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ARTICLE

Pathway-based subnetworks enable cross-disease
biomarker discovery
Syed Haider 1,2, Cindy Q. Yao1,3,4, Vicky S. Sabine3, Michal Grzadkowski1, Vincent Stimper1,

Maud H.W. Starmans1,5, Jianxin Wang1, Francis Nguyen1,4, Nathalie C. Moon1, Xihui Lin1, Camilla Drake3,

Cheryl A. Crozier3, Cassandra L. Brookes6, Cornelis J.H. van de Velde7, Annette Hasenburg8, Dirk G. Kieback9,

Christos J. Markopoulos10, Luc Y. Dirix11, Caroline Seynaeve12, Daniel W. Rea6, Arek Kasprzyk1,

Philippe Lambin 5, Pietro Lio’2, John M.S. Bartlett3 & Paul C. Boutros 1,4,13

Biomarkers lie at the heart of precision medicine. Surprisingly, while rapid genomic profiling is

becoming ubiquitous, the development of biomarkers usually involves the application of

bespoke techniques that cannot be directly applied to other datasets. There is an urgent need

for a systematic methodology to create biologically-interpretable molecular models that

robustly predict key phenotypes. Here we present SIMMS (Subnetwork Integration for Multi-

Modal Signatures): an algorithm that fragments pathways into functional modules and uses

these to predict phenotypes. We apply SIMMS to multiple data types across five diseases,

and in each it reproducibly identifies known and novel subtypes, and makes superior pre-

dictions to the best bespoke approaches. To demonstrate its ability on a new dataset, we

profile 33 genes/nodes of the PI3K pathway in 1734 FFPE breast tumors and create a four-

subnetwork prediction model. This model out-performs a clinically-validated molecular test in

an independent cohort of 1742 patients. SIMMS is generic and enables systematic data

integration for robust biomarker discovery.
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Most human disease is complex, caused by interaction of
genetic, epigenetic and environmental insults. A single
disease phenotype can often arise in many ways,

allowing a diversity of molecular underpinnings to yield a smaller
number of phenotypic consequences. This molecular hetero-
geneity within a single disease is believed to underlie poor clinical
trial results for some therapies1 and the modest performance of
many genome-wide association studies2–4.

Researchers thus face two challenges. First, molecular markers
are needed to personalize and optimize treatment decisions by
predicting patient outcome (prognosis/residual risk) and response
to therapy. Second, clinical heterogeneity in patient phenotypes
needs to be molecularly rationalized to allow targeting of the
mechanistic underpinnings of disease. For example, if a single
pathway is dysregulated in multiple ways, drugs targeting the
pathway could be applied.

Several approaches have been taken to solve these challenges.
The most common has been to measure mRNA abundances as a
snapshot of cellular state, and to construct a predictive model
from them5,6. Unfortunately, these studies have been limited by
noise and disease heterogeneity. Several groups have integrated
multiple data types using network and systems biology approa-
ches identifying patient subtypes, with limited post-hoc clinical
evaluation7–25. These algorithms have not yet clearly shown how
the interplay between different pathways underpins disease
etiology, nor generated biomarkers with systematically demon-
strated reproducibility on independent patient cohorts across
multiple indications26.

There is thus an urgent need to generate accurate and
actionable biomarkers that integrate diverse molecular, functional
and clinical information. We developed a subnetwork-based
approach, called SIMMS, which uses arbitrary molecular data
types to identify dysregulated pathways and create functional
biomarkers. We validate SIMMS across five tumor types and
11,392 patients, using it to create biomarkers from a diverse range
of molecular assays and uncovering unanticipated pan-cancer
similarities.

Results
Prioritization of candidate prognostic subnetworks. SIMMS
acts upon a collection of subnetwork modules, where each node is
a molecule (e.g., a gene or metabolite) and each edge is an
interaction (physical or functional) between those molecules.
Molecular data is projected onto these subnetworks using
topology measurements that represent the impact of and synergy
between different molecular features. To allow modeling of bio-
logical processes with different network architectures, we devised
three scoring paradigms: N (nodes/molecules in a subnetwork), E
(edges/interactions in a subnetwork) and N+ E (both nodes and
edges). While the N model assumes independent and additive
effects of parts of a subnetwork, the E and N+ E models incor-
porate the impact of dysregulated interactions (Methods). SIMMS
fits each one of these models thereby estimating a ‘module-dys-
regulation score’ (MDS) for each subnetwork that measures their
strength of association with a specific disease, phenotype or
outcome (Supplementary Fig. 1).

Characteristics and benchmarking of prognostic subnetworks.
A key challenge faced by translational research is to extend the
single gene biomarkers paradigm to clinically actionable meta-
genes/pathways. Thus, we tested the prognostic value of pathway-
derived subnetworks using Cox modeling to quantify how effec-
tively a subnetwork stratifies patients into groups with differential
risk (Methods). SIMMS can use any network, and we chose to
evaluate it using 449 gene-centric pathways from the high-quality,

manually-curated NCI-Nature Pathway Interaction database27.
For each pathway, interconnected proteins (protein-protein
interactions or protein complexes) were isolated and regarded as
a subnetwork. We further removed overlapping subnetworks
from this collection resulting in 500 subnetworks across the
database (Supplementary Table 1; Supplementary Fig. 2; Methods
section: Pathways database pre-processing). We then trained and
tested SIMMS on a series of large and well-curated mRNA
abundance datasets of primary breast (1010 training patients;
1098 validation patients), colon (205 training; 439 validation),
lung (380 training; 369 validation) and ovarian (438 training; 566
validation) cancers (Supplementary Tables 2–5; Supplementary
Fig. 3; Supplementary Methods section 1).

Our analysis of prognostic subnetworks revealed several
properties of tumor network biology. First, there was a global
propensity for highly prognostic subnetworks to contain
significantly higher number of genes and interactions for Model
N and N+ E (P < 0.05, Wilcoxon rank sum test; Supplementary
Fig. 4). This association between subnetwork size (number of
genes) and prognostic ability was consistent in breast, NSCLC
and ovarian cancers, even though different pathways were altered
in each but not in colon cancers. Second, the prognostic ability of
Model N was significantly superior to that of Model N+ E and E;
a trend which was maintained across all four cancer types (one-
way ANOVA, Tukey HSD multiple comparison test; Supple-
mentary Fig. 5). This suggests that mRNA abundance of
functionally-related genesets alone is a strong predictor of patient
outcome; here a geneset refers to a set of genes from the same
subnetwork. We therefore focused solely on Model N moving
forward, while recognizing that in other diseases different
subnetwork architectures may be disrupted and therefore require
model E or N+ E.

Next we compared how SIMMS subnetwork scores perform
against five well-known machine learning algorithms treating
genes as individual features in multivariate setting (Supplemen-
tary Methods section 2). SIMMS identified an equal or
significantly greater number of prognostic subnetworks compared
to models based on genes in each of these subnetworks for these
methods (Comparison of proportion of significant subnetworks
identified by SIMMS vs. other algorithms: P < 0.01, proportion
test; Fig. 1a-d). We further compared SIMMS against a panel of
pathway/subnetwork scoring methods18,28–30, each representing a
distinct class of summary estimates (Supplementary Methods
section 2). SIMMS outperformed all methods identifying
significantly higher number of prognostic subnetworks (P <
0.05, proportion test; Fig. 1e-h) with an exception of CORGs
where SIMMS identified a greater number of subnetworks in all
cancer types, however not significant in breast, colon and ovarian
cancers (P= 0.05–0.17, proportion test). Sensitivity of these
methods against a panel of subnetworks most likely to be
associated with patient outcome (having at least three signifi-
cantly prognostic genes) also confirmed SIMMS’ superiority with
highest true positive rate compared to other methods across all
four cancer types (Supplementary Fig. 6).

Multi-cancer prognostic subnetworks. We next quantitatively
determined the similarity between different tumor types at the
pathway level. Cross disease assessment of significantly prog-
nostic subnetworks (Wald P < 0.05) revealed well-known onco-
genic pathways such as Aurora Kinase A and B signaling,
apoptosis, DNA repair, RAS signaling, telomerase regulation and
P53 activity in all four tumor types (Supplementary Tables 6–9).
By limiting to highly prognostic subnetworks (|log2HR| > 0.584
and P < 0.05) in each tumor type, 17 recurrently prognostic
subnetworks (at least three tumor types) were identified (Fig. 1i,
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Supplementary Fig. 7). Significant overlap between prognostic
subnetworks was observed for breast, colon, and NSCLC
(14 subnetworks: Poverlap= 0.009, 105 permutations; Fig. 1j),
thereby highlighting repurposing potential of anti-cancer drugs
targeting these subnetworks. We further assessed whether mRNA
dysregulation in these prognostic subnetworks is simply a read
out of somatic mutations acquired in the underlying genes.
Prognostic assessment of mutation burden in TCGA datasets for
these subnetworks revealed only two as prognostic; one in breast
and one in lung cancer (Supplementary Fig. 8).

As chemo-resistance is a critical unmet need for cancer
patients, we tested prognostic subnetworks for predictive
potential. We used TCGA ovarian cancer platinum response
data and tested for enrichment of responders and non-responders
in SIMMS’ predicted risk groups for each of the significantly
prognostic subnetworks (Wald P < 0.05). In total, 7/

111 subnetworks demonstrated co-occurrence of platinum
resistance in high-risk groups (Odds ratio > 2, P < 0.05, Supple-
mentary Table S9d). Most of the genes underlying these
subnetworks are involved in Keratinocyte differentiation, p38
MAPK signaling and Regulation of telomerase (Supplementary
Fig. 9). These pathways require further validation beyond this
correlative potential, however these data show the potential of
SIMMS for development of predictive, as well as prognostic,
biomarkers.

In breast cancer, subnetwork modules encompassing prolifera-
tion pathways (Mitosis, PLK1, AURKA, and AURKB) were highly
prognostic (Supplementary Table 6b). To ensure these are not
driven by common proliferation genes, we tested gene overlap in
these subnetworks and found them highly divergent (Supple-
mentary Fig. 10a). We further tested whether estimated risk
scores of these four subnetwork modules recapitulate
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proliferation accurately. We used the MKI67 (mRNA abundance)
as a surrogate for proliferation, and found strong concordance
between MKI67 abundance and SIMMS’ risk scores (Spearman’s
ρ= 0.79–0.86, P < 10–3; Fig. 2a). To determine if subnetworks
more accurately model patient-relevant biology, we constructed a
multivariate proliferation signature using the four modules. This
signature was a robust prognostic marker (Fig. 2b) and presents
an opportunity to understand the functionally-related prolifera-
tion correlates of patient outcome beyond single gene markers.
We next investigated prognostic subnetworks focusing on
clinically actionable pathways. In breast cancer, immune micro-
environment subnetwork of T cell receptor signaling was a
significant predictor of patient outcome (HRQ1-Q4= 2.86, 95% CI
= 2.03–4.02, P= 1.78 × 10–9; Fig. 2c, Supplementary Table 6d), in
particular, distant metastasis free survival where data was
available (Sotiriou: HR= 3.52, 95% CI= 1.38–9.02, P= 0.0086;
Wang: HR= 1.58, 95% CI= 1.07–2.33, P= 0.02). We further
validated this subnetwork for breast cancer disease-specific
survival in an independent cohort of 1970 patients31 (HRQ1-Q4

= 2.01, 95% CI= 1.5–2.68, P= 2.41 × 10–6; Fig. 2d).

Hypothesizing that this subnetwork may serve as a marker of
tumor immune infiltration, we confirmed association between
SIMMS predicted risk groups and immune cell content32

(Affymetrix: Spearman’s ρ=−0.38, P < 2.2 × 10–16; Illumina:
Spearman’s ρ=−0.48, P < 2.2 × 10–16), as well as stromal signal
(Affymetrix: Spearman’s ρ=−0.43, P < 2.2 × 10–16; Illumina:
Spearman’s ρ=−0.59, P < 2.2 × 10−16) (Fig. 2e-f), both of which
were associated with good outcome. Consistent with a recent
breast cancer study33, naïve immune and stromal content
estimates were only weakly associated with patient outcome
(Supplementary Fig. 10b-e), whilst SIMMS’ MDS of T-cell
receptor signaling not only provides accurate identification of
patients who may benefit from immunotherapy, but also indicates
associated molecular targets.

Multi-subnetwork biomarkers predict patient outcome. As
SIMMS accurately identified univariate prognostic subnetworks,
we hypothesized that modeling of multiple aspects of tumor
biology through these subnetworks into a single molecular
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biomarker could better rationalize patient heterogeneity emerging
from alternative pathways of disease progression. First, to initi-
alize the number of subnetworks, 10 million random sets of
subnetworks of different sizes (1 to 250) were generated regard-
less of subnetwork size (Supplementary Fig. 11). These were
tested for prognostic potential in a multivariate Cox model,
thereby generating an empirical null distribution which allowed
us to select the optimal number of subnetworks that influence
survival in each disease, as well as to circumvent potential bias
towards large subnetworks. Using the optimal number of sub-
networks maximizing performance in the training set (nBreast= 50,
nColon= 75, nNSCLC= 25 and nOvarian= 50), SIMMS’ risk scores
were estimated in each disease. These subnetworks revealed a
number of highly correlated clusters of subnetworks (Supple-
mentary Fig. 12–15). Next, multivariate prognostic classifiers
(Cox model with L1-regularization; 10-fold cross validation) were
created for each tumor type thereby further refining the list of
highly correlated subnetworks. For each tumor type, subnetwork-
based classifiers encompassing multiple pathways successfully
predicted patient survival in the fully-independent validation
cohorts (Fig. 3, Supplementary Tables 10–13). We verified that
these results are not driven by a single cohort or patient subset,
but rather reproducible across studies (Supplementary Fig. 16–
19). Similarly SIMMS generated robust biomarkers for each
tumor-type using multiple feature-selection approaches:

multivariate analysis using both backward and forward refine-
ments yielded similar results (Supplementary Fig. 20).

Next, we challenged SIMMS’ modeling of pathway-based
features against: (1) a biomarker constructed from all the genes
(in our pathways database) in multivariate setting using a Cox
model with L1-regularization, and (2) a biomarker constructed
using all these genes collapsed into one composite geneset which
was subsequently modeled using SIMMS. For the large multi-
variate model, breast and ovarian cancer models yielded results
similar to SIMMS while colon and NSCLC models were
significantly inferior to SIMMS’ models (Supplementary
Fig. 21a-d). Further, modeling the composite geneset using
SIMMS improved the performance for colon and NSCLC
markers (Supplementary Fig. 21e-h). These, alongside SIMMS’
native models (Fig. 3) highlight a potential saturation point where
large models may not yield improved prognostic markers. To
ensure SIMMS-derived prognostic markers performed compar-
ably to existing transcriptomic prognostic tools, we compared our
four SIMMS prognostic markers to 21 independent approaches
using the same test datasets. For each disease, the SIMMS
signature performed as-well or better than the best published
signature, each of which used a unique methodology (Supple-
mentary Methods section 3, Supplementary Table 14). Therefore
SIMMS provided a consistent and unified approach to generating
highly accurate biomarkers.
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Focusing on breast cancer as a disease with well-defined
molecular subtypes, we tested SIMMS on Metabric breast cancer
cohort (n= 1,970)31. Our prognostic classifier revealed two
primary patient clusters with distinct pathway activities encom-
passing subnetworks derived from cell cycle, signaling, immune

and regulatory pathways (Fig. 4a, b). These clusters were highly
concordant with the PAM5034 intrinsic subtypes of breast cancer
(f-measure= 0.81). Since breast cancer is a heterogeneous disease
with distinct molecular and clinical characteristics34, we asked
whether SIMMS could identify subtype-specific prognostic
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markers. To evaluate this, we classified patients into PAM50, ER
+ and ER− subtypes and created SIMMS classifiers for each
subtype. SIMMS classifiers were able to identify subgroups of
patients at a significantly higher risk of relapse (Wald P < 0.05) in
each of the Luminal-A, Normal-like and ER+ subtypes (Fig. 4c).
Importantly, these subgroups of patients present differential
pathway activity (as quantified by SIMMS), and hence may
benefit from aggressive/alternative treatments targetting these
pathways. We further validated the efficacy of SIMMS when
trained and tested for reproducibulity across different genomic
platforms (Affymetrix and Illumina; P < 10-5; Fig. 4c AFFY/
ILMN, ILMN/ILMN, ILMN/AFFY; Supplementary Fig. 22).
Taken together these results demonstrate that pathway-driven
subnetwork modeling can flexibly integrate diverse assays
emerging from multiple platforms.

A PIK3CA signaling risk predictor in early breast cancer.
While the public data used to evaluate SIMMS is valuable, it does
not closely represent that used in clinical settings. To better
represent this scenario, we focused on the PI3K-signaling path-
way, which is frequently mutated in breast cancer and is the
subject of several targeted therapies. We evaluated 1,734 samples
from the phase III TEAM clinical trial and measured mRNA
abundance of 33 PI3K signaling genes in clinically-relevant FFPE
samples. All samples were ER positive “luminal” breast cancers
from the TEAM pathology study35 (Supplementary Table 15,
Supplementary Methods section 4). We hypothesized that
inclusion of key signaling nodes from driver molecular pathways
in residual risk signatures would both improve risk stratification
and identify candidate theranostic targets for the next generation
of clinical trials. Univariate prognostic assessment of 33 genes
revealed significant association between seven genes and distant
metastasis (Wald Padjusted < 0.05; Supplementary Table 16). Sur-
vival analysis of clinical covariates indicated tumor grade, N-
stage, T-stage and HER2 IHC as predictors of distant metastasis
(Supplementary Table 17). Next, we aggregated 33 PI3K signaling
genes into 8 functional modules representing different nodes of
the pathway (Supplementary Fig. 23, Supplementary Table 18),
and applied SIMMS to train a residual risk model. The SIMMS-
derived model comprised of four modules and two clinical cov-
ariates (Supplementary Table 19).

To validate this model, we used a fully-independent set of 1742
patients from the same clinical trial profiled using the same
technology (Supplementary Table 20). This scenario closely
replicates actual clinical application of the signature. The SIMMS
signature was a robust predictor of distant metastasis in the
validation cohort (Fig. 5a; Q4 vs. Q1 HR= 9.68, 95%CI:
5.91–15.84; P= 1.71 × 10−19). It was also effective when simply
median-dichotomizing predicted risk scores into low- and high-
risk groups (Supplementary Fig. 24a). Risk scores from this

signature were directly correlated with the likelihood of distant
recurrence at five years, with a higher risk score associated with a
higher likelihood of metastasis (Fig. 5b). The signature was
independent of PIK3CA point mutations, with no change in
survival curves between low and high-risk groups with vs. without
PIK3CA mutations (plow+/-= 0.22, phigh+/-= 0.81; Supplemen-
tary Fig. 24b). The signature remained an independent prognostic
indicator following adjustment for chemotherapy (Q4 vs. Q1 HR
= 9.88, 95%CI: 6.01–16.27; P= 2.02 × 10−19). To further verify
this, predicted risk groups (Q1-Q4) in the validation cohort were
divided into chemotherapy negative and positive arms with
further stratification by nodal status. Risk predictions was similar
for node-negative/chemotherapy-negative patients (Q4 vs. Q1
HR= 7.69, 95%CI: 3.19–18.58; P= 5.76 × 10−6; Supplementary
Fig. 24c) as for node-positive/chemotherapy-negative patients
(Q4 vs. Q1 HR= 8.76, 95%CI: 3.78-20.29; P= 4.09 × 10−7;
Supplementary Fig. 24d), as well as for chemotherapy-stratified
groups without the prior knowledge of nodal status (Supplemen-
tary Fig. 24e-f, Supplementary Methods section 4.7). This FFPE-
derived risk model successfully validated in fresh-frozen ER+
clinical samples from the Metabric cohort (HR= 2.41, 95%CI:
2.01–2.89; P= 2.09 × 10−21; Supplementary Fig. 24g), despite the
change in genomics platform, fixation/preservation and analyte-
extraction protocols.

To benchmark SIMMS’ PI3K modules signature against
current clinically-validated approaches, we compared its perfor-
mance to a clinically-validated protein-based residual risk
predictor, IHC436. IHC4 was assessed using quantitative IHC
measurements of ER, PgR, Ki67 and HER237 with adjustment for
age, nodal status, grade and size in both the training and
validation cohorts (validation set: Wald P= 1.32 × 10−11; Fig. 5c).
To compare the two predictors, we used the area under the
receiver operating characteristic curve as a performance indicator.
The PI3K modules model (AUC= 0.75) was significantly super-
ior to the IHC-protein model (AUC= 0.67; P= 5.78 × 10−6;
Fig. 5d). The PIK3CA predictor correctly identified 78.7% (NPV
= 0.93, PPV= 0.27) of patients with disease relapse compared to
63.0% (NPV= 0.88, PPV= 0.22) by IHC4 in the validation
cohort. Overall, it improved patient classification relative to IHC4
for 18% of patients (Net reclassification index= 0.18, 95% CI=
0.11–0.25, P < 2.2 × 10−16).

General multi-modal biomarkers. Since oncogenic insults
manifest across all molecular species (e.g., DNA, mRNA, protein),
there is a need to simultaneously integrate these into unified
predictive models. We used four TCGA datasets (breast (BRCA)
38, colorectal (COADREAD)7, kidney (KIRC)39, ovarian (OV)40)
along with the Metabric31 breast cancer cohort, each of which
included matched mRNA, CNA and clinical data. In order to test
pathways harboring multi-modal alterations, we curated

Fig. 4 Clinical association of breast cancer biomarkers. a Heatmap of patients’ risk scores estimated using top nBreast=50 subnetworks in the Metabric
validation cohort. Column covariates show patient classifications based on PAM50-based molecular subtypes and SIMMS predicted risk groups. Row
covariates indicate functional class of subnetwork’s originating pathway. Columns and rows were clustered using divisive clustering. Number in parenthesis
of y-axis labels represents subnetwork number from a given pathway; with details in subnetwork database (SIMMS R package). ‘Fc Epsilon Receptor I
Signaling in Mast Cells’ is repeated twice because it is represented by two different pathways in the database (ID= 100165 and ID= 200003 in
subnetworks database; SIMMS R package). b Clustered (divisive) heatmap of correlation (Spearman) between patients using their subnetwork risk score
profiles (top nBreast=50 subnetworks) in the Metabric validation cohort with covariates as detailed in a. c Forest plot showing HR and 95% CI (multivariate
Cox proportional hazards model) of the breast cancer subtype-specific markers, as well as cross-platform validation. Datasets originating from Illumina
(ILMN) and Affymetrix (AFFY) were used in turn for cross platform training and validation. Due to limited availability of clinical annotations on Affymetrix
based cohorts, only the Illumina dataset (Metabric) was used for subtype-specific models. For these, the Metabric-published training and validation
cohorts were maintained for training and validation purposes. Numbers in parenthesis indicate the size of the validation cohort. Asterisks represent
statistical significance of differential outcome between the predicted low-risk and high-risk groups (*P < 0.05, **P < 0.01, ***P < 0.001, Wald-test)
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previously published pathway modules (MEMo)41 from TCGA
studies (Supplementary Table 21). SIMMS risk scores were esti-
mated for each of the mRNA and CNA profiles with subnetwork
weights of constituent genes calculated independently. The sum
of mRNA and CNA MDS yielded a multi-modal pathway acti-
vation estimate per patient (Supplementary Methods section 5).
Multi-modal markers of kidney (5/8) and breast (19/23) cancers
were reproducibly superior (Fisher’s combined probability test) to
both mRNA-alone and CNA-alone (Supplementary Fig. 25a: dark
brown dots against red and blue covariates, Supplementary
Fig. 25b-c). For ovarian cancer, multi-modal markers improved
upon CNA models in 2/3 subnetworks (Supplementary Fig. 25a:
M02 and M03 against purple covariate, Supplementary Fig. 25b-
c) even though no individual data type was prognostic in all
subnetworks. These results demonstrate the potential of pathway-
derived subnetwork models to generate integrated multi-modal
biomarkers.

Discussion
Patients with complex human diseases present highly hetero-
geneous molecular profiles, ranging from a few aberrant genes to
a set of dysregulated pathways. Because many different molecular
aberrations can give rise to a single clinical phenotype, the
importance of generating multi-modal datasets is increasingly
appreciated7,31,40,42. Indeed, a single whole-genome sequencing
experiment generates information about single nucleotide varia-
tions, copy number aberrations and genomic rearrangements.
SIMMS puts this molecular variability into the context of existing
knowledge of biological pathways using subnetwork information.
Several other groups have considered the value of network models
in predicting breast cancer outcome10,22,30 and in subtyping
glioblastoma43. However no such tools have yet been developed
to be generalizable to a broad range of diseases or to arbitrary
topological measures that might be used to estimate weights in
network-models of biology44,45 or to work with physical,
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Fig. 5 PIK3CA signaling predictor of breast cancer recurrence. a Independent validation of prognostic model trained on SIMMS’ risk scores and clinical
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functional, transcriptional or metabolic networks46,47. SIMMS
provides this generalizability and flexibility by treating molecular
profiles as generic features and not just genes.

Most previous biomarker studies have focused on establishing
biomarkers using mRNA abundance profiles, with pathway-level
analysis used post hoc to characterize the most interesting
genes48–50. Our approach inverts this strategy, taking known
pathways a priori and thus creating immediately interpretable
and clinically actionable biomarkers12. We recognize that for
breast and ovarian cancers, pathway-based models presented here
yield similar prognostic association as for some single gene bio-
markers. This phenomenon is surprising and potentially con-
founded to some extent by a number of factors, including
differential power across disease types and inter- and intra-
tumoural heterogeneity51. Overall, the observed saturation of
prognostic signal for some disease types require further evalua-
tion in much larger cohorts, as well as additional tumor types.
Nonetheless, our data highlights that prognostic markers based
on functionally related genes offer new opportunities to ratio-
nalize disease biology and foster discovery of candidate drug
targets. For example, by identifying the key signaling nodes
within one of the most frequently dysregulated pathways in
human cancer52 we are able to demonstrate both improved risk
stratification of patients undergoing standard of care treatments
(Fig. 5) and highlight the potential for future theranostic trials for
patients stratified using this approach. Both the IHC4 and type I
receptor tyrosine kinase modules have extensive clinical and pre-
clinical data validating their utility in early breast cancer53,54. The
documented effects of PIK3CA pathway inhibitors in advanced
breast cancer, if appropriately targeted, may be translated into
significant improvements in survival in early breast cancer.

Precision molecular medicine is predicated on the concept of
giving each patient the right drug in the right dose at the right
time. This type of personalized treatment requires the develop-
ment of robust biomarkers that precisely predict clinical pheno-
types. Current clinical biomarkers are typically derived from a
small number of genes, and do not yet recapitulate the full
complexity of disease. SIMMS takes a step towards integrating
diverse cellular processes into a singular model, and is well-
positioned to take into account the influx of clinical sequencing
data now being generated. However, as -omic techniques evolve
to rapidly analyze and quantify cellular metabolites, network
models may need to change from being gene-centric to including
metabolites as core nodes. Further, single-cell analysis methods
may allow accurate interrogation of the interactions between
different cell-types, perhaps requiring simultaneous fitting of
multiple distinct, but interacting network models. The continued
development of robust, general biomarker discovery algorithms is
thus required to generate the accurate and reproducible bio-
markers needed for transforming medical care.

Methods
Pathways database pre-processing. Pathways database was downloaded from
the NCI-Nature Pathway Interaction database27 in PID-XML format (Supple-
mentary Table 1). The XML dataset was parsed to extract protein-protein inter-
actions from all the pathways using custom Perl (v5.8.8) scripts (Methods: Code
Availability). The protein identifiers extracted from the XML dataset were further
mapped to Entrez gene identifiers using Ensembl BioMart (version 62). Wherever
annotations referred to a class of proteins, all members of the class were included in
the pathway, in some case using additional annotations from Reactome and
Uniprot databases. The protein-protein interactions, once mapped to the Entrez
gene identifiers, were grouped under respective pathways for subsequent proces-
sing. The initial dataset contained 1159 subnetworks (Supplementary Fig. 2a-b). In
order to identify redundant subnetworks, we tested the overlap between all pairs of
subnetworks. When a pair of subnetworks had a two-way overlap above 80% (if
two modules shared over 80% of their network components; nodes and edges), we
eliminated the smaller module. Additionally, all subnetworks modules containing
less than 3 edges were excluded. In total, these criteria removed 659 subnetworks,
resulting in 500 subnetworks.

mRNA abundance and survival data pre-processing. All pre-processing was
performed in R statistical environment (v2.13.0). Raw datasets from breast, colon,
NSCLC and ovarian cancer studies (Supplementary Tables 2-5) were normalized
using RMA algorithm55 (R package: affy v1.28.0), except for two colon cancer
datasets (TCGA and Loboda dataset), which were used in their original pre-
normalized and log-transformed format. ProbeSet annotation to Entrez IDs was
done using custom CDFs56 (R packages: hgu133ahsentrezgcdf v12.1.0,
hgu133bhsentrezgcdf v12.1.0, hgu133plus2hsentrezgcdf v12.1.0, hthgu133ahsen-
trezgcdf v12.1.0, hgu95av2hsentrezgcdf v12.1.0 for breast cancer datasets.
hgu133ahsentrezgcdf v14.0.0, hgu133bhsentrezgcdf v14.0.0, hgu133plus2hsen-
trezgcdf v14.0.0, hthgu133ahsentrezgcdf v14.0.0, hgu95av2hsentrezgcdf v14.0.0 and
hu6800hsentrezgcdf v14.0.0 for the respective colon, NSCLC and ovarian cancer
datasets). The Metabric breast cancer dataset was pre-processed, summarized and
quantile-normalized from the raw expression files generated by Illumina Bead-
Studio. (R packages: beadarray v2.4.2 and illuminaHuman v3.db_1.12.2). Raw
Metabric files were downloaded from European genome-phenome archive (EGA)
(Study ID: EGAS00000000083). Data files of one Metabric sample were not
available at the time of our analysis, and were therefore excluded. All datasets were
normalized independently. TCGA breast (BRCA), colon (COADREAD), kidney
(KIRC) and ovarian (OV) cancer datasets were downloaded from http://gdac.
broadinstitute.org/ (Illumina HiSeq rnaseqv2 level 3 RSEM; release 2014-01-15).
The choice of training and validation sets was driven by maintaining homogeneity
in size and platforms, and was further addressed through 10-fold cross validation,
as well as permutation analyses. Raw mRNA abundance NanoString counts data
were pre-processed using the R package NanoStringNorm57 (v1.1.16; Supple-
mentary Methods section 4). A range of pre-processing schemes was assessed to
optimize normalization parameters (Supplementary Methods section 4). For breast,
NSCLC and ovarian cancers with different survival end-points, overall survival
(OS) was used as the survival time variable; for the studies that did not report OS,
we used the closest alternative endpoint available in that study (e.g., disease-specific
survival or distant metastasis-free survival). For colon cancer, all studies reported
relapse/disease free survival and hence this was used as the survival end-point.

TEAM study population. The TEAM trial is a multinational, randomized, open-
label, phase III trial in which postmenopausal women with hormone receptor-
positive luminal58 early breast cancer were randomly assigned to receive exemes-
tane (25 mg once daily), or tamoxifen (20 mg once daily) for the first 2.5-3 years
followed by exemestane (total of 5 years treatment). This study complied with the
Declaration of Helsinki, individual ethics committee guidelines, and the Interna-
tional Conference on Harmonization and Good Clinical Practice guidelines; all
patients provided informed consent. Distant metastasis free survival (DRFS) was
defined as time from randomization to distant relapse or death from breast
cancer58.

The TEAM trial included a well-powered pathology research study of over
4,500 patients from five countries (Supplementary Table 15). Power analysis was
performed to confirm the study size had 98.57% and 98.82% power to detect a HR
of at least 2 in the training and validation cohorts, respectively, (Supplementary
Methods section 4) analyses and statistical methods followed REMARK
guidelines59. After mRNA extraction and NanoString analysis, 3476 samples were
available. Patients were randomly assigned to either a training cohort (n= 1734) or
the validation cohort (n= 1742) by randomly splitting the 297 NanoString
nCounter cartridges into two groups. The training and validation cohorts are
statistically indistinguishable from one another and from the overall trial cohort
(Supplementary Table 20)35.

RNA extraction. Five 4 µm formalin-fixed paraffin-embedded (FFPE) sections per
case were deparaffinised, tumor areas were macro-dissected and RNA extracted
according to Ambion® Recoverall™ Total Nucleic Acid Isolation Kit-RNA extrac-
tion protocol (Life TechnologiesTM, Ontario, Canada) except that samples were
incubated in protease for 3 h instead of 15 minutes. RNA samples were eluted and
quantified using a Nanodrop-8000 spectrophotometer (Delaware, USA). Samples,
where necessary, underwent sodium-acetate/ethanol re-precipitation. We selected
33 genes of interest from key functional nodes in the PIK3CA signaling pathway60

and 6 reference genes (Supplementary Table 16, Supplementary Methods section
4). Probes for each gene were designed and synthesized at NanoString Technolo-
gies (Washington, USA). RNA samples (400 ng; 5 μL of 80 ng/μL) were hybridized,
processed and analyzed using the NanoString nCounter® Analysis System,
according to NanoString Technologies protocols.

Meta-analysis. Following univariate analyses and elimination of redundant
patients (Supplementary Methods section 1), the remaining studies were divided
into two sets; training and validation cohorts (Supplementary Tables 2–5). The
RMA normalized mRNA abundance measures were converted to z-scores within
the scope of each dataset (R package: stats v2.13.0).

1- Gene hazard ratio
The hazard ratio for all the genes by combining samples from all the training

datasets was estimated using the univariate Cox proportional hazards model. The
Cox model was fitted to the median dichotomized grouping of mRNA abundance
profiles of the samples as opposed to continuous measure of mRNA abundance.
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2- Interaction hazard ratio
The hazard ratio for all the protein-protein interactions gathered from the NCI-

Nature pathway interaction database were estimated using a multivariate Cox
proportional hazards model. A Cox model, shown below, was fitted to median
dichotomized patient grouping of each of the interacting gene pairs:

hðtÞ ¼ h0ðtÞ expðβ1XG1 þ β2XG2 þ β3XG1:G2Þ ð1Þ

where XG1 and XG2 represent patient’s risk group for gene 1 and gene 2. XG1.G2

represents patient’s binary interaction measure between the gene 1 and gene 2, as
shown below:

XG1:G2 ¼ ðG1� G2Þ ð2Þ

where ⊕ represents exclusive disjunction between the grouping of each gene. This
expression encodes “XNOR” boolean function emulating true (1) whenever, for a
given patient, both the interacting genes result in the same risk group.

Subnetwork module-dysregulation score (MDS). The pathway-based subnet-
works modules were scored using three different models. These models estimate a
module-dysregulation score (MDS) by incorporating the hazard ratio of nodes and
edges that form the subnetwork, say for a given subnetwork module k:

1- Nodes+ Edges

MDS kð Þ ¼
Xn

i¼1

log2 HRi

�� ��þ
Xe

j¼1

log2 HRj

���
��� ð3Þ

2- Nodes only

MDS kð Þ ¼
Xn

i¼1

log2 HRi

�� �� ð4Þ

3- Edges only

MDS kð Þ ¼
Xe

j¼1

log2 HRj

���
��� ð5Þ

here n and e represent total number of nodes (genes) and edges (interactions) in a
subnetwork, respectively. HR represents the hazard ratios of genes and the protein-
protein interactions in a subnetwork (Wald P < 0.05) (section: Meta-analysis). The
subnetworks were ranked by MDS, thereby ranking candidate prognostic features.

Patient risk score. The subnetwork MDS was used to draw a list of the top n
subnetwork features for each of the three models (section: Subnetwork module-
dysregulation score). These features were subsequently used to estimate patient risk
scores using Model N+ E, N and E. For a patient (t), the risk score for a given
subnetwork (riskSN) was estimated using the following models:

1 - Nodes+ Edges

risk SN;tð Þ ¼
Xn

i¼1

log2HRi

� �
Xðt;iÞ þ

Xe

j¼1

log2HRj

� �
Xðt;jxÞXðt;jyÞ ð6Þ

2 - Nodes only

risk SN;tð Þ ¼
Xn

i¼1

log2HRi

� �
Xðt;iÞ ð7Þ

3 - Edges only

risk SN;tð Þ ¼
Xe

j¼1

log2HRj

� �
Xðt;jxÞXðt;jyÞ ð8Þ

where n and e represent the total number of nodes (genes) and edges (interactions)
in a subnetwork (SN), respectively. HR is the hazard ratio of genes and the protein-
protein interactions (Wald P < 0.5; only to filter genes where Cox model fails to fit
estimating large/unstable coefficients) (section: Meta-analysis). x and y are the two
nodes connected by an edge j and X is the scaled intensity of the molecular profile
being modeled (e.g., mRNA abundance, copy number aberrations, DNA
methylation beta values etc) for a patient t.

A univariate Cox proportional hazards model was fitted to the training set, and
applied to the validation set for each of the subnetworks. The prognostic ability of
all three models was compared using non-parametric two sample Wilcoxon rank-
sum test.

Subnetwork feature selection. In order to prioritize an optimal combination of
subnetwork features for SIMMS’ multivariate models, we fitted a Cox model using
generalized linear models (L1-regularization) in 10-fold cross validation setting on
the training cohort (R package: glmnet v1.9-8). SIMMS R package supports
additional machine learning algorithms including elastic-nets (ridge to LASSO),
backward elimination and forward selection (R package: MASS v7.3-12). The fitted
coefficients (β) were subsequently used to estimate an overall measure of per
patient risk score for the validation set using the following formula:

riski ¼
Xm

j¼1

βj Yij

� �
ð9Þ

where Yij is the ith patient’s risk score for subnetwork j. The training set HRs of the
nodes and edges were used to estimate Yij (section: Patient risk score). Next, we
median dichotomized the validation cohort into low-risk and high-risk patients
(or quartiles) using the median risk score (or quartiles) estimated using the training
set. The risk group classification was assessed for potential association with patient
survival data using Cox proportional hazards model and Kaplan–Meier survival
analysis.

Randomization of candidate subnetwork markers. Jackknifing was
performed over the subnetwork marker space for four tumor types; breast,
colon, NSCLC and ovarian. Ten million prognostic classifiers (200,000 for each size
n= 5,10,15,…., 250; where n represents the number of subnetworks) were ran-
domly sampled using all 500 subnetworks. The predictive performance of each
random classifier was measured as the absolute value of the log2-transformed
hazard ratio obtained by fitting a multivariate Cox proportional hazards model
using Model N.

Code availability. Pre-processing Perl source code is freely available through
zenodo https://doi.org/10.5281/zenodo.1303838 and SIMMS R package is freely
available through CRAN: https://cran.r-project.org/web/packages/SIMMS.

Visualizations. All plots were created in the R statistical environment (v2.13.0 or
above) using R packages BPG61 (v5.9.2), lattice (v0.19-28), latticeExtra (v0.6-16)
and VennDiagram (v1.0.0).

Data availability
All molecular and clinical datasets described in section: “mRNA abundance and
survival data pre-processing” are freely available through original publications of
those studies (Supplementary Tables 2–5). Molecular and clinical data from phase
III TEAM clinical trial are available from the corresponding authors upon rea-
sonable request.
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