets using multi-copy scheme in Phase 1.

In addition, for µ =

1

3

, we have that the fraction of the cells having one sender and one receiver

equals (

1

µ

e

°1/µ

)

2 º 0.02. In this case, we assume that the scheduler does not select these cells for packet

transmission, because the delivery delay incurred can be significantly high, as we show subsequently.

The maximum number of nodes in any cell is Θ(

log(n)

log(log(n

µ

))

) with high probability (whp)4 [18, Chapter

3]. Thus, whp, K ∑ c

4

log(n)

log(log(n

µ

))

<< n for some constant c

4

> 0.
4With high probability means with probability ∏ 1° c3

n

[18].
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The feasibility that all of those K nodes successfully receive the same packet in the presence of

interference is the subject of the next section.

V. INTERFERENCE ANALYSIS

In the previous section, we obtained the fraction of cells that has one sender surrounded by K ∏ 2

receiving nodes within r

o

, assuming a uniform distribution of nodes. Suppose that one of the K receiving

nodes is at the maximum neighborhood distance r

o

in any of these cells. We want to know how the SIR

measured by this receiver behaves as the number of total nodes in the network (and therefore the number

of total interferers) goes to infinity.

For a packet to be successfully received, (3) must be satisfied. Consider a receiver at any location in the

network during a given time t. Its distance from the center r

0 is shown in Fig. 2, where 0 ∑ r

0 ∑ 1p
º

° r

o

.

Let us assume that the sender is at distance r

o

from this receiver and transmitting at constant power P ,

so that the power measured by the receiver P

R

is given by

P

R

=

P

r

Æ

o

. (9)

To obtain the interference at the receiver caused by all transmitting nodes in the disk, let us consider a

differential element area rdrd∞ that is distant r units from the receiver (see Fig. 2). Because the nodes are

uniformly distributed in the disk, the transmitting nodes inside this differential element of area generate

the following amount of interference5 at the receiver

dI =

P

r

Æ

µ Ω r dr d∞ =

P

r

Æ°1

µ n dr d∞. (10)

A. The case Æ > 2

For some propagation models [19, p. 139, Table 4.2], the path loss parameter is modeled to be always

greater than two, i.e., Æ > 2. The total interference at the receiver located at distance r

0 from the center

with total of n nodes in the network is obtained by integrating (10) over all the disk area. Hence,

I

r

0
(n)=

Z

disk

dI =

Z

2º

0

Z

r

m

(r

0
,∞)

r

o

P

r

Æ°1

µndrd∞ = Pµn

Z

2º

0

r

2°Æ

2°Æ

Ø

Ø

Ø

r

m

(r

0
,∞)

r

o

d∞ =

Pµn

Æ°2

Z

2º

0

n

1

r

Æ°2

o

° 1

[r

m

(r

0
,∞)]

Æ°2

o

d∞. (11)

5Because the nodes are considered to be uniformly distributed in the disk and n grows to infinity, we approximate the sum in (1) by an

integral.
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r

m

is the maximum radius that r can have and is a function of the location r

0 and the angle ∞. To find

this function, we can use the boundary disk curve (or circumference) equation expressed as a function of

the x-axis and y-axis shown in Fig. 2, i.e.,

x

2

+ y

2

=

≥

1p
º

¥

2

. (12)

Define x = x

0
+ r

0, x

0
= r

m

cos∞, and y = r

m

sin∞, then (12) becomes

(r

m

cos∞ + r

0
)

2

+ (r

m

sin∞)

2

=

≥

1p
º

¥

2

=) r

m

(r

0
, ∞) =

q

1

º

° (r

0
sin∞)

2 ° r

0
cos∞ . (13)

Substituting this result in (11) we obtain

I

r

0
(n) =

2 P µ n

Æ°2

h

º

r

Æ°2

o

° f

Æ

(r

0
)

i

, (14)

where

f

Æ

(r

0
) =

Z

º

0

d∞p
1

º

°(r

0
sin∞)

2°r

0
cos∞

Æ°2

(15)

is a constant for a given position r

0. For the case in which Æ = 4, (15) reduces to

f

4

(r

0
) =

º

2

1°2ºr

02
+º

2

r

04 . (16)

We can obtain the SIR using (3), (5), (9), and (14) to arrive at

SIR

r

0
(n) =

P

R

I

=

Æ°2

2

· 1

1° 1

º

Æ

2

(µ n)

Æ°2

2

f

Æ

(r

0
)

=

Æ°2

2

· q
r

0
,Æ,µ

(n) , (17)

where q

r

0
,Æ,µ

(n) =

∑

1° 1

º

Æ

2

(µ n)

Æ°2

2

f

Æ

(r

0
)

∏°1

. Taking the limit as n °!1, we obtain

SIR = lim

n!1
Æ°2

2

· q
r

0
,Æ,µ

(n) =

8

>

>

>

>

<

>

>

>

>

:

Æ°2

2

· 1 if 0 ∑ r

0
<

1p
º

° r

o

Æ°2

2

· q
r

0
,Æ,µ

(n!1) if r

0
=

1p
º

° r

o

, i.e.,

the network boundary.

(18)

From (17) q

r

0
,Æ,µ

(n ! 1) = q

r

0
,Æ

(n ! 1) because µ is a scale factor on n and does not change the

limit. Thus,

q

r

0
,Æ,µ

(n!1) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

1 if 0 ∑ r

0
<

1p
º

° r

o

and Æ > 2

1.467 if r

0
=

1p
º

° r

o

and Æ = 3

1.333 if r

0
=

1p
º

° r

o

and Æ = 4

1.270 if r

0
=

1p
º

° r

o

and Æ = 5

1.232 if r

0
=

1p
º

° r

o

and Æ = 6 .

(19)
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Fig. 3 shows the SIR as a function of n for Æ = 4, µ =

1

3

, and for different values of r

0.

In addition, Figs. 3, 4, and Eqs. (18) and (19) show that the SIR remains constant when n grows to

infinity and this constant does not depend on r

0 if 0 ∑ r

0
<

1p
º

° r

o

, i.e., it is the same value for any

position of the receiver node inside the disk, whether the position is at the center, close to the boundary,

or in the middle region of the radius disk. Nevertheless, if the receiver node is at the boundary (r0 1p
º

°r

o

)

then the SIR is still a constant when n scales to infinity but it has a greater value (see Figs. 3, and 4). For

comparison purposes, Fig. 4 illustrates the SIR for 3 ∑ Æ ∑ 6 and µ =

1

3

for the receiver node located at

the center and at the boundary of the network.

Hence, by having the SIR approaching a constant value as n grows to infinity, the network designer

can properly devise the receiver (i.e., design modulation, encoding, etc.) such that (1) can be satisfied for

a given Ø, allowing reliable (feasible) communication among close neighbors during Phase 1, and also

during Phase 2 for those cells that can successfully forward packets.

B. The case Æ = 2

For the free space propagation model [19, p. 107], the path loss parameter is modeled to be equal to

two, i.e., Æ = 2. Thus, the total interference at the receiver located at distance r

0 from the center with

total n users in the network is obtained by integrating (10) over all disk area.

I

r

0
(n) =

Z

disk

dI =

Z

2º

0

Z

r

m

(r

0
,∞)

r

o

P

r

µ n dr d∞

= 2Pµn

Z

º

0

log

∑

r

m

(r

0
, ∞)

r

o

∏

d∞

= 2Pµn

Z

º

0

log

2

4

q

1

º

° (r

0
sin∞)

2 ° r

0
cos∞

r

o

3

5

d∞ . (20)

For this case, the SIR can readily be obtained by using (3), (5), (9) and (20), so that

SIR

r

0
(n) =

P

R

I

=

1

r

2

o

2µn

R

º

0

log

∑p
1

º

°(r

0
sin∞)

2°r

0
cos∞

r

o

∏

d∞

=

1

2µnr

2

o

8

<

:

Z

º

0

log

2

4

q

1

º

° (r

0
sin∞)

2 ° r

0
cos∞

r

o

3

5

d∞

9

=

;

°1

=

(

2

º

Z

º

0

log

"

≥p
ºµn

¥

√

r

1

º

° (r

0
sin∞)

2 ° r

0
cos∞

!#

d∞

)°1

. (21)
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Fig. 5 shows curves for SIR when Æ = 2 and µ =

1

3

. Although the limiting SIR tends to zero as n scales

to infinity, the decay is not fast. This result is consistent with [16].

VI. PER SOURCE-DESTINATION THROUGHPUT

We now show that the throughput per source-destination pair with our multi-copy relaying approach

remains the same order of magnitude as the original single-copy relaying scheme, which is Θ(1) [1]. In

the case of multi-copy forwarding, only one copy is delivered to the destination and the other copies are

dropped from the additional relaying nodes because the handshake between relay and destination informs

the relay that the packet has been delivered. Therefore, only one node out of K nodes actually functions

as a relay (as in Fig. 1(b)). Furthermore, El Gamal et al. [11] showed that the exact total throughput per

source-destination pair is given by the fraction of cells that successfully forward packets (i.e, the cells

that are selected by the scheduler containing feasible sender-receiver pairs). Then, for one sender and at

least K receivers per cell, we have as n!1

Λ = P{senders (L) = 1, receivers are at least K} º 1

µ

e

°1/µ

√

1°
K°1

X

k=0

1

k!

°

1

µ

¢

k

e

°1/µ

!

. (22)

Hence, for at least two receivers per cell and µ =

1

3

, Λ =

1

µ

e

°1/µ

(1° e

°1/µ ° 1

µ

e

°1/µ

) º 0.12. Therefore,

the multi-copy forwarding strategy attains the same throughput order as in [1], that is, it attains Θ(1).

Also, for at least one receiver per cell and µ =

1

3

, Λ =

1

µ

e

°1/µ

(1° e

°1/µ

) º 0.14. Hence, for the case in

which K ∏ 1, (8) and (22) give the same throughput value obtained by Tse and Grossglauser [1], as well

as Neely and Modiano [10]. The single-copy forwarding strategy [1] selects only the nearest neighbor

amongst the K potential receiver nodes.

A practical observation worth making here is that the capacity for the case of the single-copy relaying

scheme [1] can decrease when the relaying node goes out of service. Our relaying technique is more

robust, because other relaying nodes can still be in service carrying other copies and find the destination

and deliver it, functioning like backup copies.

VII. DELAY EQUATIONS

In Sections IV, V and VI, we showed that it is possible to have K feasible receivers that successfully

obtain a copy of the same packet around a sender during Phase 1. Now we find the relationship between
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the delay value d obtained for the case of only one copy relaying [1], and the new delay d

K

for K ∏ 2

copies transmitted during Phase 1 in steady-state behavior. Obviously, we have d

K

∑ d. A naive guess

would be to take d

K

=

d

K

. However, a different answer is obtained because of the random movement of

the nodes.

A. Single-Copy Forwarding Case

Because we have node trajectories independent and identically distributed, we focus on a given relay

node labeled as node 1, and without loss of generality assume that node 1 received a packet from the

source during time t

0

= 0. Let P{|X
1

(s)°X

dest

(s)| ∑ r

o

| s} denote the probability that relay node 1 at

position X

1

(s) is close enough to the destination node dest given that the time interval length is s, where

r

o

is the radius distance given by (5) so that successful delivery is possible. The time interval length s is

the delivery-delay random variable. Perevalov and Blum [6] obtained an approximation for the ensemble

average with respect to all possible uniformly-distributed starting points, (X
1

(0), X

dest

(0)), where they

considered the nodes moving on a sphere. We can extend their result to nodes moving in a circle by

projecting the sphere surface movement in the sphere equator and thus have trajectories described in a

circle and have [6]

E

U

[P{|X
1

(s)°X

dest

(s)| ∑ r

o

| s}] = 1° e

°∏s

µ

1° ∏e

°∏

s

0

h

X

0 (t)dt

Z

s

0

e

∏

t

0

h

X

0 (u)du

h

X

0
(t)dt

∂

= P{S ∑ s} = F

S

(s), (23)

where E

U

[·] means the ensemble average over all possible starting points that are uniformly distributed

on the disk. F
S

(s) can be interpreted as the cumulative density function of the delay random variable S.

The function h

X

(t) is the difference from the uniform distribution, such that h

X

(0) = 0 and |h
X

(t)| < 1

for all t, and X

0 is a point at distance r

o

from the destination. The parameter ∏ is related to the mobility

of the nodes in the disk and can be expressed by [6]

∏ =

2 r

o

v

ºR

2

=

2 r

o

v

1

= 2 r

o

v , (24)

which results from evaluating the flux of nodes entering a circle of radius r

o

during a differential time

interval considering the nodes uniformly distributed over the entire disk of unit area and traveling at

speed v. From (5), we see that the radius r

o

decreases with 1p
n

. To model a real network in which a node
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would occupy a constant area, if the network grows, the entire area must grow accordingly. Therefore,

because in our analysis we maintain the total area fixed, we must scale down the speed of the nodes [11].

Accordingly, the velocity of the nodes also must decrease with 1p
n

. Then

∏ =

1

Θ(n)

. (25)

Now, h
X

(t) is considered according to the random motion of the nodes [6]. If we consider the uniform

mobility model [7], then a steady-state uniform distribution results as the random motion of the nodes in

the disk. In such a case, h

X

(t) = 0 8 t ∏ 0. Applying this result in (23) we have

E

U

[P{|X
1

(s)°X

dest

(s)| ∑ r

o

| s}] = 1° e

°∏s

= P{S ∑ s} = F

S

(s), (26)

which has the following probability density function (see Fig. 6):

f

S

(s) =

dF

S

ds

=

8

>

<

>

:

∏e

°∏s for 0 ∑ s <1

0 otherwise.
(27)

Thus, the delay behaves exponentially with mean 1

∏

and variance 1

∏

2

for the uniform mobility model. We

conclude from (25), (26), and (27) that the average packet delivery delay is Θ(n) and its variance is

Θ(n

2

), i.e.,

E[S] =

1

∏

= Θ(n) , and V ar[S] =

1

∏

2

= Θ(n

2

). (28)

For the rest of the paper, we change s by d to indicate the delay for single-copy forwarding at Phase

1 [1]. Accordingly,

E

U

[P{|X
1

(s)°X

dest

(s)| ∑ r

o

| s=d}]=1° e

°∏d

, (29)

for a uniform steady-state distribution resulting from the random motion of the nodes.

Also, from (26) and (27), we have that the delay values are not bounded as a consequence of the tail of

the exponential distribution even if the number of total nodes in the network n is finite! Thus, the packet

delivery time can be infinitely long for some packets, even though its average value is limited by (28)

and n is finite.
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B. Multi-Copy Forwarding Case

Now consider that K copies of the same packet were successfully received by adjacent relaying nodes

during Phase 1 (where 1 < K << n). Let P
D

(s) be the probability of having the first (and only) delivery

of the packet at time interval length s. Hence, given that only one-copy delivery is enforced (see Section

III-B), and all K relays are looking for the destination, we have that

P
D

(s) = P
(

K

[

i=1

[|X
i

(s)°X

dest

(s)| ∑ r

o

| s]

)

. (30)

Using the union bound and considering that P
D

(s) can be at most equal to 1, we obtain

P
D

(s) ∑ min

"

K

X

i=1

P{|X
i

(s)°X

dest

(s)| ∑ r

o

| s}, 1
#

, (31)

in which (26) holds for each individual relay i, because all the K nodes have independent and identically

distributed movements and therefore, we can use the results in [6] for a single relay. However, when we

attempt to compute the probabilities of multiple relays, given that all these nodes start moving from the

same area to search for destination (within a circle of radius r

o

), their probability distributions are not

mutually exclusive. If the time necessary for all these nodes to uniformly spread in the disk is equal

to t

spread

, then in general, t

spread

= Θ(

p
n) because each node has a spreed v = Θ(

1p
n

). However, as

we will show subsequently that the maximum delay d

max

K

= Θ(n) given that K << n whp. Therefore,

t

spread

<< d

max

K

for large values of n, and consequently we can approximate all K probabilities using

(26). This approximation for (31) results in

P
D

(s) ∑ min [K · P{|X
1

(s)°X

dest

(s)| ∑ r

o

| s}, 1] . (32)

Furthermore, (32) describes two cases. The first case is when P
D

(s) is less than 1, and the second case

is when the union bound is greater than 1. Obviously, we can derive a meaningful relationship between

d

K

and d only for the first case and that is the basis of our remaining analysis. From (26) and (32) and

changing s by d

K

6 to indicate the delay for K-copies forwarded during Phase 1, we have for the uniform

mobility model,

E

U

[P
D

(s)] = E

U

"

P
(

K

[

i=1

[|X
i

(s)°X

dest

(s)| ∑ r

o

| s = d

K

]

)#

= P{D
K

∑ d

K

} = F

D

K

(d

K

) º K

°

1° e

°∏d

K

¢

, (33)
6To be more accurate, we should use d̃

K

instead of d
K

for the rest of the paper, because of the approximation. In order to make the paper

easy to read, we will continue to use the same notation for simplicity.
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for a uniform steady-state distribution resulting from the random motion of the nodes. The exact com-

putation of P
D

(s) for d

K

is a tedious task, instead, we assume that the upper bound probability can

be achieved while this is simply an approximation. We make this assumption to find an approximate

relationship between d

K

and d and then by using computer simulation for MANETs given in Section

VII-D, we show that this approximation follows the asymptotic behavior of d

K

reasonably well. F
D

K

(d

K

)

can be interpreted as the cumulative density function of the delay random variable D

K

for K copies being

transmitted during Phase 1.

We see From (33) that the maximum value attained by D

K

is given when

F

D

K

(d

max

K

)=1ºK

°

1°e

°∏d

max

K

¢

=)d

max

K

º 1

∏

log

°

K

K°1

¢

. (34)

This result reveals that, for a finite n, the new delay obtained by multi-copy forwarding is bounded by

d

max

K

after ensemble averaging over all possible starting points that are uniformly distributed on the disk.

On the other hand, our analysis of the relationship between d

K

and d is based on the fact that d
K

< d

max

K

,

otherwise, the cumulative density function is equal to one.

From (25) and (34), and because K << n whp, d

max

K

grows to infinity and no bounded delay is

guaranteed if n scales to infinity.

The probability density function for D

K

is (see Fig. 6)

f

D

K

(d

K

) =

dF

D

K

dd

K

º

8

>

<

>

:

K∏e

°∏d

K for 0 ∑ d

K

∑ d

max

K

0 otherwise.
(35)

Hence, in the multi-copy forwarding scheme the tail of the exponential delay distribution is cut off, and

the average delay for K-copies forwarding is then given by

E[D

K

] =

Z 1

0

d

K

f

D

K

(d

K

)dd

K

º
Z

d

max

K

0

d

K

K∏e

°∏d

Kdd

K

º 1

∏

h

1° log

°

K

K°1

¢

K°1

i

, (36)

and the delay variance is

V ar[D

K

] = E[D

2

K

]° (E[D

K

])

2 º 1

∏

2

n

1°K(K ° 1)

£

log

°

K

K°1

¢§

2

o

. (37)

Because K << n whp, we conclude that the average delay and variance for any K are fractions of
1

∏

and 1

∏

2

, respectively, and they also scale like Θ(n) and Θ(n

2

). Note that d

K

and ∏ scale to infinity
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and zero like n and 1

n

, respectively. Thus, ∏d

K

which appears in (34) and (35) is not a function of n.

Nevertheless, the number of nodes does not scale to infinity in real MANETs, and for a fixed n we can

obtain significant average and variance delay reductions for small values of K compared to the single-copy

relay scheme, as it is shown in Table I. For example, if K = 2 a reduction of more than 69% over the

average delay is obtained (i.e., for single-copy Mean= 1

∏

, for multi-copy (K = 2) Mean= 0.307

∏

). Observe

also that the mean and variance values decrease when K increases, i.e., the dispersion from the mean

delay is significantly diminished.

C. Relationship between Delays

We showed that the throughput of our multi-copy scheme is the same order as the one-copy scheme

[1]. Indeed, we showed that Λ º 0.14 for single-copy and Λ º 0.12 for multi-copy (K > 1), for µ =

1

3

.

This capacity is proportional to the probability of a packet reaching the destination. Hence, because

only one copy of the packet is actually delivered to the destination for single-copy or multi-copy, their

total probabilities can be approximated at their respective delivery time, i.e.,

P
(

K

[

i=1

[|X
i

(s)°X

dest

(s)| ∑ r

o

| s = d

K

]

)

º P{|X
1

(s)°X

dest

(s)| ∑ r

o

| s = d}, (38)

and so their ensemble averages are

E

U

"

P
(

K

[

i=1

[|X
i

(s)°X

dest

(s)| ∑ r

o

| s = d

K

]

)#

º E

U

[P{|X
1

(s)°X

dest

(s)| ∑ r

o

| s = d}] , (39)

whose solution must be obtained by substituting (23) (for s = d

K

and s = d respectively) on both sides of

(39) and solving for d

K

for the particular model of random motion of nodes. For a steady-state uniform

distribution for the motion of the nodes, a simplified solution is obtained by substituting (29) and (33) in

(39), i.e.,

K

°

1° e

°∏d

K

¢

º 1° e

°∏d

. (40)

Solving for d

K

we have

d

K

º 1

∏

log

≥

K

K°1+e

°∏d

¥

. (41)

This last equation reveals some properties for the strategy of transmitting multiple copies of a packet

during Phase 1. If K = 1, then obviously d

K

= d. If we let d !1, n be finite, and because K << n,
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then we have

d

max

K

º lim

d!1
1

∏

log

≥

K

K°1+e

°∏d

¥

=

1

∏

log

°

K

K°1

¢ if K > 1

= c

5

. (42)

This is the same asymptotic value already predicted by (34). The last column of Table I shows values

of this asymptotic delay for the single-copy and multi-copy (2 ∑ K ∑ 4) cases, expressed as a function

of the mobility parameter ∏, obtained from (42) (or (34)) for a finite number of nodes n.

Fig. 7 shows curves for (41), where ∏ was taken to be equal to 0.0052. The case of single-copy (K = 1)

is also plotted. Except for the case of single-copy, the delay d

K

tends to a constant value as d increases.

Hence, for a finite n, the multi-copy relay scheme can reduce a delay of hours in the single-copy relay

scheme to a few minutes or even a few seconds, depending on the network parameter values. Fig. 7 also

shows that, having a packet two random routes to reach its destination, produces an exponential reduction

in delay compared to having only one random route, whereas having three (or more) random routes leads

only to incremental improvements from having two random routes [13].

D. Simulation Results

Equation (32) and all the results derived from it simply approximate the behavior of the delay d

K

. In

order to demonstrate if this approximation and the associated results are justified, we have simulated a

MANET with 1000 nodes. Our simulations compare the behavior of our multi-copy packet forwarding

strategy with the single-relay strategy. We used the BonnMotion simulator [20], which creates mobility

scenarios that can be used to study MANET characteristics.

We implemented the random waypoint mobility model [21], [22] for the random motion of the nodes

(as it resembles the uniform mobility model [7]). In this model, nodes are initially randomly distributed

in the network area. A node begins its movement by remaining in a certain position for some fixed time,

called pause time distributed according to some random variable, and when the pause time expires the

node chooses a random destination point in the network area and begins to move toward that point with

a constant speed uniformly distributed over [v
min

, v

max

], where v

min

and v

max

stands for minimum and

maximum velocity, respectively. Upon arrival at the destination, the node pauses again according to the

pause-time random variable and the process repeats. Nodes move independently of each other.
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We implemented the simplified version of the random waypoint mobility model, where no pause was

used and v

min

= v

max

= v in our simulations. Fig. 7 shows the averaged pairs of points (d, d

K

) obtained

for K = 2 and K = 4 for 1000 seconds of simulations for n = 1000 nodes, v = 0.13 m/s, r

o

= 0.02 m,

and a unit area disk as the simulation area, which results ∏ = 0.0052. To obtain a solution close to the

steady-state behavior, we ran 40 random topologies and averaged them as follows. In each run we choose

randomly a node with K = 2 and K = 4 neighbors within r

o

, respectively, and measured the time that

each of these K nodes reached each of the other n°K nodes in the disk (i.e., except the sender and its

other K ° 1 neighbors) considering each of them as a destination. The delay of the sender’s nearest node

reaching each destination is d by definition, and d

K

is the minimum time among all the K nodes that

reach the destination. We see that the averaged random waypoint mobility curves follow the steady-state

uniform distribution predicted by the theory. Note that they do not match exactly each other, because they

are slightly different mobility models and our delay analysis for multi-copy forwarding scheme is only

an approximation.

VIII. CONCLUSIONS

We have analyzed delay issues for two packet forwarding strategies, namely, the single-copy two-phase

scheme advocated by Grossglauser and Tse [1], and a multi-copy two-phase forwarding technique. We

found that in both schemes the average delay and variance scale like Θ(n) and Θ(n

2

) for n total nodes in

a mobile wireless ad hoc network. In the case of multi-copy relaying, multiuser diversity is preserved by

allowing one-time relaying of packets and by delivering only the copy of the packet carried by the node

that first reaches the destination close enough so that it successfully delivers the packet. The handshake

phase with the destination lasts a negligible amount of time and prevents the delivery of multiple copies

of the same packet to the destination, and it allows the additional nodes carrying the packet copy already

delivered to drop it from their queues. We also show that our technique does not change the order of

the magnitude of the throughput in the MANET compared to the original multiuser diversity scheme by

Grossglauser and Tse [1].

We showed that our multi-copy strategy can reduce the average delay value by more than 69% of that

attained in the single-copy strategy for a finite number n of total nodes in the network. The multi-copy
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technique also has an advantage of presenting bounded delay for a finite n, after ensemble averaging with

regard to all possible starting uniform distribution of the nodes in the disk. Theoretical and simulations

results were presented. This paper did not report exact delay analysis for the new scheme due to the

complicated behavior of probabilities related to multi-copy forwarding, however, as it can be seen from

the simulations, the approximation for delay analysis is consistent with simulation results. Since the multi-

copy forwarding scheme can reduce the delay significantly in MANETs, it is important to analyze the

behavior of the delay exactly. Our analysis did not provide such solution and future work can concentrate

on computing exact equation for the delay.

Lastly, we have analyzed the interference effects for a large number of nodes n in the network. We

showed that the signal-to-interference ratio for a receiver node communicating with a close neighbor tends

to a constant as n scales to infinity, when the path loss parameter Æ is greater than two, regardless of the

position of the receiver node in the network. Therefore, communication is feasible for close neighbors

when the number of interferers scale to infinity. For the receiver nodes at the boundary of the network,

we showed that, as expected, they experience less interference than those inside.
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TABLE I

AVERAGE DELAY AND VARIANCE FOR SINGLE-COPY [1] AND MULTI-COPY (1 < K << n) TRANSMISSION OBTAINED FROM (28), (36),

(37), AND RESPECTIVE ASYMPTOTIC DELAY VALUES dmax

K

FROM (34) (OR (42)), FOR FINITE n.

Copies Mean Variance dmax

K

Single-copy 1

∏

1

∏

2 1

K = 2 0.307 1

∏

0.039 1

∏

2
log(2)

∏

K = 3 0.189 1

∏

0.014 1

∏

2
log(3/2)

∏

K = 4 0.137 1

∏

0.007 1

∏

2
log(4/3)

∏
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Fig. 1. (a) Three packet copies transmission at Phase 1. Node j is the first to find the destination, and delivers the packet at Phase 2.

The movement of all the remaining nodes in the disk is not shown for simplicity. (b) The other copies are deleted later after p and k nodes

handshake with destination d(i).
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Fig. 2. Snapshot of the unit area disk at a given time t. At this time, the receiver node being analyzed is located at r0 from the center

while the sender is at distance r
o

from the receiver node.
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Fig. 3. Signal-to-Interference Ratio curves as a function of n for Æ = 4 and µ = 1

3

, for the receiver node located at different positions in

the network.
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Fig. 4. Signal-to-Interference Ratio curves as a function of n, for 3 ∑ Æ ∑ 6 and µ = 1

3

, and the receiver node considered located at the

center and at the boundary of the network.
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Fig. 5. Signal-to-Interference Ratio curves as a function of n for Æ = 2 and µ = 1

3

, for the receiver node located at different positions in

the network cell.
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Fig. 6. Delay probability density functions for single-copy and K = 2, when ∏ = 0.0052, for the network in steady-state.



26

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

d (sec)

d K
 (s

ec
)

Theoretical (uniform mobility), K=2
Simulation (random waypoint mobility), K=2
Theoretical (uniform mobility), K=4
Simulation (random waypoint mobility), K=4
Identity line (K=1)

Fig. 7. Theoretical and simulation results for the uniform mobility model and random waypoint mobility model, respectively, for K = 2

and K = 4, with ∏ = 0.0052. For simulations, the delay measured is averaged over 40 random topologies.




