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We present high performance computing and real time software for high dimensional data clas-

sification. We investigate the OpenMP parallelization and optimization of two graph-based data

classification algorithms. The new algorithms are based on graph and PDE solution techniques

and provide significant accuracy and performance advantages over traditional data classification

algorithm. We use OpenMP as the parallelization language to parallelize the most time-consuming

parts, which is the Nyström extension eigensolver. The Nyström extension calculates eigenval-

ue/eigenvectors of the graph Laplacian and this is a self-contained module that can be used in

conjunction with other graph-Laplacian based methods such as spectral clustering. We then opti-

mize the OpenMP implementations and detail the performance on traditional supercomputer nodes

(in our case a Cray XC30), and test the optimization steps on emerging testbed systems based on

Intel’s Knights Corner and Landing processors. We show both performance improvement and

strong scaling behavior. A large number of optimization techniques and analyses are necessary

before the algorithm reaches almost ideal scaling. We further develop the parallelized real time

software. The software is published on Image Processing On Line (IPOL) and uses IPOL’s server.

It provides real time computation for image classification.

We apply the parallelized classification algorithms to various problems. The first one is hy-

perspectral image classification, a challenging modality due to the dimension of pixels which can

range from hundreds to over a thousand frequencies depending on the sensor. Our methods use the

full dimensionality of the data and consider a similarity graph based on pairwise comparisons of

pixels. The graph is segmented using a pseudospectral algorithm for graph clustering that requires
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information about the eigenfunctions of the graph Laplacian but does not require the computation

of the full graph. The parallelized Nyström extension method randomly samples the graph to con-

struct a low rank approximation of the graph Laplacian. With at most a few hundreds eigenfunc-

tions, we can implement the clustering method to solve variational problems for graph-cut-based

semi-supervised and unsupervised classification problems. The second application is ego-motion

classification of body-worn videos. Portable cameras record dynamic first-person video footage

and these videos contain information on the motion of the individual on whom the camera is

mounted, defined as ego. We address the task of discovering ego-motion from the video itself,

without other external calibration information. We investigate the use of similarity transformations

between successive video frames to extract signals reflecting ego-motions and their frequencies.

We use the parallelized graph-based unsupervised and semi-supervised learning algorithms to seg-

ment the video frames into different ego-motion categories. We show very accurate results on both

choreographed test videos and ego-motion videos provided by the Los Angeles Police Department.
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CHAPTER 1

Introduction

Multi-class classification is one of the fundamental problems in machine learning and computer

vision. The massive amount of data contained in image and video data also requires computational

efficiency. This motivates us to develop a parallel implementation of two noval classification al-

gorithms. The original work in this thesis comes from two publications and one manuscript that

is accepted for publication. Chapter 4 presents the work of one publication [107] which contains

the full development of the hyperspectral image classification using two graph methods along with

the parallelized codes and online demo. Chapter 5 discusses the publication [106] of detailed de-

velopment of the parallelized algorithms using different high performance computing techniques.

In Chapter 6, we discuss a direct application of the parallelized classification algorithm – the ego-

motion classification of body-worn videos [108].

The two classification algorithms we focus on use a graphical framework in which each data

point is regarded as a node on a graph. Chapter 2 reviews the definitions and properties of the

graph framework. Graphs are often used to exploit underlying similarities in the data [13, 37, 149,

155, 156, 162]. For example, spectral graph theory [43, 118] uses this approach to perform various

tasks in imaging and data clustering. Graph-based formulations have been also used extensively

for image processing applications [21, 44, 45, 53, 71, 72, 74, 93, 133]. Specifically, algorithms for

image denoising in [30], image inpainting and reconstruction in [70, 124, 154], image deblurring

in [96] and manifold processing in [53] all utilize such formulations. The graphical approach

has appeared in many recent works for different kinds of applications: semi-supervised learning

[8, 13, 38, 67, 109, 111–113], image processing [46, 53, 154], machine learning [157], and graph

cuts [22, 24–26, 77, 110, 133, 140].

In Chapters 3, we outline two very efficient methods to classify data sets, so that the similar-

ity between data in one class is much larger than the similarity between data of different classes.

The first algorithm we outline in Chapter 3 is semi-supervised [112, 113], which requires some

known labels as input, and the second one is unsupervised [80]. Both methods make use of the
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MBO scheme, which is a well-established PDE method for evolving an interface by mean cur-

vature [114, 117]. It is adapted to the graph setting in [66, 67]. A comprehensive reference for

casting continuous PDEs in a graph form is [73]. The semi-supervised algorithm minimizes an

energy functional that is a sum of a graph cut term and a least squares fit to the training data. The

unsupervised algorithm is derived from the Chan-Vese method [36, 146] and likewise adapted to

the graph setting. It has an energy functional that is the sum of a graph cut term and a least squares

fit to the average value of pixels in that class.

The two algorithms leverage the Nyström extension to calculate eigenvalue/eigenvectors of the

graph Laplacian and this is a self-contained module that can be used in conjunction with other

graph-Laplacian based methods such as spectral clustering. The calculation is very efficient and

the computational complexity is O(mN), where m is a small number. This is achieved by calcu-

lating the eigen-decomposition of a smaller system of size m � N and then expanding the result

back up to N without any significant decrease in the accuracy of the solution. We present the opti-

mized implementation and directive-based OpenMP parallelization of the Nyström eigensolver in

Chapter 5.

One application of the multi-class classification algorithms is the class detection of pixels in

hyperspectral images, where each pixel contains many channels. We present the application to

hyperspectral image classification in Chapter 4. A traditional way of solving the hyperspectral

image classification problem is to first use dimension reduction and then a classifier. Many feature

extraction and dimension reduction techniques have been developed for hyperspectral image classi-

fication, such as principle component analysis (PCA) [60], independent component analysis [150],

signal subspace identification [17], discrete wavelet transform [85], band reduction based on rough

sets [132], projection pursuit algorithm [84], and clonal selection feature-selection algorithm [153].

The Fuzzy C-Means (FCM) algorithm is a well-known tool to find proper clusters, which can be

used for hyperspectral image classification [81], and can be further enhanced by the Support Vector

Domain Description [121]. Support vector machines (SVM) [19,145] are another popular approach

to the supervised classification problem, including one involving hyperspectral data [34, 75, 105].

Similar approaches include transductive SVM [29] and SVM with composite kernels [35]. Some

of these methods use kernels, which have been shown to improve performance [34, 92], especially

when the data is not linearly separable. Examples of kernel methods can be found in [65,147,152].

Other successful techniques include multinomial logistic regression [18, 90], which was applied
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to hyperspectral image segmentation in [94, 95], and sparse representation, also applied to such

images in [41, 42]. The reader is referred to [100, 141] for more approaches.

For hyperspectral images, we consider each pixel as a node on a graph, and take the values in the

channels to form the feature vectors. This framework provides several advantages; for example, it

allows for a general incorporation of information of any kind of data set- video data, text, images,

etc. It also brings forth a way to work with nonlinearly separable classes [67], i.e. when the data

is not linearly separable. Moreover, in the case of image processing, the framework allows one to

easily capture texture and patterns throughout the image [31,69,70,112] using the nonlocal means

feature vector.

For hyperspectral images, the pixel can have very high dimensions of channels, and the hyper-

spectral videos contain massive amount of data. The need to completely and accurately capture

critical information from the exponential growth of scientific data is prominent and is a big chal-

lenge as well. Many successful machine learning methods have not been accelerated by high

performance computing. This is a big opportunity and motivates us to develop parallel implemen-

tations and optimizations of the two classification algorithms [106] described in Chapter 3. We

describe parallel implementations and optimizations of the new algorithms in Chapter 5. We focus

on shared memory many-core parallelization schemes that will be applicable to next generation

of exascale architectures such as the upcoming Intel Knights Landing processor. We use perfor-

mance tools to collect the hotspots and memory access of the serial codes. After analyzing the

computational hotspots, we find that an optimized implementation of the Nyström eigensolver is

the computational challenge for scalability of graph MBO methods.

In [40] the authors discussed the parallelization of spectral clustering, which makes use of the

spectrum (eigenvalues/vectors) of the similarity matrix of the data to perform dimensionality re-

duction before clustering in fewer dimensions. They developed a parallelized algorithm for an

eigensolver for a sparse matrix. However, there is another class of non-sparse graph Laplacians

that are prohibitive to compute, and the Nyström method gives a low-rank approximation for the

non-sparse Laplacians. This class of algorithms have not been parallelized. We demonstrate a par-

allelization of the Nyström eigensolver on the exascale-ready machine Cori at NERSC to efficiently

compute low rank representations of fully connected similarity graph, the backbone calculation of

spectral clustering or semi-supervised/unsupervised machine learning methods. Where possible,

we also use library routines. We then optimize the OpenMP implementations and detail the per-
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formance on traditional supercomputer nodes (in our case a Cray XC30), and test the optimization

steps on emerging testbed systems based on Intel’s Knights Corner and Landing processors. We

show OpenMP parallelization and SIMD regions in combination with optimized library routines

achieve almost ideal scaling and manyfold speedup over serial implementations. A large number

of optimization techniques and analyses are necessary before the algorithm reaches almost ideal

scaling.

The parallelization of the two classification algorithms make the algorithms efficient enough

for video analysis. In Chapter 6, we present an approach for segmenting or catagorizing frames

of body-worn videos (BWV) by different ego-motion categories. Affordable high-quality cam-

eras for recording the first-person point-of-view experience, such as GoPro, are an increasingly

common item in many aspects of people’s lives. Prior work on vision-based first-person human

action analysis has focused a lot on indoor activities, such as object recognition [126], hand gesture

recognition [104] [137], sign language recognition [135], context aware gesture recognition [98],

hand tracking [136] and detecting daily life activities [125]. Work with body-worn sensors has

also been shown to be effective for categorizing human actions and activities [82] [134]. An un-

supervised ego-action learning method was proposed in [88] for sports videos. The basis of video

indexing is to model the transformation between successive frames in the video. For the purpose

of video indexing, several studies have examined parametric models of frame transformation such

as [20], [87]. Parametric models can be also used for video stabilization [130], and panorama

construction [86].

We know that human motion observed from a first-person point-of-view can be captured by the

global displacement between successive frames. This means that we should be able to aggregate

global motion and marginalize out local outlier motion. We also know that motion involving the

human gait has an inherent frequency component. Therefore we expect that frequency analysis can

be used as an important feature for ego-motion categorization. We develop a parametric model for

calculating the simple global representation of motion. This approach produces a low dimensional

representation of the motion of the ego. We then classify the ego-motion using the graph-based

semi-supervised and unsupervised learning algorithms described in Chapter 3.

We consider the ego-motion classification problem with both benchmark and real-world data.

Working with both types of data is critical because of the stark differences in the degree of diffi-

culty in the analysis of video data collected under controlled and uncontrolled or “wild“ conditions.
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Benchmark datasets with known ground truth are developed under experimental conditions con-

trolled by the researcher. Such datasets attempt to simulate the types of behaviors that are of most

interest to the researcher. Simulations may favor positive outcomes because they seek not only

to limit sources of error linked to video image quality, but also enhance target behaviors of inter-

est. For example, experimental protocols that seek to enhance camera stability, ensure adequate

lighting conditions, avoid obstructions may all assist in the algorithmic task. Ensuring that exper-

imental participants enact well-defined or discrete transitions between different types of behavior,

or exaggerate the differences between behavioral modes may favor accurate segmentation. We

draw on choreographed video collected under controlled circumstances to develop our approach.

Videos not collected under controlled conditions may nevertheless be hand-labeled by the re-

searcher to produce a ground truth. Such videos may be subject to many more quality challenges

than simulated scenes. Actual behavior and conditions as they exist on the ground are unforgiving.

People in real-world settings may not act in discrete, linear sequences, nor are they necessarily

inclined to exaggerate their different actions for easy detection. Ego-motions may also proceed

so quickly that they defy discrete recognition. We may also lack sufficient semantic categories to

capture the diversity of real-world behavior. Real-world video systems suffer from poor camera

stability, low frame rate, low resolution, poor color saturation and data collection errors (both hu-

man and mechanical). All of these effects can drastically impact the ability of the researcher to

label video for ground truth, which introduces errors into algorithmic methods. We draw on po-

lice body-worn video (BWV) to evaluate how our methods perform under challenging real-world

conditions. Police BWV is typically shaky, contains noise from low light conditions, poor color

saturation and occlusions, and represents diverse and often mixed motion routines.

The rest of this thesis is organized as follows. Chapter 2 introduces the background and pre-

liminaries of the graph setting, the definition and properties of the graph Laplacians. In Chapter

3, we present the review of the semi-supervised and unsupervised graph MBO methods. We also

present the theoretical background of the Nyström extension methods. In Chapter 4, we present

the full development of both the graph MBO algorithms on a broad range of hyperspectral im-

agery including the online parallelized codes and demo. We apply the algorithms on much larger

data sets using much less training data than previous work. We further discuss the procedure and

details of the parallelization of the two graph algorithms in Chapter 5. We use OpenMP as the

parallelization language and parallelize the most time-consuming part of the codes. Math library
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use, vectorization, chunk methods and the roofline model are discussed. In Chapter 6, we deal with

a real world problem which is a direct application of the graph classification methods. We address

the task of discovering ego-motion from the body-worn videos. The feature vectors are built using

the similarity transformations between successive video frames and the graph MBO methods are

used to segment the video frames into different ego-motion categories.
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CHAPTER 2

Background

2.1 Graphical Framework

For all methods, we consider a graphical framework with an undirected graph G = (V,E),

where V is the set of vertices and E is the set of edges. Let w be the weight function (defined on

the set of edges) which measures the similarity between each two vertices. Also, let

d(x) =
∑
y∈V

w(x, y)

be the degree of vertex x. The diagonal matrix D contains the degree along its diagonal entries

and the matrix W contains values of the weight function. Both matrices are of dimension N by N ,

where N is the number of vertices. A representation of the graphical framework is shown below.

One advantage of using a graphical framework is that it allows one to be non-local and take

into account the relationship between any two nodes in the data set. Therefore, repetitive structure

and texture can be captured. The graphical framework is also more general, and can be easily

constructed for any data set.
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Weight Function

When choosing a weight function, the goal is to give a large weight to an edge if the two vertices

it is connecting are similar and a small weight if they are dissimilar. One popular choice for the

weight function is the Gaussian

w(x, y) = e−
d(x,y)2

σ2 , (1)

where d(x, y) is some distance measure between the two vertices x and y, and σ is a parameter

to be chosen. For example, if the data set consists of points in R2, d(x, y) can be the Euclidean

distance between point x and point y, since points farther away are less likely to belong to the same

cluster than points closer together. For images, d(x, y) can be defined as the weighted 2-norm of

the difference of the feature vectors of pixels x and y, where the feature vector of a node consists

of intensity values of pixels in its neighborhood, as described in [69].

Another choice for the similarity function used in this work is the Zelnik-Manor and Perona

weight function [123] for sparse matrices:

w(x, y) = e
− d(x,y)2√

τ(x)τ(y) , (2)

where the local parameter τ(x) = d(x, z)2, and z is the M th closest vertex to vertex x.

Note that it is not necessary to use a fully connected graph setting, which might be a compu-

tational burden. Specifically, the fully connected graph can be approximated by a much smaller

graph by only including an edge between vertex x and y if x is a k-nearest neighbor of y or vice

versa. This is called a k-nearest neighbor graph. One can also create a mutual k-nearest neighbor

graph by only including an edge between x and y if both of them are k-nearest neighbors of each

other.

Graph Laplacian

In the graphical framework, it is possible to introduce some common mathematical operators

in a graphical setting. For this section, we will only be concerned with the graph version of

the differential Laplace operator. Although many versions exist, we mention the following three

matrices that are related to the differential ∆ operator:

* L = D−W, unnormalized Laplacian.

* Ls = D−
1
2LD−

1
2 , symmetric Laplacian.
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* Lrw = D−1L, random walk Laplacian.

The last two matrices represent normalized versions of the original Laplacian, as it is sometimes

desirable to scale, especially in high dimensions. Note that we have the following equations:

Lu(x) =
∑
y

w(x, y)(u(x)− u(y)),

Lsu(x) =
1

d(x)

∑
y

w(x, y)(u(x)− u(y)),

Lrwu(x) =
1√
d(x)

∑
y

w(x, y)
( u(x)√

d(x)
− u(y)√

d(y)

)
.

The graph Laplacian L has the following easily shown properties [43, 148]:

1) L is symmetric and positive semi-definite.

2) L has N non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ λN .

3) The smallest eigenvalue of L is 0; eigenvector is just a constant vector.

The graph Laplacians Ls and Lrw have the following easily shown properties:

1) Ls and Lrw are positive semi-definite.

2) Ls and Lrw have N non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ λN .

3) λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigenvalue of Ls with

eigenvector w = D
1
2u.

4) The smallest eigenvalue of Ls and Lrw is 0.

It is also worthwhile to mention that the multiplicity of eigenvalue 0 equals the number of

connected components in the graph.

Other Graph Operators

Another important operator that arises from the need to define variational methods on graphs

is the mean curvature on graphs. This non-local operator was introduced by Osher and Shen

in [122], who defined it via graph based p-Laplacian operators. p-Laplace operators are a family

of quasilinear elliptic partial differential operators defined for 1 ≤ p <∞:

Lp(u) = ∇ · (| ∇u |p−2 ∇u).
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In the special case p = 2, the p-Laplacian is just a regular Laplacian. For p = 1, the p-Laplacian

represents curvature.

The discrete graph version of p-Laplace operators is defined in [53] as:

Lp(u(x)) =
1

p

∑
(x,y)∈E

w(x, y)(‖∇u(x)‖p−2 + ‖∇u(y)‖p−2)(u(x)− u(y)).

Note that the graph 2-Laplacian is just the graph Laplacian, which is consistent with the continuous

case.

Let us now define the mean curvature on graphs- the discrete analog of the mean curvature of

the level curve of a function defined on a continuous domain of RN :

κw =
1

2

∑
(x,y)∈E

w(x, y)(
1

‖∇u(x)‖
+

1

‖∇u(y)‖
)(u(x)− u(y)).

Note that in the case of unweighted mesh graph, κw becomes a numerical discretization of mean

curvature. This curvature, κw, is also used in [48] as a regularizer in a graph adaptation of the

Chan-Vese method. In their work [144], Van Gennip et al. propose a different definition of mean

curvature on graphs and prove convergence of the MBO scheme on graphs.

Previous Work Using Graphs

Graph-based formulations have been used extensively for image processing applications [21,

44, 45, 53, 71, 72, 74, 93]. Interesting connections between these different algorithms, as well as

between continuous and discrete optimizations, have been established in the literature. Grady has

proposed a random walk algorithm [72] that performs interactive image segmentation using the

solution to a combinatorial Dirichlet problem. Elmoataz et al. have developed generalizations of

the graph Laplacian [53] for image denoising and manifold smoothing.

Couprie et al. in [44] define a conveniently parameterized graph-based energy function that is

able to unify graph cuts, random walker, shortest paths and watershed optimizations. There, the

authors test different seeded image segmentation algorithms, and discuss possibilities to optimize

more general models with applications beyond image segmentation. In [45], alternative graph-

based formulations of the continuous max-flow problem are compared, and it is shown that not

all the properties satisfied in the continuous setting carry over to the discrete graph representation.

For general data segmentation, Bresson et al. in [23], present rigorous convergence results for

two algorithms that solve the relaxed Cheeger cut minimization, and show a formula that gives the
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correspondence between the global minimizers of the relaxed problem and the global minimizers

of the combinatorial problem.

2.2 Graphical Framework, Extended

For the MBO method, we only need to define the Laplace operator in a more general graphical

framework, since this is the only operator encountered in the procedure. We also outline the

graphical framework in more detail here, giving more general definitions for other operators. We

define operators on graphs in a similar fashion as done in [76,143], where the justification for these

choices is shown. We note that some of the formulism is not used elsewhere in this thesis, however,

we include it here for completeness.

Assume m is the number of vertices in the graph and let V ∼= Rm and E ∼= R
m(m−1)

2 be Hilbert

spaces (associated with the set of vertices and edges, respectively) defined via the following inner

products:

〈u, γ〉V =
∑
x

u(x)γ(x)d(x)r,

〈ψ, φ〉E =
1

2

∑
x,y

ψ(x, y)φ(x, y)w(x, y)2q−1

for some r ∈ [0, 1] and q ∈ [1
2
, 1]. Let us also define the following norms:

‖u‖V =
√
〈u, u〉V =

√∑
x

u(x)2d(x)r,

‖φ‖E =
√
〈φ, φ〉E =

√
1

2

∑
x,y

φ(x, y)2w(x, y)2q−1,

‖φ‖E,∞ = max
x,y
|φ(x, y)|.

The gradient operator ∇ : V → E is then defined as:

(∇u)w(x, y) = w(x, y)1−q(u(y)− u(x)). (3)

The Dirichlet energy does not depend on r or q:

1

2
‖∇u‖2

E =
1

4

∑
x,y

w(x, y)(u(x)− u(y))2.

The divergence div : E → V is defined as the adjoint of the gradient:

(divw φ)(x) =
1

2d(x)r

∑
y

w(x, y)q(φ(x, y)− φ(y, x)), (4)
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where we define the adjoint using the following definition: 〈∇u, φ〉E = −〈u, divw φ〉V .

We now have a family of graph Laplacians4r = divw ∇̇ : V → V:

(4wu)(x) =
∑
y

w(x, y)

d(x)r
(u(y)− u(x)). (5)

Viewing u as a vector in Rm, we can write

−4wu = (D1−r −D−rW)u.

The case with r = 0 is the unnormalized Laplacian

L = D−W.

However, the matrix L is usually scaled to guarantee convergence to the continuum differential

operator in the limit of large sample size [15]. Although several versions exist, we consider two

popular versions of the symmetric Laplacian

Ls = D−
1
2LD−

1
2 = I−D−

1
2WD−

1
2 (6)

and the random walk Laplacian (r = 1)

Lrw = D−1L = I−D−1W.

The advantage of the former formulation is its symmetric property which allows for more efficient

implementations.

A family of anisotropic total variations TVw : V → R can now be defined:

TVw(u) = max
{
〈divw φ, u〉V : φ ∈ E , ‖φ‖E,∞ ≤ 1

}
=

1

2

∑
x.y

w(x, y)q|u(x)− u(y)|. (7)

Lastly, in this section, we consider the following graph-based Ginzburg Landau functional:

GLε(u) = ‖∇u‖2
E +

1

ε

∑
x

W (u(x)).

Remark. It is noted in [143] that although the first term in the continuous Ginzburg-Landau

functional

ε

∫
|∇u|2dx+

1

ε

∫
W (u)dx

is scaled by ε, the first term of GLε contains no ε. This occurs because the Dirichlet energy in

the continuous Ginzburg-Landau functional is unbounded for functions of bounded variation and
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taking on two values of the minima of the double-well potential (almost everywhere). However, the

difference terms of GLε are finite even in the case of binary functions, and no rescaling of the first

term is necessary.

It remains to choose the parameters q and r. In [143], the authors choose q = 1, where it

is shown that for any r, TVw is the Γ-limit (Gamma convergence) of a sequence of graph-based

Ginzburg-Landau (GL)-type functionals:

Theorem 1. GLε
Γ−→ GL0 as ε→ 0, where

GLε(u) = ‖∇u‖2
E +

1

ε

∑
x

W (u(x)) =
1

2

∑
x,y

w(x, y)(u(x)− u(y))2 +
1

ε

∑
x

W (u(x)),

GL0(u) =

TVw(u)with q=1 for u s.t. u(x) ∈ {0, 1}

∞ otherwise

Proof See Theorem 3.1 of [143]. �

It is also shown that the addition of a fidelity term is compatible with Γ-convergence.

We choose r = 1 because it results in a normalized random walk Laplacian and the eigenvec-

tors as well as the corresponding eigenvalues of the matrix can be efficiently calculated. Although

the random walk Laplacian matrix itself is not symmetric, spectral graph theory described in [43]

shows that the eigenvectors of the random walk Laplacian can be directly computed from knowing

the diagonal matrix D and the eigenvectors of the symmetric graph Laplacian (which is a sym-

metric matrix) Ls. In particular, λ is an eigenvalue of Lrw with eigenvector u if and only if λ is

an eigenvalue of Ls with eigenvector w = D
1
2u. This is proved by multiplying the eigenvalue

equation Lrwu = λu by D
1
2 from the left and then substituting w = D

1
2u, obtaining Lsw = λw.

We take advantage of this property by calculating the eigenvalues and eigenvectors of the sym-

metric graph Laplacian (since symmetric matrices allow for more efficient implementations) and

then using this information to calculate the same for the random walk Laplacian.

To summarize, we use the above operator definitions with q = 1 and r = 1.

Therefore, we use

TVw(u) = max
{
〈divw φ, u〉V : φ ∈ E , ‖φ‖E,∞ ≤ 1

}
=

1

2

∑
x.y

w(x, y)|u(x)− u(y)|. (8)
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2.3 Clustering

The increase in both volume and the variety of data requires advances in methodology to au-

tomatically understand, process, and summarize the data [83]. Often, a clear distinction is made

between learning problems that are (i) supervised (classification) or (ii) unsupervised (clustering),

the first involving only labeled data (training data with known class labels) while the latter involv-

ing only unlabeled data [52]. There is a growing interest in a hybrid setting, called semi-supervised

learning [39]; in semi-supervised classification, the labels of only a small portion of the training

data set are available. The unlabeled data, instead of being discarded, are also used in the learning

process.

The goal of data clustering, also known as cluster analysis, is to discover the natural groupings

of a set of patterns, points and objects. An operational definition of clustering can be stated as

follows: Given a representation of n objects, find K groups based on a measure of similarity such

that the similarity between objects in the same group are high while the similarities between objects

in different groups are low. We provide a brief overview of two clustering methods: K-means and

spectral clustering here.

K-Means

One of the most popular and simple clustering algorithms is K-means [101]. In spite of the fact

that K-means was proposed over 50 years ago and thousands of clustering algorithms have been

published since then, K-means is still widely used. We provide a brief overview of K-means here.

Let X = xi, i = 1, ..., n be the set of n-dimensional points to be clustered into a set of K

clusters, C = ck, k = 1, ..., K. K-means algorithm finds a partition such that the squared error

between the empirical mean of a cluster and the points in the cluster is minimized. Let µk be the

mean of cluster ck. The squared error between µk and the points in cluster ck is defined as:

J(ck) =
∑
xi∈ck

||xi − µk||2. (9)

The goal of K-means is to minimize the sum of squared error over all K clusters,

J(C) =
K∑
k=1

∑
xi∈ck

||xi − µk||2.
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Figure 1: Illustration of K-means algorithm. [83] (a) Two-dimensional input data with three clusters. (b) Three

seed points selected as cluster centers and initial assignment of the data points to clusters. Panels (c) and (d) show

intermediate iterations updating cluster labels and their centers. (e) Final clustering obtained by K-means algorithm at

convergence.

Minimizing this objective is known to be an NP-hard problem. Thus K-means, which is a

greedy algorithm, can only converge to a local minimum. K-means starts with an initial partition

with K clusters and assign data points to clusters so as to reduce the squared error. The main steps

of K-means are as follow:

* 1. Select an initial partition with K clusters; repeat steps 2 and 3 until cluster membership

stablizes.

* 2. Generate a new partition by assigning each data point to its closes cluster center.

* 3. Compute new cluster centers.
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Spectral Clustering

Spectral clustering [148] is a popular approach for clustering a data set into several classes. The

method requires the data set to be embedded in a graph framework and the eigenvectors of the

graph Laplacian (or the random walk Laplacian) to be computed. The procedure is as follows:

Spectral Clustering

Input: Graph Laplacian L (or Lw), number K of clusters to construct.

1. Compute first K eigenvectors v1, ..., vK of L (or Lw).

2. Let V ∈ RN×K be the matrix containing the vectors v1, ..., vK as columns.

3. For i = 1, ..., N , let yi ∈ RK be the vector corresponding to the ith row of V .

4. Cluster the points (yi)i=1,...,N in RK with the K−means algorithm into clusters C1, ..., CK .

Output: Clusters A1, ..., AK with Ai = {j|yj ∈ Ci}.

A generalized version of spectral clustering using the p-Laplacian is proposed in [32].
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CHAPTER 3

Graph MBO Method

Chapter 3 is a review of a fast algorithm (MBO method) for classification and image process-

ing [57, 80, 112]. The graph MBO method is inspired by diffuse interface models that have been

used in a variety of problems, such as those in fluid dynamics and materials science. As an alterna-

tive to L1 compressed sensing methods, Bertozzi and Flenner introduce a graph-based model based

on the Ginzburg-Landau functional in their work [15] to solve the semi-supervised classification

problem. To define the functional on a graph, the spatial gradient is replaced by a more general

graph gradient operator. Analogous to the continuous case, the first variation of the model yields

a gradient descent equation with the graph Laplacian, which is then solved by a numerical scheme

with convex splitting. To reduce the dimension of the graph Laplacian and make the computation

more efficient, the authors propose the Nyström extension method [62] to approximate eigenvalues

and the corresponding eigenvectors of the graph Laplacian. Moreover, many applications suggest

that the MBO scheme of Merriman, Bence and Osher [115] for approximating the motion by mean

curvature performs very well in minimizing functionals built around the Ginzburg-Landau func-

tional. For example, the authors of [57] propose an adaptation of the scheme to solve the piecewise

constant Mumford-Shah functional. The author of [112] adapted the MBO scheme for solving

semi-supervised graph based equations to create a simple algorithm that achieves faster conver-

gence through a small number of computationally inexpensive iterations. The unsupervised graph

MBO method is developed based on the Mumford-Shah model and generalized to the graph set-

ting [80]. The graph MBO methods can be applied to various problems, such as image processing,

classification and object detection in, for example, hyperspectral data.

3.1 Semi-supervised Graph MBO Algorithm

In this chapter, we describe how to use eigenvectors of the Laplacian to minimize a semi-

supervised graph model. In semi-supervised learning, the fidelity, or a small amount of “ground
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truth”, is known and the rest of the data set needs to be classified according to the categories of the

known data [113].

We approach the semi-supervised classification problem using energy minimization techniques.

Similar approaches have been used in [15,16], where the problem is formulated as a minimization

of the Ginzburg-Laudau (GL) functional (in graph form) with a fidelity term. In [112], the au-

thors propose an MBO scheme to solve the binary classification problem. The algorithm was use

successfully in classification and image inpainting.

Derivation

By using the Ginzburg-Landau functional for the regularization term and the L2 fidelity term,

we obtain the following minimization problem:

min
u

{
E(u) =

ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx+

∫
λ(x)|u− u0|2dx

}
. (11)

The energy can be minimized in the L2 sense using gradient descent. This leads to the following

dynamic equation (modified Allen-Cahn equation):

∂u

∂t
= −δGLε

δu
− µδF

δu
= ε∆u− 1

ε
W ′(u)− µδF

δu
, (12)

where ∆ represents the Laplacian operator. A local minimizer of the energy is obtained by evolving

this expression to steady state. Note that E is not convex, and may have multiple local minima.

In their work [15], Bertozzi and Flenner propose a segmentation algorithm for solving (11)

in a graph setting. The functional is minimized using the method of gradient descent and convex

splitting. The main purpose of the MBO method is to develop a more efficient and simple method

for minimizing (11) in the small ε limit. An answer comes from the relation between the Allen-

Cahn equation and the motion by mean curvature.

Let us start by reviewing this connection in the continuous setting. In [114], Merriman, Bence

and Osher propose an algorithm to approximate motion by mean curvature, or motion in which

normal velocity equals mean curvature, using threshold dynamics. The authors note that if one

applies the heat equation to an interface, then the diffusion blunts the sharp points of the boundary,

but has very little effect on the flatter regions. Therefore, one can imagine that diffusion creates

some sort of motion by mean curvature, providing that we specify the boundaries of the moving

set.
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Given a phase field u(x, t), consider the basic (unmodified) Allen-Cahn equation, namely equa-

tion (12) without the fidelity term:

∂u

∂t
= ε∆u− 1

ε
W ′(u). (13)

For small values of ε, the following time-splitting scheme can be used numerically to evolve the

Allen-Cahn equation:

1. The first step is propagation using:
∂u

∂t
= ε∆u.

2. The second step is propagation using:

∂u

∂t
= −1

ε
W ′(u).

Note, however, that in the ε → 0 limit, the second step is simply thresholding [114]. Thus, as

ε→ 0, the time splitting scheme above consists of alternating between diffusion and thresholding

steps.

It has been shown [127] that in the limit ε → 0, the rescaled solutions uε(z, t/ε) of (13) yield

motion by mean curvature of the interface between the two phases of the solutions. This motivates

the two sequential steps of the MBO scheme [112]:

1. Diffusion. Let un+ 1
2 = S(δt)un where S(δt) is the propagator (by time δt) of the standard

heat equation:
∂u

∂t
= ∆u.

2. Thresholding. Let

un+1 =

1 if un+ 1
2 ≥ 0,

−1 if un+ 1
2 < 0.

Barles [11] and Evans [58] have proven rigorously that this scheme approximates motion by mean

curvature.

Multiple extensions, adaptations and applications of the MBO scheme are present in literature.

We find the modification of the MBO scheme for solving the inhomogeneous Allen-Cahn equation

proposed in [57] particularly interesting. To create a fast image segmentation algorithm, Esedoḡlu
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and Tsai propose a thresholding scheme for minimizing a diffuse interface version of the piecewise

constant Mumford-Shah functional

MSε(u, c1, c2) =

∫
D

ε|∇u|2 +
1

ε
W (u) + λ{u2(c1 − f)2 + (1− u)2(c2 − f)2}dx, (14)

where f is the image. The first variation of the model (14) yields the following gradient descent

equation:

ut = 2ε∆u− 1

ε
W ′(u) + 2λ{u(c1 − f)2 + (1− u)(c2 − f)2}

and the adaptation of the MBO scheme is used to solve it. Esedoḡlu and Tsai propose the following

scheme (similar to the MBO scheme where the propagation step based on the heat equation is

combined with thresholding) [57]:

* Step 1 Let v(x) = S(δt)un(x) where S(δt) is a propagator by time δt of the equation:

wt = ∆w − 2λ̃
(
w(c1 − f)2 + (1− w)(c2 − f)2

)
with appropriate boundary conditions.

* Step 2 Set

un+1(x) =

 0 if v(x) ∈ (−∞, 1
2
],

1 if v(x) ∈ (1
2
,∞).

Some other extensions of the MBO scheme appeared in [54,55,116]. An efficient algorithm for

motion by mean curvature using adaptive grids was proposed in [128].

The motion by mean curvature of the MBO scheme can be generalized to the case of functions

on a graph in much the same way as the procedure followed for the modified Allen-Cahn equation

(12). We now use the same ideas and apply a two-step time splitting scheme to (12) so that the

second step is the same as the one in the original MBO scheme. The idea is then to replace all

the operators with a more general graph term, since we are considering the graphical framework.

The only operator to deal with here, is the ∆ operator, and we can replace it by several different

versions of the graph Laplacian. In the graphical framework, we have the following three versions

that are related to the differential ∆ operator:

* L = D−W, unnormalized Laplacian.

* Ls = D−
1
2LD−

1
2 , symmetric Laplacian.

* Lrw = D−1L, random walk Laplacian.
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Since Ls is a symmetric matrix, we use the symmetric Laplacian, and thus replace ∆u by

−Lsu.

The discretized version of the algorithm is:

Binary MBO Algorithm:

Initialize u. Until convergence, alternate between the following two steps:

1. Heat equation with forcing term:

un+ 1
2 − un

dt
= −Lsun − µ(un − û). (15)

2. Thresholding:

un+1
i =

1, if u
n+ 1

2
i > 0,

−1, if u
n+ 1

2
i < 0.

Here, after the second step, uni can take only two values of 1 or −1; thus, this method is appro-

priate for binary segmentation. Note that the fidelity term scaling can be different from the one in

(12).

The first part of the two step scheme is solved using the spectral decomposition of the symmetric

graph Laplacian. Let un =
∑

k a
n
kφk(x) and C1λ(un − u0) =

∑
k d

n
kφk(x), where φ(x) are the

eigenfunctions of the symmetric Laplacian. Using the obtained representations and equation (15),

we obtain

an+1
k =

ank − dtdnk
1 + dtλk

,

where λk are the eigenvalues of the symmetric graph Laplacian.

In practice, it can be productive to repeat the diffusion step a number of times before thresh-

olding. In order to keep the convention that one iteration of the diffusion-thresholding procedure

corresponds to one time step, we divide dt by the number of diffusion steps per iteration, which

we denote NS .

To compute the eigenvalues and eigenvectors of the graph Laplacian, we use two methods. One

of them is the Raleigh-Chebyshev procedure of [6] and the second one is the Nyström extension

[15, 62, 63].
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Application to Image Inpainting

The problem of fitting information in the missing pixels of an image is an important inverse

problem in image processing with various applications. Obviously, the goal is to produce a modi-

fied image that will look natural to an observer. The problem of inpainting may also be seen as the

problem of removing occlusive objects from an image. Sparse reconstruction refers to the problem

of recovering randomly distributed missing pixels.

There are numerous approaches to solve these problems in the current literature. Local TV

methods became state-of-the-art techniques for image impainting. However, since they do not

perform well on images with high texture, methods that decompose images into cartoon and texture

and simultaneously inpaint both are developed [14,131]. The problem is also solved with nonlocal

inpainting methods. We are particularly interested in the nonlocal inpainting algorithm from [70] as

we develop a computationally efficient nonlocal method. Some very successful nonlocal methods

for inpainting and sparse reconstruction are given in [7] and [59]. Recently, the class of methods

that use dictionaries of small patches that commonly appear in natural images became increasingly

popular. Those methods, besides inpainting, are also successful in denoising as shown in [102]. In

addition, a method for image inpainting using Navier-Stokes fluid dynamics is proposed in [15].

The authors use Navier-Stokes dynamics to propagate isophotes into the inpainting region, thus

simulating the way painting restoration is done. Wavelets and framelets are also successfully

applied to solve inpainting problems [33, 49].

The segmentation algorithm can be modified slightly for the purpose of image inpainting.

Binary Image Inpainting Although the key steps of the segmentation algorithm remain the

same when it is modified for image inpainting, there are differences to be noted. For example, if

a damaged image is used to construct the adjacency matrix W , the results might not be accurate,

so we first apply a fast and simple H1 inpainting algorithm on the image and then use the result to

create W . The H1 inpainting algorithm we apply is just the local minimization problem:

min
u

∫
|∇u|2dx+

∫
λ(x)(u− u0)2dx.

The latter term in the sum is the fidelity term, and, of course, we are not limited to this formulation

of it. Although the latter algorithm is fast, it does not perform well on images with high textures

and repetitive structures nor does it preserve edges [64], something that we achieve.

The matrix W is built by using a window of a certain size around each pixel. We set W (x, y) =
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0 for all pixels j that are not in the window of pixel i. Inside the window, W (x, y) = w(x, y),

where the weight function is calculated in the same way as for binary image labeling. No updating

of the matrix W is necessary. The Rayleigh-Chebyshev procedure is used to calculate the eigen-

vectors and eigenvalues of the graph Laplacian for binary inpainting. The fidelity region is the

non-damaged region. We initialize u to be the middle value for the non-fidelity points.

Grayscale Image Inpainting To generalize to graycale inpaining, we split the signal bit-wise

into channels, as in [49]:

u(x) =
K−1∑
m=0

um(x)2m,

where um denotes the mth digit in the binary representation of the signal, and um ∈ {0, 1} for ∀x.

A fully connected graph is created in the same way as in the binary inpainting case. The

Nyström extension method is used to calculate the eigenvalues and corresponding eigenvectors

since the size of the graph is very large. The fidelity region and initialization is the same as in the

binary inpainting case.

Updating the weight matrix is often necessary for grayscale inpainting, since the adjacency

matrix formed from the damaged image is usually not good enough to restore texture and complex

patterns, as it contains “bad” regions whose values lie far from the true value. In our tests, every

few iterations, the matrix is updated using the result from the last iteration as the “new image”.

The grayscale inpainting results along with their PSNR are displayed in Figures 2. The graph

MBO method achieves better result and faster calculation than the other inpaining methods.

Extension to Multiclass Case

A multi-class extension of that algorithm is described in [67, 111]. The problem is to classify a

data set with N elements into n̂ classes, where n̂ is to be provided to the algorithm in advance. We

work with an assignment matrix u, which is an N × n̂ matrix, where each row is an element of the

Gibbs simplex Σn̂, defined as

Σn̂ :=

{
(x1, . . . , xn̂) ∈ [0, 1]n̂

∣∣∣∣∣
n̂∑
k=1

xk = 1

}
. (16)

Therefore, each row of u is a probability distribution; in fact, the kth component of the ith row of

u is the probability the ith node belongs to class k. In the text that follows, we denote the ith row

of u by ui. Let us also denote by ek the kth vertex of the simplex, where all the entries are zero,

except the kth one, which is equal to one.
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(a) (b) (c)

(d) (e)

Figure 2: 50% Reconstruction Example. (a) Original image- Barbara. (b) Damaged image- Barbara. (c) Local TV

inpainting- PSNR 23.6049. (d) Nonlocal TV inpainting- PSNR 27.8196. (e) The graph MBO method - PSNR 27.1651



The optimization problem we consider consists of minimizing the following energy:

E(u) = ε〈u, Lsu〉+
1

ε

∑
i

W (ui) +
∑
i

µ

2
λ(xi)||ui − ûi||2L2

, (17)

encountered also in [67, 111, 112]. The first two terms of (17) comprise the graph form of the

Ginzburg-Landau functional, where Ls is the symmetric Laplacian, ε is a small positive constant,

and W (ui) is the multi-well potential in n̂ dimensions, where n̂ is the number of classes:

W (ui) =
n̂∏
k=1

1

4
||ui − ek||2L1

. (18)

The last term of (17) is the regular L2 fit to known data with some constant µ, while λ(x) takes the

value of 1 on fidelity nodes, and 0 otherwise. The variable û is the initial value for uwith randomly

chosen labels for non-fidelity data points and the “ground truth“ for the fidelity points. Lastly, in

(17), for matrices A and B, 〈A,B〉 = trace(ATB), where AT indicates A transpose.

Minimizing E(u) by the gradient descent method, one obtains:

∂u

∂t
= −εLsu−

1

ε
W
′
(u)− µλ(x)(u− û). (19)

This is the Allen-Cahn equation [5,61] with fidelity term with the differential operator ∆u replaced

by a more general graph operator −Ls [99]; when ε→ 0, the solution to the Allen-Cahn equation

approximates motion by mean curvature [114]. Note that in the last term of (19), the product is

meant to be calculated on each node.

In [67], the authors propose an MBO scheme to solve (19). We slightly modify this scheme to

solve (19) in the formulation of our semi-supervised method.

We now present the semi-supervised algorithm, detailed in Figure 3, and which is based on that

of [67]. For initialization, which we denote by û, we use the known labels for the fidelity points

and random class labels for non-fidelity points. To obtain the next iterate of u, one proceeds with

the following two steps:

* Step 1: Heat equation with forcing term:

un+ 1
2 − un

dt
= −Lsun − µλ(x)(un − û), (20)

* Step 2: Threshold

un+1
i = er, r = arg maxu

n+ 1
2

i (21)

for all i ∈ {1, 2, ..., N}, where er is the rth standard basis in Rn̂.
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For a stopping criterion, we compute the norm of the difference between the label matrix u of

two consecutive iterations and stop the iteration when the norm is below a threshold value. Let us

denote the final u by uf . To obtain the final classification of node i, we find the largest value in the

ith row of uf and assign the corresponding index as the class label of node i. For a more thorough

discussion about the MBO scheme and motion by mean curvature on graphs, the reader is referred

to [144].

Step 1 can be computed very efficiently and simply by using the eigendecomposition of Ls,

which is:

Ls = XΛXT , (22)

where X is the eigenvector matrix and Λ is a diagonal matrix containing the eigenvalues. We

approximate X by a truncated matrix retaining only a small number of the leading eigenvectors. If

we write

un = Xan, µλ(x)(un − û) = Xdn (23)

and equate coefficients, we can formulate step 1 in the MBO scheme as solving for the coefficients

an+1
k :

an+1
k = (1− dtλk) · ank − dt · dnk , (24)

where λk is the kth eigenvalue of Ls, in ascending order.

Due to the fact that, in practice, only the leading eigenvalues and eigenvectors (in ascending

order) need to be calculated to obtain good accuracy, (24) is an efficient way to compute Step 1

of the algorithm, even in the case when the number of classes is very large. This feature of the

method makes the procedure very fast.

Empirically, the algorithm converges after a small number of iterations. Note that the iterations

stop when a purity score between the partitions from two consecutive iterations is greater than

99.99%. The purity score, as used in [79], measures how “similar” two partitions are. Intuitively, it

can be viewed as the fraction of nodes of one partition that have been assigned to the correct class

with respect to the other partition.

3.2 Unsupervised Graph MBO Algorithm

In this section, we formulate an unsupervised algorithm to handle the case when there is no

knowledge of the class of any part of the data set. Our method is based on the Mumford-Shah
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Figure 3: Semi-Supervised Algorithm.

Semi-Supervised Algorithm

Require: a data set of N points (embedded in a graphical framework G = (V,E)) to be classified into n̂

classes, parameters dt and µ and threshold value δ.

? Initialize u0 and compute d0.

? Calculate m � N smallest eigenvectors and eigenvalues of the symmetric graph Laplacian Ls. Let X

denote the eigenvector matrix.

Set n = 0.

while purity(un, un−1) < 99.99% do

? an = XT · un

? an+1
k = (1− dtλk) · ank − dt · dnk for k = 1 to k = m

? Compute un+
1
2 via un+

1
2 = Xan+1

? Compute dn+1 via (23)

? un+1
i = er, r = arg maxu

n+ 1
2

i for i = 1 to i = N

n← n+ 1

end while

? If uf is the final iterate of u, let Ci = arg max(uf )i

return matrix C denoting the final class of all nodes

model [119], which is a famous model used for multi-class segmentation problems. One simplified

version of the Mumford-Shah model tailored for images is the piecewise constant model [57,146]:

EMS(Φ, {cr}n̂r=1) = |Φ|+ µ
n̂∑
r=1

∫
Ωr

(f − cr)2, (25)

where the contour Φ segments an image region Ω into n̂ disjoint sub-regions Ωr, |Φ| is the length

of the contour, f is the observed image data, µ is a constant, and {cr}n̂r=1 is a set of constant values

which represent the local centroids.

The graph version of the multi-class piecewise constant Mumford-Shah energy was introduced

in [80] for hyperspectral images:

MS(u, {cr}n̂r=1) =
1

2
|u|TV + µ

n̂∑
r=1

〈||f − cr||2, u?,r〉, (26)

where u is the class assignment matrix (described in the previous section) in which each row is an

element of the Gibbs simplex (16). The length of the contour is estimated by the total variation

(TV) of the assignment matrix u. In (26), the term ||f − cr||2 denotes an N × 1 vector (||f(x1)−

cr||2, ..., ||f(xN) − cr||2)T and the xi (i = 1, ...N ) are the N pixels of the data set. In addition,
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the term u?,r indicates the rth column of u; the vector u?,r is a N × 1 vector which contains

the probabilities of every node belonging to class r. Lastly, in (26), 〈, 〉 indicates the usual inner

product.

The problem is to classify a data set withN elements into n̂ classes, where n̂ is to be provided to

the algorithm in advance. We work with an assignment matrix u, described in the previous section.

For the purpose of segmentation, we need to minimize equation (26). This problem is essentially

equivalent to the K-means method when µ approaches +∞.

Minimizing the variation in c yields the following formula for the optimal constants cr:

cr =
〈f, ur〉∑N
i=1 u?,r(xi)

, (27)

where u?,r(xi) indicates the ith entry of u?,r.

To motivate our algorithm, we note that the GL functional converges to the TV seminorm

[89, 143]; thus, we modify (26) using a diffuse interface approximation:

E(u, cr) = ε〈u, Lsu〉+
1

ε

∑
i

W (ui) + µ
n̂∑
r=1

〈||f − cr||2, u?,r〉. (28)

Similarly to the procedure in Section 3,1, using gradient descent yields:

∂u

∂t
= −εLsu−

1

ε
W
′
(u)− µ(||f − cn1 ||2, ...., ||f − cnn̂||f2). (29)

We can use the MBO scheme, described in Section 3.1, to solve this minimization problem. A

similar thresholding procedure can be found derived in [57]. A class of algorithms for the high

order geometric motion of planar curves following a similar thresholding procedure can be found

in [56].

We now present our unsupervised algorithm, detailed in Figure 4. For initialization of u, we

use random labels. To obtain the next iterate of u, one proceeds with the following three steps:

* Step 1: Compute

un+ 1
2 − un

dt
= −Lsun − µ(||f − cn1 ||2, ...., ||f − cnn̂||2). (30)

* Step 2: Threshold

un+1
i = er, r = arg maxu

n+ 1
2

i (31)

for all i ∈ {1, 2, ..., N}, where er is the rth standard basis in Rn̂.
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* Step 3: Update c

cn+1
r =

〈f, un+1
?,r 〉

〈1, un+1
?,r 〉

. (32)

The stopping criteria for this scheme is the same as the one in Section 3.1. The final classifica-

tion of the nodes is also obtained in the same manner as in Section 3.1.

As in the case of the semi-supervised algorithm, Step 1 can be computed very efficiently and

simply by using the eigendecomposition of Ls. Let X be the matrix containing the first m �

N orthogonal leading eigenvectors of L, Λ be the diagonal matrix containing the corresponding

eigenvalues, and write un as un = Xan. Then step 1 of the algorithm can be approximately

computed as:

un+ 1
2 = X(1− dt · Λ)an − dt · µ(||f − ck1||2, ...., ||f − ckn̂||2). (33)

Due to the fact that, in practice, only the leading eigenvalues and eigenvectors need to be com-

puted to obtain a good accuracy, (33) is an efficient way to compute Step 1 of the algorithm, even

when the number of classes is large. This feature makes this method very fast.

The algorithm also converges after a small number of iterations empirically. Note that the

iterations stop when a purity score between the partitions from two consecutive iterations is greater

than 99.99%.

3.3 Background on the Nyström Extension Technique

In the procedure of both the semi-supervised and unsupervised algorithms, we use spectral

methods to make the computations more efficient. Due to the fact that we calculate several leading

eigenvectors and eigenvalues of the graph Laplacian matrix and project all vectors onto this sub-

eigenspace, step 1 becomes simply updating coefficients.

An approximation to the eigendecomposition of the graph Laplacian matrix can be computed

very efficiently by the Nyström extension method [62, 62, 63], a matrix completion method often

used in image processing applications, such as kernel principle component analysis [51] and spec-

tral clustering [120]. This procedure performs much faster than many alternate techniques because

it uses approximations based on calculations on small submatrices of the original large matrix.

When the size of the matrix becomes very large, this method is especially valuable.

The Nyström extension method calculates an eigendecomposition of a smaller system of size

m � N and then expands the results back up to N dimensions. The computational complexity
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Figure 4: Unsupervised Algorithm.

Unsupervised Algorithm

Require: a data set of N points (embedded in a graphical framework G = (V,E)) to be classified into n̂

classes, and parameters dt and µ.

? Initialize u0 and compute a0 via (23).

? Calculate m � N smallest eigenvectors and eigenvalues of the symmetric graph Laplacian Ls. Let X=

the eigenvector matrix, Λ= the diagonal matrix containing the eigenvalues.

? Set n = 0.

while purity(un, un−1) < 99.99% do

? Compute cn+1
r via (32) for r = 1 to r = n̂

? Compute un+
1
2 via (33)

? un+1
i = er, r = arg max(un+

1
2 )i for i = 1 to i = N

? Compute an+1 via (23)

? n← n+ 1

end while

? If uf is the final iterate of u, let Ci = arg max(uf )i

return matrix C denoting the final class of all nodes

is almost O(mN). We can set m � N without any significant decrease in the accuracy of the

solution. In practice, we also see that only the leading eigenvectors and eigenvalues are needed to

obtain an accurate answer.

Based on the definition in formula (6), if λ is an eigenvalue of Ŵ = D−
1
2WD−

1
2 , then 1− λ is

an eigenvalue of Ls, and the two matrices have the same eigenvectors. We formulate a method to

calculate the eigenvectors and eigenvalues of Ŵ and thus of Ls.

Let w be the similarity function, λ be an eigenvalue of W , and φ its associated eigenvector. The

Nyström method approximates the eigenvalue equation

∫
Ω

w(y, x)φ(x)dx = λφ(x)

using a quadrature rule, a technique to find weights cj(y) and a set of m interpolation points

X = {xj} such that

m∑
j=1

cj(y)φ(xj) =

∫
Ω

w(y, x)φ(x)dx+ E(y),

where E(y) represents the error in the approximation.
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We use cj(y) = w(y, xj) and choose the m interpolation points randomly from the vertex set

V . Denote the set of m randomly chosen points by X = {xi}mi=1 and its complement by Y .

Partitioning Z into Z = X ∪ Y and letting φk(x) be the the kth eigenvector of W and λk its

associated eigenvalue, we obtain the system of equations

∑
xj∈X

w(yi, xj)φk(xj) = λkφk(yi) ∀yi ∈ Y, ∀k ∈ 1, ...,m.

This system of equations cannot be solved directly since the eigenvectors are not known. To

overcome this problem, the m eigenvectors of W are approximated using calculations involving

submatrices of W .

Let WXY be defined as


w(x1, y1) . . . w(x1, yN−m)

... . . . ...

w(xm, y1) . . . w(xm, yN−m)

 ,
where W has dimension N × N . The matrices WY X , WXX and WY Y can be defined similarly.

Notice that WXY = WY X
T . Then the matrix W can be written as

W =

 WXX WXY

WY X WY Y

 .
It can be shown that the large matrix WY Y can be approximated by WY Y ≈ WY XW

−1
XXWXY ,

and the error is determined by how many of the rows of WXY span the rows of WY Y . We only

need to compute WXX , WXY = W T
Y X , and it requires only mN computations versus N2 when

the whole matrix is used. The major overhead is computing WXY and we have developed a new

parallel code for the first in the literature. See Chapter 5 for details.

To calculate the eigenvalues and eigenvalues of Ŵ , one must correctly normalize the above

weight matrix. The correct normalization is achieved by the following calculations, where we

denote by 1K the K-dimensional unit vector.

Let 1K be the K-dimensional unit vector, and matrices dX and dY be defined as

dX = WXX1L +WXY 1N−L,

dY = WY X1L + (WY XW
−1
XXWXY )1N−L.

(34)
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Let A./B denote componentwise division between matrices A and B, and vT denote the trans-

pose of vector v; then, the matrices WXX and WXY can be normalized in the following manner to

obtain ŴXX and ŴXY :
ŴXX = WXX ./(sXs

T
X),

ŴXY = WXY ./(sXs
T
Y ),

(35)

where sX =
√
dX and sY =

√
dY .

It is shown in [15] that if we have the eigendecomposition of two small matrices

ŴXX = BXΓBT
X (36)

and

ŴXX + Ŵ
−1/2
XX ŴXY ŴY XŴ

−1/2
XX = ATΞA, (37)

then the eigenvector matrix of Ŵ and thus Ls is given by

Φ =

 BXΓ1/2BT
XAΞ−1/2

ŴY XBXΓ−1/2BT
XAΞ−1/2

 .
The diagonal components of I − Ξ contain the corresponding eigenvalues of the symmetric graph

Laplacian Ls.

Therefore, the efficiency of the Nyström extension method lies with the fact that when com-

puting the eigenvalues and eigenvectors of an N × N matrix, where N is large, it approximates

them using calculations involving only much smaller matrices, the largest of which has dimension

N ×m, where m is small.

When the graph is sparse and is of moderate size, around 5000 × 5000 or less, they Rayleigh-

Chebyshev procedure outlined in [6] is a proper eigensolver. It is a modification of an inverse sub-

space iteration method that uses adaptively determined Chebyshev polynomials. The procedure

is also a robust method that converges rapidly and that can handle cases when there are eigenval-

ues of multiplicity greater than one. When the graph is very large, such as in the case of image

segmentation, the Nyström extension method is used.
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CHAPTER 4

Hyperspectral Image Classification

Hyperspectral imagery is a challenging modality due to the dimension of the pixels which can

range from hundreds to over a thousand frequencies depending on the sensor. Most methods in the

literature reduce the dimension of the data using a method such as principal component analysis,

however this procedure can lose information. More recently methods have been developed to

address classification of large datasets in high dimensions. In [113], the graph MBO method

is introduced for hyperspectral image classification. The unsupervised graph MBO classification

method for hyperspectral image is proceeded in [80]. The first main contribution of this thesis is the

full development of both algorithms for broad range of high-dimensional images including online

parallelized code. In this chapter, we present the application of the two graph-based classification

methods to various hyperspectral imagery datasets and we have developed and published online

codes and demos for these problems [107]. Using the full dimensionality of the data, we consider a

similarity graph based on pairwise comparisons of pixels. We also develop a parallel version of the

Nyström extension method to randomly sample the graph to construct a low rank approximation

of the graph Laplacian. The details of the parallelization is discussed in Chapter 5. With at

most a few hundred eigenfunctions, we can implement the clustering method designed to solve a

variational problem for a graph-cut-based semi-supervised or unsupervised classification problem.

The method can handle very large datasets including a video sequence with over a million pixels,

and the problem of segmenting a data set into a pre-determined number of classes.

4.1 Urban Data

The Urban data set, available at http://www.tec.army.mil/Hypercube, is one of the most widely

used hyperspectral data sets in the hyperspectral image study. It was recorded in October 1995 by

the Hyperspectral Digital Imagery Collection Experiment (HYDICE), whose location is an urban

area in Copperas Cove, TX, U.S.. The data consists of an image with dimension of 307 x 307
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(e) (f)

Figure 5: The classification result of the semi-supervised and unsupervised graph MBO methods on the Urban data for

four classes. (a) The ground truth with four classes: asphalt (blue), grass (red), trees (green), roof (yellow). (b) Pixels

selected to have known labels (10% of the data) for the semi-supervised algorithm. (c) The classification result of the

semi-supervised algorithm with the accuracy of 93.48%. (d) The classification result of the unsupervised algorithm

with the accuracy of 92.35%. (e) The result of spectral clustering with K-means with the accuracy of 75.06%. (f) The

error of the semi-supervised algorithm.
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pixels, each of which corresponds to a 2 square meters area. For each pixel, there are 210 channels

with wavelengths ranging from 400 nm to 2500 nm, resulting in a spectral resolution of 10 nm.

After removing certain channels due to dense water vapor and atmospheric effects, the common

clean data set contains 162 channels.

We use the ground truth from http://www.escience.cn/people/feiyunZHU/Dataset GT.html [161],

which contains 4 classes with end members corresponding to asphalt, grass, tree and roof, respec-

tively. The goal is to accurate segment the image into the 4 classes. We apply both the semi-

supervised and unsupervised algorithms to this data set. For the semi-supervised algorithm, we

randomly select 10% of the ground truth to have known labels. The classification results are shown

in Fig. 5. There are four classes in the ground truth; asphalt, grass, trees and roof are labeled in

blue, red, green and yellow, respectively. We see that both algorithms are able to obtain a result

very close to the ground truth and one that is much more accurate than that of spectral clustering.

4.2 Kennedy Space Center Data

The Kennedy Space Center Data Set was acquired by NASA AVIRIS (Airborne Visible/Infrared

Imaging Spectrometer) instrument at the Kennedy Space Center (KSC) in Florida. The data set

consists of an image, the dimension of which is 512 × 614 pixels. The are 224 bands each 10 nm

apart with center wavelengths ranging from 400 to 2500 nm. After removing water absorption and

low SNR bands, 176 bands were used for the analysis.

For classification purposes, 13 classes representing the various land cover types that occur in

this environment were defined for the site; therefore, the goal is to accurately detect all 13 classes.

The public ground truth, which contains only 1.66% of the total pixels, is shown in Fig. 6(a). The

image of band 50 is shown in Fig. 6(b). We chose 10 pixels per class for fidelity and applied our

semi-supervised algorithm on this data set. The classification result representing the whole image

is shown in Fig. 6(c). The overall accuracy, calculated using known labels, is 80.37%.

4.3 DC Mall Data

The DC Mall data set was collected with an airborne sensor system located over the Washing-

ton DC Mall. The data set consists of an image with dimension of 1280 × 307 pixels with 210

spectral bands, each of which contains a wavelength in the 400− 2400 nm region. However, after

elimination of water absorption and noisy bands, only 191 spectral bands remain, and the modified
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(a) (b)

(c)

Figure 6: The classification result the semi-supervised graph MBO method on the Kennedy Space Center data. (a)

Ground truth. (b) The image of band 50. (c) The classification result of 13 classes.



(a) (b)

Figure 7: The classificaction result of the semi-supervised graph MBO method on the DC mall data. (a) Ground truth.

(b) The classification result of 7 classes.

data set is available at http://cobweb.ecn.purdue.edu/∼biehl/. The data set contains 7 classes; thus,

the problem becomes to accurately segment the 7 classes. However, we only have 2.06% of the

ground truth available and it is shown in Fig. 7(a). We use 10 pixels per class for fidelity and apply

our semi-supervised algorithm on this data set. The result is shown in Fig. 7(b), and the overall

accuracy is 98.11%. We note that when 20 pixels per class are used for fidelity, an even better

accuracy of 99.17% is achieved. The algorithm clearly performs very well in clustering the data

set into seven classes.

37



4.4 Face Data

We consider the face data of the Stanford Center for Image System Engineering. We choose an

image with dimension 1372 ×1183. It has 148 spectral bands with wavelengths ranging from 415

to 950 nm in steps of 4 nm. The data set is available at https://scien.stanford.edu/index.php/faces.

The data does not have ground truth but we can observe the different classes using the RGB image

shown in Fig. 8(a). The testing is performed using the unsupervised algorithm and we vary the

number of classes from three to five. The classification results are shown in Fig. 8(b), (c), (d). We

see that the algorithm accurately detects the different regions of the image.

4.5 Plume Video Data

We also consider the data set of hyperspectral video sequences recording the release of chem-

ical plumes at the Dugway Proving Ground [27]. Segmentation of the gas is difficult due to the

diffusive nature of the cloud. The use of hyperspectral imagery provides non-visual data for this

problem, allowing for the utilization of a richer array of sensing information. Detecting chemical

plumes in the atmosphere is a problem that can be applied to many areas, such as defense, security

and environmental protection. If the airborne toxins are identified accurately, one can combat the

use of chemical gases as weapons, prevent fatalities due to accidental leakage of toxic gases and

avoid contamination of the atmosphere. Identification of harmful gases with high fidelity is needed

to provide warnings in threatening situations. In these grave scenarios, it is crucial to accurately

track the diffusion of dangerous plumes into atmosphere. Laboratory measured signatures of toxic

chemicals are available to assist in chemical plume identification. However, testing and training

data is not readily available due to the inherent danger of these real world situations. Instead, open

air testing with surrogate chemicals is conducted to study the diffusion of chemical plumes. The

developed plume detection methods must meet strict requirements to ensure the fidelity of a detec-

tor. The plume data set has been studied in [113] and [80] using the graph MBO methods. These

two conference papers only worked with seven frames of the video data due to the computational

limit of laptop. We apply the graph MBO methods on the full video sequence which contains

329 frames using the high performance computing techniques and parallelized algorithms. The

parallelization details are discussed in Chapter 5. For the semi-supervised algorithm, we only use

8% fidelity (training) data, which is much less than [113]. We also normalize the feature vectors
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(c) (d)

Figure 8: The classification result of the unsupervised graph MBO method for three, four, and five classes of the face

data. (a) The male face image. (b) The classification result of three classes. (c) The classification result of four classes.

(d) The classification result of five classes.



before using the unsupervised algorithm and get better classification result than [80].

The data set we use here is the aa12 Victory data set from Algorithms for Threat Detection Data

Repository, which is a video sequence documenting the release of a plume, and it has 329 frames

in total. Each frame of the video sequence is a 3D image of dimension 128 × 320 × 129, where

the last dimension indicates the number of channels. Each channel depicts a particular frequency

starting at 7,830 nm and ending with 11,700 nm with a spacing of 30 nm. The videos in this

repository were captured by Johns Hopkins Applied Physics Lab using three long wave infrared

(LWIR) spectrometers, each placed at a different location about 2 km away from the release of

plume at an elevation of around 1300 feet. Frames were captured every five seconds.

The goal, of course, is to track the plume as it moves in the video sequence, but before the

data is directly inputed into the algorithm, we perform some preprocessing of the raw data from

the repository. We first convert the data to spectral emissivity values. Then, we locate the pixels

with values greater than a certain threshold and replace their values with the mean values of their

neighborhood. Due to the temperature fluctuation during the day, there is a flicking inconsistency

throughout the video and the pixel values vary from frame to frame. We show the different values

from different frames of one fixed pixel in Fig. 9. To eliminate the flicker between frames, the

Midway equalization method is used in [68]. In this paper, we do not perform this preprocessing

and the flicker problem does not affect the classification result.

This plume video dataset has been studied in several papers. The approach in [68] uses a com-

bination of dimension reduction and histogram equalization to prepare the hyperspectral video

data for segmentation. Principal Component Analysis (PCA) is used for dimension reduction of

the hyperspectral video data, and a Midway method for histogram equalization is used to redis-

tribute the intensity values in order to reduce flicker between frames. Then, the preprocessed

data is classified using some traditional methods including K-means, spectral clustering, and the

Ginzburg-Landau functional. In [142], a binary partition tree method is used to retrieve the real

location and the extent of the plume. Moreover, the author of [138] proposes two ways to com-

pute meaningful eigenvectors of the graph Laplacian. Other detection methods for hyperspectral

plumes include [78] (MWIR) and [103] (HYDICE).

We select the 17th frame to the 56th frame, which contain most of the plume scenes, for our

tests and we classify all the pixels simultaneously, not frame by frame. Note that when the number

of frames is very large, the number of pixel values may exceed the maximum allowed value for a
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32-bit signed binary integer (2,147,483,647) in many programming languages and an overflow can

cause its value to wrap and become negative. For example, if we are dealing with 500 frames of

the plume data, the overall number of pixel values is 500× 320× 128× 129 = 2.6e + 09, which

is larger than 2,147,483,647. In this case, we need to process the video frames in batches. Instead

of having just two classes of the plume and background, we choose to segment each frame in the

video sequence into four classes: plume, sky, foreground, and mountain.

For the semi-supervised algorithm, since we do not have the ground truth of the plume video, we

choose the “ground truth“ by identifying the relevant eigenvectors and then thresholding, similarly

to the procedure in [113]. We show the 2nd to 5th eigenvectors of frame 30 in aa12 Victory video

set in Fig. 10. We threshold the largest values in the 2nd eigenvector to obtain the “known” labels

for the sky and the smallest values to obtain “known“ labels for the foreground. Similarly, we

use the smallest values in the 3rd eigenvector for the plume and the smallest values in the 5th

eigenvector for the mountain region. We select 2% of the “known” labels for each of the 4 classes.

The selected fidelity regions are shown in Fig. 11.

For the unsupervised algorithm, we set the number of classes to be five. This is due to the fact

that there are a few noisy pixels in frame 22, which is the frame when the explosion of the plume

started, and which would be classified as one class. The total number of the noisy pixels in this

class is 68, which is not noticeable in the classification result.

The classification result (29th frame to the 37th frame) is shown in Fig. 12 for the semi-

supervised algorithm and Fig. 13 for the unsupervised method. We see that the algorithms are

able to accurately detect the plume as it moves in the video sequence. These results can be com-

pared to that of spectral clustering, shown in Fig. 14, in which the plume is separated into two

classes. Therefore, spectral clustering does not do well in detecting the plume. We note that for

the spectral clustering experiment, we calculate the first 100 leading eigenvectors of the 40 frames

using the Nyström extension method and then use the K-means algorithm on these 100 leading

eigenvectors to find the 4 classes.

We also perform experiments using 329 frames. Since most of the frames are just background

frames without any plume, the plume class contains a much smaller amount of pixels compared

to the other three classes and becomes harder to detect. For the semi-supervised algorithm, in

order to get similar results as that of the 40 frames, we need to increase the value of µ before the

fidelity term. In a certain range, when µ is increased, the plume becomes thicker, and when µ is
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Figure 9: Emissivity value of one fixed pixel of frame 65 and frame 320.

Figure 10: 2nd to 5th eigenvectors of the 30th frame.

decreased, the plume becomes thinner. For the unsupervised algorithm, since we do not have any

known labels, the plume detected is thinner than that of the result of the 40 frames.

4.6 Nonlocal Means Method for RGB image

We have applied the semi-supervised and unsupervised algorithms on several hyperspectral data

sets and we also consider the RGB images. The RGB images have three bands on each pixel, which

is much less than the number of bands of the hyperspectral images. We use the nonlocal means

method to compute a feature vector for each pixel based on the RGB values of this pixel and that

of its neighbors.

The nonlocal means method is widely used in image processing. Zhou and Schölkopf in their

papers [160] [159] [158] formulated a theory of nonlocal operators that is related to the discrete

graph Laplacian described in section 2.1. Buades, Coll, and Morel applied this nonlocal theory to

denoising algorithms in their work [31]. Osher and Gilboa proposed using nonlocal operators to

define functionals involving the TV semi-norm for various image processing applications in their
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Figure 11: 8% of aa12 Victory data selected to be the fidelity region by thresholding the eigenvectors, frames 29-37.

Figure 12: Classification result of the semi-supervised algorithm (frames 29-37 of the aa12 Victory video).
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Figure 13: Classification result of the unsupervised algorithm (frames 29-37 of the aa12 Victory video).

Figure 14: Classification result of spectral clustering with K-means (frames 29-37 of the aa12 Victory video).



work [69, 70].

In our work, we use the nonlocal means method to compute the feature vector of each pixel as

follows:

Nonlocal Means Method

Input: RGB image I, window size d

1. Pad the image with mirror reflections of itself with a width d.

2. For the ith pixel, make a (2d+ 1) by (2d+ 1) patch centered at pixel i.

3. For the jth(j = 1; 2; 3) band, apply a Gaussian kernel on this patch and straighten it to a vector vij.

4. Concatenate the three vectors vi1, vi2, and vi3 together to form the feature vector vi at pixel i.

5. Form the feature matrix F by letting each row of F be a feature vector of a pixel.

Output: a (m× n) by (2f + 1)2 × 3 feature matrix F .

We apply a Gaussian kernel on a patch for each pixel i since we would like to give more importance

to points closest to the center of the patch (pixel i). The points farther away from the main pixel

should be weighted less than those closest to it.

We apply the semi-supervised and unsupervised algorithm on the RGB image of two cows and

show the results in Fig. 15. Fig. 15a is the original image and there are four classes by observation:

the grass, the river, one brown cow and one black cow. To use the semi-supervised algorithm, we

select some pixels with known labels to be the fidelity. The fidelity is shown in Fig. 15b and the

classification result of the semi-supervised algorithm is shown in Fig. 15c. The river, the grass and

the brown cow are very accurately segmented, and some parts of the black cow get mixed with the

river or the grass. The classification result of the unsupervised algorithm is shown in Fig. 15d. The

river, the grass and the brown cow are also accurately segmented here. The black cow gets mixed

with the river because the ratio of the RGB values of the black color (the black cow) and the grey

color (the river) are the same. Since we use the cosine distance when building the weight matrix,

the grey color and the black color are very close to each other and can be easily classified as one

class. While when dealing with the hyperspectral images, the cosine distance is more meaningful

because the same materials have same spectrum but may have different intensities.

In practice, we use d = 2 in our source code. The length of the feature vector of each pixel is

3 × (2d + 1)2 = 75, which is a reasonable dimension for the feature vector. We also consider a

corner case. We consider an image with a dark region where the pixel values of all the pixels in this
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(a) (b)

(c) (d)

Figure 15: Classification result of the nonlocal method on the RGB Image of Two Cows. (a) The image of two

cows on the grass near the river. (b) Pixels selected to have known labels for the semi-supervised algorithm. (c) The

classification result of the semi-supervised algorithm. (d) The classification result of the unsupervised algorithm.

region are 0. Then when we apply the non-local means method on this image, the feature vector

of pixel which is in the center of the dark region would be a zero vector. In this case, when we

calculate the weight between this pixel with other pixels, using the formula (1), we get an invalid

value since the cosine distance between each vector to a zero vector is infinity. To avoid this kind

of case, we add a small value ε (we use ε = 0.1 in the codes) to all the pixel values in the RGB

image to make sure all the weights are valid numbers.

46



4.7 Result Summary

4.7.1 Accuracy Summary

We apply our the semi-supervised and unsupervised algorithms on various data sets. The ac-

curacy summary is shown in Table 1. We show the overall accuracy of the data sets with ground

truth. For the other data sets without ground truth (the face, the plume and the cow), the classi-

fication results are shown in figures in the previous subsections. The semi-supervised algorithm

achieves high accuracy with very low potion of known labels for all data sets. We also compared

the un-supervised algorithm with the spectral clustering with K-means. The spectral clustering

with K-means achieves only 75.06% overall accuracy for the urban data set and it gives wrong

classification for the plume data set which is shown in Figure 14.

Urban(semi) Urban(un) KSC(semi) DC(semi)

Number of classes 4 4 13 7

Percentage of fidelity 10% NA 2.5% 1.73%

Overall Accuracy 93.48% 92.35% 80.37% 99.17%

Table 1: Accuracy summary of hyperspectral images.

4.7.2 Run Time Summary

We apply our the semi-supervised and unsupervised algorithms on various hyperspectral data

sets. The run time summary is shown in Table 2. We show the run time of Nyström extension

method and graph MBO methods tested on the IPOL server Purple. The run time of Nyström

extension is greatly reduced by the parallelization which we will discuss in the following section.

The run time of the MBO (both semi-supervised and unsupervised) method is highly dependent on

the number of iterations. The MBO algorithm converges after around 10 iterations for the plume,

face, and urban data sets. While for KSC and DC data set, it takes about 100 iterations to reach the

convergence. The number of iterations it takes to get to convergence varies for different data sets

and different numbers of classes.
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Urban(semi) Urban(un) KSC(semi) DC(semi) Face(un) Plume(semi) Plume(un)

Number of pixels 94,249 94,249 314,368 392,960 1,623,076 1,638,400 1,638,400

Number of bands 162 162 176 191 148 129 129

Number of classes 4 4 13 7 5 4 4

Nyström (serial) 5.72 5.72 19.97 26.44 93.92 112.00 112.00

Nyström (32 threads) 1.30 1.30 4.35 5.51 22.43 23.57 23.57

MBO 12.13 2.07 145.62 141.79 35.92 59.57 41.02

Table 2: Run time summary of hyperspectral images and videos (in seconds) on IPOL server Purple.

4.8 Online Demo

We have developed the parallelized codes for the hyperspectral image and RGB image classifi-

cation discussed in the previous sections in this chapter. We have published the codes on the Image

Processing On Line (IPOL) and developed an online demo for users. IPOL is a research journal of

image processing and image analysis which emphasizes the role of mathematics as a source for al-

gorithm design and the reproducibility of the research. Each article contains a text on an algorithm

and its source code, with an online demonstration facility and an archive of experiments. Text and

source code are peer-reviewed and the demonstration is controlled. IPOL is an Open Science and

Reproducible Research journal.

The demo is shown in Figure 16. The users can choose the images we provide for a quick

test of the classification results. They can also upload their own images and run our codes for

classification. We provide both the semi-supervised algorithm and the unsupervised algorithm for

the users to choose. To use the semi-supervised algorithm, the users needs to upload both the

image and the fidelity (training data with labels). If the user doesn’t upload any fidelity data, the

demo automatically use the unsupervised algorithm for the classification.

The users can also tune the parameters of the algorithms. There are four parameters – n, dt, µ

and σ. n is the number of classes. The users can set this parameter based on the known number

or their observations of the possible number of classes in the image. dt is the amount of time for

which a diffusion (heat equation + forcing term) takes place for one iteration of the algorithm. It

is also known as the learning rate in machine learning language. Users can tune it in the range of

(0.01, 0.2). We set the default value to be 0.15. µ is the parameter before the fidelity term, for

semi-supervised algorithm, larger µ means you rely more on the known labels. For the unsuper-
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(a)

(b)

Figure 16: Online demo of the hyperspectral image classification on IPOL.



vised algorithm, as µ goes larger, the algorithm is more close to the K-means algorithm. σ is the

parameter in the definition of weights. Larger sigma gives smaller weights between two nodes.

Different images may require different parameters in order to get the best classification results.

After the users hit the “Run” button, the IPOL server runs the parallelized codes on its multi-

core server. The run time is usually several seconds for one image. After running, the classification

result is shown on the webpage. Users may choose to download the image or the class labels in

text format. Since our method is non-convex, the results from different runs may vary due to the

random initialization. The users may need to run several times for one set of parameters to check

the best classification results.
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CHAPTER 5

Parallelization of the Graph MBO methods

We investigate the OpenMP parallelization and optimization of the two graph classification

algorithms. The results of this Chapter are published in [106]. The new algorithms provide signif-

icant accuracy and performance advantages over traditional data classification algorithms in serial

mode. The methods leverage the Nyström extension to calculate eigenvalue/eigenvectors of the

graph Laplacian. This is a self-contained module that can be used in conjunction with other graph-

Laplacian based methods such as spectral clustering. We use performance tools to collect the

hotspots and memory access of the serial codes and use OpenMP as the parallelization language

to parallelize the most time-consuming parts. Where possible, we also use library routines. We

then optimize the OpenMP implementations and detail the performance on traditional supercom-

puter nodes (in our case a Cray XC30), and test the optimization steps on emerging testbed systems

based on Intel’s Knights Corner and Landing processors. We show both performance improvement

and strong scaling behavior. A large number of optimization techniques and analyses are necessary

before the algorithm reaches almost ideal scaling.

5.1 Math Library Usage and Optimizations

All the data are in matrix form and there are intensive linear algebra calculations. Also, we apply

Singular Value Decomposition (SVD) to two small matrices. So, we make use of the LAPACK

(Linear Algebra PACKage) and BLAS (Basic Linear Algebra Subprograms) libraries in the codes.

The LAPACK provides routines for the SVD and the BLAS provides routines for vector-vector

(Level 1), matrix-vector (Level 2) and matrix-matrix (Level 3) operations. BLAS and LAPACK

are also highly vectorized and multithreaded using OpenMP.

We use the Intel Performance Tool VTune Amplifier to analyze the performance and find bot-

tlenecks [2]. The hotspots collection shows some computationally expensive parts are related to

calculating the inner product of two vectors. In the unsupervised graph MBO algorithm, this op-
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eration occurs when calculating the matrix P and takes 84% of the run time. Also, it occurs when

calculating the matrix WXY in the Nyström extension algorithm and takes 90% of the run time.

We optimize this procedure by forming all the vectors into matrices and doing the inner product

of two matrices. In this way, we make use of BLAS 3 (matrix-matrix) instead of BLAS 1 (vector-

vector). The part of calculating the matrix P in the unsupervised algorithm is 22.5× faster using

BLAS 3. This optimization is based on the fact that BLAS 1,2 are memory bound and BLAS 3 is

computational bound [47, 91].

5.2 Parallelization of the Nyström Extension

Parallelization of these two classification algorithms involves a parallel for. It is critical to fur-

ther optimize the OpenMP implementation to get nearly ideal scaling. We detail this process using

more complex features of OpenMP such as SIMD and vectorization. Then we use the uniform

sampling and chunk of data to get the best performance.

We consider the data set, described in more detail in [28], composed of hyperspectral video

sequences recording the release of chemical plumes at the Dugway Proving Ground. We use the

329 frames of the video. Each frame is a hyperspectral image with dimension 128 × 320 × 129,

where 129 is the dimension of the channel of each pixel. The total number of pixels is 13,475,840.

Since we are dealing with very large data set we choose binary form for smaller storage space and

faster I/O. Our test data is 13.91 GB in binary form and the I/O is 36.8× faster than the txt format

when testing on Cori Phase I.

We conduct our experiments on single nodes of systems at the National Energy Research Sci-

entific Computing Center (NERSC). Cori Phase I is the newest supercomputer system at NERSC.

The system is a Cray XC based on the Intel Haswell multi-core processor. Each node has 128

GB of memory and two 2.3 GHz 16-core Haswell processors. Each core has its own L1 and L2

caches, with 64 KB (32 KB instruction cache, 32 KB data) and 256 KB, respectively; there is

also a 40-MB shared L3 cache per socket. Peak performance per node is about 1.2 TFlop/s and

peak bandwidth is about 120 GB/s. The resultant machine balance of 10 flops per byte strongly

motivates the use of BLAS 3 like computations. Cori Phase II will be a Cray XC system based

on the second generation of Intel Xeon Phi Product Family, called Knights Landing (KNL) Many

Integrated Core (MIC) Architecture. The test system available to us now features 64 cores with

1.3 Ghz clock frequency (Bin-3 configuration) with support for four hyper-threads each. Each core
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additionally has two 512bit-wide vector processing units. Additionally, the chip is equipped with

16 GB on-package memory shared between all cores. it is referred to as HBM or MCDRAM with

a maximum bandwidth of 430 GB/s measured using the STREAM triad benchmark. The 512 KB

L2 cache is shared between two cores (i.e. within a tile) and the 16 KB L1 cache is private to

the core. Furthermore, the single socket KNL nodes are equipped with 96 GB DDR4 6-channel

memory with a maximum attainable bandwidth of 90 GB/s.

5.3 OpenMP Parallelization

Analysis with VTune shows that the most time consuming phase of both two classification algo-

rithms is construction of WXY in the Nyström extension procedure. This phase is a good candidate

for OpenMP parallelization because each element of WXY can be computed independently. The

procedure of calculating WXY is shown in Fig. 17. We form the data in a N by d matrix Z. Each

Figure 17: The procedure for calculating WXY :

row of Z corresponds to a data point and it’s a vector of dimension d. In computation, we store Z

in an array in row major. We randomly select M rows to form the sampled data set X = {Zi}Mi=1.

The other rows form the data set Y = {Zj}N−Mj=1 . Then we use the nested for-loop to calculate

the values of WXY by the formula (1). We then put the corresponding value in an array which

represent the M by N −M matrix WXY .
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5.3.1 Reordering Loops

We have tested re-ordering loops as a means to optimize the algorithm. With analysis, we notice

the j-loop is far larger than the i-loop. There are still two ways to do the parallelization. One way

is to parallelize the j-loop as inner loop and the other way is to parallelize the j-loop as outer loop.

We tried both ways and compared the results.

Step A: Parallelizing the inner j-loop

f o r i = 0; i < M ; i+ +

n1 =< Zi, Zi >

#pragma omp p a r a l l e l f o r

f o r j = 1 : N −M

n12 =< Zi, Zj >

n2 =< Zj, Zj >

d = 1− n12/
√
n1 · n2

WXY (i, j) = exp(−d/σ)

end

end

Step B: Parallelizing the outer j-loop

#pragma omp p a r a l l e l f o r

f o r j = 1 : N −M

n2 =< Zj, Zj >

f o r i = 1 : M

n12 =< Zi, Zj >

n1 =< Zi, Zi >

d = 1− n12/
√
n1 · n2

WXY (i, j) = exp(−d/σ)

end

end

The results show that parallelizing the outer j-loop is much faster. The run time decreases by a

factor of 7. This is because on Cori, each core has its own L1 and L2 cache. When parallelizing the

outer j-loop, all the Xis can be read and reside on the L2 of each core and can be used repeatedly.

If instead we parallelize the inner j-loop, there are more reads of the Xi and thus the calculation

takes more time. Parallelizing the outer j loop also means each thread has more work to do, since

the inner i-loop is also part of the j-loop. In this way less overhead and more load balance can be

achieved. While if we parallelize the inner j-loop, not only each thread has less work and large

load imbalance, but also there are multiple times of thread creation and overhead.

5.3.2 Vectorization and Chunk

We further optimize the OpenMP parallelization using vectorization. First, we notice, the norms

of Zis are computed repeatedly in the i-loop. So, we normalize all the Zis in the previous step,

calculating WXX , and store all the normalized Zis in a new matrix Xmat. Then we can calculate

the inner product of each Zj and all the Zis (Xmat) all at once. This make use of BLAS 2 instead of
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the previous BLAS 1. Also, we can vectorize the loop when calculating WXY . This optimization

reduce the run time of calculating WXY by a factor of 3.

Step C: Calculating WXY , normalize and form all Zis to Xmat

#pragma omp for

for j = 1 : N −M

n2 =< Zj, Zj >

nvec = 1− < Xmat, Zj > /
√
n2

#pragma omp simd aligned

for i = 1 : M

WXY (i, j) = exp(−nvec/σ)

end

end

The Nyström extension algorithm is based on a random partition of the whole dataset Z into

two disjoint data sets X and Y , where X = {Zi}Mi=1 and Y = {Zj}N−Mj=1 and M � N . Assuming

we can uniformly partition the dataset, so that Zis are evenly distributed, we can form chunks of

Zjs to matrix and further optimize this calculation. The procedure is shown in Fig. 18. First, when

Figure 18: Uniform sampling and dividing Y into chunks and sub-chunks

calculating WXX , we evenly sample Zis and normalized them. We form the normalized Zis to

a matrix Xmat. Then all the data in between two consecutive Zis are the chunk of Zjs. Since

the chunk size is still very large, we further decompose each Y-chunk into sub-chunks. There

are several considerations for choosing the sub-chunk size. If it is too small, we waste potential

of combining expensive operations. If it is too large, the sub-chunk may run out of lower level
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cache and needs to be put into the higher cache levels, up to the point where they spill over into

DRAM which may cause a substantial performance hit. The optimal value depends on the cache

hierarchy, their respective sizes, their latency and so on. For a different architecture, one may

consider choosing another value. We pick the the subchunksize = 64 when running the codes on

Cori Phase I and it can be further optimized. Then for each sub-chunk, we calculate the Euclidean

norm of each row and store them in a vector n2vec. This calculation can be vectorized since

calculating the norm of each row is independent. We further divide the norms by 1. We then

calculate the matrix multiplication Xmat · Ysubmat using BLAS 3 function DGEMM. The result is

a m × subchunksize matrix n12mat. It is the result of all the inner product of rows in Xmat and

rows in Ysubmat. Then we can vectorize the final calculation of values in WXY .

Step D: Calculating WXY using uniform sampling and chunked Y matrices

#pragma omp for collapse(2)

for ychunk = 0; ychunk < m; ychunk + +

for j = chunkstart; j < chunkstop; j+ = subchunksize

#pragma omp simd aligned

for k = 0; k < subchunksize; k + +

n2vec[k] =< Zj+k, Zj+k >

n2vec[k] = 1/
√
n2vec[k]

end

n12mat =< Xmat, Ysubmatj >

#pragma omp simd aligned

for i = 0; i < m; i+ +

for k = 0; k < subchunksize; k + +

d = 1− n12mat[i, k] · n2vec[k]

WXY (i, j + k) = exp(−d/σ)

end

end

end

In this uniform sampling, the chunk size is defined as chunksize = floor(N/M). When M

is not divisible by N , the last chunk is larger than the other chunks. Also, subchunksize may not
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be divisible by chunksize. So the size of the last sub-chunk in each chunk needs to be adjusted.

The procedure of uniform sampling gives good results as compared to the random sampling and

further improves the performance by a factor of 1.7.

5.3.3 Thread Affinity

We also consider the effect of thread affinity. We choose the thread affinity setting as “OMP PROC BIND=scatter“

and “OMP PLACES=cores (or thread)”, because it uses one hardware thread per core. While if

we use the thread affinity setting to be “OMP PROC BIND=close“ and “OMP PLACES=thread”,

it puts more threads on each physical core and leaving other cores idle, which affects scaling per-

formance.

5.3.4 Experimental Results

Cori Phase I: we examined optimization steps on a single node of Cori Phase I. The run time

decrease and scaling results of different steps of optimizing the OpenMP parallelization are shown

in Fig. 19. We show the significant speed up of the Nyström loop part. In Step A, in addition to

parallelizing the Nyström loop, we also use BLAS 3 optimization on the graph MBO algorithm.

Since we use BLAS and LAPACK in the serial part of Nyström algorithm and the graph MBO

algorithm, their run time also decrease when using multi-cores. We show the OpenMP thread scal-

ing results on Cori Phase I in Fig. 20. Almost ideal scaling results are achieved. Each Cori Phase

1 node has two sockets (NUMA domain) and each socket has 16 cores. Although the absolute per-

formance increases when using more than 16 threads on a single node, NUMA effect is observed

that the scaling slows down due to remote memory access to a far NUMA domain.

Knight’s Landing: we employed the same optimizations already used for the Haswell opti-

mization with three exceptions: we have compiled the code with AVX-512 support to make

use of the wider vector units as well as doubled the sub-chunk size as depicted in Fig. 18 ac-

cordingly.1 Furthermore, we have enabled fast floating point model and imprecise divides with

-fp-modelfast=2 and -no-prec-div respectively. The (strong) thread scaling of the var-

ious sections of the code is depicted in Fig. 21 for one hyper-thread per core. We found that this

configuration delivered the best performance. Utilizing two or more hyper-threads significantly

decreased the performance, especially that of the Nyström loop. We observe that our code obtains
1We have explored various sub-chunk sizes but found that twice the optimal Haswell value, i.e. 128 vectors, yield the best performance.
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good strong scaling up to all 64 cores. We leave the hyper-threads analysis for further investigation

and we are looking into improving scaling of step D.

Figure 19: The run time of different optimization steps on Cori Phase I. Step A: parallelizing the inner j-loop and

BLAS 3 optimization on Graph MBO. Step B: parallelizing the outer j-loop. Step C: normalizing and forming all Zis

to Xmat. Step D: using uniform sampling and chunked Y matrices.

Figure 20: The scaling results of the OpenMP parallelization of the Nyström loop on Cori Phase I. The black line

with squares, the red line with circles and the blue line with triangles show the scaling results of step B, C and D

respectively. The pink line with upside down triangles shows the ideal scaling.
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Figure 21: The scaling results of the OpenMP parallelization of the Nyström loop on our KNL test system. The black

line with squares, the red line with circles and the blue line with triangles show the scaling results of step B, C and D

respectively. The pink line with upside down triangles shows the ideal scaling. All values were obtained employing

one hyper-thread per core.

5.4 Arithmetic Intensity and Roofline Model

Arithmetic intensity is the ratio of floating-point operations (FLOP’s) performed by a given

code (or code section) to the amount of data movement (Bytes) that are required to support those

operations. Arithmetic intensity in conjunction with the Roofline Model [151] can be used to

bound kernel performance and qualify performance in a manner more nuanced than percent-of-

peak. Fig. 22 shows the result of using the Roofline Toolkit [3] to characterize the performance of

a Cori Phase I node (full 32 cores). The resultant lines (“ceilings”) are bounds on performance.

Clearly, in order to attain high performance, one must design algorithms that deliver high arithmetic

intensity.

In order to characterize the Nyström loop, we used Intel’s Software Development Emulator

Toolkit (SDE) to record FLOP’s and Intel’s VTune Amplifier to collect data movement when run-

ning on 32 cores of a Cori Phase I node [1, 50]. We can then compare the results to a theoretical

estimate based on the inherent requisite computation and data movement.

As shown in Fig. 17, the memory access has two major components — one must read data
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Figure 22: Empirical Roofline Toolkit results for a Cori Phase I node. Observe, DRAM bandwidth constrains perfor-

mance for a wide range of arithmetic intensities.

from the matrix Z from DRAM and then write the results in to a matrix WXY . The size of data

matrix Z is N × d, where N = 13, 475, 840 and d = 129 for our test data. As we store the

data in double precision, the total size of the matrix (and hence volume of data read) is at least

13.907×109 bytes. In the inner loop, the processor must continually access M rows of the matrix

Z. As the resultant volume of data (103,200 bytes) easily fits in cache, we need only real each Zi

once (data movement is well proxies by compulsory cache misses). The size of the matrix WXY

is (N −M) ×M , where M = 100. As each double-precision element is written once, we can

bound write data movement as (N −M) ×M × 8 = 10.78 × 109 bytes. A similar calculation

can be performed to calculate the requisite number of floating-point operations. In the optimized

code, although there are dot products for < Zj, Zj > coupled with a reciprocal square root and

one exponential per element of WXY , the DGEMM used for calculating Xmat × Ysubmat should

dominate the flop count. The matrix Xmat is 100× 129, the matrix Ysubmat is on average 64× 129,

and there are roughly 13, 475, 840/64 = 210560 Ysubmat matrices. Thus, the number of floating-
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point operations in the loop is about 210560× 2× 64× 129× 100 = 347.68× 109 (ignoring any

BLAS 2 operations, the dot products, and exponential).

Theoretical Empirical

Bytes Read 13.907×109 17.123×109

Bytes Written 10.781×109 12.256×109

FP operations >347.68×109 385.59×109

Arithmetic Intensity (flop:byte) >14.1 13.12

Table 3: Theoretical estimates (ignoring dual-socket nature of the machine) and Empirical measurements (using VTune

and SDE) of data memory and floating-point operations for the Nyström loop.

Table 3 presents our theoretical estimates and empirical measurements (using VTune and SDE)

of data memory and floating-point operations for the Nyström loop. As expected, our rough theo-

retical model slightly underestimated each quantity. Multiple sockets (each with their own caches)

may be required to read unique bytes, but in reality will access overlapping data due to the realities

of large cache lines and hardware stream prefetchers. In terms of floating-point operations it is

clear DGEMM (the basis for our theoretical model) constitutes over 90% of the total flop count

with the remainder likely arising from exponentials and dot products. Overall, with a run time of

about 1.28 seconds, the optimized code attains about 300GFlop/s of performance and 23GB/s of

DRAM bandwidth at an arithmetic intensity of just over 13 flops per byte. At such a high arithmetic

intensity, Figure 22 suggests the full node DRAM bandwidth will not be the ultimate limiting fac-

tor. However, as we have not included any NUMA optimizations in the implementation, we expect

the single socket’s DRAM bandwidth (slightly less than 54GB/s) to be a substantial performance

impediment. Additional data movement in the cache hierarchy coupled with performance chal-

lenges associated with transcendental operations like reciprocal-square-root and exponential likely

impeded our ability to fully saturate even a single socket’s bandwidth.
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CHAPTER 6

Ego-motion Classification

In this chapter, we develop the graph classification method for a real-world application from

body worn cameras [108]. Portable cameras record dynamic first-person video footage and these

videos contain information on the motion of the individual on whom the camera is mounted, de-

fined as ego. We address the task of discovering ego-motion from the video itself, without other

external calibration information. We deal with this problem in two steps. The first step is pre-

sented in section 6.1. We investigate the use of similarity transformations between successive

video frames to extract signals reflecting ego-motions and their frequencies. These signals are

processed to make the feature vectors. Then, we use the graph-based unsupervised and semi-

supervised learning algorithms to segment the video frames into different ego-motion categories.

In section 6.2, we show the promising results on both the choreographed and real-world data. To

use the semi-supervised method, we hand labeled around 10% of the frames as training data. Since

each video may contain huge amount of frames, we make use of the parallelized codes developed in

Chapter 5 for efficient calculation. Our results show very accurate results on both choreographed

test videos and ego-motion videos provided by the Los Angeles Police Department.

6.1 Motion Features

We characterize motion in a video sequence using a set of features. The features represent the

relative movements of ego, the individual on whom the video camera is mounted. The features

depend on the estimation of parametric models between successive frames and on the analysis of

periodic signals of the motion through characteristic frequencies. We illustrate our method of con-

structing the motion features in Figure 23. In subsection 2.1, we discuss how to use the inverse

compositional algorithm to estimate the similarity transformation between successive frames. This

transformation is represented by four parameters tx, ty, a and b. In subsection 2.2, we construct

four of the features to be used for the video segmentation – horizontal displacement (x), vertical
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Figure 23: The process of constructing the motion features for each two successive frames.

displacement (y ), angle of rotation (r) and zoom (z) using the similarity transformation. In addi-

tion, the characteristic frequencies of these four signals are computed using the method discussed

in subsection 2.3. In subsection 2.4, we combine the four movement features and four frequency

features to obtain the eight-dimensional feature vector for each transformation between two suc-

cessive frames. It is this feature vector that will be used for the graph-based machine learning

method.

6.1.1 Transformations between two Successive Frames

To compute the motion of the video sequence, we estimate the similarity transformations be-

tween consecutive frames using the inverse compositional algorithm [9, 10]. It is possible to use

more general parametric motions, such as affinities or homographies. However, the calculation of

these is more prone to errors when some camera shake is present. In any case, we find that the four

parameters of the similarity are sufficient to characterize motion.

The inverse compositional algorithm is an improvement of the Lucas-Kanade method [10, 97]

for image registration. Its implementation in [129] includes the use of robust error functions,

which allows estimating the correct transformation even in the presence of occlusions or multiple

motions. Let I1(x) and I2(x) be two images, with x = (x, y). Let p be the global displacement

vector between the two images and ∆p be the incremental displacement vector at each iteration.

Let x′(x;p,∆p) be the correspondence map from the left to the right image, or equivalently two

frames in a video sequence, parameterized by p and the incremental refinement ∆p. The energy
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model is given by

E(∆p) =
∑
x

ρ
(
|I2(x′(x;p))− I1(x′(x; ∆p))|22 ;λ

)
, (38)

where ρ (·) is a function that gives less weight to large values of the argument, where the difference

in image intensities is big (e.g., ρ(s2, λ) = 0.5s2/(s2 + λ2)).

Minimizing the energy with respect to ∆p yields:

∆p = H−1
δ

∑
x

ρ′ · (∇I1(x)J(x))T (I2(x′(x;p))− I1(x)), (39)

with

Hδ =
∑
x

ρ′ · (∇I1(x)J(x))T ∇I1(x)J(x)

=


∑
x

ρ′ · (I1,x(x)J(x))T I1,x(x)J(x)
∑
x

ρ′ · (I1,x(x)J(x))T I1,y(x)J(x)∑
x

ρ′ · (I1,x(x)J(x))T I1,y(x)J(x)
∑
x

ρ′ · (I1,y(x)J(x))T I1,y(x)J(x)

 , (40)

and ρ′ := ρ′
(
|I2(x′(x;p))− I1(x)|22 ;λ

)
. J(x;p) = ∂x′(x;p)

∂p
is the Jacobian of the transformation.

Table 4 lists the similarity transformation and its Jacobian using the parametrization proposed

in [139].

Transform Parameters – p Matrix – H(p) Jacobian – J(x;p)

Similarity (tx, ty, a, b)


1 + a −b tx

b 1 + a ty

0 0 1


 1 0 x −y

0 1 y x



Table 4: Similarity transformation and its Jacobian

The minimum of this energy provides the parameters of the transformation. To reach a highly

accurate solution, the algorithm uses an iterative process. It also includes a coarse-to-fine strategy

for estimating large displacements. See [129] for further details.

6.1.2 Movement Signal

Simple motions, such as horizontal (x) and vertical (y) movements, zoom (z) and rotation (r)

information can be computed given the similarity. The procedure for calculating the displacement
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of the central pixel is shown in Algorithm 1.

Algorithm 1: Calculate the displacement of the central pixel
Input : The similarity H, size of the frame nx and ny

Output: x,y

1: pm ← (nx/2, ny/2, 1)T {the center of the frame}

2: (p1, p2, p3)T ← H · pm {project the center point using the similarity }

3: (p1, p2, p3)T ← (p1, p2, p3)T /p3 {normalize by the third component}

4: x← p1 − nx/2 {the horizontal movement}

5: y ← p2 − ny/2 {the vertical movement}

6: return x, y

Since the similarity includes the composition of a zoom and rotation matrices, it is easy to

obtain these coefficients from the parametrization of Table 4. In this case, the rotation and zoom

factor are calculated as

r = arctan

(
b

1 + a

)
, z =

√
(1 + a)2 + b2, (41)

respectively.

The signals from raw video footage may have abnormally large values. We filter out these

values in preprocessing. We replace the signal value by µ, where µ is the mean of the signal

sequence and σ is the standard derivation, if the signal value is outside the (µ−3σ, µ+ 3σ) region.

The filtered signals can still be very noisy. We use convolutions with a Gaussian function to smooth

these signals, which is the basic idea in video stabilization [130].

We use the QUAD video data set 2 to examine ego-motion signals. We discuss the details of

this data set in section 6.2.

The motion signals we calculate using Algorithm 1 and Equation (41) are shown in Figure 24.

The left column gives the raw data x, y, z and r and the right column the corresponding filtered

and smoothed data.

The periodic pattern correlates with the periodic actions in the QUAD video. The large oscilla-

tion of x corresponds to ego turning left and right repeatedly. The large oscillation of y corresponds

to ego repeatedly looking up and looking down. The four peaks in z correspond to ego walking

and running, since the frames zoom fast when the person is walking or running. The large oscilla-

tions of rotation r also correlate with the movements of turning left, turning right, looking up and
2The data set can be found at: http://www.cs.cmu.edu/~kkitani/datasets/
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Figure 24: The x, y, r and z signals. On the left, the original signals and, on the right, the corresponding filtered and

smoothed data.

looking down.

6.1.3 Frequency Signal

Some ego-motions are periodic, such as jumping, walking and running. Periodic motions have

different characteristic frequencies. This observation leads us to investigate the frequencies of x,

y, z and r using Fourier analysis. We use the short-time Fourier transform (STFT) to determine

the sinusoidal frequency and phase content of local sections of a signal as it changes over time.

In practice, the procedure for computing STFTs is to use a sliding window of fixed length and

compute the Fourier transform as the window slides over the whole signal. We use the Hann

window here:

w(n) = 0.5

(
1− cos( 2πn

N − 1
)

)
. (42)

As shown in Figure 25, the Hann window is zero at the boundaries which reduces the artifacts at

the boundary. The STFT is defined by:

STFTx[n](m,ω) = X(m,ω) =
N∑
n=0

x[n]w[n−m]e−jωn, (43)
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Figure 25: The Hann window

where the length of the window is N and m indicates the window sampling rate.

The magnitude squared of the STFT yields the spectrogram of the function:

spectrogram{x[n]}(m,ω) = |X(m,ω)|2. (44)

We use a five-second window in our experiments. We show the spectrogram of six different

motions of the y signal in Figure 26. The frequency is very small when ego repeatedly turns left

and right. Looking up and down causes a frequency at 0.6 Hz. The spectrogram of small steps

and walking are very similar. The largest frequency is at 7.8 Hz. When ego walks at 0.5 seconds

per step, the frequency is 2 Hz. However, because the GoPro camera is head-mounted, the camera

also has an oscillation when ego is walking. This camera oscillation causes this observed high

frequencies. For jumping and running, the spectrogram gives accurate frequencies at 2Hz and 3.4

Hz, respectively.

We select the characteristic frequency of the window, which is defined as:

fw =

fmax, if fmax > 3δ

0, otherwise
, (45)

where fmax is the frequency corresponding to the largest value in the spectrogram and δ is the

standard deviation of the spectrogram. The condition of being larger than 3δ guarantees that the

frequency picked is unlikely to be caused by noise.

In practice, we choose N to be 300 frames (5 seconds) and let the window moves 60 frames (1

second) each time. In this case, at each frame, there are 5 fws. We choose the median of these fws

to be the final frequency at the frame.

We apply this procedure with the four movement signals x, y, r, and z and get four frequency

signals fx, fy, fr and fz. In other words, in addition to four movement signals, each frame tran-

sition is also associated with four characteristic frequencies. We compute these frequencies for
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Figure 26: Spectrogram of 6 kinds of motions in the QUAD video
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Figure 27: The four characteristic frequencies fx, fy, fz, fr of the QUAD video.



the QUAD video and show their values in Figure 27. We can observe four time intervals in the

frequencies corresponding to specific action periods in the video.

6.1.4 Equalization of Variance

We always force the variance of each signal to be 1 by forcing x to be x̄ + x−x̄
σ(x)

, where x̄ is the

mean and σ(x) is the standard variation. In this way, each signal gives equal contribution to the

combined feature vector. Different graph weights can be considered for different signals based on

the importance of the signals.

After equalizing the variance of the 8 signals, we combine them into a final motion feature

fmotion. It is an N × 8 matrix, where N is the number of frames in the video. Each row represents

the eight-dimensional feature vector of one frame. In this way, we code the video to the feature

matrix fmotion,

fmotion = [x, y, r, z, fx, fy, fr, fz]. (46)

6.2 Experimental Results

To evaluate the performance of our method we need both choreographed video sequences to run

controlled experiments and real-world videos to observe performance of our method in naturalistic

settings. It is easy to define the ground truth for the choreographed videos since the ego motion

is discrete, and well-defined. For example, looking left and right never coincides with running.

However, real-world body-worn video usually contains a combination of different motions with

noise and it is therefore harder to define a ground truth.

6.2.1 Choreographed Video

The first video we use is QUAD [88]. We show one frame of the QUAD video in Figure 28.

This video is four minutes and 10 seconds in length and has 60 frames per second. It contains

nine ego-motions (stand still, turn left, turn right, look up, look down, jump, step in place, walk

and run) taken from a head-mounted GoPro camera. There are nine actions in order repeated four

times. The ground truth is shown in the first row of Figure 29. The horizontal axis represents time

and colors represent different ego-motion categories. The order of the movements are standing

still, turning left and turning right repeatedly, looking up and looking down repeatedly, jumping,
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Figure 28: One frame of the QUAD video.

stepping, walking, running, turning left and then start the same series of motions again for another

three times.

We compute the feature vector for each two successive frames as described in section 6.1. Then

we use K-means, the unsupervised graph MBO algorithm and the semi-supervised graph MBO

algorithm for the ego-motion classification. We use 10% known labels (evenly sampled) in the

semi-supervised graph MBO algorithm. The classification results of these three algorithms are

shown in the 2nd, 3rd and 4th rows of Figure 29. For the K-means and the unsupervised MBO

algorithm, we ran the experiments several times and pick the best results here. Depending on

the initialization, these two algorithms can converge to different local minima, which is common

for most non-convex variational methods. The K-means algorithm gives relatively good results,

except that it does not recognize the category of looking down and misclassifies some parts of

running, jumping, small steps and walking. The unsupervised graph MBO algorithm gives results

similar to K-means. The semi-supervised graph MBO algorithm with 10% known labels gives

very accurate results. The accuracy summary of these three algorithms is shown in Table 5.

6.2.2 Real-world Body-worn Video

We also investigated real-world body-worn videos. We use a data set from the Los Angeles

Police Department. The videos are from police, wearing chest-mounted cameras while patrolling

areas of Los Angeles on foot. The videos record a wide array of police activities from basic patrol

through foot chases and arrest. Our ego-motion classification results may be used in modeling the

71



72

Table 5: Accuracy Summary of the QUAD data set

Accuracy Overall Average 1.Stand

still

2.Turn

left

3.Turn

right

4.Look

up

K-means 64.84% 61.79% 95.82% 72.26% 77.28% 73.24%

Unsupervised

MBO

66.62% 67.59% 79.99% 76.82% 83.37% 69.41%

Semi-supervised

MBO

89.14% 88.74% 87.90% 89.43% 92.80% 80.36%

Accuracy 5.Look

down

6.Jump 7.Step 8.Walk 9.Run

K-means 0 83.29% 49.29% 36.66% 68.25%

Unsupervised

MBO

77.82% 39.38% 43.54% 83.27% 54.68%

Semi-supervised

MBO

84.59% 92.71% 93.98% 84.52% 92.38%

Figure 29: Ego-motion classification results of the QUAD video. The 9 colors represent 9 different ego-motion classes:

standing still (dark blue), turning left (moderate blue), turning right (light blue), looking up (dark green) and looking

down (light green), jumping (bud green), stepping (aztec gold), walking (orange), running (yellow).



routine activities of police and their interactions with the public.

Police BWV is not collected under controlled circumstances. Ego-motions may evolve rapidly

without clear or discrete transitions. Much body worn video is collected at night impacting light

and color saturation. The videos also have distortion due to the use of a fish-eye lens. Since

there has been very little formal analysis of police BWV, there is a lack of appreciation for the

diversity of police behavior likely to be encountered (i.e., very limited semantic dictionaries). The

ground-truth is labeled by us without input from the police.

We show here the video segmentation result of one clip of police video. The video is 8 minutes

and 16 seconds in length, with 14991 frames in total. In the video, police arrive at an apartment

building, talk with some people in front of the building, go upstairs, wait outside a room, enter and

search the room, leave the room, walk downstairs, and talk to several people outside the building.

We define four ego-motion categories in this video – standing (or very slow motions not easy to

define), walking, going upstairs, and going downstairs. The ground truth classification of this video

is shown in the first row of Figure 30. The dark blue segments represent the category of standing or

slow movements when the officer talks with others in front of the building. It also contains actions

when the officer enters the room. The video of this period is very shaky and not easily defined

as one motion category. The light blue segment corresponds to the walking category. The green

segment corresponds to the police going upstairs and the yellow part is going downstairs.

We explore the same algorithms for the police body-worn video. We are not using the unsuper-

vised graph MBO algorithm because the result is not consistent. The results are shown in Figure

30. K-means captures the difference between going upstairs and downstairs. However, K-means

frequently misclassifies walking and going downstairs. Some standing frames are classified as

other motion categories. This later result is reasonable since standing in this video combines some

other movements. Then we use the semi-supervised graph MBO algorithm with 10% known labels

on this piece of video. The segmentation results are shown in the third row of Figure 30. It can be

seen that the result is much better than K-means, and the four categories are all captured almost

correctly. The accuracy summary is shown in Table 6. The overall accuracy of the semi-supervised

graph MBO algorithm with 10% known labels is 90.17%.

6.3 Future Work
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Figure 30: Ego-motion classification results of the police video. The 4 colors represent 4 different ego-motion classes:

standing or very slow motions and motions not easy to define (dark blue), walking (light blue), going upstairs (green)

and going downstairs (yellow).

Table 6: Accuracy Summary of the police body-worn video data set

Accuracy Overall Average 1.Stand 2.Walk 3.Upstairs 4.Downstairs

K-means 63.62% 63.77% 68.91% 37.78% 91.84% 56.53%

Semi-supervised

MBO

90.17% 74.09% 96.10% 82.12% 83.45% 34.71%

The potential for future advances in this area is significant particularly in relation to police body-

worn video. At full deployment of body-worn video in 2018, the Los Angeles Police Department

is projected to collect 3.2 million individual videos totaling more than 200K hours of total video

feed per year. This represents both a vast resource and a significant analytical challenge. The

amount of data suggests that the full array of ego-motions practiced by police might eventually be

discovered and subject to classification, moving us towards a realistic picture of the diversity of

police activities. There will clearly be no lack of training data with which to tackle this problem.

The work presented in this chapter is already being extended. The student at the summer REU

program at UCLA have labeled more video frames for nine motion classes: standing, walking,

in moving or stationary car, obscured camera, at car window, enter driver, enter passenger, exit

driver and exit passenger. They have also added more features for each frame, such as the color

signatures, texture signatures, etc. The classification accuracies for these nine classes are shown in

Figure 31. This figure also show that the sizes of the classes affect the classification accuracy.

The same surfeit of video data is proving to be true in other domains outside of policing. Recog-

nition of the diversity of ego-motion in policing activity may also lead to novel extensions of the

methods into dyadic- and n-person motion models. In the dyadic-motion case there is much to be
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learned. It is well known that relative motion of individuals with respect to one another encodes

fundamental social information [12]. For example, an individual running away from ego may en-

code avoidance or fear, while an individual running directly towards ego may encode attraction

and threat. More complex social interactions may be captured in n-person motion models.

The challenges to achieving such outcomes with real-world video are also significant. In the

police body-worn video case, semi-supervised classification clearly outperforms the unsupervised

approach. Yet even a small fraction of fidelity points (10% in the current method) is probably

infeasible given the volumes of video arriving each day. Semi-supervised methods will therefore

need to rely on as few fidelity points as possible. However another approach is video labeling

where activities segmented in one video might be used as labels for semi-supervised segmentation

in another video. This was demonstrated in [15, 16] for image labelling. It will also be necessary

to consider how generalizable methods are across real-world video examples. Ideally, a handful

of videos might be exhaustively labeled for ground-truth and these would then work across the

growing set of videos. This is an empirical questions that we can start addressing now with the

recognition that new methods may be needed to account for the variability of real-world video.

Finally, we also point out that body-worn video is but one sensor platform in what is increas-

ingly a multi-sensor world. It is worth investigating whether there is an advantage to doing more

with single sensors, or whether it is better to integrate the signals from many independent sensors.

For example, we can imagine doing both ego-motion and scene topic classification from the same

video sequence, or as an alternative use accelerometers to capture ego-motion and matching these

data to scene classification from video. Importantly, the issues are not strictly technological. Po-

lice body-worn video is treated as evidence and therefore is subject to all of the evidence handling

rules required by law. Each sensor implies a different packet of physical of evidence that must be

maintained and handled appropriately. Future work will need to examine these sorts of tradeoffs

in detail.
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Figure 31: Left: Distribution of video segments across different ego-motion categories before and after increment by

replicating the video segments. Right: Increment of video segments significantly increasesthe classification accuracy

of the last three categories. [4]



Summary

We have presented one semi-supervised and one unsupervised graph-based classification al-

gorithm and have applied these methods to hyperspectral video data, hyperspectral images and

RGB images. The results show that these procedures can very accurately and efficiently segment

a data set into a number of classes. To make the algorithms very efficient, we use the Nyström

extension method to calculate the eigendecomposition of the graph Laplacian; in practice, only a

small portion of the eigenvectors are needed to obtain good results. Moreover, we use OpenMP

directive-based parallelism in our algorithms and observe strong (almost ideal) scaling behavior

and very fast implementation times. In fact, the entire process only takes one minute using 64

threads on a supercomputer for 329 frames (13,475,840 pixels) of the plume video data on LBNL

supercomputers!

We develop a parallel implementation of two novel classification algorithms using OpenMP. We

show OpenMP parallel and SIMD regions in combination with optimized library routines achiev-

ing almost ideal scaling and manyfold speedup over serial implementations. Although, we attain

roughly 50% of the Roofline bound (no NUMA), we expect future optimizations for the transcen-

dentals, the cache hierarchy, and NUMA to substantially improve performance. We also expect

more performance optimization results on KNL “white boxes” (pre-release hardware) and the fu-

ture Cori Phase II.

We investigate the task of discovering ego-motion categories from first-person videos. We deal

with this problem in two steps. The first step is comparing two successive frames using the inverse

compositional algorithm to extract signals containing motion and motion frequency information.

Then we use unsupervised and semi-supervised clustering algorithms for classification. The semi-

supervised graph based methods are particularly accurate using only 10% training data. We show

promising results on both choreographed and real-world video data. This work is now being ex-

tended to many more classes with new methods for uncertainty qualification.
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