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ABSTRACT OF THE DISSERTATION 

 

Predicting Argentine Ant (Linepithema humile) Invasions at Multiple Spatial Scales: The 

Relative Importance of Abiotic and Biotic Factors 

 

by 

 

Sean B. Menke 

 

Doctor of Philosophy in Biology 

 

University of California, San Diego, 2007 

 

Professor David Holway, Chair 

 

A prominent and unresolved question in ecology concerns why communities 

differ in their susceptibility to invasion. A complete knowledge of this issue will only 

result from an understanding of how biotic interactions and abiotic suitability interact 

with one another and change in importance across spatial scales. Factors important in 

determining the spread of invasive species at the community scale, such as local 

environmental conditions and biotic resistance, may be completely different from the 

factors that determine occurrence at the regional or global scale.  

 xi



   

Argentine ants (Linepithema humile) are an ecologically and economically 

damaging species that have been spread globally. Strongly competitive species such as 

this, are predicted to be more limited by abiotic than by biotic factors, but this prediction 

has rarely been tested. In Chapter 1 I use manipulative field experiments to demonstrate 

that abiotic factors (elevated soil moisture levels) increased both the abundance of 

Argentine ants and their ability to invade native ant communities. Using a factorial field 

experiment, in Chapter 2 I show that biotic resistance from native ants was unimportant 

and abiotic factors were preeminent in determining invasion success. Interestingly, an 

analysis of similar variables at the landscape scale revealed that Argentine ant occurrence 

was not correlated with precipitation. Through the application of predictive distribution 

models for Argentine ants across southern California, I demonstrate in Chapter 3 that 

insufficient sampling of environmental parameters leads to incorrect predictions of their 

distribution. Also, in multiple variable models, environmental variables differed in their 

relative importance across regions and spatial grain. 

The results of this dissertation are of general interest for several reasons. First, 

they demonstrate that fine-scale differences in the physical environment can eclipse 

biotic resistance from native competitors in determining community susceptibility to 

invasion. Second, this research illustrates surprising complexities with respect to how the 

abiotic factors limiting invasion success change in importance with spatial scale.  Lastly, 

my results suggest that it is essential to account for the sufficiency of sampling when 

creating predictive distribution models and that it is important to use variables that are 

meaningful with respect to the spatial resolution of the data being analyzed.

 xii



   

 

 

 

 

 

Chapter 1 

 

 

Abiotic factors control invasion by Argentine ants at the community scale
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Chapter 1, in full, is a reprint of the material as it appears in Menke, S.B. and D.A. 

Holway.  2006.  Abiotic factors control invasion by Argentine ants at the community 

scale.  Journal of Animal Ecology, 75:368-376.  The dissertation author was the primary 

investigator and author of this paper. 

  



   

 

 

 

 

 

Chapter 2 

 

 

Biotic and abiotic controls of Argentine ant invasion success at local and landscape scales
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Abstract. Although the ecological success of introduced species hinges on biotic 

interactions and physical conditions, few experimental studies – especially on animals – 

have simultaneously investigated the relative importance of both types of factors. The 

lack of such research may stem from the common assumption that native and introduced 

species exhibit similar environmental tolerances. Here we combine experimental and 

spatial modeling approaches 1) to determine the relative importance of biotic and abiotic 

controls of Argentine ant (Linepithema humile) invasion success, 2) to examine how the 

importance of these factors changes with spatial scale in southern California, and 3) to 

assess how Argentine ants differ from native ants in their environmental tolerances. A 

factorial field experiment that combined native ant removal with irrigation revealed that 

Argentine ants failed to invade any dry plots (even those lacking native ants) but readily 

invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated 

plots but did not prevent invasion. In areas without Argentine ants, native ant species 

showed variable responses to irrigation. At the landscape scale Argentine ant occurrence 

was positively correlated with minimum winter temperature (but not precipitation), 

whereas native ant diversity increased with precipitation and was negatively correlated 

with minimum winter temperature. These results are of interest for several reasons. First, 

they demonstrate that fine-scale differences in the physical environment can eclipse 

biotic resistance from native competitors in determining community susceptibility to 

invasion. Second, our results illustrate surprising complexities with respect to how the 

abiotic factors limiting invasion can change with spatial scale, and third, how native and 

invasive species can differ in their responses to the physical environment. Idiosyncratic 
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and scale-dependent processes complicate attempts to forecast where introduced species 

will occur and how their range limits may shift as a result of climate change. 

Introduction 

A central goal of invasion biology is to predict where introduced species will 

occur. Progress towards this goal requires an understanding of what factors limit invasion 

success and how they change in importance with spatial scale. As with range limits in 

general, two broad categories of factors affect where introduced species will occur: the 

physical environment (Moyle and Light 1996, Blackburn and Duncan 2001, Gabriel et al. 

2001) and species interactions (Simberloff and Von Holle 1999, Stachowicz et al. 1999, 

Torchin et al. 2003). Because the outcomes of species interactions hinge on the 

environment in which they occur, it is essential to quantify how biotic and abiotic factors 

interact to influence spread and establishment of introduced species. Surprisingly, few 

experimental studies have tested the relative importance of species interactions and 

physical conditions in determining the distribution of introduced species (but see 

D'Antonio 1993, Byers 2002, Dethier and Hacker 2005).  

A second major challenge in invasion biology, as in ecology generally, lies in 

understanding how factors that control species distribution change in importance with 

spatial scale (Levin 1992, Levine and D'Antonio 1999). For example, correlations 

between native and introduced species diversity may commonly reverse in sign with 

increasing spatial scale. Negative relationships between diversity and invasibility are 

often predicted at the community scale, while positive relationships are often reported at 

larger spatial scales (Shea and Chesson 2002). Both relationships are predicated on the 

assumption that native and introduced species closely resemble one another with respect 
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to their resource requirements and environmental tolerances (Levine and D'Antonio 

1999). But what about cases where invaders and natives differ? The existence of such 

differences may commonly result from the fact that invasive species originate in regions 

often unlike those where they are introduced. For example, introduced species that are 

strong competitors may, by definition, be more limited by physical conditions than by 

interspecific competition from native species (Moyle and Light 1996, Holway et al. 

2002b). If such introduced species also differ from natives in their environmental 

tolerances, then the factors that control native diversity may not be the same as those that 

determine invader abundance, and the relationship between diversity and invasibility may 

be weak irrespective of scale. Such cases are highly important: strongly competitive 

invasive species would be expected to cause large effects on the communities they 

invade. 

Given present concerns about introduced species and controversies surrounding 

why they are successful, studies that test the relative importance of species interactions 

and abiotic factors across different spatial scales are needed to further our understanding 

of controls on introduced species occurrence. It is also important to assess the extent to 

which the factors that determine occurrence of introduced species are the same as those 

that influence native diversity. Here we use a combination of experimental and analytical 

approaches to test the relative importance of biotic and abiotic factors in determining the 

local and regional occurrence of Argentine ants (Linepithema humile). At the community 

scale we conduct a series of field manipulations (1) to gauge the relative importance of 

interspecific competition from native ants and the abiotic environment in determining 

invasion success, and (2) to determine if native ants and Argentine ants respond similarly 
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to key physical conditions. To complement these community-level experiments, we use 

GIS-based approaches to examine patterns of occurrence at the landscape-scale: (1) to 

test if the environmental variables that determine invader occurrence at the community 

scale are also important at the landscape scale, and (2) if the environmental correlates of 

native species diversity are the same as those that determine introduced species 

occurrence. As recent reviews attest (Herben et al. 2004, Levine et al. 2004), most 

empirical studies in this area of research involve plants with few manipulative 

experiments that address animal invasions (but see Petren and Case 1998, Byers 2002). 

For these reasons, our study represents a novel test of hypotheses concerning community 

susceptibility to invasion. 

Methods 

Study system 

The Argentine ant is a widespread, abundant, and ecologically damaging invasive 

species (Holway et al. 2002a). Although common in urban and agricultural environments, 

L. humile readily invades natural habitats (Suarez et al. 2001), where it displaces many 

native ants (Ward 1987, Human and Gordon 1996, Holway 1998a, Suarez et al. 1998). 

Local extinctions of native ant species resulting from Argentine ant invasions may 

negatively affect species that interact strongly with native ants (Bolger et al. 2000, 

Laakkonen et al. 2001, Fisher et al. 2002, Carney et al. 2003). Argentine ants are easily 

introduced into new areas because they often associate with humans, exhibit general 

nesting and dietary requirements, and maintain colonies with numerous queens (Newell 

and Barber 1913). In part because of these characteristics, human-mediated introductions 

are the predominate mode of spread in this species (Suarez et al. 2001).  
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Native to northern Argentina and surrounding regions (Tsutsui et al. 2001, Wild 

2004), L. humile now occurs worldwide in areas with suitable climates and is particularly 

successful in Mediterranean-type ecosystems (Suarez et al. 2001). At a global scale this 

species appears to be limited by cold winter and high summer temperatures (Roura-

Pascual et al. 2004, Hartley et al. 2006). Temperature and precipitation determine the 

temperature-humidity envelope influencing the surface activity of ants at small spatial 

scales. Accordingly, the environmental tolerances of the Argentine ant (Schilman et al. 

2005) restrict its local distribution to areas with appropriate physical conditions. In 

seasonally dry southern California, for example, Argentine ants are restricted to areas 

with suitable levels of soil moisture (Ward 1987, Holway 1995, Menke and Holway 

2006). 

Field experiment I: Argentine ant response to irrigation and native ant removal 

We conducted a factorial experiment that combined native ant removal with soil 

moisture manipulation at the UC Elliot Chaparral Reserve (http://elliott.ucnrs.org/). This 

site contains a long (>1.5 km) contact zone between L. humile and native ants that has 

been stable for at least the last decade (Holway and Suarez 2004). Argentine ants occupy 

a large Eucalyptus grove that borders the reserve’s northern edge but do not penetrate 

more than 50 m into adjacent chaparral. We established 28 plots along this contact zone 

(Fig. 2-1). Each plot measured 10 x 10 m with a 7 m buffer; distance between buffers was 

at least 20 m. Active colonies of Argentine ants and native ants were present inside each 

plot at the start of the experiment. We assigned seven plots to each of four experimental 

groups: irrigation + native ant removal, irrigation + native ants present, dry + native ant 

removal, dry + native ants present. 
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A 

 
 
B

 
 

10 m

10 m
7 m 7 m 

7 m7 m

Argentine ants 

Native ants 

Figure 2 – 1: Design of field experiment I (A) Aerial view showing the location of all 28 
plots at the UC Elliot Chaparral Reserve. (B) Configuration of a typical plot, its buffer, 
and the location of the invasion front. 
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Removal treatments were randomly assigned to plots prior to the onset of the 

experiment. Irrigated plots were alternated or separated from one another by a minimum 

of 75 m. To locate native ant colonies, we used a grid of 25 evenly spaced baits placed 

every 2 m inside each plot and every 2 m in the buffer zone outside each plot. We used 

baits together with standardized visual surveys to build a species lists for each plot. After 

we located and marked native ant colonies, we placed Maxforce® granular ant bait, fire 

ant bait, and ant gel just outside the nest entrances of native ants in all removal plots and 

their buffer zones. These baits are non-toxic to birds and mammals, are not assimilated by 

plants, do not dissolve in water, and degrade within 48 h (Krushelnycky et al. 2004).  

To minimize the risk of non-target effects, we continuously monitored toxicant-

containing baits to confirm that native ants were the only arthropods present and that 

Argentine ants were never present. Native ant activity in the vicinity of all treated nests 

ceased after two consecutive days of treatment with poison baits. Every two weeks, we 

used baits (non-toxic) and visual surveys to confirm the absence of native ants in removal 

plots, and we retreated removal plots as needed throughout the experiment. Toxicants 

greatly reduced native ant presence in removal plots. At the end of the experiment, for 

example, native ants were almost entirely absent in both pitfall traps and at baits in 

treated dry plots versus untreated dry plots (1 ant/trap vs. 10 ants/trap, two-sample t-test: 

t12 = 2.47, p < 0.05; 8% vs. 55% at baits, t12 = 7.42, p < 0.0001). 

To elevate soil moisture levels, we used a drip irrigation system similar to that 

described in Menke and Holway (2006). In each plot we placed five 10-m long irrigation 

hoses parallel to and equidistant from one another such that the entire plot was watered 

uniformly for one hour per day. Irrigation lines were also placed in the same 
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configuration in dry plots, but these hoses delivered no water. Drip irrigation increased 

soil moisture levels to an extent achieved in other manipulative experiments and were 

roughly equivalent to those typical of natural riparian corridors, urban lawns, and 

agricultural fields (Holway and Suarez 2006, Menke and Holway 2006). During the 

course of the experiment soil moisture levels in non-irrigated plots remained very low. 

Changes in soil moisture levels alter the temperature-humidity envelope important to 

worker activity and survival (Hölldobler and Wilson 1990).   

We began irrigation in July 2005, within two weeks of the first application of 

Maxforce®, and stopped irrigation in September 2005. We used pitfall traps to estimate L. 

humile abundance at the beginning and end of the experiment. In each plot we placed 5 

traps in the pattern of the five on a die and left traps in the ground for five days. Pitfall 

trapping occurred only before and after the experiment to avoid altering ant density while 

the experiment was in progress. Each month, we used a grid of 25 baits placed in each 

plot to quantify the extent to which Argentine ants were nesting. 

We used a two-way MANOVA to test how the two treatments influenced the 

ability of Argentine ants to spread in experimental plots. In this MANOVA the two 

response variables were measures of ant activity from the pitfall trap and bait surveys. 

For both response variables we calculated the difference in Argentine ant abundance 

between the beginning and end of the experiment and used these differences as data 

points in the analysis. Pitfall trap data were log transformed and bait data (which 

consisted of proportions) were arcsine square root transformed prior to analysis. To 

examine temporal changes in L. humile presence in irrigated plots we used a repeated-

measures MANOVA. This analysis used data from the three monthly baiting surveys; 
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these data were arcsine square root transformed. All statistics were performed using JMP 

5.1. 

Field Experiment II: Native ant response to irrigation 

We conducted a second field experiment to assess the response of native ants to 

irrigation. This experiment was also conducted at the UC Elliot Chaparral Reserve. We 

established 5 pairs of 12 x 12 m plots in areas away from those occupied by L. humile. 

Each pair of plots consisted of an irrigated plot and a dry plot. Irrigated plots were 

watered by sprinkler from April to September 2003. We used pitfall traps to monitor 

native ant activity in each plot. The dependant variable in this analysis was the difference 

in ant abundance in pitfall traps for each pair of irrigated and dry plots at the end of the 

experiment. We then used one sample t-tests to compare these differences from zero for 

each of four common above ground foraging native ants (Crematogaster californica, 

Forelius mccooki, Pheidole vistana, and Solenopsis xyloni). These species are common 

and widespread in coastal San Diego County (Suarez et al. 1998, Holway 2005). Pitfall 

trap data were log transformed and all statistics were performed using JMP 5.1. 

Patterns at the landscape scale 

To complement the community-level experiments, we also examined landscape-

level patterns of Argentine ant occurrence and native ant diversity. This analysis used a 

dataset of 393 sites distributed throughout southern California (Fig. 2-2); 69 of these sites 

had Argentine ants. At each site we placed five traps in the ground in the pattern of the 

five on a die, with corner traps separated by 40 m.  Pitfall traps were left open for 10 

days. All sites were sampled a minimum of 4 times, including both summer and winter 
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Figure 2 – 2: Locations of pitfall trap arrays (n = 393) in six southern California counties. 
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 sampling in each of 2 years between 1999 and 2005. To standardize sampling effort 

among sites, we used data for only the first 2 summer and 2 winter sampling periods.  

We selected the following environmental variables as potential predictors of 

Argentine ant occurrence and native ant diversity: maximum July temperature, minimum 

January temperature, average rainfall, normalized difference vegetation index (NDVI), 

distance to nearest urban area, and distance to nearest perennial stream. These predictors 

were selected from a range of possible (often inter-correlated) variables because of their 

putative importance in influencing both Argentine ants (Holway 1998b, Holway et al. 

2002b, Hartley et al. 2006, Holway and Suarez 2006) and native ants (Hölldobler and 

Wilson 1990, Kaspari et al. 2000). The three climate variables, maximum July 

temperature, minimum January temperature, and average rainfall are averages from 1966-

1995 at 1000 m resolution and are described in detail in Franklin et al. (2001). NDVI was 

averaged from 16 day composites (July 28 – August 12) taken between 2000-2002 by the 

National Oceanic and Atmospheric Administration’s advanced high resolution radiometer 

satellite series (resolution: 250 m). Distance to nearest urban area was calculated using 

the Multi-source Land Cover Data (v02_2) (resolution: 100 m) compiled by the 

California Department of Forestry and Fire Protection. Distance to nearest perennial 

stream was derived from high resolution datasets in the National Hydrographic Database. 

 We used a generalized linear modeling approach (logistic regression; GLM, 

binary with logit link) to fit each environmental variable with the landscape-level pattern 

of Argentine ant occurrence. We used the same general approach (poisson regression; 

GLM, poisson with log link) to identify the environmental correlates of the number of 

native ant species.   We refrained from a direct test of the relationship between the 
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number of native ant species and Argentine ant presence, because L. humile displaces 

above ground foraging native ants in California (Ward 1987, Human and Gordon 1996, 

Holway 1998b, Holway 1998a). Therefore, we restricted the native ant portion of our 

analysis to the 324 sites lacking Argentine ants. To gauge the importance of each 

variable, we assessed its ability to reduce the Akaike information criterion (AIC), a 

widely used and largely unbiased measure of model fit (Swets 1988, McPherson et al. 

2004). All statistics were performed using R 2.3.0. 

Results 

Field experiment I: Argentine ant response to irrigation and native ant removal 

Both irrigation and native ant removal led to increased abundance of Argentine 

ants in experimental plots after 3 months (two-way MANOVA: Wilk’s λ = 0.25, p < 

0.0001) (Fig. 2-3AB). Argentine ants responded positively and strongly to irrigation (F2, 

21 = 23.52, p < 0.0001). There was also a positive effect of native ant removal (F2, 21 = 

5.27, p < 0.05). While the interaction term was non-significant (F2, 21 = 2.27, p = 0.13), 

the importance of native ant removal was evident only in irrigated plots (Fig. 2-3AB). In 

dry plots without native ants, Argentine ants did not change in abundance (one-sample t-

tests: bait surveys t6 = -0.32, p > 0.05; pitfall traps t6 = 0.20, p > 0.05), whereas in 

irrigated plots without native ants, Argentine ants increased in abundance at least 10 fold 

over the course of the experiment both at baits and in pitfall traps (Fig. 2-3AB) (one-

sample t-tests: bait surveys t5 = 5.68, p < 0.01; pitfall traps t5 = 11.34, p < 0.0001). 

Although the presence of native ants was a significant factor, bait surveys revealed that 

native ants merely slowed the spread of Argentine ants in the early stages of the 

experiment and did not prevent L. humile from invading as the experiment progressed  
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Figure 2 – 3: Results of field experiment I. (A) Mean (± SE) change in Argentine ant 
activity as measured by the proportion of baits recruited to at the beginning and end of 
the experiment. (B) Mean (± SE) change in Argentine ant abundance in pitfall traps at the 
beginning and end of the experiment. (C) Mean (± SE) proportion of baits recruited to by 
Argentine ants in irrigated plots. 
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(repeated-measures MANOVA: time F2,9 = 17.98, p < 0.001; time x removal F2,9 = 4.88, 

p < 0.05) (Fig. 2-3C). Pesticides appeared to have no unintended effects. Argentine ants 

showed the strongest increases in irrigated plots in which we used Maxforce® to remove 

native ants (Fig. 2-3). 

Field experiment II: Native ant response to irrigation 

Native ants exhibited divergent responses to irrigation (Fig. 2-4). Solenopsis 

xyloni increased in abundance nearly 100 fold in pitfall traps after 6 months of irrigation 

(one-sample t-test: t4 = 4.63, p < 0.01), whereas Forelius mccooki (t4 = 2.15, p > 0.05) 

and Crematogaster californica (t4 = -1.43, p > 0.05) did not appear to respond to 

irrigation. Pheidole vistana appeared to respond to an intermediate degree (t4 = 2.65, 0.05 

< p < 0.10). 

Patterns at the landscape scale 

At the landscape scale Argentine ants and native ants responded differently to 

environmental variables known to determine ant activity and occurrence.  The presence 

of L. humile was best explained by its positive association with urban areas (Table 2-1). 

The second most important correlate was minimum winter temperature: the colder the 

temperature, the less likely Argentine ants were to be present. High temperatures also 

decreased the likelihood of L. humile occurrence, but like precipitation, maximum 

summer temperature was a relatively poor predictor, yielding only a small reduction in 

AIC (Table 2-1, Fig. 2-5).  

Compared to environmental correlates of Argentine ant occurrence, the number of 

native ant species exhibited a nearly opposite pattern. Native ants increased in species 

number with increasing precipitation (the best predictor variable) and, less strongly, with 
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Figure 2 – 4: Results of field experiment II. Mean (± SE) difference in native ant 
abundance in pitfall traps (irrigated - dry plots) after 6 months of irrigation. Plots used for 
this experiment all lacked Argentine ants. 

 



 

 

ΔAIC is the difference of each model from the strongest model in the analysis. 
Significance of regression models is marked with asterisks (* < 0.05, ** < 0.01, *** < 
0.001, **** < 0.0001). 

 

28  

Variable slope ΔAIC slope ΔAIC

Null 85.62 78.8

Maximum 

temperatu
-0.264 -4.803 **** 52.45 -0.034 -7.107 **** 23.4

Minimum 

temperatu
** 72.4

NDVI **** 17.4

Precipitation **** 0.0

Distance

perenn
80.8

Distance

urban area
78.9

z-value z-value

Argentine ant occurrence Number of native ant species

Table 2 – 1. Single predictor effects of six environmental variables on Argentine ant 
occurrence (393 sites; logistic regression) and the number of native ant species at sites 
where Argentine ants were absent (324 sites; Poisson regression) across southern 
California. In each analysis the two best-fitting one-predictor models (judged by lowest 
AIC) are highlighted in bold. 
 

re

re
1.087 5.212 **** 5.21 -0.015 -2.141

0.217 4.267 **** 67.47 0.005 7.980

0.029 2.505 * 81.15 0.014 9.011

 to 

ial stream
-0.324 -3.848 **** 72.79 -0.002 -0.162

 to 
-0.941 -7.881 **** 0.00 -0.022 -1.380
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Figure 2 – 5: Results of landscape-level analyses showing how Argentine ant presence and native ant diversity relate to maximum 
summer temperature, minimum winter temperature, and precipitation. (A – C) Argentine ant presence and absence at 394 sites. 
Standard box plots show the 25th, median, and 75th percentiles (solid lines), means (dashed lines), the 10th and 90th percentiles 
(whiskers), and 95% confidence limits (circles). (D – F) The number of native ant species at 324 sites that all lacked Argentine 
ants. Regression lines are based on GLM; these regression lines do not qualitatively differ from those of the poisson regressions in 
Table 2-1.
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increasing NDVI (a measure of the greenness of vegetation) (Table 2-1, Fig. 2-5). High 

maximum summer temperatures significantly depressed the number of native ant species. 

Areas with higher minimum winter temperatures had fewer native ant species (Fig. 2-5), 

in contrast to Argentine ants, which require warm winter temperatures. Proximity to 

urban environments had no detectable effect on the number of native ant species (Table 

2-1).  

Cross-scale comparison of ant responses 

Argentine ants and native ants differed in their responses to environmental factors 

at the landscape and community scales. Although our field experiments identified soil 

moisture as the preeminent factor limiting Argentine ants, at the landscape scale, 

variables that strongly influence soil moisture (e.g., maximum summer temperature and 

precipitation) appear unimportant in determining L. humile occurrence (Tables 1 & 2). In 

contrast, native ants exhibited variable responses to elevated soil moisture at the 

community scale with only one of four species strongly increasing in activity. At the 

landscape scale, the number of native ant species responded variably to environmental 

conditions known to influence ant activity; diversity increased with precipitation but 

decreased with maximum summer temperature (Tables 1 & 2).   

Discussion 

Our field experiments build on  previous work that demonstrates the importance 

of soil moisture in controlling the spread of Argentine ants in seasonally dry 

environments (Holway 1998b, Holway et al. 2002b, Menke and Holway 2006). The 

present study, however, tests two novel hypotheses. First, we examined the relative 

importance of interspecific competition and physical conditions in limiting the local 
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Table 2 – 2. A summary of the responses of Argentine ants and native ants to abiotic and biotic factors from experiments at the 
community scale and predictive models at the landscape scale.  Biotic factors were not included at the landscape scale because as 
Argentine ants spread, they displace native ants. 

Community scale Landscape scale

Abiotic factors Biotic factors Abiotic factors

Soil moisture Competition from ants Max temp Min temp Precip

Ar

 

+ = positive response, − = negative response, 0 = no response.

gentine 

ants
+ 0 − + 0

Native 

ants
0 / + − − 0 +



 32

spread of L. humile. When the abiotic environment was unsuitable for Argentine ants, 

they failed to spread in experimental plots regardless of presence or absence of native 

ants (Fig. 2-3AB).  At irrigated sites, in contrast, interspecific competition from native 

ants slowed but did not prevent the spread of Argentine ants (Fig. 2-3C). Second, our 

field experiments allowed us to test the assumption that native ants respond in a similar 

manner to the same environmental variation that encourages the spread of Argentine ants. 

No native ant species decreased its activity in response to irrigation, and only one species, 

S. xyloni, appeared to benefit (Fig. 2-4). Interestingly, S. xyloni, like the Argentine ant, 

can act like a behaviorally dominant species (pers. obs.), but unlike L. humile, S. xyloni 

can occupy extremely arid environments. The variation observed among the native ant 

species in response to elevated levels of soil moisture (Fig. 2-4) presumably reflects 

species-level differences in physiological tolerances (Schilman et al. 2005, 2007). While 

Menke & Holway (2006) noted that native ant activity increased with irrigation, the 

results of the present study are the first to demonstrate species-specific disparities in how 

altered physical conditions affect activity. 

The abiotic factors controlling ant activity and abundance at the community scale 

were dissimilar to those correlated with invader occurrence and native diversity at the 

landscape scale (Table 2-2). Interestingly, precipitation, which best predicted the number 

of native ant species, did not explain patterns of Argentine ant occurrence, suggesting 

that local levels of soil moisture are to some extent decoupled from landscape-level 

patterns of precipitation. The most important environmental determinant of Argentine ant 

presence at the landscape scale was minimum winter temperature; low temperatures 

decreased the probability of L. humile occurrence, reflecting the fact that Argentine ants 
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do not occur in environments with prolonged freezing temperatures (Suarez et al. 2001, 

Krushelnycky et al. 2005, Hartley et al. 2006). In the same cold winter environments of 

southern California in which L. humile do not occur, native ants exhibit their highest 

diversity (Fig. 2-5). Argentine ant occurrence was strongly predicted by proximity to 

urban areas. This positive association presumably results from the Argentine ant’s 

inherent dispersal limitations, an increased frequency of human-mediated introductions 

(i.e., propagule pressure), the status of urban areas as source habitats, and anthropogenic 

modifications to the physical environment that favor Argentine ants (e.g. elevated soil 

moisture).     

 Taken together our results suggest a mismatch between the factors that determine 

Argentine ant occurrence and those that control native ant activity and diversity across 

multiple spatial scales (Table 2-2). Although introduced and native species may often 

respond similarly to environmental factors independent of spatial scale (Levine and 

D'Antonio 1999, Stohlgren et al. 1999, Naeem et al. 2000), our results demonstrate a case 

where an ecologically and economically destructive invasive species responds to the 

environment differently compared to natives. At the community-scale Argentine ants and 

most native ants respond divergently to elevated levels of soil moisture. This result may 

help explain why competition from native ants slowed but did not stop the spread of 

Argentine ants in experimental plots (Fig. 2-3C). While Holway (1998b) reported no 

relationship between the rate of spread of Argentine ants and the number of native ant 

species, the current study illustrates that the presence of native ants can slow the invasion 

of Argentine ants under certain environmental conditions (e.g., in wet environments). 

Disparities in how native and introduced ants respond to the physical environment were 
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also observed at the landscape scale. The number of native ant species and the occurrence 

of Argentine ants were associated with distinctly different environmental variables (Table 

2-1, 2-2).   

General Significance 

With the proliferation of global environmental datasets and heightened concerns 

about climate change, ecologists are increasingly relying on predictive models that use 

coarse environmental data to forecast the spread and distribution of introduced species 

(Levin 1992, Neubert and Caswell 2000, Peterson 2003, Hastings et al. 2005). For this 

reason, it is important to develop a more quantitative understanding of how factors 

associated with species occurrence change in importance across contrasting spatial scales. 

As is the case for other organisms (Rosenzweig 1995), the factors influencing ant 

diversity and patterns of occurrence dramatically change with spatial scale (Kaspari et al. 

2000, 2003). In the present study, the environmental factors associated with invader 

occurrence also exhibited strong scale dependency. Factors explaining occurrence at the 

community scale, such as soil moisture, appeared largely independent of factors 

operating at the landscape scale, such as temperature and precipitation (Table 2-1) - 

variables often used to delimit large-scale patterns of distribution (Peterson 2003). Efforts 

to model ranges of native and introduced species that rely on coarse environmental data 

may often exclude factors that determine occurrence at the community scale (McPherson 

et al. 2006).   

Scale-dependent factors limiting the occurrence of invasive species, such as those 

discussed above, also relate to the potential distribution and persistence of native species 

(Sax and Gaines 2003, Melbourne et al. 2007). Although native populations may persist 
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in the presence of strongly competitive introduced species, invasions may nonetheless 

increase the risk of extinction for native taxa. In addition to direct displacement, effects 

of invasions on native species include secondary effects such as reductions in the size, 

quality, or connectivity of suitable habitat (Mack et al. 2000). In the Argentine ant 

system, for example, the direct displacement of native ants may work in concert with the 

modification, destruction, and fragmentation of habitat to restrict the area over which 

native ant species can occur (Suarez et al. 1998). Human modifications to the 

environment that expand areas suitable to invasive species will in turn increase the 

fragmentation and isolation of native populations, factors known to increase extinction 

risk. Increased isolation and fragmentation of native populations will further elevate 

future extinction risk under scenarios of global climate change (Warren et al. 2001).  
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Effects of sampling, regional comparisons, and scale on the accuracy and correlates of 

species distribution models: a test with Argentine ants
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Abstract. Predictive modeling of species distributions is a rapidly proliferating research 

area, especially in studies relating to climate change and the spread of introduced species. 

Although these modeling approaches have clear merit, important pitfalls exist that can 

bias predictions. These problems include the following: models that use presence only 

data, insufficient or unrepresentative sampling of environmental parameter space, models 

that are not tested with independent data sets or that predict distributions beyond known 

parameter space, and the use of variables at the incorrect spatial resolution. To quantify 

the extent to which these problems can potentially bias model predictions, we use actual 

presence and absence data for Argentine ants (Linepithema humile) independently 

collected in two adjacent regions of southern California to examine 1) effects of 

insufficient sampling of environmental variables, 2) the generality of landscape-scale 

models created in different regions, and 3) the importance of predictive variables across 

different levels of spatial resolution. First, we demonstrate that insufficient sampling of 

environmental parameter space incorrectly predicts species distributions when models are 

applied to adjacent regions. Second, despite extensive sampling and the geographical 

proximity of the two regions in our study, prominent differences existed with respect to 

the univariate predictors of Argentine ant occurrence. Models using data that sufficiently 

sampled the environmental parameter space resulted in the best and most general models. 

Lastly, in multiple variable models, environmental variables differed in their relative 

importance across spatial grain. For example, the best models at the finest spatial grain 

did not overlap with those at the coarsest spatial grain. Taken together, our results suggest 

that it is essential to account for the sufficiency of sampling when creating predictive 

distribution models and that care should be used when projecting these models into novel 
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environments. Finally, it is important to use variables that are meaningful with respect to 

the spatial resolution of the data being analyzed. 

Introduction 

Predictive models of species distributions will increasingly be used as a 

forecasting tool as climate change and species introductions continue to rearrange the 

earth’s biota. Although efforts to predict distributional changes in the face of climate 

change and other sources of environmental variation are now common (Guisan and 

Zimmermann 2000, Peterson 2003, Elith et al. 2006), current predictive modeling 

approaches are subject to a number of limitations (Fielding and Bell 1997, Pearson and 

Dawson 2003). One such limitation concerns the inability to test model predictions with 

independent data sets (Araujo and Rahbek 2006, Hawkins et al. 2007). Moreover, 

predictive models cannot account for the creation of novel climates nor do they consider 

how species will respond to the loss of existing climates (Williams et al. 2007). Lastly, 

biotic interactions may mitigate the effects of environmental change on patterns of 

species occurrence (Suttle et al. 2007). 

 A current focus of species distribution models (SDMs) centers on predicting the 

occurrence of species introduced into new environments by humans (Peterson 2003). 

Two challenges exist in modeling the distribution of introduced species. First, biotic 

interactions may influence where species will invade (Levine and D'Antonio 1999, 

Guisan and Zimmermann 2000, Peterson 2003, Bruno et al. 2004). Second, obtaining 

accurate absence data for species that are actively expanding their ranges remains 

problematic (Guisan and Thuiller 2005). However, modeling efforts that involve 

introduced species have the advantage that multiple invaded regions and the native range 
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can all be used to independently test model predictions (Fitzpatrick et al. 2006, Roura-

Pascual et al. 2006). Efforts to model the distribution of introduced species are conducted 

on a wide range of organisms and a over a diversity of spatial scales (Korzukhin et al. 

2001, Morrison et al. 2004, Rew et al. 2005, Munoz and Real 2006).  

Accurate predictions of species distributions hinge on adequately sampling 

environmental variation. Because geographical regions differ in both their range of 

environmental variation and how this variation is distributed, unrealistic extrapolations 

may result when the environmental profile of the region into which predictions are made 

does not match that of the sampling region (Fig. 3-1A). Problems may also arise when 

the distribution of environmental variation is insufficiently sampled. Sampling may be 

incomplete when intervals of environmental variation are not included in the sampled 

distribution (Fig. 3-1B) - for example, as a result of small sample size. Biased sampling 

may occur when particular ranges of environmental variation are either under or over 

sampled relative to their frequency (Fig. 3-1B). With respect to issues of sampling, most 

studies investigate how sample size affects model accuracy (Stockwell and Peterson 

2002, McPherson et al. 2004), rather than the sampling pitfalls summarized in Figure 3-

1A&B (but see Kadmon et al. 2003). Another sampling problem concerns environmental 

data that are collected at one spatial scale and then used to predict species occurrence at a 

different spatial scale (McPherson et al. 2006). Prediction errors may also result when 

environmental variables change in importance at different spatial grains (Luoto et al. 

2007, Whittingham et al. 2007). 

 To quantify the extent to which these problems may bias predictions of SDMs, we 

use actual presence and absence data for Argentine ants (Linepithema humile) to examine
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Figure 3 – 1: Conceptual diagram of hypothetical issues that result from (A) disparities in 
environmental variation between regions, and (B) insufficient sampling. Empirical 
distributions of (C) region wide values and (D) sample points for minimum January 
temperature (°C). Empirical distributions of (E) region wide values and (F) sample points 
for maximum July temperature (°C).
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 the following: 1) the effect of insufficient sampling of environmental variation on model 

predictions, 2) the generality of landscape-scale models created in different regions, and 

3) how the importance of specific predictive variables changes across different levels of 

spatial resolution. Other studies have addressed related questions including performance 

comparisons of different modeling techniques (Elith et al. 2006), the role of sample size 

(Stockwell and Peterson 2002, McPherson et al. 2004), and the effect of spatial grain 

(McPherson et al. 2006, Guisan et al. 2007). These studies are often constrained by the 

use of presence only data (Kadmon et al. 2003) or the use of pseudo-absence data 

(Fitzpatrick et al. 2006, Roura-Pascual et al. 2006). Unlike these previous studies we use 

true absence data to simultaneously and comprehensively analyze how sampling, scale, 

and regional disparities affect the predictions of species distribution models for a 

widespread invader. Our study is unique in its simultaneous treatment of these three 

factors. An additional advantage of our system is that biotic resistance from native 

species appears to be of weak importance in influencing where introduced populations of 

Argentine ants occur (Holway 1998b, Menke et al. In Press). Taken together, our 

analyses illustrate how violations in model assumptions can lead to serious biases in 

predicted species distributions.  

Methods 

Study system 

The Argentine ant is a widespread, abundant, and ecologically damaging invasive 

species (Holway et al. 2002a). Native to northern Argentina and surrounding regions 

(Tsutsui et al. 2001, Wild 2004), L. humile now occurs worldwide in areas with suitable 

climates and is particularly successful in Mediterranean-type ecosystems (Suarez et al. 
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2001).   Although common in urban and agricultural environments, L. humile readily 

invades natural habitats (Suarez et al. 2001), where it displaces above ground foraging 

native ant species (Ward 1987, Human and Gordon 1996, Holway 1998a, Suarez et al. 

1998). Argentine ants are easily introduced into new areas because they often associate 

with humans, exhibit general nesting and dietary requirements, and maintain colonies 

with numerous queens (Newell and Barber 1913). In part because of these characteristics, 

human-mediated introductions are the predominate mode of spread in this species 

(Suarez et al. 2001). In seasonally dry California, Argentine ants have been present for 

approximately a century (Woodworth 1908), but are restricted to areas with suitable 

levels of soil moisture, especially riparian corridors and human-modified environments 

(Ward 1987, Holway 2005, Menke and Holway 2006). 

Attempts to predict the distribution of Argentine ants have been the focus of 

several recent studies. Roura-Pascual et al. (2004) used ecological niche modeling to 

predict the global distribution of L. humile. Using native range presence data, these 

authors applied the Genetic Algorithm for Rule-set Prediction (GARP) to generate 

predictions about where Argentine ants would occur under different climate change 

scenarios. Building on the results of their 2004 study, Roura-Pascual and colleagues 

again used GARP to asses model generality in different invaded regions (Roura-Pascual 

et al. 2006). Hartley et al. (2006) adopted a more mechanistic approach in that they used 

physiological tolerances of the Argentine ant to develop a bioclimatic envelope model. 

Although their predicted global distribution of L. humile overlapped with that of Roura-

Pascual et al. (2004), the model produced by Hartley and colleagues yielded a broader 

potential distribution on every major continent. Hartley and Lester (2003) and 
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Krushelnycky et al. (2005) created predictive models at a regional scale based on 

temperature-dependent colony growth in New Zealand and Hawaii respectively. In this 

study, we use actual presence and absence data collected in two different regions to build 

on this body of previous work. 

Sampling regions 

We focus our efforts on the three bioregions of southern California (Fig. 3-2A). 

The south coast bioregion has a mediterranean climate and a large urban population. 

Inland from the south coast bioregion, the Mojave and Colorado desert bioregions differ 

from one another primarily with respect to the Colorado desert’s hotter summer 

temperatures, milder winter temperatures, and larger areas devoted to agriculture. To 

assess how differences in sampling effort affect model generality, we analyzed two 

independent datasets collected in adjacent regions of southern California (Fig. 3-2A). The 

first dataset was collected in the herpetological survey region (HS); this region is 25,550 

km2 and includes all of Orange County, and parts of Los Angeles, Riverside, and San 

Bernardino Counties (Fig. 3-2B). This sampling effort was initially designed by the US 

Geological Survey (USGS) to monitor reptiles and amphibians in natural areas with 

differing levels of fragmentation  throughout southern California (Fisher et al. 2002); an 

ant sampling protocol was later added to these existing sites (Laakkonen et al. 2001). The 

second dataset was collected in the Argentine ant survey region (AAS), which is 22,584 

km2 and includes all of San Diego and Imperial Counties (Fig. 3-2C). This dataset was 

tailored specifically to known patterns of Argentine ant distribution in southern 

California. 
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Figure 3 – 2: (A) Map of southern California showing our two study regions (HS and AAS). Presence and absence locations of 
Argentine ants in (B) the HS region and (C) the AAS region.
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Ants were sampled differently in the two regions, but both sampling protocols 

yield accurate presence / absence data for L. humile. The HS region included 348 sites; 

69 of which were invaded by Argentine ants (Fig. 3-2B). At each HS site, ants were 

sampled using five pitfall traps placed in the ground in the configuration of the five on a 

die, with corner traps separated by 40 m. All HS sites that were classified as L. humile 

absences were sampled a minimum of 4 times, including both summer and winter 

sampling in each of two years between 1999 and 2005.  

The AAS region included 399 sites, 139 of which were invaded by Argentine 

ants. Sampling points in this region were randomly assigned to 8 land-cover 

classifications (Agriculture, Barren, Conifer, Desert, Hardwood, Herbaceous, Shrub, and 

Urban). The number of sampling locations in each land-cover area was based on the 

extent of each land-cover type and by the probability of L. humile occurrence. These 

probabilities were empirically derived from patterns of Argentine ant occurrence in each 

land-cover type from the pitfall trap results in the HS region. Land-cover types were then 

subdivided into 30 vegetation categories, and sampling points were assigned based on the 

proportion of the land-cover type occupied by each vegetation category. Sampling points 

were then randomly assigned locations using Hawth’s Analysis Tools for ArcGIS™. This 

distribution of sampling points was specifically designed to sample the full habitat and 

climate heterogeneity of the AAS region. To determine whether or not Argentine ants 

were present at a site, we used tuna baits placed every 5 m along two 50 m transects in 

the shape of a cross and visual surveys (e.g., inspection of tree trunks, open bare ground, 

potential nesting sites). Each site was baited and searched for 45 minutes or until 

Argentine ants were positively identified; surveys took place in the spring and early 
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summer during times of the day when L. humile is known to be active. Because 

Argentine ants forage diurnally throughout the year and displace nearly all above ground 

foraging native ant species, it is possible to unambiguously determine whether or not L. 

humile is present (Ward 1987, Holway 1995). 

Environmental predictor layers 

Potential predictor variables of Argentine ant occurrence include a set of 13 

environmental layers. Climate variables included aspect, elevation, maximum July 

temperature (maxT), minimum January temperature (minT), average annual rainfall (ppt), 

and normalized difference vegetation index (NDVI). Aspect and elevation were derived 

from the 30 m California digital elevation model (DEM). MaxT, mint, and ppt are 

averages from 1966-1995 at 1000 m resolution and are described in detail in Franklin et 

al. (2001). NDVI was averaged from 16 day composites (July 28 – August 12) recorded 

between 2000-2002 by the National Oceanic and Atmospheric Administration’s 

advanced high resolution radiometer satellite series (resolution: 250 m). Habitat variables 

included land-cover type (veg), soil hydrogroup (soil), distance to intermittent water body 

(Iwater), and distance to perennial water body (Pwater). Veg is based on the life_form 

category in the Multi-source Land Cover Data (v02_2) (resolution: 100 m) compiled by 

the California Department of Forestry and Fire Protection. Soil is based on the U.S. 

Department of Agriculture, Soil Conservatin Service (STATSGO) at 2.5 km resolution. 

Iwater and Pwater were derived from high resolution datasets in the National 

Hydrographic Database. Human impact variables are distance to agricultural area, 

distance to highways, and distance to urban area. Distance to agriculture and urban areas 

were determined using the Multi-source Land Cover Data (v02_2), and distance to 
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highways calculated using the US Census Bureau Tiger 2k (version: June 7, 2002) data 

layer. Distance to nearest highway or urban area was combined into one variable to 

approximate human alterations to the environment (human). These environmental layers 

were selected from a range of possible (and often inter-correlated) variables because of 

their common usage in bioclimate and niche models and their putative importance in 

influencing Argentine ant occurrence (Holway 1998b, Hartley et al. 2006, Menke and 

Holway 2006, Roura-Pascual et al. 2006, Menke et al. In Press). All variables were 

resampled from their native resolution to 100 m resolution and natural log + 1 

transformed except for minT which was natural log + 10 transformed for analyses. 

Aspect, elevation, and soil were excluded from the final analyses due to their poor 

predictive ability or co-linearity with other predictors.  

Univariate models 

We first identified the important predictors of Argentine ant occurrence in the HS 

and AAS regions as in Menke et al. (In Press). For each of the nine environmental 

predictors we performed univariate logistic regression (GLM, binary with logit link). For 

every environmental predictor we randomly selected two thirds of the presences and 

absences as training data. The predictive ability of each univariate model in each region 

was then quantified with the remaining third of the data points using the area under the 

curve (AUC) of receiver operating characteristic (ROC) plots (Cumming 2000). This 

analysis was iterated 30 times and the average results are reported. ROC plots assess 

model performance by plotting sensitivity (proportion of presences correctly predicted) 

versus 1 – specificity (proportion of absences correctly predicted). AUC is a threshold-

independent measure of model accuracy ranging in value from 0 to 1, with values larger 
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than 0.5 indicating performance better than random (Swets 1988). Univariate models 

with AUC values above 0.75 were considered to be strong predictors of Argentine ant 

occurrence, and those environmental predictors were used in further analyses.  

Model generality across regions 

Using the univariate GLM approach, it was unclear whether the predictors that 

explain L. humile occurrence are the same in each region and how they should be 

combined to create the best overall model. This uncertainty results from predictors 

possessing similar degrees of explanatory power and inter-correlations among predictors. 

We therefore used an additional, alternative approach to test how the relative fits of 

models containing all possible combinations of predictors varied between the two 

regions. To do this we used a model averaging technique described by Burnham & 

Anderson (2002). This approach compares the relative fits of a suite of candidate models 

using Akaike’s Information Criterion (AIC) (Stephens et al. 2005). The absolute size of 

the AIC is unimportant; instead differences in AIC values among models indicate the 

relative support for the different models. We calculated an “Akaike weight”, wi, for each 

model. For a set of models, the wi sum to 1 and have a probabilistic interpretation: of 

these models, wi is the probability that model i would be selected as the best fitting model 

if the data were collected again under identical circumstances. Our confidence set is the 

smallest subset of candidate models for which the wi sum to 0.95. This set represents a set 

of models for which there is 95% probability that the set would contain the best 

approximating model to the true model were the data collected again under the same 

circumstances.  
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To determine how well distributional data collected in one region predict 

occurrence elsewhere, we created 95% confidence sets using a modeling approach that 

compares the relative fits of models containing all combinations of predictors for each 

region. We calculated separate confidence sets for the HS and AAS regions. We included 

seven environmental predictors that had either an AUC value greater than 0.75 in at least 

one region or that was a predictor commonly used in bioclimatic models. Interaction 

terms were not included in the creation of the confidence sets because all of the variables 

were log transformed; this transformation improved linearity of the predictors. The 

performance of the best two models from the confidence set for each region was tested in 

the opposite region using AUC. 

Model generality across spatial grain 

To determine how the coarseness of environmental layers affects their importance 

as predictor variables, we re-sampled the seven environmental layers (100 m resolution) 

used in the regional analysis at three increasingly coarser resolutions (1 km, 5 km, 10 

km). All analyses were conducted on a dataset that combined the two regional datasets. 

At coarser spatial grains, cells with multiple samples were assigned a “present” value if 

any of the sub-samples included a presence. The importance of individual environmental 

variables at each spatial grain was calculated using AUC on the univariate logistic 

regressions. Confidence sets were then created for each spatial grain using all 

combinations of the seven environmental predictors. 

Results 

Environmental variation and sufficiency of sampling 
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Although the two regions in this study are adjacent and extend from the coast to 

inland deserts, their environmental distributions differ. Compared to the AAS region, the 

HS region has colder winter temperatures (Fig. 3-1C). The distributions of maximum 

summer temperatures also appear to differ between the two regions. While the range of 

summer temperatures is approximately similar, the AAS region exhibits strong 

bimodality with the desert portions of this region frequently experiencing maximum 

summer temperatures greater than 40°C (Fig. 3-1E).  

The thoroughness of data collection can magnify prediction errors concerning the 

limits of species ranges, especially when regions differ in their distributions of climate 

variables (Fig. 3-1D, F). Based on the sampled environmental variation in the two regions 

in our study, insufficient sampling may be a concern in the HS region. For example, with 

respect to minT, the sampling distribution differed from the environmental distribution in 

the HS region (Kolmogorov-Smirnov test: D = 0.47, p = 0.03) but not the AAS region 

(K-S test: D = 0.11, p > 0.5). This difference appears to result in large part from the HS 

sample failing to include extreme temperature values (Fig. 3-1C&D). A similar trend 

appears evident with respect to maxT. The sampling regime in the HS region failed to 

sample temperatures above 37°C, while the sampling in the AAS region was conducted 

across the full extent of maxT (Fig. 3-1E& F). While the sampling distributions were not 

significantly different from the environmental distribution, the AAS data (K-S test: D = 

0.17, p > 0.5) appeared to sample the environmental variation better compared to the HS 

data (K-S test: D = 0.31, p = 0.12).  

Differences in the distributions and sampling of environmental variables between 

regions, as discussed above, can lead to large errors in predicted ranges (Fig. 3-3). For
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Figure 3 – 3: Predicted probability of Argentine ant occurrence based a climate envelope model (y ~ maxT + minT + NDVI + ppt) 
using (A) the HS and (B) AAS data.
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example, a bioclimate model for southern California that is based on the HS data and that 

is composed of four commonly used climate variables (maxT, minT, NDVI, & ppt) both 

over and under predicts L. humile occurrence. The model predicts Argentine ant 

occurrence in multiple desert locations where they do not occur (Fig. 3-2B&C, Fig. 3-3A) 

but fails to predict their presence along much of the coast where L. humile is widespread 

and abundant (Fig. 3-2B&C, Fig. 3-3A). In contrast, when the same model was created 

with the AAS data, the resulting predictions closely match the known distribution of 

Argentine ants in southern California (Fig. 3-2B&C, Fig. 3-3B).    

Univariate models 

Despite extensive sampling and despite the geographical proximity of the HS and 

AAS regions, the univariate predictors of Argentine ant occurrence differed between 

regions (Table 3-1). Although minT, veg, and human were all useful univariate predictors 

in both regions, each region also included univariate predictors unique to that region. 

While maxT was the best predictor in the AAS region (AUC = 0.91), it failed to predict 

Argentine ant occurrence in the HS region (AUC = 0.69). Conversely, Pwater was a 

strong predictor in the HS region (AUC = 0.77), but performed not much better than 

random in the AAS region (AUC = 0.58). Even though veg was important in both 

regions, parameter estimates for two land-cover categories (hardwood trees and 

herbaceous) shifted in sign depending on which region they were in (Table 3-1). 

Proximity to nearest agricultural area, NDVI, and ppt were all unimportant univariate 

predictors in both regions.  
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Table 3 – 1. Single predictor effects of nine environmental variables on Argentine ant 
occurrence from univariate logistic regression. The best explanatory variables (AUC > 
0.75) are highlighted in bold and the correlation coefficients that switched signs in each 
region are italicized. 

Region

Variable AUC ∆AIC
Parameter 
Estimates AUC ∆AIC

Parameter 
Estimates

Maximum summer temperature 0.69 74.3 -8.15 0.91 0.0 -22.28

Minimum winter temperature 0.91 0.0 26.62 0.90 30.0 22.46

NDVI 0.67 74.8 3.93 0.46 164.7 0.09

Precipitation 0.64 77.7 3.76 0.57 143.4 0.97

Land-cover 0.80 52.1 Cat. 0.85 51.4 Cat.

Distance to intermittent water 0.51 84.4 -0.19 0.70 150.0 -0.45

Distance to perennial water 0.77 59.6 -0.91 0.58 156.3 0.22

Distance to agricultural zone 0.56 80.7 -0.26 0.55 156.7 0.10

Distance to human modified area 0.82 45.7 -0.91 0.88 42.3 -0.51

Land-cover

Agriculture -0.12 -1.56

Barren -0.53

Conifer -18.45 -16.00

Desert -18.45 -16.00

Hardwood -1.82 0.63

Herbaceous -1.28 0.74

Shrub -1.84 -0.39

Urban 2.69 3.33

AASHS
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Model generality across regions 

Though there was a great deal of overlap in model confidence sets between the 

two regions, two lines of evidence suggest that models created from the AAS data 

exhibited greater generality. First, the models shared between the two regions have a 62% 

probability of being the best model according to AIC in the AAS region, but only a 23% 

probability of being the best model in the HS region (Fig. 3-4C). Second, models created 

using the AAS data perform better in the HS region compared to how well models 

created using the HS data perform in the AAS region. For example, the top two models 

from the AAS region (y ~ minT + NDVI + ppt + veg + Pwater: AIC wi = 0.14; y ~ minT 

+ ppt + veg + Pwater: AIC wi = 0.14) tested using the data from the HS region yield 

AUCs of 0.927 and 0.925 respectively (Table 3 – 2). Conversely the top two models from 

the HS region (y ~ minT + veg + Pwater + Human: AIC wi = 0.14; y ~ minT + veg + 

Pwater: AIC wi = 0.13) tested using the data from the AAS region yield lower AUCs of 

0.897 and 0.864 respectively (Table 3 – 2).  

Results of the model averaging analysis (Fig. 3-4A) reveal surprising differences 

when compared to the results from the univariate models (Table 3-1). The importance of 

individual univariate predictors does not necessarily correspond to how often they appear 

in the model confidence sets. For instance, human appears in only 55% of the models in 

the HS region and 43% of the models in the AAS region (Fig. 3-4A), even though it was 

a universally strong univariate predictor (Table 3-1). Similarly, maxT was the most 

important univariate predictor in the AAS region (Table 3-1), but does not occur in any of 

the top five models in the AAS confidence set (Table 3 – 2). Conversely, ppt is an

 



 

 

 

Figure 3 – 4: Model differences across region and scale. The proportion of models in 
confidence sets that contained each predictor (A) between regions, and (B) across spatial 
grains. Amount of the AIC summed probability (wi) explained by the models (C) when 
comparing each region, and (D) when comparing the confidence sets of each spatial grain 
to the 100 m spatial grain. 
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Table 3 – 2. Model averaging analysis of the regional confidence sets. Confidence sets were generated by finding the set of best-
fitting models that yielded an AIC summed probability (wi) of 0.95, separately for the HS and AAS regions. 

Abbreviations: maxT-maximum July temperature (°C); minT-minimum January temperature (°C); ppt-precipitation (cm); veg-
land-cover type; Pwater-distance to nearest perennial water source (m); human-distance to nearest human modified area (m).

 
HS region AAS region

maxT minT NDVI ppt veg Pwater human AIC w i maxT minT NDVI ppt veg Pwater human AIC w i

Five best models Five best models

x x x x 171.03 0.14 x x x x x 134.82 0.14

x x x 171.09 0.13 x x x x 134.82 0.14

x x x x x 171.93 0.09 x x x x x x 135.33 0.11

x x x x x 171.95 0.09 x x x x x 135.45 0.10

x x x x 172.04 0.08 x x x 136.45 0.06

0.52 0.55

All models in common with AAS region All models in common with HS region

x x x x x 173.15 0.05 x x x x x 134.82 0.14

x x x x 173.20 0.05 x x x x 134.82 0.14

x x x x x x 173.92 0.03 x x x x x x 135.33 0.11

x x x x x x 174.06 0.03 x x x x x 135.45 0.10

x x x x x 174.14 0.03 x x x x x 136.76 0.05

x x x x x 174.42 0.02 x x x x x x x 137.05 0.05

x x x x x x x 175.05 0.02 x x x x x x 137.43 0.04

0.23 0.62

… 5 other models 0.20 … 7 other models 0.28  
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 unimportant univariate predictor in both regions (Table 3-1) but appears in 99% of the 

models in the confidence set for the AAS region (Fig. 3-4A).  

Model generality across spatial grain 

Our analyses of model averaging revealed that model composition changed 

dramatically with relatively small changes in spatial grain (Fig. 3-4B). The extent to 

which model confidence sets overlapped with the confidence set at the 100 m scale 

diminished with increasingly coarse spatial resolution to the point that by 10 km no 

models were shared (Fig. 3-4D). This loss in model overlap results in large part from 

habitat variables decreasing in importance at coarser spatial grains (Fig. 3-4B). For 

example, at the 100 m scale, the confidence set is comprised of three models, each with at 

least 6 out 7 predictor variables, while at the 10 km scale, the confidence set included 15 

models with only three predictor variables of overwhelming importance (Table 3-3).  

In the model averaging results, most predictors became less common in model 

confidence sets with coarsening spatial grain, but other predictors became more common 

or displayed variable patterns (Fig. 3-4B). For example, NDVI appeared in a greater 

percentage of models at coarser spatial scales, whereas veg and Pwater became less 

common (Fig. 3-4B). Human remained in at least 99% of all models until the 10 km 

spatial grain where it only occurred in 36% of the models and also became an 

unimportant univariate predictor (Fig. 3-4B, Table 3-4). Unlike the model averaging 

results, no other univariate predictors aside from Human changed in importance at 

coarser spatial resolutions (Table 3-4). 

The best AIC model for each region and spatial grain all performed similarly and 

well, but important discrepancies existed (Fig. 3-5). Differences between models
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Table 3 – 3. Model averaging analysis of the spatial grain confidence sets. Confidence 
sets were generated by finding the set of best-fitting models that yielded an AIC summed 
probability (wi) of 0.95, separately for the 100m, 1km, 5k, and 10km spatial grains. See 
Table 3 – 2 for abbreviations. 
 

100 m scale 5 km scale

maxT minT NDVI ppt veg Pwater human AIC w i maxT minT NDVI ppt veg Pwater human AIC w i

The best models Five best models

x x x x x x 326.61 0.64 x x x x x 162.15 0.17

x x x x x x x 328.21 0.29 x x x x x x 162.89 0.11

x x x x x 332.41 0.04 x x x x 163.04 0.11

maxT minT ND

x

x

x x

x

x

x x

x x x

0.97 x x x x 163.30 0.09

x x x x x 163.94 0.07

0.55

One model in common with 100 m resolution

x x x x x x 166.951 0.01

0.01

… 11 other models 0.39

1 km scale 10 km scale

VI ppt veg Pwater human AIC w i maxT minT NDVI ppt veg Pwater human AIC w i

Five best models Five best models

x x x x 295.84 0.23 x x x 66.38 0.24

x x x x x 297.17 0.12 x x x x 67.43 0.14

x x x x 297.48 0.10 x x x x 67.61 0.13

x x x 297.62 0.09 x x x x 68.22 0.10

x x x x 297.81 0.08 x x x x x 68.43 0.09

0.62 0.70

Two models in common with 100 m resolution No models in common with 100m resolution

x x x x 297.48 0.10 … 10 other models 0.25

x x x x 298.73 0.05

0.15

… 7 other models 0.29



     

Table 3 – 4. Single predictor effects of seven environmental variables on Argentine ant occurrence at four different spatial grains 
using logistic regression (100m = 747 points: 208 pres, 539 abs; 1km = 588 points: 176 pres, 412 abs; 5km = 374 points: 117 pres, 
257 abs; 10km = 191 points: 64 pres, 127 abs). In each analysis the best explanatory variables (variables with AUC > 0.75) are 
highlighted in bold.  
 

100m 1km 5km 10km

Variable AUC ∆AIC
Parameter 
Estimates AUC ∆AIC

Parameter 
Estimates AUC ∆AIC

Parameter 
Estimates AUC ∆AIC

Parameter 
Estimates

Maximum summer temperature 0.81 74.4 -12.67 0.85 41.8 -14.30 0.91 0.0 -20.05 0.91 0.0 -20.94

Minimum winter temperature 0.88 0.0 20.03 0.88 0.0 20.88 0.90 2.4 21.92 0.88 16.8 16.43

NDVI 0.55 208.3 1.07 0.53 180.9 0.71 0.56 123.9 1.06 0.65 63.3 2.43

Precipitation 0.51 190.7 0.96 0.54 156.7 1.09 0.61 103.7 1.20 0.71 53.0 1.61

Land-cover 0.83 13.8 Cat. 0.82 44.9 Cat. 0.84 32.5 Cat. 0.89 5.8 Cat.

Distance to perennial water 0.57 211.3 -0.05 0.46 183.7 0.03 0.52 127.5 0.10 0.55 73.1 -0.14

Distance to human modified are 0.88 40.5 -0.54 0.89 14.5 -0.53 0.86 38.5 -0.47 0.47 73.8 -0.03

Land-cover

Agriculture -1.45 -2.60 -2.22 -2.26

Barren -0.79 1.29 NA NA

Conifer -17.12 -15.97 -16.34 NA

Desert -17.12 -15.97 -16.34 -16.96

Hardwood -0.07 1.31 1.33 NA

Herbaceous 0.32 1.27 2.22 2.17

Shrub -0.51 1.55 1.35 1.92

Urban 3.30 3.96 3.70 4.60  

67

 



    
68

 

 

 
 
Figure 3 – 5: Predicted probability of Argentine ant occurrence in southern California based on the best AIC models for the 
following: (A) the HS data (y ~ mint + veg + Pwater + human), (B) the AAS data (y ~ mint + NDVI + ppt + veg + Pwater), (C) 
the combined 100 m  dataset (y ~ maxT + minT + ppt + veg + Pwater + human), (D)  the 1 km dataset (y ~ minT + ppt + veg + 
Pwater + human), (E) the 5 km dataset (y ~ maxT + mint + NDVI + ppt + human), and (F) the 10 km dataset (y ~ minT + NDVI + 
ppt).
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created from the regional datasets were mostly due to the importance given to proximity 

to nearest perennial water source and precipitation (Table 3-1). The HS model predicted 

Argentine ant occurrence of be highly probable in the agricultural areas of the Colorado 

desert (Fig. 3-5A), which receives little rainfall, but contains numerous irrigation canals 

and has a large inland sea. In contrast, the AAS model predicted that L. humile does not 

occur in these areas (Fig. 3-5B). Both regional models predicted that Argentine ants 

should occur in urban environments at lower elevations irrespective of whether or not 

they are in deserts (Fig. 3-5A&B). The models created from the combined datasets at 100 

m and 1 km closely resemble the model created for the AAS region (Fig. 3-5C&D). 

Models at the coarsest two spatial grains only predicted L. humile occurrence in the 

coastal areas west of the coastal mountain ranges (Fig. 3-5E&F). As the spatial grain was 

coarsened, predictions of Argentine ant occurrence became broader with the ranges 

extending further inland and consolidating along the coast in un-urbanized environments 

(Fig. 3-5C-F). 

Discussion 

Efforts to model species distributions increasingly attempt 1) to identify factors 

that determine current range limits, and 2) to predict potential ranges of introduced 

species and range shifts resulting from climate change. In this study, we systematically 

analyzed how the accuracy of model predictions hinges on sufficient sampling, 

independently collected data from different regions, and the spatial grain of 

environmental predictor variables. First, we demonstrate that insufficient sampling of 

environmental parameter space (Fig. 3-1) incorrectly predicted species distributions when 

models were applied to independent data sets in adjacent regions (Fig. 3-3). Second, 

  



 70

despite extensive sampling in two geographically adjacent regions in our study (Fig. 3-2), 

differences existed with respect to the univariate predictors of occurrence (Table 3-1). 

Models using data that sufficiently sampled the environmental parameter space resulted 

in the most general models (Fig. 3-4C). Lastly, in models with multiple variables, 

environmental factors changed in their relative importance across spatial grain (Fig. 3-

4B) and there was no overlap in model confidence sets between the finest and coarsest 

spatial grains (Fig. 3-4D). The findings of this study illustrate that caution is warranted 

when making biological inferences from species distribution models, especially in cases 

where predictions are being made across time and space. 

The first important result concerns how insufficient sampling (Fig. 3-1) can 

compromise model accuracy (Fig. 3-3). Even though we fully sampled across the 

environmental tolerances of L. humile in the HS region (Fig. 3-1D&F, Fig. 3-2B), our 

sampling did not fully encompass the known parameter space for this region and in part 

as a consequence resulted in incorrect model predictions when using a multi-variable 

model (Fig. 3-3). This finding provides an example of how it is not only important to 

sample outside the environmental tolerances of the focal species but also to sufficiently 

sample the multivariate environmental space of the region. When using presence only 

data, however, Kadmon et al. (2003) demonstrated that model performance decreased 

when sampling extended across the full range of the species distribution. This 

discrepancy may in large part be due to issues relating to the change in model prediction 

error from omission to commission based on the increasing ratio of presence-to-absence 

points in a sample (McPherson et al. 2004). Because widely distributed species may often 

have higher presence-to-absence ratios compared to locally distributed species, 
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interspecific comparisons of model parameters are problematic (McPherson et al. 2004). 

Furthermore, in presence only models, locally distributed species will have better model 

performance compared to widely distributed species (Elith et al. 2006). Most current 

work on species distribution models uses presence only data because species occurrence 

data sets seldom includes absences (Peterson 2003, Elith et al. 2006). 

Independent regions that were in close geographic proximity (Fig. 3-2) and were 

sampled with different levels of thoroughness (Fig. 3-1) produced multivariable models 

that differed in their composition (Fig. 3-4) and ability to accurately predict species 

occurrence patterns. These findings illustrate that it is essential to use independently 

collected data to assess model accuracy (Fielding and Bell 1997). For example, one 

important issue concerns the ability of models to accurately predict patterns of 

distribution outside the original study area (Hawkins et al. 2007). But the accuracy of 

most models is tested with data collected from the same region or with a subset of the 

data that were withheld from model creation (Kadmon et al. 2003, Elith et al. 2006).  

When independent data are used to assess model accuracy, two potential pitfalls 

may commonly result. First, a variety of errors can occur if the resolution of the testing 

data set differs from that of the predictive model (McPherson et al. 2006, Guisan et al. 

2007). Second, when the model is not parameterized for the environmental gradient in the 

predicted area, large errors in predicted species distribution may occur (Fig. 3-3). Studies 

attempting to predict the spread of introduced species are often faced with these problems 

because they consider independent regions, which often have novel environments, differ 

in the resolution of their environmental data layers, or differ in the resolution at which 

occurrence data are recorded (Fitzpatrick et al. 2006, Roura-Pascual et al. 2006). These 
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problems are further compounded in studies that attempt to predict range shifts caused by 

climate change because current predictions call for the appearance of environments with 

no present analog (Pearson and Dawson 2003, Williams et al. 2007). 

In addition to issues relating to sufficient sampling and independently collected 

data, model accuracy may also be affected by environmental factors that change in 

relative importance across spatial grain (Fig. 3-4B). In general, coarsening the spatial 

grain of data tends to decrease model performance (Guisan et al. 2007). In our analyses, 

for example, this loss of accuracy appears to result from an increase in the over-

prediction of occurrences, which is caused in large part by the diminishing importance of 

habitat variables (e.g. land-cover, distance to perennial water, distance to human 

modified area) with increasing scale (Fig. 3-4, Fig. 3-5). A number of recent studies have 

also noted that habitat variables as well as variables influenced by anthropogenic activity 

decrease in explanatory power at coarser spatial grains (Luoto et al. 2007, Pautasso 2007, 

Whittingham et al. 2007). This form of scale dependence may be related to the size of 

species ranges; narrowly ranging or specialist species are presumably more strongly 

associated with fine grain variables than more wide ranging or generalist species 

(McPherson et al. 2004, Menendez et al. 2007). With respect to Argentine ants, a species 

strongly limited by its physiological tolerances, patterns of occurrence at the community 

scale in southern California are strongly dependent on fine-scale differences in soil 

moisture (Holway 2005, Menke and Holway 2006, Menke et al. In Press). This 

association weakens at coarser spatial scales where climatic factors become more 

important (Fig. 3-4B). Taken together, these findings illustrate that care should be 
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exercised to match the spatial resolution of predictions to the environmental correlates 

used to create the models (Karl et al. 2000, McPherson et al. 2006).  

Conclusions 

The primary goal of this study was to quantitatively assess how the performance 

of species distribution models is affected by the following: sampling of the environmental 

envelope, testing with independently collected data from different regions, and 

manipulating the spatial resolution of environmental predictor variables. Model accuracy 

is strongly influenced by the sufficiency of sampling of the species’ distribution as well 

as the environmental parameter space in which predictions are going to be made. 

Moreover, we found that variables change dramatically in importance at different spatial 

resolutions; climatic factors become more important at coarser resolutions, and habitat 

variables become less important. In light of these findings, we recommend that efforts to 

model species distributions take into consideration 1) inclusion of both presence and 

absence data, 2) sufficient sampling of the species’ environmental range, 3) sufficient 

sampling of the environmental parameter space of the region into which predictions will 

be made, 4) testing model predictions in a distinct region with independently collected 

data, 5) using variables at the appropriate spatial grain, and 6)  making model predictions 

at the same resolution as model parameterization. Exercising appropriate levels of caution 

in efforts to model species distributions will increase the likelihood that predictions are 

biologically meaningful. 
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