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Abstract

Towards an Optimal Cosmological Detection of Neutrino Mass with Bayesian Inference

by

Adrian Elazar Bayer

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Uroš Seljak, Chair

High-precision measurements of large-scale cosmic structure are expected to revolutionize
our understanding of fundamental physics, for example by the quantifying neutrino mass
and elucidating the nature of dark energy. This dissertation tackles various of the challenges
that must be faced in order to optimally extract information from cosmological surveys,
taking a particular interest in neutrino mass.

Massive neutrinos suppress the growth of cosmic structure on small scales, where gravity is
nonlinear. It is currently an urgent task to determine how to maximally retrieve information
in the nonlinear regime, as a traditional power spectrum analysis is no longer optimal. We
start by using simulations to investigate the amount of information regarding neutrino mass
present in cosmic structure. We find that while there is in principle a lot of information,
only a small fraction will be measurable by upcoming surveys such as DESI and LSST. This
motivates the need to perform a combined analysis with other cosmological tracers, such
as the cosmic microwave background, and galaxy peculiar velocities. We thus develop a
Bayesian forward modeling framework to combine field-level inference with galaxy peculiar
velocities as a means to optimally extract information.

Additionally, various numerical challenges arise due to the nonlinear effects of gravity. For
example, computing the covariance matrices required for likelihood-based analyses becomes
challenging, in particular due to the super-sample covariance effect. Moreover, the inference
often involves non-trivial posterior surfaces which are plagued by volume effects such as the
Look-Elsewhere Effect. This is particularly prevalent when searching for evidence of exotic
new models. In the latter chapters of the dissertation we provide methods to solve both of
these problems.

All put together, this dissertation provides the ingredients for the cosmology community to
move closer to an optimal measurement of neutrino mass and other cosmological parameters.
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Chapter 1

Introduction

From Neolithic Europe to Mesopotamia, understanding the mysteries of our Universe has
been an ongoing quest dating back many thousands of years to the dawn of human civiliza-
tion. More recently, over the last few decades, advances in technology have transformed this
pursuit into the scientific field of cosmology. The purpose of this dissertation is to continue
this journey, paving the way for humanity to continue uncovering the secrets of the Cosmos.

Having measured an abundance of cosmological data over the last few decades, a standard
model of cosmology has emerged. This model has successfully explained various observa-
tions, ranging from the existence the cosmic microwave background (CMB), thought to
have emerged shortly after the Big Bang 13.7 billion years ago, to the large-scale structure
(LSS) observed in the distribution of galaxies today. It has also been able to explain the
Universe’s apparent accelerated expansion, and the abundances of light elements via Big
Bang nucleosynthesis. The standard model, often refereed to as the ΛCDM model, shows
exquisite agreement with all of these cosmological observations (and more) by fitting for only
6 physical parameters: the age of the Universe, the cold dark matter density, the baryon
density, the scalar spectral index, the curvature fluctuation amplitude, and the optical depth
of reionization.

According to this model, the Universe began with a Big Bang, in which spacetime ex-
panded exponentially from a singularity for ∼ 10−32 seconds during an epoch known as
inflation. The Universe then consisted of a hot plasma of interacting electrons, photons,
and baryons. It then expanded, in turn cooling until eventually reaching a temperature of
3,000 K about 380,000 years after the Big Bang. At this temperature, photons could no
longer scatter with electrons, allowing neutral atoms to form from the binding of protons
and electrons. At this time, known as recombination, photons decoupled from baryons and
electrons, allowing them to free-stream and in turn create the CMB which we observe today.
Around this time, matter perturbations began to grow under gravity and evolve to give rise
to the large-scale structure of galaxies in the Universe. More recently, around 4 billion years
ago, the Universe entered a phase of accelerated expansion, thought to be driven by dark
energy, as discovered by observations of supernovae. A visualisation of the Universe’s history
is shown in Fig. 1.1.
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Figure 1.1: Cosmic history according to the ΛCDM model. Credit: NAOJ.

Many cosmological surveys measuring the CMB and LSS have come and gone. The most
recent results come from the Stage iii surveys such as Planck [292], SDSS BOSS [72], and
DES [131], all of which have validated the ΛCDM model. However, while the model has
been a great success in fitting the data, a physical understanding of the nature dark energy
and dark matter still alludes us. Moreover, the dark energy density is unnaturally (order
of magnitude 120) small compared to simple predictions from quantum field theory. There
are also some tensions between different measurements of certain parameters. Firstly, the
value of the Hubble parameter measured locally (from supernovae) is over 4 σ different to
the value inferred by CMB (Planck) and LSS (BOSS) [305]. Secondly, there is a tension
in the amplitude of fluctuations inferred from weak lensing compared to CMB experiments.
Addressing these issues might involve various exotic modifications to the ΛCDM model.

To uncover the true cosmological model, Stage iv surveys such as DESI1, PFS2, Rubin
Observatory LSST3, Euclid4, SPHEREx5, SKA6, Roman Space Telescope7, and CMB-S4 [3]
will provide unprecedented amounts of data spanning various cosmological probes. They
will trace the 3d galaxy distribution, weak gravitational lensing, the Lyman-α forest, and
the CMB together with CMB lensing. It is thus an imperative task to build the theory and
analysis tools required to fully realize the potential of these vast datasets. The focus of this
dissertation is to develop some such tools, with a particular interest in extending the ΛCDM
model to include massive neutrinos.

1https://www.desi.lbl.gov
2https://pfs.ipmu.jp/index.html
3https://www.lsst.org
4https://www.euclid-ec.org
5https://www.jpl.nasa.gov/missions/spherex
6https://www.skatelescope.org
7https://wfirst.gsfc.nasa.gov/index.html

https://www.desi.lbl.gov
https://pfs.ipmu.jp/index.html
https://www.lsst.org
https://www.euclid-ec.org
https://www.jpl.nasa.gov/missions/spherex
https://www.skatelescope.org
https://wfirst.gsfc.nasa.gov/index.html
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1.1 Cosmological Dynamics and Evolution

During the period of inflation, quantum fluctuations lead to slight fluctuations in the energy
density of the Universe. These same fluctuations seeded the formation of structures in the
late Universe, such as halos and galaxies. Much of modern cosmology relies on studying
these fluctuations to learn about inflation and the subsequent evolution of the Universe.

The standard model of cosmology assumes that the Universe is homogeneous and
isotropic. Under these assumptions, the the Friedmann equations follow from the General
theory of Relativity, which lay out the relationship between the dynamical evolution of the
Universe and its energy content and curvature as follows,

( ȧ
a

)2
=

8πG

3
ρ− K

a2
(1.1)

ä

a
= −4πG

3
(ρ+ 3p), (1.2)

(1.3)

where a is the scale-factor, G is the gravitational constant, ρ is the energy density, p is the
pressure, K is the curvature, and the dot denotes a derivative with respect to time · ≡ d/dt.
Note we assume units where the speed of light is unity.

Defining the Hubble parameter H(t) = ȧ(t)/a(t), which quantifies the Universe’s ex-
pansion rate, one can define the critical energy density as the energy density at which the
curvature of the Universe vanishes as follows:

ρc(a) =
3H2(a)

8πG
. (1.4)

The cosmological parameters are defined as fractions of the energy relative to the critical
density, Ω(a) ≡ ρ(a)/ρc(a).

Defining the density contrast δ via

ρ(a,x) ≡ ρ̄(a,x)[1 + δ(a,x)], (1.5)

Poisson’s equation describes how density fluctuations are sourced by a peculiar gravitational
potential ϕ as follows,

∇2ϕ(a,x) =
3

2
H2(a)Ωm(a)δm(a,x), (1.6)

where x is the comoving coordinate (related to the physical coordinate r by r = ax), Ωm(a)
denotes the energy associate with matter, and H ≡ aH is the conformal Hubble parameter.

Now let us consider the equation of motion of a particle at physical position r in a
potential Φ. In the Newtonian limit, i.e. small distances (r ≪ H−1) and small velocities
(ṙ ≪ 1), the equation of motion is given by

r̈ = −∇rΦ, (1.7)
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where ∇r denotes the derivative with respect to the physical coordinate (unlike ∇ which
denotes a derivative with respect to the comoving coordinate). It is instructive to work in
comoving coordinates and conformal time, where conformal time τ is related to the cosmic
time t by τ ≡ a(t)t. Given the relation r = ax, taking a derivative with respect to time
yields,

ṙ = Hx+ x′, (1.8)

where ’ denotes a derivative with respect to conformal time. Taking a further derivative
yields,

r̈ =
1

a
(H′x+ Hx′ + x′′) = −1

a
∇Φ. (1.9)

The term proportional to H′x accounts for the expansion of spacetime itself, thus it is
instructive to bring this term to the right hand side by defining the peculiar potential via

ϕ = Φ +
1

2
H′x2. (1.10)

This then yields the equation of motion,

x′′ + Hx′ = −∇ϕ. (1.11)

Thus Poisson’s equation in terms of ϕ gives

−∇2ϕ = ∇ · [x′′ + H(τ)x′] = −3

2
H2(τ)Ωm(τ)δm(τ,x). (1.12)

Solving this differential equation yields the dynamics and evolution of the cosmic matter
fluid.8

1.2 Perturbation Theory

To solve Eqn. 1.12 analytically one can use perturbation theory. There are two main ap-
proaches to perturbation theory: Eulerian and Lagrangian. While the Eulerian approach
considers the density and velocity fields in a fixed coordinate system, the Lagrangian ap-
proach follows the trajectories of individual particles. In this work we will only consider the
Lagrangian prescription.

In the Lagrangian picture, we consider the final position of a particle x as related to its
initial positions q via the mapping Ψ(q) as follows,

x(τ) = q + Ψ(τ, q). (1.13)

The continuity relation gives the density as,

ρ̄m(τ)d3q = ρm(τ,x)d3x = ρ̄m(τ)[1 + δm(τ,x)]d3x, (1.14)

8This derivation was inspired by the lectures of Tobias Baldauf at the University of Cambridge.
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where bars denote spatial averages. This can be related to the Jacobian J via

1 + δm(τ,x) =

∣∣∣∣
d3q

d3x

∣∣∣∣ =
1

J(τ, q)
, (1.15)

thus, using Eqn. 1.13, we have

J(τ, q) = det(δij + Ψi,j(τ, q)), (1.16)

where indices after commas represent derivatives with respect to components of q.
Eliminating δm for J in Eqn. 1.12, and replacing x with q and Ψ, gives

J(τ, q)[δij + Ψi,j(τ, q)]−1
[
Ψ′′

i,j(τ, q) + H(τ)Ψ′
i,j(τ, q)

]
=

3

2
H2(τ)Ωm(τ)[J(τ, q) − 1]. (1.17)

This equation describes the evolution of the displacement of any single matter particle start-
ing at position q. It can be solved perturbatively using

Ψ(τ, q) = Ψ(1)(τ, q) + Ψ(2)(τ, q) + . . . . (1.18)

The first order term Ψ(1) is often referred to as the 1LPT term, and similarly for higher
order terms. Once having solved for Ψ one can go on to solve for the particle positions and
velocities. A popular approximation based on 1LPT is known as the Zel’dovich approxima-
tion (ZA), which extrapolates the linear theory solution into the nonlinear regime [398], but
can lead to unphysical phenomena such as Zel’dovich pancakes.

1.3 N-body Simulations

Perturbation theory enables modeling the evolution analytically, but is only accurate on large
scales, breaking down as evolution becomes nonlinear. To accurately model these nonlinear
scales one must instead employ N -body simulations. In this approach one typically considers
a cubic box, with periodic boundary conditions, filled with matter particles which evolve
under gravity. Considering only the gravitational interactions of cold dark matter particles
significantly outperforms perturbation theory on nonlinear scales, however, to obtain better
accuracy on the smallest scales one must also account for neutrinos, baryons, photons, and
non-Newtonian-gravitational interactions. In Chapter 2 we will discuss how to include the
effects of massive neutrinos.

The calculation performed in an N -body simulation is to solve the Newtonian equations
of motion for a set of N particles with masses mi at positions ri, given by

d2ri
dt2

= −G
N∑

j ̸=i

mj
(ri − rj)
|ri − rj|3

. (1.19)

To evolve the particles forward in time one typically employs leapfrog integration, which
is symplectic and achieves second-order accuracy per evaluation. In terms of evaluating
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the gravitational force term on the right hand side, there are various approaches of varying
complexity. A brute force approach would require evaluating the gravitational force between
all N(N − 1)/2 pairs of particles, but this is prohibitively expensive. Instead, modern
simulations use numerical schemes such as Particle Mesh (PM) [387, 154], and trees methods
[49] to estimate the forces efficiently. The PM approach paints particles on a regular grid
and then solves Poisson’s equation in Fourier space by employing Fast Fourier Transforms
(FFTs). FFTs are typically the bottleneck of a PM simulation. On the other hand, tree
simulations are more computationally expensive, but produce more accurate results on small
scales and late times.

In this work we will employ both PM and PM+Tree approaches. In particular we will
consider FastPM [154], which modifies the classical PM approach by enforcing the Zel’dovich
approximation at each step to converge in fewer time steps. We will also use the Quijote set
of simulations [383] which were run using the PM+Tree code GADGET [346].

In both cases one typically sets the initial conditions of the simulation using LPT to
speed up convergence relative to starting with linear theory. More details about setting
initial conditions will be given in Chapter 2.

To illustrate the different levels of approximations, Fig. 1.2 shows a 2d projection of the
(initial) linear field and the evolved field according to the Zel’dovich approximation, 2LPT,
and 20 steps of FastPM.

Using the tools described above one can model the matter field. However, the large-scale
structure we observe today consists of halos and galaxies arranged into a vast cosmic web of
nodes, filaments, and voids. Modeling the full cosmic web from the initial linear field is one
of the major challenges of modern cosmology. We will consider various methods to make
the connection between dark matter and halos, including the Friends-of-Friends clustering
algorithm, and effective field theory (discussed more in Chapter 5).

1.4 Massive Neutrinos

Of particular interest in this work are constraints on the sum of the neutrino masses Mν ≡∑
ν mν . The first evidence for neutrino mass came from oscillation experiments [166, 9, 25,

10, 22], which measured the difference in the squares of the masses of the three neutrino mass
eigenstates. The best-fit results obtained from a joint analysis of oscillation experiments are
∆m2

21 ≡ m2
2 −m2

1 ≃ 7.55 × 10−5eV2 from solar neutrinos, and |∆m2
31| ≡ |m2

3 −m2
1| ≃ 2.50 ×

10−3eV2 from atmospheric neutrinos [312]. Since atmospheric neutrino experiments only
probe the magnitude of the mass difference, there are two possibilities for the neutrino mass
hierarchy: ∆m2

31 > 0, known as the normal hierarchy, or ∆m2
31 < 0, known as the inverted

hierarchy. This gives a lower bound on the sum of the neutrino masses of Mν ≳ 0.06eV for
the normal hierarchy, or Mν ≳ 0.1eV for the inverted hierarchy. The current tightest upper
bound on the effective electron neutrino mass from particle experiments is obtained by the
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Figure 1.2: Top left: the (initial) linear field at z = 9, top right: Zel’dovich approximation at z = 0,
bottom left: 2LPTat z = 0, and bottom right: 20 steps of FastPM at z = 0. Credit [265].

KATRIN β-decay experiment, meff
νe ≲ 1.1eV [12] 9.

Neutrinos also play an important role in the Universe’s history, as the presence of massive
neutrinos both shifts the time of matter-radiation equality and suppresses the growth of
structure on small scales. Measuring these effects enables determination of neutrino mass
via cosmology, providing a complementary probe to particle physics [145, 199, 148, 237].
While the effects of neutrinos on linear (i.e. relatively large) scales are well understood

9Single β-decay experiments do not directly measure the neutrino mass sum, but rather the effective
mass of electron neutrinos. In the quasi-degenerate regime where the eigenmasses mi > 0.2 eV (i = 1, 2, 3),
the three eigenmasses are the same to better than 3%, and hence meff

νe
≈ 1/3Mν .
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theoretically, understanding the effects on nonlinear (i.e. relatively small) scales is an active
field of research. There are numerous approaches to obtain theoretical predictions of the
nonlinear effects of neutrinos, with varying computational efficiency [see, e.g. 311, 82, 83,
337, 375, 18, 68, 69, 119, 380, 382, 94, 95, 47, 26, 89, 368, 6, 150, 203, 330, 396, 48, 247,
130, 103, 104, 57]. One of the key challenges in simulating massive neutrinos is dealing with
the shot noise they produce due to their high thermal velocities; we will present a method
to quell this effect in Chapter 2.

For illustration, Fig. 1.3 shows the small-scale suppression in the matter power spectrum
due to massive neutrinos according to linear theory (dotted) and a nonlinear approximation
known as the halo model (solid). It can be seen that a larger neutrino mass leads to a larger
suppression. Also, there is a noticeable difference between linear and nonlinear theory; this
motivates the importance of modeling the nonlinear effects of massive neutrinos. Crucially,
an N -body simulation will produce a more accurate result of nonlinear theory compared to
the halo-model approximation, as will be shown in Chapter 2.

The current best constraints on Mν arise by considering the CMB and combining it with
other cosmological probes. Assuming a Λ cold dark matter (ΛCDM) cosmological model, the
upper bound on the neutrino mass from the Planck 2018 CMB temperature and polarization
data is Mν < 0.26eV (95% CL) [292]. When combined with baryonic acoustic oscillations
(BAOs) a more stringent bound of Mν < 0.13eV (95% CL) is obtained. Further combining
with CMB lensing gives Mν < 0.12eV (95% CL).

A major limiting factor of current cosmological constraints is that CMB experiments
measure the combined quantity Ase

−2τ , where As is the amplitude of scalar perturbations
and τ is the optical depth of reionization. Hence, accurate determination of τ is imperative
to obtaining tight constraints when combining CMB with clustering/lensing [19, 244, 28,
395, 85]. Most upcoming ground-based CMB experiments, such as Simons Observatory and
CMB-S4, will not observe scales larger than ℓ ∼ 30, and will therefore be unable to directly
constrain τ [3]. Planck currently provides the best constraint of τ = 0.054±0.007, with large
improvements expected from the ongoing CLASS experiment [385] and the upcoming Lite-
BIRD [189] space mission. Furthermore, future radio 21cm and, e.g., near-infrared/optical
galaxy observations will provide new information on the optical depth which would also help
improve the constraints form the CMB [244, 85].

Before significant progress will be made in measuring τ , improved measurements ofMν are
expected from galaxy surveys such as DESI, LSST, and Euclid. These surveys will measure
fluctuations on nonlinear scales with unprecedented precision. There is thus much motivation
to explore other probes of neutrino mass, beyond the traditional 2-point clustering.10

10Much of the content of this subsection was taken verbatim from Bayer A.E., et al. (arXiv:2102.05049)
ApJ 919 1 24 (2021) [62].
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Figure 1.3: Suppression in the matter power spectrum due to massive neutrinos according to linear
theory (dotted) and the halo-model approximation to nonlinear theory (solid). Credit [187].

1.5 Dissertation Outline

Having introduced the concepts of N -body simulations and the effects of neutrino mass on
cosmology, we begin the dissertation by modeling massive neutrinos by incorporating them
into a particle-mesh simulation, FastPM, in Chapter 2. By applying an innovative method
we are able to bypass the problem of shot noise that typically plagues neutrino simulations,
enabling modeling the effects of massive neutrinos at a more reasonable computational cost
than traditional methods.

To fully realize the potential of measurements of LSS, we then use simulations to in-
vestigate the amount of information regarding neutrino mass in the 3d matter field, δm,
in Chapter 3. We motivate how analysing statistics beyond the power spectrum contain
a wealth of complementary information on nonlinear scales. In particular we consider the
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power spectrum, halo mass function, and void size function. We find that these three statis-
tics show very different degeneracies in the Mν–σ8 plane, meaning that tight constraints are
achieved when combining all three. For the particular setup considered, we find that one
can get constraints of 0.018eV using scales up to kmax = 0.5h/Mpc.

However, the 3d matter field is not observable in modern cosmological surveys. In Chap-
ter 4 we then explore how much information regarding neutrino mass there will be in the
observable galaxy and weak lensing fields. Additionally, instead of looking at specific types
of higher-order statistics, we consider the total information in the field by looking at the
complex phases. By fixing the linear physics between two N -body simulations, we find that
there is actually very little information regarding neutrino mass in the galaxy and weak
lensing fields up to scales of k = 1h/Mpc. We do however find that there is some signal
from velocities, which trace the matter field via δv ∼ fδm, where f is the growth rate. This
motivates using peculiar velocity information, together with accurate modeling of redshift-
space distortions, to optimize constraints on neutrino mass. Moreover, combining large-scale
structure with cosmic microwave background measurements can help break degeneracies, in
turn unlocking further information.

To move towards obtaining optimal constraints, in Chapter 5 we then employ Bayesian
forward modeling with field-level inference to extract all the information in cosmic fields. We
develop a framework to perform a combined analysis of galaxy clustering information with
galaxy peculiar velocity information to reconstruct the initial conditions of the Universe. We
achieve this using differentiable forward modeling.

In Chapter 6 we then focus in on a particular challenge in doing inference for cosmological
analyses, the super-sample covariance effect. The is a nonlinear effect on the covariance
matrix which arises due to neglect of modes that are larger than the size of the simulation.
The effect of these missing large modes can cause a significant difference in the covariance
matrix on small, nonlinear, scales. We create a set of FastPM simulations to quantify this
effect for the power spectrum, bispectrum, halo mass function, and void size function. These
simulations can also be used to quantify the effect for other statistics in the future.

Finally, performing Bayesian inference in high dimensions, or for nonlinear models, can
result in non-trivial volume effects which make it difficult to reliably perform inference.
One such problem is known as the Look-Elsewhere Effect which occurs when scanning a
large parameter space for evidence of a new model or a signal. In such cases it becomes
difficult to quantify the statistical significance of a discovery, moreover, the posterior might be
multimodal making it difficult to determine which peak is the most significant. In Chapter 7
we analyse the Look-Elsewhere Effect from a frequentist and Bayesian perspective, ultimately
marrying the two to produce a unified method that quantifies the effect orders of magnitude
faster than traditional methods. Then in Chapter 8 we present an even faster method to
self-calibrate the effect by simply computing the significance from the heights and ranks of
peaks in the likelihood. This approach has negligible computational cost as peaks in the
likelihood are a byproduct of every peak-search analysis.

We then summarize and conclude in Chapter 9.



11

Chapter 2

A fast particle-mesh simulation of
nonlinear cosmological structure
formation with massive neutrinos

The contents of this chapter was originally published in [57],

A fast particle-mesh simulation of non-linear cosmological structure formation with
massive neutrinos
Bayer A.E., Banerjee A., Feng Y. (arXiv:2007.13394) JCAP 01 (2021) 016

Quasi-N-body simulations, such as FastPM, provide a fast way to simulate cosmological
structure formation, but have yet to adequately include the effects of massive neutrinos.
In this chapter, we present a method to include neutrino particles in FastPM, enabling
computation of the CDM and total matter power spectra to percent-level accuracy in the
non-linear regime. The CDM-neutrino cross-power can also be computed at a sufficient
accuracy to constrain cosmological observables. To avoid the shot noise that typically plagues
neutrino particle simulations, we employ a quasi-random algorithm to sample the relevant
Fermi-Dirac distribution when setting the initial neutrino thermal velocities. We additionally
develop an effective distribution function to describe a set of non-degenerate neutrinos as a
single particle to speed up non-degenerate simulations. The simulation is accurate for the
full range of physical interest, Mν ≲ 0.6eV, and applicable to redshifts z ≲ 2. Such accuracy
can be achieved by initializing particles with the two-fluid approximation transfer functions
(using the reps package). Convergence can be reached in ∼ 25 steps, with a starting redshift
of z = 99. Probing progressively smaller scales only requires an increase in the number of
CDM particles being simulated, while the number of neutrino particles can remain fixed at a
value less than or similar to the number of CDM particles. In turn, the percentage increase
in runtime-per-step due to neutrino particles is between ∼ 5 − 20% for runs with 10243

CDM particles, and decreases as the number of CDM particles is increased. The code has
been made publicly available, providing an invaluable resource to produce fast predictions
for cosmological surveys and studying reconstruction.
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2.1 Introduction

Understanding the nature and generation mechanism of neutrino mass is a challenge that
unites particle physics with cosmology. Neutrino oscillation experiments were the first to
provide evidence for neutrino mass [166, 9, 25, 10, 22] by measuring the difference in the
squares of the masses of the three neutrino mass eigenstates. The best fit results obtained
from a joint analysis of oscillation experiments are ∆m2

21 ≡ m2
2 −m2

1 ≃ 7.55× 10−5eV2 from
solar neutrinos, and |∆m2

31| ≡ |m2
3−m2

1| ≃ 2.50×10−3eV2 from atmospheric neutrinos [312].
Because atmospheric neutrino experiments are only sensitive to the magnitude of the mass
difference, there are two possibilities for the neutrino mass hierarchy: ∆m2

31 > 0, known
as the normal hierarchy, or ∆m2

31 < 0, known as the inverted hierarchy. This leads to a
lower bound on the sum of the neutrino masses, Mν ≡ ∑

ν mν , of Mν ≳ 57meV for the
normal hierarchy, or Mν ≳ 96meV for the inverted hierarchy. An upper bound on neutrino
mass, given by β-decay experiments, is Mν ≲ 1.1eV [12]. While current particle physics
experiments provide bounds, they are unable to determine either Mν , or the absolute mass
scale of each eigenstate.

By virtue of the high number density of neutrinos in the universe, cosmology provides
a complementary probe to particle physics when studying various properties of neutrinos.
Numerous cosmological observables can be used to study neutrino mass, with one example
being the cosmic microwave background (CMB) [292, 111, 176, 212, 299, 333], including
secondary effects such as the thermal Sunyaev-Zeldovich (tSZ) effect [193, 252] and kinetic
Sunyaev-Zeldovich (kSZ) effect [269, 309]. Another example is large-scale structure, which
includes galaxy lensing, cosmic shear, and baryon acoustic oscillations (BAO) [5, 363, 66].
A further example is the Lyman-alpha forest [328, 279, 278, 394]. Assuming a ΛCDM
cosmological model, the upper bound on the neutrino mass from the Planck 2018 CMB
temperature and polarization data is Mν < 0.26eV (95% CL) [292]. Combining with BAO
gives a more stringent bound of Mν < 0.13eV (95% CL), and further adding lensing gives
Mν < 0.12eV (95% CL). Allowing more flexibility in the cosmological model, such as letting
the spectral index run and considering a varying dark energy equation of state, can increase
this upper bound to Mν < 0.52eV (95% CL) [369]. In all cases, the current upper bound
on neutrino mass from cosmology is stronger than the bound from particle physics, and the
cosmological bound is expected to improve with upcoming surveys.

This work focuses on the effects of neutrinos on cosmological structure formation [145,
199, 148, 237]. Upcoming galaxy surveys, such as DESI [113, 161], LSST [114], Euclid
[231, 21], eBOSS [136], WFIRST [345], and SKA [170, 379, 402], are predicted to give
precise measurements of neutrino mass. For example, DESI and LSST forecast constraints
of order ∼ 0.02eV, thus the minimal neutrino mass should be detectable at the ∼ 3σ level.
Similar levels of accuracy are expected from CMB experiments when combined with BAO
measurements from DESI.

Neutrinos affect structure formation because their low masses cause them to behave as
relativistic particles in the early universe, gradually becoming non-relativistic as the universe
expands. This means that neutrinos possess high thermal velocities during the epoch of
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structure formation in the late universe, distinguishing them from the relatively slow cold
dark matter (CDM). As a result, massive neutrinos do not cluster on small scales, leading
to a relative suppression in the growth of matter perturbations compared to cosmologies
with massless neutrinos. A useful way of quantifying the extent of small-scale suppression
is to consider the ratio of the matter power spectrum between a cosmology with massive
neutrinos, Pm, and a cosmology with massless neutrinos, PMν=0

m . To linear order, this is
given by

Pm

PMν=0
m

≈ 1 − 8fν , (2.1)

where fν ≡ Ων,0/Ωm,0 ≲ 0.05 is the ratio of neutrino to total matter density at z = 0 [199].
Hence, the relative suppression is proportional to the total neutrino energy density, which
itself depends on Mν as follows

Ων,0 =
Mν

93.14h2eV
. (2.2)

Thus the matter power spectrum is sensitive to the sum of the neutrino masses. Additionally,
the profile of the matter power spectrum is, in principle, sensitive to the individual mass of
each eigenstate [236]; however, measuring the individual masses may not be achievable in
the foreseeable future [27].

While the effects of neutrinos on linear (i.e. relatively large) scales are well understood
theoretically, understanding the effects on non-linear (i.e. relatively small) scales is an active
field of research. For a fixed volume, there are many more independent modes on small scales
than on large scales. Consequently, theoretical understanding of small scales would greatly
increase the information that can be extracted from experimental surveys, in turn increasing
the precision of their results. There is thus much motivation for simulations capable of
modeling the effects of massive neutrinos on small scales.

In recent years, many techniques have been developed to model structure formation with
massive neutrinos, and they can mostly be separated into two methodologies. The first is
to use a fluid description for the neutrinos, and coupling this to the non-linear CDM grav-
itational potential [82, 26, 368, 18, 337, 203, 330, 311, 130]. Most of these approaches use
linear theory, or perturbative approaches, to close the Boltzmann hierarchy in the absence of
a known equation of state. These methods do not capture the full non-linear evolution of the
neutrino field, leading to a reduction in accuracy at late times and on small scales, especially
when the neutrino masses are much larger than the minimum total mass (Mν ∼ 57meV).
The second methodology is to include neutrinos as an extra set of particles in the simulation
[375, 68, 83, 380, 119, 94, 95, 89, 396, 150, 382, 6, 383]. This approach is fully non-linear,
unlike the fluid approximation above. Here the neutrino velocities are typically assigned by
randomly sampling from the Fermi-Dirac distribution. This, however, can be problematic
because the large neutrino thermal velocities cause a significant proportion of neutrino par-
ticles to traverse the simulation box multiple times, in turn erasing clustering on small scales
and leading to shot noise. The amount of shot noise in the neutrino power spectrum is in-
versely proportional to the number of neutrino particles, thus a simple approach to avoid this
problem is by using a large number of particles. This is the approach taken in [150], but is
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extremely computationally expensive. A substantially faster approach is to use fluid-particle
hybrid methods. One example of a hybrid method is to use tracer particles to estimate the
higher order moments of the Boltzmann hierarchy, requiring fewer particles [47]. However,
this method is still relatively expensive because it requires both neutrino particles and a
non-linear neutrino fluid on a grid, which itself requires hydrodynamic techniques. A more
efficient hybrid method [69] treats fast neutrinos using a linear fluid approximation, while
slow neutrinos are treated as particles after some user-defined redshift threshold. This min-
imizes computational cost, while still ensuring that the power induced by neutrino particle
clustering is larger than the shot noise.

Recent work [48] provides a superior means to evade shot noise at all redshifts, by sam-
pling the Fermi-Dirac distribution in a low entropy, quasi-random manner1. This has been
shown to reduce the shot noise by a factor of > 107, enabling more accurate study of all
scales. It is this method that we will focus on in this work. A follow up study [84], in the
context of hybrid simulations, showed that this method can induce spurious correlations be-
tween neutrinos and CDM on small scales. However, we note that this study did modify the
methodology of [48] in a manner that could have exaggerated their results, by using a differ-
ent sampling scheme for the Fermi-Dirac distribution and by initializing neutrino particles
at a late redshift of z = 4 (as typical for hybrid methods). We will show that such spurious
effects can be avoided with simple considerations in our particle-only implementation.

While one could study neutrinos using a full N-body or hydrodynamic simulation, there
is increased interest in quasi-N-body methods, such as FastPM [154] and COLA [356], as
they produce significantly faster simulations of structure formation. Some attempts have
been made to include neutrinos in COLA by using fitting formulae for the growth factors
[392], but this approach does not provide the required accuracy in the non-linear regime for
upcoming surveys. We focus on FastPM, which implements a particle-mesh (PM) approach
and enforces the correct linear evolution by using modified kick and drift factors. Moreover,
while quasi-N-body methods often fail at very small scales, typically ≲ 1Mpc/h, this has
recently been addressed within FastPM by traversing the gravitational potential using gra-
dient descent techniques to increase the small scale force resolution [128]. The purpose of
this work is to add neutrino particles to FastPM by employing the methods of [48] to enable
study of the non-linear regime. This will allow the inclusion of neutrino mass as one of the
cosmological parameters in forward models, providing a fast way to interpret galaxy survey
data. Furthermore, after applying FastPM’s inbuilt halo-finder, one can reconstruct the ini-
tial conditions of the universe2 from galaxy positions and luminosities using the methods of
[329, 153, 266, 196]. Because massive neutrinos modify the information content of the CDM
and total matter fields, this work will enable the study of massive neutrinos in the context
of reconstruction.

1We use the term quasi-random to distinguish from pseudo-random, see e.g. [343] for definitions of the
two. Using a quasi-random sampling scheme ensures that the entropy of the underlying physical system is
not increased by sampling.

2One example is BAO reconstruction, which was first considered in [149] and applied in [276].
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It is worth mentioning another recently explored method to study massive neutrinos that
uses neither the fluid approximation nor neutrino particles. This approach seeks to add the
effects of massive neutrinos to the results of simulations without massive neutrinos, either by
employing cosmological-rescaling algorithms [400], convolutional neural networks [168], or by
perturbing the particles’ final positions using a carefully designed gauge transformation [283].
We note that these methods ultimately rely on having full neutrino simulations available to
compare against and tweak their input parameters, whereas our approach explicitly includes
neutrinos using physical parameters as input.

The organization of this paper is as follows. In §2.2 we outline the methodology employed
to simulate massive neutrinos. We discuss the Fermi-Dirac sampling scheme, the setting of
initial perturbations, and comment on changes made to FastPM’s evolution algorithm. We
then present the results of our simulation in §2.3, comparing with full N-body simulations
such as Quijote [383]. Comments on the runtime are given in §2.4. Finally, we conclude in
§2.5, outlining ideas for future work and applications to surveys.

2.2 Methodology

This section outlines the approach used to include massive neutrinos within FastPM3. We
refer the reader to [154] for a comprehensive review of FastPM.

Initializing massive neutrino particles

To model the effects of massive neutrinos we include an additional species of particle in
the simulation. To set the initial thermal velocities of the neutrinos one must sample the
Fermi-Dirac distribution. The sampling is usually performed randomly, leading to shot
noise dominating small scales. In this work we develop the methods of [48], which have been
shown to reduce this shot noise by a factor of more than 107 by sampling the Fermi-Dirac
distribution in a quasi-random manner. This enables accurate study of small scales and late
times. We illustrate the initial configuration of particles in Figure 2.1, and will describe the
features of this setup throughout the remainder of this subsection.

A total of Nn neutrino particles are initialized on a grid containing Nsites uniformly spaced
sites. Each site comprises of Nn/Nsites particles, with each particle having a different initial
thermal velocity. Note this is different to CDM, which has Nc grid sites and a single particle
at each site. The neutrino grid used in our applications is coarser than the CDM grid, and
we will show later that one can achieve accurate results using far fewer neutrino particles
than CDM particles.

In dimensionless units, the Fermi-Dirac distribution function is given by

f(q) =
1

eq + 1
, (2.3)

3The code can be found at https://github.com/fastpm/fastpm. In the code, massive neutrinos are
labelled as NCDM (not-cold dark matter), following the CLASS [73] convention.

https://github.com/fastpm/fastpm
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CDM Neutrinos

Figure 2.1: 2D illustration of the initial configuration for a neutrino grid 4 times coarser than
the CDM grid. Each CDM particle is represented by a blue dot, and each neutrino particle is
represented by a red triangle, with velocity in the direction of the triangle. Neutrino particles are
initialized on spherical shells of radius proportional to the particle’s speed. Each spherical shell is
discretized according to a Fibonacci grid (not to scale).

such that the number density of particles in an infinitesimal volume d3q centered at q is
given by

dn = f(q)d3q = q2f(q)dqdΩ. (2.4)

In the final step we split the expression into the terms relevant for the velocity magnitude,
q2f(q)dq, and direction (or solid angle), dΩ. To assign the velocity of each particle at a
particular site, the magnitude and direction are assigned separately. To assign the magni-
tude, the magnitude distribution q2f(q) is discretely sampled at Nshell shells, such that the

boundaries of the ith shell are (q
(i)
min, q

(i)
max), where 1 ≤ i ≤ Nshell . The left-most boundary is

q
(1)
min = 0, i.e. zero velocity, and the right-most boundary q

(Nshell)
max ≡ qmax is a numerical cutoff

such that q2maxf(qmax) is negligible. The velocity magnitude of particles in the ith shell is
given by

q
(i)
shell =

√√√√√√

∫ q
(i)
max

q
(i)
min

q4f(q)dq

∫ q
(i)
max

q
(i)
min

q2f(q)dq
, (2.5)
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and the mass of particles in the ith shell is given by

m
(i)
shell =

∫ q
(i)
max

q
(i)
min

q2f(q)dq
∫ qmax

0
q2f(q)dq

. (2.6)

The shell boundaries are chosen according to

1

Nshell

=

∫ q
(i)
max

q
(i)
min

g(q)dq
∫ qmax

0
g(q)dq

, (2.7)

for some arbitrary kernel g(q). This is designed so that each shell has an equal area under
g(q), with the choice of g(q) depending on the application. A natural choice would be to use
the velocity magnitude distribution g(q) = q2f(q), which splits the distribution into shells
of equal phase-space volume. However, it was shown in [48] that better results are achieved
by using g(q) = qf(q), as this more finely samples the low-velocity tail of the distribution.
This better resolves slow neutrino particles, which are most relevant for clustering. We thus
employ this choice of kernel.

To study non-degenerate neutrinos one would have to separately sample the Fermi-Dirac
distribution for each mass eigenstate and apply the above method multiple times. This
would require more neutrino particles in the simulation and thus longer runtimes. To avoid
this we use a single effective distribution to approximately describe all eigenstates. Imposing
mass conservation, the appropriate distribution is given by

f̃(q) =
Nν∑

j=1

α4
jf(αjq), (2.8)

where αj ≡ mj/m1 is the mass of eigenstate j divided by the mass of eigenstate 1 (chosen
to be the heaviest eigenstate), and Nν is the number of eigenstates. This expression is exact
when there are no cosmological perturbations. The derivation is included in the appendix
for this chapter (Section 2.6).

The velocity directions are chosen according to a Fibonacci grid [186, 351, 171] in which
each shell isotropically emits particles in 2Nfib + 1 directions, for integer Nfib. We choose a
Fibonacci prescription instead of the HEALPix [172] implementation used in [48] as it gives
more freedom when selecting the number of directions, and thus the number of neutrino
particles. Hence, accounting for the discretization of the magnitude and direction, each
neutrino site consists of Nshell×(2Nfib+1) particles. This gives the total number of neutrinos
in the simulation,

Nn = Nsites ×Nshell × (2Nfib + 1). (2.9)

Because FastPM employs a Kick-Drift-Kick (KDK) algorithm [300], as opposed to Drift-
Kick-Drift, CDM particles initialized close to the neutrino sites will feel a gravitational
attraction from the neutrinos and move towards the neutrino sites during the first kick of
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the simulation. The same is true for neutrino particles. This will produce spikes in the
simulated power spectra at scales corresponding to the neutrino grid spacing, in a similar
manner to the findings of [84]. To prevent such numerical artifacts, while keeping the more
numerically stable KDK scheme, we take two precautions. Firstly, the neutrino grid is
staggered with respect to the CDM grid to separate the two species. Secondly, the neutrino
particles are initialized on spherical shells of radius proportional to their thermal velocity
magnitude. The radii are chosen such that shells from different sites do not overlap. Because
neutrinos are orders of magnitude faster than CDM, this amounts to adding an infinitesimal
drift step before the start of the KDK evolution. This drift prevents large overdensities at the
neutrino grid sites at the start of the simulation, in turn suppressing the spurious coupling
caused by particles getting drawn into neutrino grid sites. We note that the effectiveness of
these precautions is sensitive to the mass per neutrino particle. The more massive a neutrino
particle, the stronger its gravitational pull on nearby particles. Thus for cosmologies with
larger Mν , a larger value of Nn is required to quell this effect. We will discuss the appropriate
choice of Nn in §2.3.

Perturbations

Having initialized the thermal velocities of the neutrino particles in the previous section,
we must next include the effects of gravitational perturbations on the initial positions and
velocities of all particles in the simulation. To do this, one would typically input the true z =
0 linear power spectrum from a Boltzmann solver such as CLASS [73] or CAMB [239]. The
simulation would then use a modified linear growth factor to backscale the power spectrum to
the starting redshift of the simulation, and in turn set up the initial perturbations. Because
N-body simulations make various approximations, such as Newtonian dynamics, the growth
factor used for backscaling is modified to contain the same physics as the simulation’s forward
model. This is done to ensure that the results of the simulation on linear scales matches the
true linear physics at z = 0 [158]. In the case of massive neutrino simulations, the forward
model additionally includes both radiation and neutrinos, which must thus be accounted
for when backscaling. This is a non-trivial procedure due to the scale-dependent growth
introduced by massive neutrinos. We therefore perform backscaling using reps [399], which
applies the two-fluid approximation to compute the transfer functions of CDM and neutrinos.
This is then used to obtain the power spectra and growth rates at the starting redshift of
the simulation, and in turn compute the initial perturbations. Moreover, while analytical
forms for the 2LPT CDM and neutrino growth factors for massive-neutrino cosmologies have
recently been presented in [30], there is currently no framework to apply this to generate
non-linear initial conditions for simulations. We thus use the Zel’dovich approximation when
setting the initial perturbations, which requires starting the simulation at early times when
non-linear effects are small (z ≳ 99).

In accordance with ‘scenario 4’ of the reps paper [399], we treat neutrino particles as
non-relativistic in the forward model. Their mass is thus fixed throughout the evolution,
and the total matter cosmological parameter used to source the gravitational potential (for
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example in Poisson’s equation and the growth ODE of §2.2) is computed as

Ωm(a) = (Ωc,0 + Ων,0)a
−3, (2.10)

where Ωc,0 and Ων,0 are respectively the CDM and neutrino cosmological parameters at
z = 0. The initial perturbations computed using reps are designed to account for this
non-relativistic approximation and produce percent-level accuracy in the simulated power
spectra at late times. An advantage of reps over traditional backscaling is that reps is
optimized to give agreement over a range of late redshifts, whereas traditional backscaling
optimizes for a single redshift. For consistency in this work, we will also use reps when
initializing runs without massive neutrinos to enable comparison.

To compute the transfer functions, reps uses a Boltzmann solver, thus its output depends
on the parameters used for the Boltzmann solver. In this work we modified the neutrino
precision parameters in accordance with appendix B of [130] to improve the accuracy of
the transfer functions at small scales. In hindsight this was unnecessary as it causes little
difference in the output of FastPM, so we plan to use the default neutrino precision settings
in future work.

An alternative approach to backscaling would be to directly input the true linear power
spectrum at the starting redshift together with the velocity transfer function. This method
has been applied to small volume simulations [69], but would require a more realistic forward
model for accurate general implementation.

Evolution

As outlined in section 2.4 of [154], FastPM employs modified kick and drift factors to speed
up convergence. This ensures the Zeldovich approximation is accurately followed at each
timestep, using the Zeldovich equation of motion x(a) = q + D(a)s. We solve for the first
order growth factor D(a) using the following ODE [285],

D′′(a) +

(
2 +

E ′(a)

E(a)

)
D′(a) =

3

2
Ωm(a)D(a), (2.11)

where D′ ≡ dD/d ln a, E(a) ≡ H(a)/H0 is the normalized Hubble parameter, and Ωm(a) is
given in equation 2.10. In this work, the background comprises of radiation (γ), CDM (c),
neutrinos (ν), and a cosmological constant (Λ), giving the appropriate Hubble parameter,

E(a) =
[
Ωγ,0a

−4 + Ωc,0a
−3 + Ων(a)E2(a) + ΩΛ

]1/2
. (2.12)

The neutrino component is given by

Ων(a)E2(a) =
15

π4
Γ4
ν

Ωγ,0

a4

Nν∑

j=1

F
(

mja

kBTν,0

)
, (2.13)
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where Γν ≡ Tν,0/Tγ,0 is the neutrino-to-photon temperature ratio today, mj is the mass of
neutrino species j, and

F(y) ≡
∫ ∞

0

dx
x2
√
x2 + y2

1 + ex
(2.14)

is an integral arising from the Fermi-Dirac distribution while noting that neutrinos freeze
out while relativistic [399]. Note that the neutrino component of the background is treated
exactly, with relativistic effects being accounted for. On the other hand, neutrinos are treated
as matter-like in the source term of equation 2.11, as motivated in §2.2.

A further point of note is that equation 2.11 assumes the large-scale limit, i.e. scales larger
than the neutrino free-streaming scale. This neglects scale-dependent effects by treating
neutrinos as non-relativistic particles, analogously to CDM. Because the growth factor is just
used by FastPM to speed up convergence, this limit is appropriate as it ensures accelerated
convergence on large scales, while letting small scales converge naturally. We set the initial
conditions to solve the ODE by assuming matter domination, giving

D(aini) = aini, (2.15)

D′(aini) = aini. (2.16)

We use zini = 159 to enable the simulation to begin at any time after this.
For users of FastPM, we note that FastPM previously assumed a ΛCDM background and

thus employed the results of [190, 286] to compute the growth factor, and [81] to approximate
the growth rate. This is unsuitable for neutrino simulations and has thus been replaced with
the above.

2.3 Results

We consider a 1Gpc/h box with CDM and neutrino grid-numbers given by N
1/3
c = 512 and

N
1/3
sites = 128 respectively. The resolution of the force mesh is always chosen as N

1/3
mesh = 2N

1/3
c .

The cosmological parameters are set as follows: h = 0.6711, Ωm = 0.3175, Tγ = 2.7255K,
Neff = 3.046, Ωk = 0, As = 2.4 × 10−9, and ns = 0.9624. We begin by considering 3
neutrinos of total mass Mν = 0.2eV. Simulations are started at z = 99, at which time
non-linear effects are small, as required for an accurate Zeldovich approximation. In order
to achieve accurate results with a small number of timesteps, we first take 5 steps in log a
until z = 19, which is a sufficiently early time before non-linear neutrino effects come into
play. We then take a further N lin

steps steps, spaced linearly in a, until z = 0. Throughout this
section we consider a single run of FastPM; averaging over many realizations would reduce
variance, but is unnecessary for the purposes of this work.

We first study the case of 3 degenerate neutrinos. Figure 2.2 shows the ratio of the total
matter (CDM+neutrinos) power spectrum between a cosmology with and without massive
neutrinos. Different combinations of N lin

steps and Nfib are considered. For comparison, we
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Figure 2.2: Ratio of massive to massless power spectrum at z = 2, 1, 0 (left to right) for 3 degenerate
Mν = 0.2eV neutrinos. The top row shows the variation with N lin

steps for fixed Nfib = 3. The bottom

row shows the variation with Nfib for fixed N lin
steps = 20. Theoretical predictions based on HALOFIT

(solid black) and C15 [95] (dotted black) are also shown.

also plot the theoretical predictions obtained from HALOFIT [342, 354, 68], as well as the
modification of [95] which will henceforth be referred to as C15. While these are not exact
theoretical predictions they provide a useful diagnostic. Each column of Figure 2.2 represent
a different redshift, z = 2, 1, 0 from left to right. The top row considers the variation of N lin

steps

while holding Nfib = 3 fixed. It can be seen that all choices of steps produce accurate results
on large scales, and that the result is suitably converged on small scales by N lin

steps = 20. One
important point to note is the occurrence of a spike at z = 2, 1 at k ∼ 0.8h/Mpc. This spike
corresponds to the spacing of the neutrino grid, and arises due particles being gravitationally
attracted to the neutrino grid sites at the start of the simulation, as discussed in §2.2. This
numerical artifact can be removed by distributing the neutrino mass over a larger number
of particles, for example by increasing Nfib. To show this, the bottom row of Figure 2.2
considers the variation of Nfib while holding N lin

steps = 20 fixed. It can be seen that Nfib = 5
and Nfib = 20 lead to accurate results at z = 1 and z = 2 respectively. Thus if one wishes to
study these earlier redshifts, one must use the appropriate Nfib. Table 2.1 summarizes some
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Name N
1/3
c N

1/3
mesh N

1/3
sites Nshell Nfib N log

steps N lin
steps Runtime Increase

NC512 NF3 512 1024 128 10 3 5 20 25%
NC512 NF20 512 1024 128 10 20 5 20 115%
NC1024 NF3 1024 2048 128 10 3 5 20 6%
NC1024 NF20 1024 2048 128 10 20 5 20 20%

Table 2.1: A summary of parameters used for some of the runs considered in this paper. Also
included is the percentage increase in runtime due to massive neutrinos (discussed in §2.4). In all
cases the force mesh is two times finer than the CDM grid. The two differences between the runs
are the values of Nc and Nfib. Increasing Nc enables studying smaller scales, while increasing Nfib

enables studying higher redshift. As discussed in the text, Nfib = 3 is suitable to study only z = 0,
but Nfib = 20 is required for z = 2.
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Figure 2.3: Comparison of the FastPM and Quijote power spectra at z = 2, 1, 0 (left to right) for
a cosmology with degenerate massive neutrinos with Mν = 0.2eV. Specifically, we consider the
NC512 NF20 FastPM run and the “M++

ν ” Quijote run. The solid red line compares the total matter
power spectrum (m), while the dashed red line compares the CDM power spectrum (c) – note it is
difficult to distinguish the two by eye. Also included is a massless neutrino cosmology with matched
σ8 (blue).

typical choices of parameters for runs with massive neutrinos. So far we have illustrated
that NC512 NF3 is suitable for z = 0 simulations, while NC512 NF20 should be used when one
is interested in redshifts up to z = 2. In the remainder of this section we will consider the
NC512 NF20 run in order to study z ≤ 2, unless stated otherwise.

For a more careful analysis, Figure 2.3 compares the matter and CDM power spectra from
FastPM with Quijote [383], a full N-body simulation. We consider the NC512 NF20 FastPM
run and the “M++

ν ” Quijote run. For reference we also plot the matter power spectrum for
a massless neutrino cosmology with matched σ8. Firstly, it can be seen that both Pc and
Pm show equally good agreement in the massive neutrino case – the dashed red line overlaps
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Figure 2.4: Ratio of massive to massless power spectrum at z = 2, 1, 0 (left to right) for 3
non-degenerate (solid red) and degenerate (dashed blue) neutrinos with Mν = 0.2eV. The non-
degenerate masses are 0.12, 0.06, 0.02 eV. Theoretical predictions based on HALOFIT are shown
for both the non-degenerate (solid black) and degenerate (dashed black) cases.

the solid red line – hence FastPM computes both power spectra with equivalent accuracy.
Secondly, the difference between FastPM and Quijote is comparable in both the massive
(red) and massless (blue) neutrino case, suggesting that any discrepancy with Quijote is not
due to the inclusion of massive neutrino particles. There is generally good agreement on large
scales and an apparent under-prediction of the power on small scales. The reason for this
is that while FastPM uses a particle-mesh approach to compute the forces throughout the
simulation, Quijote employs tree methods at low redshift. This leads to Quijote producing
more power on small scales, explaining the rapid drop in PFastPM/PQuijote at large k — we
note that this is not due to the shot noise present in Quijote. It can also be seen that there
is a slight bump on intermediate scales at z = 2, which is less prominent at lower redshift.
We found that the bump grows when using a finer force mesh or initial-condition mesh in
FastPM. We thus believe the bump is due to our use of a finer force mesh than that used
by Quijote. This has the effect of increasing the power on small scales, but is eventually
dominated by Quijote’s tree force calculation on small scales and late times, therefore it is
only significant at z = 2. The exact nature of the bump is also dependent on the parameters
used in Quijote that define the redshift and scale at which the particle-mesh to tree transition
occurs.

Next, we investigate the performance of our approximation for non-degenerate neutrinos
given in equation 2.8. Figure 2.4 compares the massive to massless power spectrum ratio
for the case of 3 neutrinos of masses 0.12, 0.06, 0.02eV. The degenerate case is also included
for reference. The agreement of the non-degenerate simulation with the theoretical lines is
good on large scales and worsens on intermediate scales. This is likely because reps assumes
degeneracy when computing the initial conditions, causing a relative gain in power. Even
so, the non-degenerate results are of suitable accuracy for studying such mass schemes in
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Figure 2.5: Ratio of massive to massless power spectrum at z = 2, 1, 0 (left to right) for a variety
of Mν , using N lin

steps = 20 and Nfib = 20. Note that 10 additional steps were taken at early z for
Mν = 0.6eV, as discussed in the text. The theoretical predictions of HALOFIT (solid black) and
C15 [95] (dotted black) are also shown.

the context of future surveys.
To investigate the accuracy of FastPM for different choices of neutrino mass, Figure 2.5

shows the ratio of the matter power spectrum between a massive and massless neutrino
cosmology for a variety of choices of Mν . It can be seen that there is good agreement for the
full range of physical interest (Mν ≲ 0.6eV). Increasing Mν beyond 0.2eV leads to a small
spike at z = 2 caused by the neutrino grid, as discussed in §2.2. This is an expected result
of the increase in mass per neutrino particle and can be alleviated by a small increase in
Nfib, or alternatively by increasing the number of steps at early redshift to prevent particles
getting drawn into the neutrino grid sites. For Mν = 0.6eV, which is the upper bound
of physical interest, the data in Figure 2.5 was generated using an extra 10 steps in log a
between z = 99 and 79 to avoid the occurrence of a lager spike. While interest in cosmologies
with Mν = 0.6eV is limited, it is useful to know that accurate results can be achieved with
an additional 10 steps compared to lower mass runs.

FastPM is also capable of computing the CDM-neutrino cross-power spectrum, as re-
quired for observables such as galaxy-galaxy lensing. Figure 2.6 compares the FastPM cross-
power to the linear cross-power computed by CLASS. There is good agreement on large
scales, and the agreement worsens as k increases due to non-linear effects that are not sim-
ulated by CLASS. There is negligible dependence on Nfib at large scales. We note that the
cross-power is always weighted by a factor of fν in cosmological observables, thus one can
tolerate larger error on the cross-power and still produce accurate observable predictions.
We also found that the spikes discussed in §2.2 do occur in the cross-power at z = 2, but
are negligible for z ≤ 1. This effect can be reduced at z = 2 by using a finer neutrino grid,
which is relatively inexpensive for large Nc simulations (as we will discuss in §2.4).

While not directly observable, the neutrino power spectrum serves as a useful diag-
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Figure 2.6: Comparison of the FastPM CDM-neutrino cross-power spectrum with the linear cross-
power from CLASS for Mν = 0.2eV using a variety of Nfib. Note that, unlike FastPM, CLASS
includes baryonic effects.
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Figure 2.7: The FastPM neutrino power spectrum computed using a variety of Nfib for Mν = 0.2eV.
The linear result from CLASS is also included (black). For reference, a FastPM simulation initialized
with pseudo-random neutrino thermal velocities is shown (magenta), and can be seen to produce
shot noise. The total number of neutrinos, Nn, for the pseudo-random run is approximately the
same as for the Nfib = 25 quasi-random run, hence the similar power as k → ∞. Also shown are
dotted vertical lines representing the four smallest wavenumbers associated with the neutrino grid:
kn,

√
2kn,

√
3kn, 2kn.

nostic for the quasi-random sampling scheme. Figure 2.7 shows good agreement between
the neutrino power spectrum computed by FastPM and CLASS on large scales. There is
more sensitivity to Nfib compared to the cross-power, with larger Nfib required to ensure
convergence at progressively smaller scales. It can be seen that quasi-random sampling
produces noisy Pν on small scales, even with Nfib = 80. To enable comparison with the
noise produced by a typical pseudo-random sampling scheme we perform a FastPM simu-
lation using pseudo-randomly sampled neutrino thermal velocities. As expected, a pseudo-
random scheme produces shot noise, which in Figure 2.7 is manifested by the flattening of the
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power for k ≳ 2 × 10−1h/Mpc. For the pseudo-random example, a grid of Npseudo
n = 10243

neutrino particles was used, with one neutrino per grid site. Since shot noise is known
to scale with the total number of neutrino particles, we compare with a quasi-random
scheme using Nsites = 1283, Nshell = 10 and Nfib = 25, such that, using equation 2.9,
Nn/N

pseudo
n = 1283 × 10 × (2 · 25 + 1)/10243 = 0.996 ≈ 1. As expected, the Nfib = 25

and pseudo-random schemes approximately have the same power as k → ∞ (there is a
slight difference because the number of neutrino particles is not exactly matched). Firstly,
it can be seen that the quasi-random scheme enables study of smaller scales compared to
the pseudo-random scheme, and, ignoring spikes, has lower small-scale noise. Secondly, the
difference in noise between the two sampling approaches becomes larger at earlier redshifts.
Thirdly, the pseudo-random power fluctuates around the more stable quasi-random power —
this can most clearly be seen at z = 2 for k ∼ 10−1h/Mpc. In fact, it was shown in [48] that
such fluctuations are caused by early time artifacts produced by pseudo-random sampling,
and also leaves a signature on Pm at scales as large as k ∼ 10−2h/Mpc. Thus quasi-random
sampling not only helps avoid shot noise on small scales, but also reduces noise at larger
scales.

One apparent drawback of the quasi-random scheme is the introduction of spikes due
to spurious correlations between CDM and neutrino particles. Spurious correlations were
first noted by [84] in the context of hybrid simulations. However, this study did modify the
methodology of [48] by using a different sampling scheme for the Fermi-Dirac distribution and
by initializing neutrino particles at a late redshift of z = 4 (as typical for hybrid methods),
making it difficult to present a direct comparison. To understand the nature of the spurious
peaks observed in FastPM, we consider the Fourier transform of the initial neutrino grid. For
a box of side length 1Gpc/h and N

1/3
sites = 128 neutrino grid sites per side, the fundamental

wavenumber is given by

kn = 2π
128

1Gpc/h
≈ 0.8h/Mpc. (2.17)

This corresponds to the spacing between two adjacent neutrino grid sites. Because the grid
is 3-dimensional, the next three smallest wavenumbers are

√
2kn,

√
3kn, and 2kn. It can be

seen in Figure 2.7 that the spikes in Pν exactly align with these wavenumbers. This verifies
the explanation in §2.2 that particles are drawn to the large overdensities at neutrino grid
sites at the start of the simulation, in turn leaving a numerical artifact at late times. Hence,
in our FastPM implementation, the spikes are a result of the coarse neutrino grid and can be
removed by using a denser grid. That said, Pν has little effect on the small scale behaviour of
cosmological observables as it is always weighted by a factor of f 2

ν , and is itself small. Thus
it typically suffices to use a coarse neutrino grid with a large enough number of neutrino
particles per grid site, as shown for Pm in the discussion surrounding Figure 2.2.

Finally, we consider using a finer CDM grid with N
1/3
c = 1024. As a reference we use

an N
1/3
c = 1024 Gadget [346] simulation for degenerate neutrinos with Mν = 0.12eV. The

left of Figure 2.8 shows a fixed-amplitude comparison between the Gadget simulation and
N

1/3
c = 512 & 1024 FastPM simulations, considering a variety of step numbers. We use

Nfib = 3 as we only compare z = 0. In terms of Table 2.1, we consider NC512 NF3 and
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Figure 2.8: (Left) Comparison of the FastPM matter power spectrum at z = 0 for a run with

degenerate massive neutrinos, Mν = 0.12eV, with an N
1/3
c = 1024 Gadget simulation. The step

size and CDM grid are varied. (Right) Ratio of Pm for FastPM runs with modified (mod) N
1/3
sites

and Nfib compared to the fiducial (fid) values of 128 and 3 from NC1024 NF3 of Table 2.1. Note
that the ratio has been shifted by −1 and scaled by 103, thus the vertical range represents a ratio
range of 1± 10−3, i.e. ±0.1%.

NC1024 NF3, while varying N lin
steps. It can be seen that there is sub-percent agreement on

large scales, and that using a two-times finer grid leads to agreement at approximately
two-times higher k, as expected. Moreover, increasing N lin

steps to 40 extends the accuracy to
slightly smaller scales, but the difference compared to N lin

steps = 20 is small.
It is important to note that one does not need to increase Nn with Nc to obtain accurate

results at small scales. This is illustrated on the right of Figure 2.8 where we consider
modifications of NC1024 NF3 to increase Nn. It can be seen that increasing either N

1/3
sites

or Nfib beyond the fiducial values of 128 and 3 causes a negligible (< 0.1%) change in the
z = 0 power spectrum. This is a key finding in terms of studying smaller scales, as it shows
one need only increase the number of CDM particles while keeping the number of neutrino
particles fixed. This is aided by the fact that small scales are almost entirely dominated by
the CDM evolution and the background cosmology. While the results presented here are for
a run with N

1/3
c = 1024, Mν = 0.12eV, and z = 0, we find similar results for larger Nc, Mν ,

and z – in all cases there is a sub-percent change in the power spectrum when increasing Nn.
Thus the relative increase in runtime-per-step caused by the inclusion of massive neutrinos
will decrease as Nc increases, enabling the study of small scales with only a small increase
in runtime-per-step. We will now give a more thorough account of the runtime.
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2.4 Runtime

Firstly, we note that FastPM previously considered only CDM and Λ. To include massive
neutrinos, this work has added functionality to simulate radiation in the background evolu-
tion by including photons and massless neutrinos. The runtime increase caused by this is
negligible, thus it is the inclusion of neutrino particles, required to simulate massive neutri-
nos, that must be considered when studying runtime. To enable comparison in the following
discussion, we compute the percentage difference in runtime-per-step between simulations of
massive and massless neutrinos by using the same non-neutrino parameter values (including
the number of timesteps) and number of CPUs in both cases.

Simulations were performed using the Cori supercomputer at the National Energy Re-
search Scientific Computing Center (NERSC). We first consider Nfib = 3 runs, shown in
§2.3 to give accurate results at z = 0. For the NC512 NF3 run of Table 2.1, there are
approximately equal numbers of CDM and neutrino particles: using equation 2.9 gives
Nn/Nc = 10(2 × 3 + 1)/43 = 1.1. Such runs can be performed on a single Cori Haswell
node in ∼ 715s, whereas the corresponding massless neutrino run takes ∼ 565s. Thus for
this configuration there is a 25% increase in runtime. We find that doubling both N

1/3
c and

N
1/3
sites requires 8 nodes and also shows a 25% increase in runtime. However, as discussed

at the end of the previous section, one does not need to increase Nn as one increase Nc –
accurate results can be achieved by increasing N

1/3
c to 1024, while keeping N

1/3
sites = 128 fixed

(NC1024 NF3). Such a run requires only 4 nodes, and has an increase in runtime of 6%, as
massive and massless runs take ∼1387s and 1307s respectively. As expected the change in
runtime is sensitive to the ratio of Nn to Nc, hence simulations with progressively larger Nc

and fixed Nn have a smaller relative increase in runtime-per-step. This means that even runs
with Nfib = 20, required for accurate results at z = 2, only have an increase in runtime of
20% for N

1/3
c = 1024 (NC1024 NF20). Using a lower N

1/3
c of 512 with Nfib = 20 (NC512 NF20)

does lead to a larger runtime increase of 115% because in this case Nn/Nc ≈ 6. However,

this large runtime increase is not problematic as N
1/3
c = 512 runs without massive neutrinos

are relatively inexpensive anyway. The key results of this paragraph are reported in Table
2.1.

Massive neutrino runs typically require more timesteps than runs without massive neu-
trinos: while FastPM can achieve high accuracy for cosmologies without massive neutrinos
in a couple of steps [154], a massive neutrino simulation requires ∼ 25 steps. This is because
of the need to start simulations at an earlier redshift and to carefully capture the interplay
between CDM and neutrinos, as documented in §2.2. Thus the increase in total runtime
for massive neutrino simulations is dominated by the need for additional steps. Note that
we have ignored the effects of I/O and setting initial conditions; these scale with the total
number of particles and will thus also lead to increases in runtime for large runs, but are
typically subdominant for N

1/3
c ≲ 1024.
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2.5 Conclusions

This work has presented a fast and scalable particle-only method to study the effects of
massive neutrinos on cosmological structure formation. This is enabled by three key ingredi-
ents. Firstly, we sample the Fermi-Dirac distribution in a low entropy, quasi-random manner
when setting the neutrino initial conditions. This reduces the noise that typically plagues
pseudo-random neutrino particle simulations, with the reduction becoming more significant
at earlier redshift. Secondly, while massive neutrinos introduce scale dependence, we use
reps [399] to set the initial perturbations via the two-fluid approximation transfer func-
tions. This allows us to treat neutrinos as non-relativistic particles throughout the evolution
and achieve accurate results at low redshift. Finally, we incorporate the above methodology
into FastPM [154] to enable fast evolution. Altogether, the simulation produces accurate
results for the matter, CDM, CDM-neutrino, and neutrino power spectra across the full
range of neutrino masses permitted by current experimental constraints (Mν ≲ 0.6eV) at
z ≲ 2. Furthermore, the increase in runtime-per-step due to massive neutrinos is small, as
the required number of neutrino particles is typically less than or similar to the number of
CDM particles. Together with the fact a run requires ∼ 25 steps, FastPM is considerably
faster than alternative schemes based on full N-body simulations.

We have also addressed the problem of small scale spurious correlations caused by the
quasi-random sampling method of [48], found by [84] for hybrid simulations. We have argued
that, in our setup, spurious correlations are caused by the neutrino grid being coarser than
the CDM grid, leading to nearby particles being attracted to the neutrino grid sites at the
start of the simulation. Such spurious correlations in Pm and Pc can be adequately reduced
by applying an infinitesimal drift step for neutrinos at the start of the simulation, and using
a sufficiently large number of neutrino particles. The cross-power Pc×ν is similarly free of
numerical artifacts arising from the sampling scheme — this is true at z = 2 provided a suf-
ficiently fine neutrino grid is used. Any remaining artifacts in Pν are rendered subdominant
by two effects: first, the contribution of the Pν term to any observable is weighed by a factor
of f 2

ν , and second, Pν itself is extremely damped on small scales compared to Pc.
There are many avenues for future work. Our technique provides a quick way to predict

the clustering of both CDM and total matter down to ∼ 1Mpc/h in the presence of massive
neutrinos. Combined with FastPM’s inbuilt halo finder [154], analysis pipelines for fitting
cosmological parameters can be built by interfacing with nbodykit [185]. This will enable
the prediction of galaxy-clustering and weak-lensing measurements for surveys such as DES
[5, 363]; one could implement an emulator-like approach [233, 225, 216, 141, 401, 388, 218]
to study the effects of massive neutrinos on clustering. Moreover, recent work in effective
field theory applied to BOSS [16] has suggested that combining the full-shape BOSS data
with Planck [292] can reduce the upper limit of the sum of neutrino mass to Mν < 0.16eV
(95% CL) [127, 204]. One could test these results by performing a re-analysis of BOSS
that considers small scale neutrino effects. Finally, because massive neutrinos modify the
information content of the CDM and total matter fields, one can use the techniques of [329,
153, 266, 196] to study the effect of massive neutrinos on reconstruction.
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2.6 Appendix A: Effective distribution for

non-degenerate neutrinos

We seek to describe a set of non-degenerate neutrinos with masses {mj}Nν
j=1 by a single

effective particle, for use in the sampling scheme described in §2.2. Because equations 2.5,
2.6, and 2.7 are fractions of moments of the Fermi-Dirac distribution f(q), we need only find
the distribution function for the effective particle f̃(q) up to a constant factor and arbitrary
transformation of the argument. Working in dimensionless units, as in equations 2.3 and
2.4, the number of particles of eigenstate j in an infinitesimal volume of size d3qj is

dnj = f(qj)d
3qj. (2.18)

The j dependence arises due to the implicit dependence of qj on the non-degenerate mass
mj. Using the non-relativistic dispersion relation, the scaling of qj is given by qj ∼ mj. We
thus change variables to q ≡ qj/αj with αj ≡ mj/µ, for some constant with units of mass µ,
giving the number of particles of eigenstate j in the common infinitesimal volume d3q,

dnj = f(αjq)α
3
jd

3q. (2.19)

The number of effective particles in d3q, denoted dñ, is defined such that

dñ ≡ f̃(q)d3q, (2.20)

and the effective particle mass is denoted m̃. Enforcing mass conservation in each infinitesi-
mal volume d3q gives

m̃dñ =
∑

j

mjdnj (2.21)

m̃f̃(q)d3q =
∑

j

mjf(αjq)α
3
jd

3q. (2.22)

Rearranging gives

f̃(q) =
µ

m̃

∑

j

α4
jf(αjq) ∝

∑

j

α4
jf(αjq), (2.23)
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which is the result stated in equation 2.8, having dropped the constant factor which is
unneeded for the sampling algorithm. The choice of µ to define αj = mj/µ is arbitrary, but
we choose µ = m1, the mass of the heaviest eigenstate, for two reasons. Firstly, as long as
the mass ratios αj are close to 1, a good sampling for the heaviest eigenstate also implies
a good sampling for the other mass eigenstates. If the mass ratio of an eigenstate is much
smaller than 1, then there will be no significant clustering for this light eigenstate, and the
sampling scheme is irrelevant. Moreover, this choice ensures that f̃ will equal the correct
Fermi-Dirac distribution in the degenerate limit, because αj → 1 ∀ j.
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Chapter 3

Detecting neutrino mass by combining
matter clustering, halos, and voids

The contents of this chapter was originally published in [62],

Detecting neutrino mass by combining matter clustering, halos, and voids
Bayer A.E., et al. (arXiv:2102.05049) ApJ 919 1 24 (2021)

In this chapter, we quantify the information content of the non-linear matter power
spectrum, the halo mass function, and the void size function, using the Quijote N -body sim-
ulations. We find that these three statistics exhibit very different degeneracies amongst the
cosmological parameters, and thus the combination of all three probes enables the breaking
of degeneracies, in turn yielding remarkably tight constraints. We perform a Fisher analysis
using the full covariance matrix, including all auto- and cross-correlations, finding that this
increases the information content for neutrino mass compared to a correlation-free analysis.
The multiplicative improvement of the constraints on the cosmological parameters obtained
by combining all three probes compared to using the power spectrum alone are: 137, 5, 8,
20, 10, and 43, for Ωm, Ωb, h, ns, σ8, and Mν , respectively. The marginalized error on the
sum of the neutrino masses is σ(Mν) = 0.018 eV for a cosmological volume of 1 (h−1Gpc)3,
using kmax = 0.5hMpc−1, and without CMB priors. We note that this error is an underesti-
mate insomuch as we do not consider super-sample covariance, baryonic effects, and realistic
survey noises and systematics. On the other hand, it is an overestimate insomuch as our cuts
and binning are suboptimal due to restrictions imposed by the simulation resolution. Given
upcoming galaxy surveys will observe volumes spanning ∼ 100 (h−1Gpc)3, this presents a
promising new avenue to measure neutrino mass without being restricted by the need for
accurate knowledge of the optical depth, which is required for CMB-based measurements.
Furthermore, the improved constraints on other cosmological parameters, notably Ωm, may
also be competitive with CMB-based measurements.
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3.1 Introduction

High-precision measurements of large-scale structure from upcoming cosmological surveys,
such as DESI1, Euclid2, PFS3, Roman Space Telescope4, Vera Rubin Observatory5, SKA6,
and SPHEREx7, are expected to revolutionize our understanding of fundamental physics,
for example, by measuring neutrino mass. To fully realize the potential of these surveys, an
urgent task is to determine the key observables that can maximize the scientific return. For
Gaussian density fields, the answer is well known: the power spectrum, or equivalently, the
correlation function, is the statistic that completely characterizes the field. Therefore, on
large scales and at high redshift, where the density fluctuation in the Universe resembles a
Gaussian field, the power spectrum encapsulates all the information.

However, at low redshift and on small scales, non-linear gravitational evolution moves in-
formation from the power spectrum into higher-order moments. It is currently ill-understood
which observable(s) will allow retrieval of the maximum information in the non-linear regime.
For instance, it has been shown that for non-Gaussian fields, all clustering information may
not be embedded in the infinite N-point statistics [92, 91]. Since the number of modes in-
creases rapidly by going to small scales, it is expected that the amount of information will
also increase by considering observables in the mildly to fully non-linear regime. While the
amount of information, at least for some parameters, may saturate in the power spectrum
[306, 383] [see however 74], many authors have shown that other statistics contain comple-
mentary information [see, e.g. 353, 323, 64, 213, 315, 245, 248, 211, 332, 255, 178, 177, 129,
366, 20, 175, 188, 46, 257].

In this paper we quantify the information embedded in the non-linear matter power
spectrum, the halo mass function (HMF), and the void size function (VSF). We apply the
Fisher formalism using a subset of the Quijote simulations [383], comprising of 23,000 N -
body simulations for 16 different cosmologies spanning six cosmological parameters: Ωm, Ωb,
h, ns, σ8, and Mν . We study the information that these probes contain individually and when
combined together, showing how the combination of these three statistics breaks degeneracies
amongst the cosmological parameters, in turn setting very tight constraints. We consider the
effects of both the auto-correlation for each probe and the cross-correlation between different
probes when computing the total information content. A simpler, theoretical, treatment
combining cluster and void abundances has been studied by [310].

By adding probes such as the halo and void abundances, we demonstrate that it is
possible to break the strong degeneracy between Mν and σ8 usually seen in 2-point clustering
constraints [see, e.g. 382]. In turn, this gives tight constraints on neutrino mass, and in fact

1https://www.desi.lbl.gov
2https://www.euclid-ec.org
3https://pfs.ipmu.jp/index.html
4https://wfirst.gsfc.nasa.gov/index.html
5https://www.lsst.org
6https://www.skatelescope.org
7https://www.jpl.nasa.gov/missions/spherex

https://www.desi.lbl.gov
https://www.euclid-ec.org
https://pfs.ipmu.jp/index.html
https://wfirst.gsfc.nasa.gov/index.html
https://www.lsst.org
https://www.skatelescope.org
https://www.jpl.nasa.gov/missions/spherex
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all cosmological parameters, potentially without the need for including CMB priors. In
addition to improved constraints, having multiple independent probes of neutrino masses
will allow for more robust controls of systematics.

The paper is organized as follows. We first review the Quijote simulations in Section 3.2.
The Fisher formalism used to quantify the information content on the different observables
is described in Section 3.3. We explain how the matter power spectrum, halo mass function,
and void size function are obtained in Section 3.4. We show the results of our analysis in
Section 3.5. Finally, we conclude in Section 3.6.

3.2 Simulations

We quantify the information content of different cosmological observables using the Fisher
matrix formalism. We model the observables using the Quijote simulations [383], a set of
23,000 N -body simulations that at a given redshift contain about 8 trillion (8 × 1012) par-
ticles over a total combined volume of 44,100 (h−1Gpc)3. Each simulation considers a box
of size 1 (h−1Gpc)3. The simulation subset used in this work spans a total of 16 different
cosmological models that have been designed to evaluate the two ingredients required to
compute the Fisher matrix: (1) the covariance matrix of the observables and (2) the deriva-
tives of the observables with respect to the cosmological parameters. Despite their larger
computational cost than analytic approaches (e.g. perturbation theory or the halo model),
numerical simulations are more accurate into the fully non-linear regime and rely on fewer
assumptions and approximations.

We consider six cosmological parameters: Ωm, Ωb, h, ns, σ8, and Mν . The set of cos-
mological parameters is shown in Table 3.1. To evaluate the covariance matrix, we use the
15,000 simulations of the fiducial cosmology. We compute the derivatives by considering
simulations where only one cosmological parameter is varied, with all others fixed. We use
1,000 simulations (500 pairs) for each derivative, with the exception of neutrino mass, where
we use 1,500 (see below).

The initial conditions (ICs) were generated in all cases at z = 127 using second-order
Lagrangian perturbation theory (2LPT) for simulations with massless neutrinos, by rescaling
the z = 0 matter power spectrum using the scale-independent growth factor from linear
theory. Because the 2LPT formalism has not yet been developed to account for massive
neutrinos, the ICs for massive neutrino cosmologies adopt the Zel’dovich approximation
with scale-dependent growth factors and rates, following [399]. For this reason there is also
a ‘Fiducial (ZA)’ class of simulations, which is identical to the fiducial simulations but with
Zel’dovich ICs to match the Mν simulations [see 383, for further details]; this enables accurate
computation of derivatives with respect to Mν . Note that in the full Quijote simulations
there are two sets of Ωb cosmologies; we use the Ω++

b and Ω−−
b set too obtain smoother

derivatives.
All simulations follow the evolution of 5123 dark matter particles down to z = 0. The

simulations with massive neutrinos also contain 5123 neutrino particles. The gravitational



CHAPTER 3. DETECTING NEUTRINO MASS BY COMBINING MATTER
CLUSTERING, HALOS, AND VOIDS 35

Quijote Simulations

Name Ωm Ωb h ns σ8 Mν(eV) ICs Realizations

Fiducial 0.3175 0.049 0.6711 0.9624 0.834 0.0 2LPT 15,000

Fiducial ZA 0.3175 0.049 0.6711 0.9624 0.834 0.0 Zel’dovich 500

Ω+
m 0.3275 0.049 0.6711 0.9624 0.834 0.0 2LPT 500

Ω−
m 0.3075 0.049 0.6711 0.9624 0.834 0.0 2LPT 500

Ω++
b 0.3175 0.051 0.6711 0.9624 0.834 0.0 2LPT 500

Ω−−
b 0.3175 0.047 0.6711 0.9624 0.834 0.0 2LPT 500

h+ 0.3175 0.049 0.6911 0.9624 0.834 0.0 2LPT 500

h− 0.3175 0.049 0.6511 0.9624 0.834 0.0 2LPT 500

n+
s 0.3175 0.049 0.6711 0.9824 0.834 0.0 2LPT 500

n−
s 0.3175 0.049 0.6711 0.9424 0.834 0.0 2LPT 500

σ+
8 0.3175 0.049 0.6711 0.9624 0.849 0.0 2LPT 500

σ−
8 0.3175 0.049 0.6711 0.9624 0.819 0.0 2LPT 500

M+
ν 0.3175 0.049 0.6711 0.9624 0.834 0.1 Zel’dovich 500

M++
ν 0.3175 0.049 0.6711 0.9624 0.834 0.2 Zel’dovich 500

M+++
ν 0.3175 0.049 0.6711 0.9624 0.834 0.4 Zel’dovich 500

Table 3.1: Characteristics of the subset of the Quijote simulations used in this work. The fiducial
cosmology contains 15,000 simulations, that are used to compute the covariance matrix. In the other
cosmological models, one parameter is varied at a time, and these simulations are used to compute
the numerical derivatives. The initial conditions of all simulations were generated at z = 127 using
2LPT, except for the simulations with massive neutrinos and a copy of the fiducial cosmology,
where the Zel’dovich approximation is used (see main text for further details). All realizations
follow the evolution of 5123 CDM (+ 5123 Neutrino) particles in a box of size 1 h−1Gpc down
to z = 0, with a gravitational softening length 50 h−1kpc. For massive neutrino simulations, we
assume three degenerate neutrino masses.

force tree for neutrinos is turned on at z = 9. The gravitational softening for both dark
matter and neutrinos is 50 h−1kpc (1/40 of the mean interparticle distance). In this work,
we consider redshift z = 0 only.

3.3 Fisher information

We use the Fisher matrix formalism [358, 191, 192, 373] to calculate the information em-
bedded in the non-linear matter power spectrum, the halo mass function and the void size
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function, individually and when combined. The Fisher matrix is defined as

Fij = −
〈
∂2 logL
∂θi∂θj

〉
, (3.1)

where L is the likelihood and θ⃗ is the vector representing the parameters of the model
[159]. Under the assumption that the region around the maximum of the likelihood can be
approximated as a multivariate normal distribution, one can write the Fisher matrix as

Fij =
1

2

[
∂O⃗

∂θi
C−1∂O⃗

T

∂θj
+
∂O⃗

∂θj
C−1∂O⃗

T

∂θi

]

+
1

2
Tr

[
C−1∂C

∂θi
C−1 ∂C

∂θj

]
, (3.2)

where O⃗ is the vector with the values of the observables and C is the covariance matrix.
In order to avoid underestimating the errors, we follow [90] and neglect the dependence of
the covariance on the cosmological parameters, by setting the last term of Eq. 3.2 to zero.
This is necessary when assuming a Gaussian likelihood. Note that we use Greek (Latin)
characters to index observables (parameters).

In this work, the observables and parameters are given by

O⃗ = {Pm(k1), ..., Pm(kA),H(M1), ...,H(MB),

.......................................V(R1), ...,V(RD)},
θ⃗ = {Ωm,Ωb, h, ns, σ8,Mν}

respectively, where Pm(k) is the matter power spectrum at wavenumber k, H(M) is the halo
mass function at mass M , and V(R) is the void size function at radius R. Note there are a
total of A, B, and D bins for the matter power spectrum, the halo mass function, and the
void size function respectively, giving a total dimensionality of A+B +D.

We quantify the information content by considering the marginalized error on the cos-
mological parameters,

σ(θi) ≡
√

(F−1)ii , (3.3)

which is a lower bound.

Covariance matrix

We estimate the covariance matrix using the Ncov = 15,000 simulations of the fiducial cos-
mology as

Cαβ = ⟨(Oα − ⟨Oα⟩) (Oβ − ⟨Oβ⟩)⟩ , (3.4)

where ⟨⟩ denotes the mean over simulations. This is the largest number of simulations used
for covariance estimation to date. We have verified that our combined results are converged
even with half of the simulations. We show the results of our convergence tests in the
appendix for this chapter (Section 3.7).
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Derivatives

For the cosmological parameters Ωm, Ωb, h, ns, and σ8, we approximate the derivatives using
a central difference scheme centered on the fiducial cosmology,

∂O⃗

∂θi
≃ O⃗(θi + δθi) − O⃗(θi − δθi)

2θi
. (3.5)

Note that only the value of the ith cosmological parameter is perturbed about its fiducial
value, θi, while the values of all other parameters are held fixed. The error of this approxi-
mation is O(δθ2i ).

For neutrinos we cannot use Eq. 3.5 because the fiducial model has massless neutrinos, so
O⃗(θi−δθi) would correspond to a cosmology with negative neutrino mass. We thus compute
the derivatives for neutrinos using a second-order forward difference scheme,

∂O⃗

∂Mν

≃ −3O⃗(Mν + 2δMν) + 4O⃗(Mν + δMν) − 3O⃗(Mν)

2δMν

, (3.6)

which has error O(δM2
ν ). We exclusively use the M++

ν and M+++
ν cosmologies in Eq. 3.6

throughout this work.
We use a total of Nder = 1,000 (500+500) simulations to compute derivatives when using

Eq. 3.5, and 1,500 when using Eq. 3.6. In the appendix for this chapter (Section 3.7) we
show that our results are robust and converged with this number of simulations. We also
give evidence of robustness with respect to the choice of finite difference scheme for Mν .

3.4 Cosmological probes

In this section we outline the cosmological observables considered in this work: the matter
power spectrum, the halo mass function, and the void size function.

Matter power spectrum

The first observable we study is the matter power spectrum. For each realization, the
density field is computed by depositing particle masses to a regular grid using the cloud-
in-cell mass assignment scheme. In simulations with massive neutrinos we consider both
CDM and neutrino particles when constructing the density field. The density contrast field,
δ(x⃗) = ρ(x⃗)/ρ̄ − 1, is then Fourier transformed and the power spectrum is computing by

averaging |δ(k⃗)|2 over spherical bins in |k|. The size of each bin is equal to the fundamental
frequency, 2π/L, where L = 1h−1Gpc is the simulation box size.

A grid with 10243 cells is used, which is large enough to avoid aliasing effects on the scales
of interest for this work. In our analysis we consider wavenumbers up to kmax = 0.5 hMpc−1,
using 79 bins. This choice of kmax is based on the fact that the clustering of the simulations
is converged at this scale for this mass resolution [see 383]. We will however show that using
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Figure 3.1: The matter power spectrum for the fiducial cosmology.

a larger kmax would likely lead to even tighter constraints than the ones we report. We show
the power spectrum for the fiducial cosmology in Fig. 3.1.

Halo mass function

The second observable we consider is the halo mass function (HMF). Dark matter halos are
identified using the Friends-of-Friends algorithm [135], with a linking length b = 0.2. The
halo finder considers only the dark matter distribution, as the contribution of neutrinos to
the total mass of a halo is expected to be negligible [376, 377, 202, 250].

The halo mass function is defined as the comoving number density of halos per unit of
(log) halo mass, dn/d lnM . The mass of a halo is estimated as

M = Nmp, (3.7)

where N is the number of dark matter particles in the halo and mp is the mass of a single
dark matter particle. Note that in the Quijote simulations, there are only dark matter and
neutrino particles, i.e. dark matter particles represent the CDM+baryon fluid. The mass of
a dark matter particle is thus normalized according to Ωcb, such that

mp =
V ρc
Np

Ωcb =
V ρc
Np

(
Ωm − Mν

93.14h2

)
, (3.8)

where V = L3 is the simulation volume, Np is the total number of dark matter particles in the
simulation, and ρc is the Universe’s critical energy density at z = 0. Thus mp = mp(Ωm,Mν)
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is a cosmology dependent quantity, which induces noise when computing the derivatives of
the HMF with respect to Ωm or Mν in a fixed mass bin. This is because it is the number
of dark matter particles that is the fundamental constituent of the halo mass: a halo with a
given number of particles will lie in the same number bin for all cosmologies, whereas it may
lie in a different mass bin depending on the value of mp. This noise can thus be avoided
by instead working with bins of fixed particle number by considering the derivative of the
comoving number density of halos per unit (log) number of particles, dn/d lnN . One can
then transform these derivatives in bins of fixed N to derivatives in bins of fixed M to obtain
the derivatives of the halo mass function.

Using the shorthand H to denote the halo mass function, we now derive this transforma-
tion. In practice, one measures the halo mass function for a fixed cosmology, thus working
in logarithmic bins gives

H :=
dn

d lnM
=

dn

d lnN
, (3.9)

where it is understood that the derivative is taken with fixed cosmological parameters, θ⃗. Ex-
plicitly, one can think of the halo mass function as a function of the cosmological parameters
and halo mass, H(θ⃗,M), or the cosmological parameters and number of particles, H(θ⃗, N).
Thus the derivative of the HMF with respect to one of the cosmological parameters, θ, while
holding all other cosmological parameters, /θ, fixed can be written as

(
∂H
∂θ

)

/θ

=

(
∂H
∂θ

)

M,/θ

+

(
∂H

∂ lnM

)

θ⃗

(
∂ lnM

∂θ

)

/θ

, (3.10)

or (
∂H
∂θ

)

/θ

=

(
∂H
∂θ

)

N,/θ

+

(
∂H
∂ lnN

)

θ⃗

(
∂ lnN

∂θ

)

/θ

. (3.11)

Equating these two equations and rearranging gives

(
∂H
∂θ

)

M,/θ

=

(
∂H
∂θ

)

N,/θ

+

(
∂H
∂ lnN

)

θ⃗

[
∂ lnN

∂θ
− ∂ lnM

∂θ

]

/θ

=

(
∂H
∂θ

)

N,/θ

−
(

∂H
∂ lnN

)

θ⃗

(
∂ lnmp

∂θ

)

/θ

, (3.12)

where Eq. 3.7 was used in the final step.
The cosmology dependence of mp takes effect in the final term of Eq. 3.12. There is only

a difference between the fixed N and fixed M derivative of the HMF when mp depends on
θ, i.e., when θ ∈ {Ωm,Mν}. Using Eq. 3.8, one finds that

∂ lnmp

∂Ωm

=
1

Ωm

, (3.13)

∂ lnmp

∂Mν

=
1

Ωcb93.14h2
, (3.14)
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Figure 3.2: The halo mass function for the fiducial cosmology.

where it is understood that all cosmological parameters apart from the one in the derivative
are held fixed at their fiducial values.

Thus our procedure to compute derivatives of the HMF using Eq. 3.12 is as follows.
We first bin the number of halos according to the number of dark matter particles they
contain. We then compute the derivatives for each fixed-N bin using the equations from
Section 3.3, yielding the first term on the right-hand side of Eq. 3.12. This will be sufficient
for all cosmological parameters except for Ωm and Mν , as these require a correction term
to transform to fixed-M bins due to the variation of mp. The ∂H/∂ lnN term can be
computed via spline interpolation or by using finite difference methods between the bins of
the halo mass function of the fiducial cosmology. We have confirmed the stability of both
approaches. Finally, the derivative of lnmp with respect to θ is computed using Eqs. 3.13
and 3.14 evaluated at the fiducial values.

We consider halos with a number of dark matter particles between 30 and 7,000, using 15
logarithmically spaced bins. The corresponding halo mass range is approximately 2.0× 1013

to 4.6 × 1015 h−1M⊙. As with the matter power spectrum, this choice of binning and cuts
is made to ensure convergence of the derivatives based on the resolution and number of the
simulations available. Hence, using more bins and/or a larger mass range would likely lead
to stronger constraints than we report. We show the HMF for the fiducial cosmology in
Fig. 3.2.
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Figure 3.3: The void size function for the fiducial cosmology.

Void size function

We identify voids in the underlying matter field using a spherical void finding algorithm
developed by [47], which we now outline. We use a grid of resolution 7683 to look for voids
— this is slightly finer than the CDM grid resolution of 5123 to enable detection of small
voids. The density contrast field is then smoothed with a top-hat filter over a large-scale,
R = 53.4h−1Mpc, which is a multiple of the grid spacing and is chosen to be bigger than the
size of the largest void. Next, minima that are smaller than the threshold δth = −0.7 in the
smoothed field are considered as voids with radius R, unless they overlap with existing voids.
This procedure is then performed iteratively while decrementing R by the grid spacing. In
this work we use a threshold of δth = −0.7, but have checked that results are similar for
δth = −0.5.

The void size function (VSF) is then computed as the comoving number density of voids
per unit of radius, denoted dñ/dR. Unlike the halo mass function, the VSF is not prone
to the changes in particle mass, since the void finder operates directly in the same unit as
the VSF. The range of void sizes is limited by our resolution and the size of our simulated
volume. Having found the voids, we apply radius cuts of Rmin = 10.4 and Rmax = 29.9
h−1Mpc, corresponding to 15 bins linear in R. As with the matter power spectrum and the
halo mass function, this choice of binning and cuts is made to ensure convergence of the
derivatives based on the resolution and number of the simulations available. Hence, using
more bins and/or a larger range of void sizes may lead to stronger constraints than we report.
We show the VSF for the fiducial cosmology in Fig. 3.3.

Investigation of the void size function, and void abundances, is a rich field that has shown
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Figure 3.4: Correlation matrix for the matter power spectrum (Pm, with 72 linear bins and kmax =
0.5 hMpc−1), the halo mass function (HMF, 15 log bins between 2.0×1013 and 4.6×1016 h−1M⊙),
and the void size function (VSF, 15 linear bins between 10.4 and 29.9 h−1Mpc), from bottom left
to top right. Bin values increase from left to right for each probe. While the HMF shows clear
off-block correlation with Pm, the VSF is somewhat independent from both Pm and the HMF.

promising theoretical work to match mocks [see, e.g. 294, 80, 349, 208, 288, 277, 310, 118,
374].

3.5 Results

In this section we present the main results of this work.

Full covariance of the probes

In Fig. 3.4 we show the correlation matrix, defined as Corr(Oα, Oβ) := Cαβ/
√
CααCββ, where

Cαβ is the covariance matrix (Eq. 3.4). First we discuss the correlations for each individual
probe (auto-correlations). For the matter power spectrum (bottom-left region of Fig. 3.4),
we observe some well-known structures: the covariance is almost diagonal on large scales,
while mode-coupling induces significant off-diagonal correlations on small scales. For the halo
mass function (central region of Fig. 3.4), the covariance matrix is almost diagonal, with some
small correlations between the different mass bins; the correlations are negative for heavy
halos, but are positive for the lightest halos considered in this work. The covariance of the
void size function (top-right region of Fig. 3.4) is also almost diagonal, with the abundance
of different void sizes slightly anti-correlated with nearby bins due to conservation of volume.
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Figure 3.5: 68% (darker shades) and 95% (lighter shades) confidence contours for the cosmological
parameters for the non-linear matter power spectrum (Pm, red), the halo mass function (HMF,
blue), and the void size function (VSF, green). Due to the often different degeneracies of each
probe, we obtain significantly tighter constraints when combining the three probes (black). We
note that some contours extend into unphysical regions (Ωb < 0, h < 0,Mν < 0): this is just a
result of the Gaussian approximation associated with a Fisher analysis.
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Figure 3.6: The Mν–σ8 plane from Fig. 3.5. We inset a zoom-in of the contour obtained by
combining all three probes. The marginalized error on Mν from Pm alone is 0.77eV, while the error
after combining all three probes is 0.018eV, corresponding to a factor ∼ 43 improvement.

Next, we consider the correlations between different probes (cross-correlations). The halo
mass function shows an interesting correlation pattern with the matter power spectrum: the
abundance of the more (less) massive halos shows a ∼ 20% correlation (anti-correlation)
with small scales of the matter power spectrum. Similar trends are seen between halos and
large scales of the matter power spectrum, albeit at a weaker level. On the other hand, voids
can be seen to be somewhat independent of both the matter power spectrum and halos, as
their cross-correlation is ≲ 5% for all scales and masses.

As discussed in Section 3.3, we combine the covariance matrix with the numerically
computed derivatives to calculate the Fisher matrix. The numerical derivatives and related
numerical convergence tests are shown in the appendix for this chapter (Section 3.7).

Cosmological constraints

We show the two-dimensional (2D) 68% and 95% confidence intervals obtained from our
Fisher analysis for each individual probe, and the combination of all probes, in Fig. 3.5. The
constraints on the parameters are not generally tight when considering any of three probes
alone, because we adopt a conservative survey volume of 1 (h−1Gpc)3, which is significantly
smaller than what is achievable by DESI, ∼ 102 (h−1Gpc)3.

The three probes show different degeneracies and are sensitive to each parameter at
different levels. For example, the halo mass function provides a relatively tight constraint on
Ωm when compared to the other two probes, as the halo mass function depends non-linearly
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on and is highly sensitive to Ωm [see, e.g. 179]. The void size function provides weaker
constraints than the other two probes on almost all parameters, except for ns compared to
Pm. Naively, this is not surprising, considering the relatively smaller range of scales being
probed by the void size function compared to the matter power spectrum. More information
could probably be retrieved by using other void-related observables, such as the void-matter
correlation function.

Because the degeneracies between parameters are often very different for each probe, it is
expected that combining the probes will break the degeneracies and in turn yield significantly
tighter constraints on the cosmological parameters than the individual probes do. Indeed,
the black ellipses in Fig. 3.5 show the tight constraints obtained by combining the three
probes. We emphasize that these constraints account for all the correlations between the
different observables, i.e. by using the full covariance matrix of Fig. 3.4.

The benefit of combining the three probes is particularly well demonstrated in the Mν–σ8
plane. Because the combined constraints are too small to be visible in Fig. 3.5, we zoom in on
this plane in Fig. 3.6. We find that, despite not being as powerful tools as Pm in constraining
Mν , the HMF and VSF both show degeneracies in different directions from that of Pm, which
guarantees that constraints on the neutrino masses will be largely reduced by combining the
three probes. In turn this helps break the well-known Mν–σ8 degeneracy for the matter
power spectrum. We note that the area of these confidence contours, particularly for the
HMF, can potentially be reduced by increasing the bin boundaries and/or by fine-tuning the
binning schemes. Our choice of binning is restricted by our simulation resolution. We leave
these investigations to future works.

For a direct comparison to the usual constraints expected from the matter power spec-
trum, we show the 1D marginalized errors (Eq. 3.3) from different combinations of the probes
with Pm in Fig. 3.7. We study how the errors vary with the cutoff scale kmax. Combining
Pm with either the HMF, VSF, or both, can achieve a significant level of improvement on
all 6 parameters. The combination with the HMF is typically more beneficial than the com-
bination with the VSF. The only exception is for Mν , where the VSF is the better probe to
combine with Pm.

While the constraints from Pm alone saturate at around kmax = 0.2hMpc−1 for all pa-
rameters, the combined constraints for Mν (and Ωm) continue to improve beyond kmax =
0.5hMpc−1. This can be explained by the breaking of degeneracies when combining probes.
It was shown in Fig. 5 of [383] that increasing kmax beyond 0.2hMpc−1 leads to a squeezing
along the semi-minor axes (i.e, the most constraining direction) for the Pm ellipses. While
this squeezing has little effect on the marginalized error on Mν from Pm alone, its effects are
manifest when combined with other probes with misaligned contours, resulting in significant
tightening of constraints. Even though the numerical resolution of the Quijote simulations
prevent us from confidently investigating beyond kmax = 0.5hMpc−1, our results hint that
even tighter constraints could be achieved by including smaller scales.

In Table 3.2 we list the errors for kmax = 0.5hMpc−1 using different probe combinations.
We list the constraints obtained by combining all three probes while (1) only using the
diagonals of the covariance matrix (diag), (2) only considering auto-covariance (auto), and
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Figure 3.7: The 1D marginalized error for each of the cosmological parameters as a function of
kmax. We consider 4 scenarios: Pm alone (red), Pm + HMF (magenta), Pm + VSF (yellow), and
Pm + HMF + VSF (black). While the constraints from Pm alone saturate at kmax ≃ 0.2hMpc−1,
the combined constraints for Mν (and Ωm) continue to improve until kmax = 0.5hMpc−1, and likely
beyond.

(3) considering the full covariance (full). We find that using only the diagonal components
of the covariance matrix, effectively ignoring both the correlation between the probes and
between different bins of the same probe, leads to a factor of 1.7 increase on the error on
the neutrino mass. Using only block cross-correlations, i.e. ignoring the correlation between
the probes, leads to a factor of 1.2 increase on the error on the neutrino mass. Therefore,
to obtain the tightest constraints, it is crucial to model the full covariance matrix. It is
interesting to note that when considering the matter power spectrum alone, correlations cause
an increase in errors due to the positive correlation between different scales (see Fig. 3.4).
However, it is the complex correlation structure, notably the anti-correlations, introduced
by considering the HMF and VSF that leads to a reduction in error, both for the HMF and
VSF individually, and in turn when combining all probes. The association of anti-correlation
with the tightening of constraints was also pointed out by [101].

In Table 3.2 we quantify the improvement of the combined constraints compared to those
achieved from Pm alone. We find the improvements to be a factor of 137, 5, 8, 20, 10, and
43, for Ωm, Ωb, h, ns, σ8, and Mν , respectively. Thus we achieve 43 times tighter constraints
on neutrino mass by combining all three probes. Specifically, the marginalized errors on Mν

are 0.77eV (Pm alone) and 0.018eV (Pm+HMF+VSF). We provide an additional plot in the
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Marginalized Fisher Constraints

Probe(s) Ωm Ωb h ns σ8 Mν(eV)

Pm 0.098 0.039 0.51 0.50 0.014 0.77
HMF 0.034 0.042 0.28 0.12 0.082 1.6
VSF 0.31 0.12 1.3 0.42 0.083 1.1
Pm + HMF 0.00077 0.0089 0.076 0.034 0.0016 0.061
Pm + VSF 0.016 0.011 0.12 0.074 0.0018 0.025
HMF + VSF 0.0063 0.037 0.23 0.10 0.0069 0.096
Pm + HMF + VSF (diag) 0.0015 0.0088 0.066 0.028 0.00061 0.031
Pm + HMF + VSF (auto) 0.0015 0.0086 0.071 0.033 0.0016 0.025
Pm + HMF + VSF (full) 0.00071 0.0084 0.064 0.025 0.0015 0.018

Multiplicative improvement 137 5 8 20 10 43

Table 3.2: Marginalized errors of cosmological parameters for kmax = 0.5hMpc−1 using different
probe combinations. Note, we list the constraints obtained by combining all 3 probes while: 1) only
using the diagonals of the covariance matrix (diag), 2) only considering auto-covariance (auto), and
3) considering the full covariance (full). We highlight in bold the full constraints on the sum of
the neutrino masses. We also list the multiplicative improvement in the constraints from the full
covariance compared to those from Pm alone.

appendix for this chapter (Section 3.8) to show the confidence ellipses when combining only
two of the probes at a time.

3.6 Discussion and Conclusions

Upcoming galaxy surveys will map large volumes of the Universe at low redshifts, with the
potential to drastically improve our understanding of the underlying cosmological model.
With the unprecedentedly precision achievable by these surveys, it is expected that a very
large amount of cosmological (and astrophysical) information will lie in the mildly to fully
non-linear regime, where analytic methods are often intractable. It remains an open question
which observable(s) will lead to the tightest bounds on the cosmological parameters.

In this paper, we use the Quijote simulations, based on the Fisher formalism, to quantify
the information content embedded in the non-linear matter power spectrum, the halo mass
function, and the void size function, both individually and when combined, at z = 0. We
find that the HMF and VSF have different degeneracies to each other and to the matter
power spectrum, particularly in the Mν–σ8 plane (Figs. 3.5 & 3.6). In terms of measuring
neutrino mass, we find the void size function to be the more complementary probe to combine
with the matter power spectrum. This is consistent with findings that void properties are
particularly sensitive to matter components that are less clustered, such as neutrinos [258,
222].
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By combining the non-linear matter power spectrum (kmax = 0.5 hMpc−1), with the
halo mass function (M ≳ 2 × 1013 h−1M⊙), and the void size function (R ⩾ 10.4h−1Mpc),
we achieve significantly tighter constraints on the cosmological parameters compared to Pm

alone (Fig. 3.7). In particular, we find that with a volume of just 1 (h−1Gpc)3, the error on
the sum of neutrino masses from the combined probes is at the 0.018eV level, compared to
0.77eV from the matter power spectrum alone — a factor of 43 improvement. We emphasize
that this value mainly demonstrates the information content in the late-time statistics, and
they are not forecasts for any particular survey.

Also of particular interest is the factor 137 improvement in the error on Ωm. This is
driven by the information in the HMF, and gives a marginalized error of σ(Ωm) = 7.1×10−4,
which is almost 100 times smaller than the error obtained from a joint large-scale structure
analysis by DES Y1 [σ(Ωm) ≈ 0.04, 362], and 8 times smaller than Planck 2018, [σ(Ωm) ≈
5.6 × 10−3 (TT,TE,EE+lowE+lensing+BAO), 292]. In addition, we found σ(h) = 0.064 by
combining the three probes, which is 8 times tighter than the constraints from the matter
power spectrum alone. This could provide a new angle to investigate the Hubble tension.

There are several caveats in this work. Firstly, we assumed perfect knowledge of the
three-dimensional spatial distribution of the underlying matter field in real-space. How-
ever, in reality, one observes either tracers of the matter field in redshift-space, or the pro-
jected matter field through lensing. Therefore, additional links must be made to bridge the
galaxy–matter connection and the 2D lensing–3D matter distribution gaps. This effect is
also relevant for voids: in this work we considered voids in the 3D matter field, which is
not something current surveys are able to observe directly. Detecting voids in the matter
field from photometric (2D lensing) data has been considered in works such as [295, 132].
Alternatively, one can measure voids in the 3D halo field [see, e.g. 271, 118]. If we were
to instead have considered voids in the 3D CDM field, the combined error on Mν slightly
degrades to 0.025eV. However, considering voids in the CDM field versus halo field can lead
to non-trivial differences in void properties, which might increase or decrease constraints
[222]. We will consider voids in the halo field in a future work.

A further note regarding voids is that there are various conventions when it comes to
defining voids [see, e.g. 293, 350]. It would thus be interesting further work to consider how
the choice of void finder impacts constraints. A different void finder may be able to extract
additional information compared to the spherical void finder applied here.

Another limitation of this work is that our simulations consider only gravitational in-
teractions and hence ignore baryonic effects which can impact the small-scale matter distri-
bution. This is particularly relevant for both clustering and halos [see, e.g. 381, 126, 138,
and references therein], while it is expected that baryons have a lower impact on voids [277].
Furthermore, halo clustering is influenced by various properties, such as spin, concentration,
and velocity anisotropy, which have not been considered in this work [see, e.g. 386, 167, 152,
229, 228, 282, 336].

Additionally, we have neglected super-sample covariance [352, 240], which could modify
the errors reported in this work.

We also note that the constraints obtained here may be overly conservative due to the
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limited number and resolution of simulations available. Firstly, this means that the number of
bins used are likely suboptimal. Second, applying more aggressive bounds on the observables,
e.g. a higher kmax, a larger halo mass range, or a larger void size range, would likely also
reduce the combined constraints. Third, we only considered a single redshift, z = 0: in
practice, surveys measure z > 0 where the universe is more linear and the constraints will
thus be weaker, however, combining multiple redshifts could tighten the constraints as found
in works such as [246]. Fourth, we considered a volume of only 1 (h−1Gpc)3, whereas surveys
such as Euclid and DESI will cover volumes of around 102 (h−1Gpc)3, so, conservatively,
the error on the parameters will shrink by a factor of 1/

√
102 = 0.1. Fifth, we have only

considered three probes; using the same observations, one can derive other statistics such
as the bispectrum, void profile, and BAO, which could be combined with the statistics
considered here to further break degeneracies. Finally, considering redshift space distortions
would also tighten constraints as neutrinos are distinguishable from CDM via their higher
thermal velocity.

We have demonstrated that combining multiple probes of cosmological structure using
their full covariance matrix provides remarkably tight constraints on the cosmological pa-
rameters, and helps extract much additional information from small scales. In particular,
we have shown that there is, in principle, sufficient information to measure the sum of the
neutrino masses at the minimum mass of 0.06 eV. Our results are in good agreement with
[310] who found that combining halo and void abundances can yield O(0.01 eV) constraints
on the neutrino mass. This approach opens a promising pathway to measure neutrino mass,
potentially without relying on CMB-based measurements which require accurate knowledge
of the optical depth, τ . In addition, comparing constraints from different combinations of
observables, e.g., CMB+Pm and Pm+HMF+VSF, will help identify systematic issues and
provide robust evidence for any discovery. We thus hope our work will motivate galaxy sur-
vey collaborations to build the simulations and analytic tools necessary to implement this
approach on upcoming observational data.
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3.7 Appendix A: Robustness of results to numerical

systematics

In this section we verify the stability of our results to reduction in the number of simulations
used to compute the covariance matrix and derivatives. In Fig. 3.8 we show the derivatives
of the matter power spectrum (top), halo mass function (middle), and void size function
(bottom) with respect to the cosmological parameters when using a different number of
realizations. For the matter power spectrum, the derivatives are already converged when the
mean values for each model are computed with 300 realizations. Results are slightly noisier
for the halo mass function and the void size function, but still sufficiently converged by 500
realizations.

Next, we comment on the convergence of our simulated results with theory. The con-
vergence of the matter power spectrum in Quijote has been thoroughly tested [383, 30,
178]. For the void size function there is no theoretical formula accurate enough to com-
pute derivatives, but we have checked results are robust to the parameters used in the void
finder. Therefore, we only compare our measured HMF to theoretical predictions. For the
HMF, we plot the theoretical predictions of Sheth-Tormen (ST) [335, 334] and Tinker [361].
We use the prescription of [119] in the case of massive neutrino cosmologies by replacing
Ωm → Ωcb and Pm → Pcb as neutrinos have negligible contribution to halo mass. There is
good agreements between these predictions and Quijote. We have also checked that there
is good agreement for different choice of step size (not shown). Note that these theoretical
formulae provide a guideline rather than exact predictions, as they were fitted to simpler
simulations or calibrated on spherical overdensity halos, as opposed to FoF here.

In Fig. 3.9 we show the convergence of the Fisher matrix elements with respect to the
number of realizations used to compute the covariance, Ncov, and derivatives Nder. We
consider the Fisher matrix components for Pm (red), the HMF (blue), the VSF (green), and
the combined probes (black). The gray bands corresponds to the ±5% interval. While there
is some noise in the σ8 component of the Fisher matrix for Pm as function of Ncov, good
convergence is achieved by 15000. Likewise the Fisher matrix is well converged as a function
of Nder. Crucially, the Fisher matrix elements for the combined probes (black) all show good
convergence. Note that when combining probes we scale the power spectrum by a factor of
10−10 to ensure that the condition number of the covariance matrix is sufficiently low for
accurate inversion.

Finally, we comment on the choice of finite difference scheme used to compute the deriva-
tive of probes with respect to Mν . Throughout the paper we used Eq. 3.6 with δMν = 0.2 eV,
thus making use of simulations with Mν = 0, 0.2, and 0.4 eV. Using this scheme we found
the full combined constraint on Mν is 0.018 eV, as shown in Table 3.2. To illustrate robust-
ness to this choice of finite difference scheme, we also performed the analysis using Eq. 3.6
with δMν = 0.1 eV and found it to give an identical constraint of 0.018 eV. Additionally,
we tried a forward difference scheme between Mν = 0 and 0.1 eV, which also gave identical
constraints. Hence, the results are consistent with the choice of finite difference scheme.
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We do also note that since the joint constraints on the parameters given in Table 3.2 are
smaller than the step sizes used to compute derivatives, it would be interesting to investigate
the effect of smaller step sizes on the joint constraints. This would reduce the error in the
numerical derivatives, and thus may slightly modify the joint constraints.

Given these results, we believe that our conclusions are robust against potential numerical
systematics. We note again that our bin configuration has been chosen with these results
in mind, to ensure sufficiently converged derivatives and Fisher matrix components, but
in principle one could consider more bins over a wider range to potentially obtain tighter
constraints.

3.8 Appendix B: Combining two probes at a time

Fig. 3.10 shows the 2D Fisher contours to illustrate the effects of only combining two out
of the three probes at a time. In most cases, the constraints obtained by combining the
halo mass function with the void size function are the weakest, indicating that it is impor-
tant to use the information from the non-linear matter power spectrum to break degeneracies.
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Figure 3.8: Derivatives of the matter power spectrum (top), halo mass function (middle), and
void size function (bottom) with respect to the different cosmological parameters at z = 0. We
show results when the mean values are estimated using 300 (red), 400 (blue), and 500 realizations
(black). Solid/dashed lines indicate that the value of the derivative is positive/negative. While the
derivatives for the matter power spectrum are well converged already with 300 realizations, more
simulations are required for halos and voids.
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Figure 3.9: Left: Convergence of all Fisher matrix components as a function of number of simula-
tions used to compute the covariance matrix, Ncov. Each line shows the ratio between the Fisher
matrix elements computed using Ncov simulations and 15,000 simulations (as used in the paper).
Right: Convergence of all Fisher matrix components as a function of number of simulations used
to compute derivatives, Nder. Each line shows the ratio between the Fisher matrix elements com-
puted using Nder simulations and 500 simulations for each cosmology (as used in the paper). In
both cases, we plot the Fisher matrix components for Pm (red), the HMF (blue), the VSF (green),
and the combined probes (black). The gray bands correspond to the ±5% interval. While there is
some noise in the σ8 component of the Fisher matrix for Pm as a function of Ncov, good convergence
is achieved by 15,000. Likewise the Fisher matrix is well converged as a function of Nder. Crucially,
the Fisher matrix elements for the combined probes (black) all show good convergence.
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Chapter 4

Beware of fake νs: The effect of
massive neutrinos on the nonlinear
evolution of cosmic structure

The contents of this chapter was originally published in [58],

Beware of Fake ν’s: The Effect of Massive Neutrinos on the Non-Linear Evolution of
Cosmic Structure
Bayer A.E., Banerjee A., Seljak U. (arXiv:2108.04215) PRD 105, 123510 (2022)

Massive neutrinos suppress the growth of cosmic structure on small, non-linear, scales.
It is thus often proposed that using statistics beyond the power spectrum can tighten con-
straints on the neutrino mass by extracting additional information from these non-linear
scales. In this chapter, we study the information content regarding neutrino mass at the
field level, quantifying how much of this information arises from the difference in non-linear
evolution between a cosmology with 1 fluid (CDM) and 2 fluids (CDM + neutrinos). We do
so by running two N -body simulations, one with and one without massive neutrinos; both
with the same phases, and matching their linear power spectrum at a given, low, redshift.
This effectively isolates the information encoded in the linear initial conditions from the non-
linear cosmic evolution. We demonstrate that for k ≲ 1h/Mpc, and for a single redshift,
there is negligible difference in the real-space CDM field between the two simulations. This
suggests that all the information regarding neutrino mass is in the linear power spectrum set
by the initial conditions. Thus any probe based on the CDM field alone will have negligible
constraining power beyond that which exists at the linear level over the same range of scales.
Consequently, any probe based on the halo field will contain little information beyond the
linear power. We find similar results for the matter field responsible for weak lensing. We
also demonstrate that there may be much information beyond the power spectrum in the
3d matter field, however, this is not observable in modern surveys via dark matter halos or
weak lensing. Finally, we show that there is additional information to be found in redshift
space.
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4.1 Introduction

Upcoming cosmological missions such as DESI1, Euclid2, LSST3, PFS4, SKA5, and WFIRST6,
will probe progressively smaller scales of cosmic structure. It is hoped that by probing these
small, non-linear, scales one will be able to detect much information regarding the total
neutrino mass. To fully realize the potential of these surveys, an urgent task is thus to
quantify and optimally extract this information from the observed cosmological fields.

In a cosmology with massive neutrinos [236], we can define ρcb as the contribution to the
energy density due to cold dark matter (CDM) and baryons, ρν as the contribution due to
neutrinos, and ρm as the total matter contribution. Given the lower bound on the sum of
the neutrino masses coming from oscillation experiments is Mν = 60meV [166, 9, 25, 10,
22], neutrinos are non-relativistic at low redshift. Defining ρ̄X as the mean energy density in
species X, where X = {cb, ν,m}, we can further define the relative overdensity of species X
at redshift 0 as δX = (ρX − ρ̄X)/ρ̄X , and the fraction of the total matter density in species
X as fX = ρ̄X/ρ̄m = ΩX/Ωm. This gives

Ωmδm = Ωcbδcb + Ωνδν , (4.1)

and the matter overdensity as

δm = (1 − fν)δcb + fνδν . (4.2)

In practice, we cannot measure δν directly, as we do not have direct access to fluctuations
in the cosmic neutrino background. We also cannot measure fν = Ων/Ωm directly at low
redshifts from the redshift-distance relations, since neutrinos are non-relativistic and their
density has the same redshift dependence as cold dark matter and baryons. This leaves
density perturbations in the total matter, δm, and CDM+baryon, δcb, fields as ways to probe
neutrino mass at low redshifts. So the success of upcoming surveys measuring neutrino
mass hinges on their ability to measure the effects of neutrinos on the total matter and
CDM+baryon perturbations, as well as on their ability to measure Ωm from the redshift-
distance relation (which can also be extracted from perturbations, such as from Baryonic
Acoustic Oscillations).

On large scales neutrinos cluster analogously to CDM, whereas on small scales they do
not cluster. The scale at which this transition occurs is known as the free streaming scale
and is due to the neutrino thermal velocities erasing their own perturbations. We can thus
divide perturbations into scales larger than the neutrino free streaming scale, where δν ∼ δcb,
and scales smaller than that, where δν ∼ 0. One can see that if one could measure δm and δcb

1https://www.desi.lbl.gov
2https://www.euclid-ec.org
3https://www.lsst.org
4https://pfs.ipmu.jp/index.html
5https://www.skatelescope.org
6https://wfirst.gsfc.nasa.gov/index.html

https://www.desi.lbl.gov
https://www.euclid-ec.org
https://www.lsst.org
https://pfs.ipmu.jp/index.html
https://www.skatelescope.org
https://wfirst.gsfc.nasa.gov/index.html
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on small scales in the absence of noise, then any difference between the two would give strong
constraints on neutrino mass via δm ∼ (1− fν)δcb. However, this poses several observational
difficulties.

A first difficulty is that the matter overdensity field δm is not directly observable. Weak
lensing probes the convergence, given by

κ(χ∗, n̂) =
3H2

0Ωm

2c2

∫ χ∗

0

dχ
χ

a(χ)

(
1 − χ

χ∗

)
δm(χn̂), (4.3)

where χ is the comoving distance, χ∗ is the comoving distance to the source, n̂ is the direction
on the sky, H0 is the Hubble constant, c the speed of light, a(χ) is the expansion factor, and
we assume zero curvature. Hence, κ can be viewed as a measurement of Ωmδm averaged over
a radial window along the line of sight between the observer and the source. This dilutes
the information contained in the total matter field.

A second issue is that we also cannot measure δcb directly. What we can typically measure
from galaxy observations is a biased version, where at the linear level we have δg = b1δcb,
with galaxy overdensity δg being modulated by the linear bias b1. The linear bias is constant
on large scales, but has complicated scale dependence on small scales which cannot be
predicted ab initio and thus has to be marginalized over to obtain constraints on cosmological
parameters. One way to measure it is using redshift-space distortions (RSD), which at
the linear order probes density-velocity correlations. Velocity can be related to the matter
overdensity via δv = fδm, where f is the linear growth rate which depends on the matter
density Ωm. The growth rate is also affected by neutrinos, which slow down the growth of
structure on small scales. However, on small scales, i.e. beyond linear order, this relation
also becomes more complicated due to higher order velocity-density correlators [see e.g. 107],
once again making it difficult to isolate the effects of neutrino mass.

Multi-tracer analyses, combining δg from spectroscopic or photometric surveys, with weak
lensing κ from the cosmic microwave background (CMB) or large-scale structure (LSS),
suggest that LSS surveys have the power to separate neutrino mass from other parameters,
and that sampling variance cancellation is helpful on large scales [319, 395]. Nevertheless,
this approach is limited to about 20meV precision on the sum of neutrino masses for surveys
such as LSST, suggesting it may not be able to give a neutrino mass detection at more than
3 sigma for the minimum theoretical mass of 60meV.

This limited precision from multi-tracer probes has revived interest in measuring neutri-
nos from a single tracer using non-linear information. By studying the non-linear effects of
massive neutrinos on structure formation [311, 82, 83, 337, 375, 18, 68, 69, 119, 380, 382, 94,
95, 47, 26, 89, 368, 6, 150, 203, 330, 396, 48, 247, 130, 103, 104, 57], several such statistics
have been proposed, including the bispectrum, halo mass function, void size function, prob-
ability distribution function, and marked power spectrum [222, 246, 242, 120, 254, 11, 178,
177, 366, 257, 62, 223]. The reasoning is that a single tracer may have access to different
types of information in different density regions. For example, while high density regions
may be mostly sensitive to the CDM+baryons, which cluster and gravitationally collapse
into virialized objects, low density regions such as voids may be more sensitive to neutrinos,
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which cluster weakly in comparison. Crucially, this implies that a full description of the
system requires a two-fluid model, that of CDM+baryons and of neutrinos, which cannot be
mimicked by a single CDM+baryon component. The hope of this approach is that by effec-
tively combining information from different density regimes one might be able to determine
neutrino mass to a much higher precision than predicted by just the two point statistics, the
power spectrum.

The goal of this paper is to investigate this single tracer proposal by comparing a single-
fluid CDM simulation to a two-fluid simulation with CDM and neutrinos (for the purpose
of this paper we assume baryons trace CDM). We examine whether the presence of massive
neutrinos has a unique non-linear effect that differentiates the two at late times, or if the
impact of the massive neutrino component can be faked by a solitary CDM component. To
this end, we set up the two simulations with matched linear power spectrum of the field
in question, and equal phases, at a redshift of interest, which we will take to be z = 0.
We compare the two simulations at the field level for three different fields: (i) δcb, which
uniquely defines anything observable with galaxies, (ii) Ωmδm, which is the corresponding
field controlling weak lensing observables, and (iii) δm, the 3d total matter field which is not
currently observable.

If at the field level the two simulations differ in their phases at z = 0, this would suggest
there is information that has been created by the non-linear evolution that is unique to the
presence of massive neutrinos, and that cannot be mimicked by a single CDM fluid. If, on
the other hand, the final phases are matched exactly, then there is no information associated
with the difference in non-linear evolution beyond the overall amplitude of the field, i.e. the
power spectrum. If the power spectra at z = 0 are also identical between the two simulations
then there is no non-linear information arising specifically from the presence of the neutrino
component, and any information regarding neutrino mass must simply arise from the differing
linear physics. A similar analysis was performed in the context of modified gravity by [97],
which studied only the non-linear power spectrum. Earlier work in the context of neutrino
mass includes a study of the halo mass function [96], and the non-linear matter power
spectrum for the Ly-α forest [284]. We will generalize such analyses by considering the
information at the field level.

The structure of this paper is as follows. In Section 4.2 we outline how to study the
information content of cosmological fields. In Section 4.3 we apply this to understand the
amount of neutrino mass information in the various aforementioned cosmological fields. In
Section 4.4 we then comment on the benefits of probes beyond the power spectrum (for
example related to halos and voids). In Section 4.5 we consider a Fisher analysis to compare
constraints obtained from the linear and non-linear power spectrum. Finally, in Section 4.6
we conclude and discuss how our findings relate to constraints on Mν presented in recent
works.
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4.2 Cosmological Information

The simplest tool used to quantify the information content of a field δ(k) is the (auto) power
spectrum Pδδ(k), defined via

⟨δ∗(k)δ(k′)⟩ = (2π)3Pδδ(k)δ(D)(k − k′), (4.4)

where δ(D) is the Dirac delta function. Pδδ(k) is the Fourier transform of the two-point
correlation function ξ(r), i.e. it measures the overdensity correlation between two arbitrary
points of space separated by r. For a statistically homogeneous, isotropic, and Gaussian
field, the power spectrum contains the entire information of the field. The standard model
of cosmology assumes homogeneity and isotropy, and that the primordial Universe was de-
scribed by a Gaussian random field (although we note that there are some extensions beyond
this theory, for example positing primordial non-Gaussianity [253, 125, 219, 326, 115, 108,
260]). The overdensity field in Fourier space is in general complex, i.e. it can be written

as δ(k) = |δ(k)|eiϕ(k), where |δ(k)| is the magnitude and ϕ(k) the phase. The phases of a
Gaussian random field have a uniform random distribution in the range [0, 2π).

The Universe then evolves, and during the late stages of evolution, structure formation
introduces non-Gaussianities on small scales due to the non-linear nature of gravitational
collapse. The exact nature of this non-linear evolution depends on the cosmological param-
eters, for example the energy density of dark energy ΩΛ, the Hubble constant H0, and the
total neutrino mass Mν . There is thus much interest in studying higher-order statistics,
in the hope that they contain additional information beyond the power spectrum. This is
particularly true in the case of neutrinos due their signature on small, non-linear, scales. It
is thus important to understand how much information neutrinos imprint on different cos-
mological fields, and furthermore how much of this information arises from non-linear cosmic
evolution.

To set up the problem, let us consider two different universes at some late redshift zf . We
denote some generic field as δX(k, zf ) in the first universe with cosmological parameters λ,
and δ̃X(k, zf ) in the second universe with cosmological parameters λ̃. A question of interest
is, if our Universe corresponds to δ, how well can we distinguish it from a universe with
field δ̃? Or in other words, how much information can we learn about the cosmological
parameters by studying δ(k, zf )? While a typical analysis, e.g. a Fisher analysis, considers
both linear and non-linear information as one, we seek to isolate the non-linear information.
More concretely, while a cosmological field may be sensitive to a change in cosmological
parameters, if this sensitivity is purely at the linear level, then there will be no additional
information compared to the linear power spectrum; one could consider non-linear probes,
such as the halo mass function, void size function, the bispectrum, etc., but they will just
be expressing the information content of the linear power spectrum in a different form. So it
is interesting to study how much non-linear information there is and thus how much benefit
one can expect to extract from non-linear observables.

To quantify how much non-linear information an entire field contains with regard to a
change in cosmological parameters λ− λ̃, we match the linear physics at zf between the two
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cosmologies. We then backscale the fields to some earlier redshift, zi, using linear theory
twice: one time using the cosmology associated with λ, and one time using λ̃. Finally we
perform an N -body simulation to evolve the two fields to zf and obtain non-linear results:
here again we use the appropriate choice of cosmology in each case. A schematic of these
two simulations is as follows:

δ
(1)
X (zf )

λ
↪−−−−−→
backscale

δ
(1)
X (zi)

λ
=====⇒
N−body

δX(zf ), (4.5)

δ
(1)
X (zf )

λ̃
↪−−−−−→
backscale

δ̃
(1)
X (zi)

λ̃
=====⇒
N−body

δ̃X(zf ), (4.6)

where δ
(1)
X labels the linear power spectrum of component X. The key difference between this

approach and a typical analysis is the use of identical initial conditions for both universes
to ensure the linear physics is the same at zf after running the simulation. This means that
any difference between δX(zf ) and δ̃X(zf ) after the N -body simulation will be purely due to
non-linear effects caused by using λ̃ instead of λ.

Having set up the problem, we now review how to quantify the difference between two
fields. Rather than considering specific observables, we seek to study effects at the field-level.
In order to compare the the two fields at zf , we consider the (complex) coherence of the two
fields, defined as

ζ(k) =
Pδδ̃(k)√

Pδδ(k)Pδ̃δ̃(k)
, (4.7)

where Pδδ̃(k) is the cross-power spectrum between δ and δ̃, given by

⟨δ∗(k)δ̃(k′)⟩ = (2π)3Pδδ̃(k)δ(D)(k − k′). (4.8)

Unlike the auto power spectrum, the cross power spectrum can in general be complex. Note
that statistical isotropy and homogeneity enforces the coherence to only be a function of the
magnitude k.

Two fields are said to be coherent at scale k if |ζ(k)| = 1. In such a case the power
spectra of the two fields are linearly related as follows

Pδ̃δ̃(k) =

∣∣∣∣
Pδδ̃(k)

Pδδ(k)

∣∣∣∣
2

Pδδ(k), (4.9)

where the | · |2 term can be thought of as a linear transfer function between the auto spectra
of the two fields.

If the real part of the coherence is equal to 1, the phases of δ and δ̃ are statistically
identical. If the phases of the two cosmologies evolved identically, then the entire difference
between the two fields is captured by any difference in the amplitude of the individual power
spectra. Furthermore, if two fields are coherent, and the transfer function is identical to
unity, |Pδδ̃(k)/Pδδ(k)| = 1, this implies that the power spectra are identical and that there is
thus no non-linear information in the power spectrum. In such a case the two cosmologies are
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statistically indistinguishable in terms of non-linear effects, and there will be no information
beyond the linear power spectrum. By this we mean that for a given set of scales, the
information content of any non-linear statistic cannot exceed the information content of
the linear power spectrum over those same scales. While the linear power spectrum is not
something one can generally observe for a particular field, it is useful to know whether or
not there is information that exists beyond linear theory.

4.3 Massive Neutrino Information

Using the notation of the previous section we use λ to denote a universe with massive
neutrinos, Mν = 0.15eV, and λ̃ to denote a universe without massive neutrinos, Mν =
0. We start by using a Boltzmann solver to compute the linear power spectrum for a
cosmology with Mν = 0.15eV at zf = 0. We then backscale this power spectrum to zi = 99
twice, one time using the linear physics associated with massive neutrinos (using the REPS
package [399]), giving PX(k, zi), and the other time using the linear physics associated with
massless neutrinos, giving P̃X(k, zi). We generate realizations of the two fields at z = 99 with
matched phases. Note that the massless neutrino cosmology is thus initialized with a power
spectrum whose shape encodes the linear suppression of growth due to the presence of massive
neutrinos in the other cosmology. Then we evolve PX(k, zi) through to zf using the Gadget
N -body simulation [346] with massive neutrinos, yielding δX(k, zf ), and we similarly evolve
P̃X(k, zi) through to zf using the N -body simulation without massive neutrinos, yielding
δ̃(k, zf ). Since the linear predictions of the two cosmologies have been matched as closely as
possible, we can determine how much non-linear evolution is special to the presence of massive
neutrinos by comparing the fields at zf : δ(k, zf ) and δ̃(k, zf ). Furthermore, by comparing
the power spectra of the fields, Pδδ(k, zf ) and Pδ̃δ̃(k, zf ), we can assess the information in
the power spectrum. We refer to the Mν > 0 simulation as the “real” simulation, and the
Mν = 0 simulation as the “fake” simulation, because the purpose of the Mν = 0 simulation
is to fake the effects of massive neutrinos by using a single-fluid CDM simulation with initial
conditions associated with a massive neutrino cosmology. Note that for each considered field,
δX , a different fake N -body simulation is run with matched linear physics for that particular
field. We consider a box of volume 1 (Gpc/h)3 and a grid of dimension 10243 for both CDM
and neutrinos.

In the case of lensing, the field δm is not directly measured. Instead, lensing measures
Ωmδm averaged over a window function integrated over the line of sight, as described in
Eqn. (4.3). We are therefore free to define the effective lensing field by rescaling by a
constant factor, which we choose to be (1 − fν) as follows:

κ ∼ Ωmδm = Ωm(1 − fν)
δm

(1 − fν)
= Ωc

δm
(1 − fν)

. (4.10)

Assuming no a priori information regarding Ωm, we can evaluate the lensing information by
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considering the information in the field defined by

δΩm ≡ δm
(1 − fν)

. (4.11)

While we are free to choose any normalization, the reason for this choice is that we seek
the option which most closely matches the real and fake cosmologies. From Eqn. (4.2) it is
clear that δΩm ∼ δcb on small scales, thus this choice is inspired such that neutrino effects
should be negligible on small scales (note that in the case of δΩm linear matching cannot be
achieved at large scales, but rather on small scales).

In Fig. 4.1 we plot the real part of the coherence for each of the fields between the real
and fake simulations. Specifically, when we match PX at z = 0, we plot the coherence for
the X overdensity field. It can firstly be seen that in the case of X = cb, the coherence is
unity up to k = 1h/Mpc to ≲ 0.01%. This implies that the final phases of the cb field are
equivalent regardless of whether massive neutrinos are included in the simulation. This is
to say that the non-linear evolution of the cb field is identical in both the one-fluid (CDM)
and two-fluid (CDM+ν) description. Thus there is negligible non-linear information in the
cb field that goes beyond the power spectrum within scales of experimental interest. On the
other hand, the coherence for δm begins to differ from 1 at a lower value of k, implying there
is non-linear information beyond the power spectrum for the 3d matter field. However, one
cannot measure the matter field directly, and one instead measures lensing which is related
to δΩm, as in Eqn. (4.11). In this case the picture is identical to δcb, with a coherence of 1 up
to k = 1h/Mpc to ≲ 0.01%, implying negligible non-linear information beyond the power
spectrum in this field at these scales.

Having established that, for scales of interest, the information in the case of δcb and δΩm

is all in the power spectrum, we now consider how much information the power spectrum
contains. In Fig. 4.2 we plot the ratio between the power spectra for the various fields
at redshift zf . We see that for Pcb the ratio is always 1, implying that there is negligible
non-linear information regarding neutrinos in the cb power spectrum. (We note that the
≲ 0.1% upturn for scales smaller than k ≈ 0.5h/Mpc is a numerical artifact caused by a
slight discrepancy between the growth factor implemented in backscaling and that effectively
implemented by the N -body simulation. The magnitude of this discrepancy depends on Mν ,
leading to this small effect.) Given the coherence of the cb field is 1, this means there is
negligible non-linear information about neutrino mass in the entire cb field. On the other
hand, there is a deviation of order 1% in PΩm for k ≲ 0.1h/Mpc. This implies there is some
information on neutrino mass in the lensed matter power spectrum. This is the typical shape
information associated with neutrinos, however, it mostly appears on large, linear, scales and
will thus be sample variance limited. Finally, we see that the ratio for Pm differs from 1
on small scales, implying the presence of non-linear information about neutrinos beyond the
the linear power spectrum of the 3d total matter field.

To summarize, whenever we consider the single-fluid CDM field, we find that there is no
difference between the real and fake simulations. On the other hand, whenever we consider
fields that explicitly depend on both fluids (CDM+ν) in the real simulations, we generally
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Figure 4.1: The real part of the coherence between fields from the real and fake simulations. If we
match δX at z = 0, we plot the coherence for δX . It can be seen that the coherence in the case of
δcb and δΩm is 1 up to k = 1h/Mpc to ≲ 0.01%. This implies that there is negligible non-linear
information in the cb field or the lensed matter field at these scales that goes beyond the power
spectrum. On the other hand, the coherence for δm begins to differ from 1 at a lower value of k,
implying non-linear information beyond the power spectrum for the 3d matter field.

find that a single fake simulation cannot reproduce the statistics on all scales: either they
remain matched on large scales, or they remain matched on small scales. The two choices we
explore, m and Ωm, illustrate this clearly. For m, the small scales have a different non-linear
behavior even though the linear statistics are exactly matched. For Ωm, the large scales are
not matched even at the linear level, but crucially, the small scale matching is maintained
both at the linear and non-linear level. Since for Ωm only the linear scales are not matched
well, most of the information should be contained in the linear power spectrum.
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Figure 4.2: The ratio of the power spectra between the real and fake simulations. If we match δX
at z = 0, we plot the corresponding power spectrum, PX . It can be seen that the ratio is 1 for
cb, while there is an approximately 1% deviation for PΩm on large scales. Only Pm differs form 1
on non-linear scales, implying information beyond the power spectrum in for the matter field. In
the cases of cb and Ωm, the ≲ 0.1% upturn on scales smaller than k ≈ 0.5h/Mpc is a numerical
artifact due to discrepancy between the backscaling and forward model; a similar effect can be seen
in the case of m for which a downturn begins at k ≈ 0.5h/Mpc.

4.4 Higher-Order Statistics

We now illustrate the effect of the results of the previous section on various statistics beyond
the power spectrum. While the results of the previous section are sufficient in determining the
presence of information regarding Mν in any non-linear statistic beyond the power spectrum,
we now show this explicitly for various examples in the interest of clarity.

We start with the void size function (VSF), a commonly proposed source of information
regarding neutrino mass [222]. We use the spherical void finder of [47] with a threshold of
δth = −0.7, and look for voids in the three considered fields: cb, Ωm, and m. In Fig. 4.3 we
find that there is no difference in the VSF between the real and fake simulations for both
the cb and Ωm fields, but there is potentially some difference for the 3d matter field. Note
that we find similar results regardless of the value of δth.
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Figure 4.3: The ratio of the void size function between the real and fake simulations. If we match
δX at z = 0, we plot the corresponding VSF in the X field. Bands represent Poisson errors. It can
be seen that the ratio is 1 for cb and Ωm within the Poisson errors. Only the VSF in the 3d matter
field shows a ratio that isn’t unity, although it is still close to the Poisson error.

Next, in Fig. 4.4, we consider the marked power spectrum. We use the optimal choice of
mark parameters found in [257], which uses the smoothed overdensity field with 10 Mpc/h
smoothing window, thus small scale information is mixed into large scales. We again find
little difference in the cb field. The Ωm field differs only on large, linear, scales. For the
m field there is a difference on all scales. Again, this fits with our findings in the previous
section.

A corollary of there being negligible information in the cb field is that there will also be
negligible information in the halo field. The halo field is a function of the cb field and the
bias parameters, hence, without knowledge of the bias, the information content of the halo
field is just a re-expression of the information contained in the cb field. We illustrate this in
Fig. 4.5, which shows the difference in the power spectrum, void size function, and marked
power spectrum, for the halo field between the real and fake (cb-matched) simulations. We
identify halos using the Friends-of-Friends (FoF) algorithm and apply a fixed number density
cut. We find that there is no significant difference in any of the halo statistics between the
real and fake simulations.
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Figure 4.4: The ratio of the marked power spectrum (M) between the real and fake simulations.
If we match δX at z = 0, we plot the corresponding M in the X field. It can be seen that the ratio
is 1 for cb, while for the Ωm it deviates form 1 on large scales, and for m is deviates from 1 on all
scales.

Having shown there to be little information in the real-space halo field, we now consider
redshift-space distortions (RSD), which includes the effects of the peculiar velocities of halos
along the line of sight (LoS). The peculiar velocity field is sourced by the clustering of the
total matter field, which includes neutrinos. The halo power spectrum in redshift space
can, therefore, provide additional information on the total neutrino mass. In the left panel
of Fig. 4.6 we show a bin-by-bin comparison of the redshift-space halo power spectrum
from the real and fake (with matched cb field) simulations in the (k∥, k⊥) plane, where
parallel/perpendicular is in reference to the LoS. It can be seen that some bins along the
LoS have a relatively large difference between the two simulations, but even small deviations
from the LoS direction brings the size of the effect down to ≲ 1%, in line with the results
obtained in real space. To better visualize the dependence on magnitude, k, and projection
onto the LoS, µ = k∥/k, we bin the data into 3 bins of k and 4 bins of µ. The right panel
shows the difference between the real and fake simulation increases with k and µ, signifying
the information present at small scales due to RSD as one approaches the LoS. Therefore, we
conclude that there is indeed additional non-linear information about neutrino mass that can
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Figure 4.5: The ratio of the halo-traced power spectrum, void size function, and marked power
spectrum (from left to right and then top to bottom) between the real and fake (cb-matched)
simulations. It can be seen that the ratio is close to unity in all cases.

be obtained by studying clustering of biased tracers in redshift space. While this clustering
can be difficult to model accurately, it may be a key source of information in upcoming
surveys [160].

4.5 Fisher Analysis

As shown the previous two sections, without RSD, the cb field is statistically indistinguish-
able between the one-fluid (CDM) and two-fluid (CDM+ν) simulations. The same is also
approximately true for the Ωm field, responsible for weak lensing, for which there is only a
difference in the power spectrum on large scales. If there is negligible difference between the
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Figure 4.6: The ratio of the redshift-space halo power spectrum between the real and fake (cb
matched) simulations. Left : bin-by-bin comparison in the (k∥, k⊥) plane, where parallel/perpen-
dicular is in reference to the LoS. Right: binning the data into 3 bins of magnitude, k, and 4 bins of
LoS projection, µ = k∥/k. Both plots show a deviation of the ratio from unity when moving closer
to the LoS and to smaller scales, but negligible deviation in the perpendicular direction, suggesting
that the additional information on neutrino mass comes from the modified velocity field, or growth
rate, which is sourced by the matter overdensity.

one-fluid and the two-fluid non-linear dynamics, the total information content is essentially
maximized by that which arises from the linear physics. Nevertheless, as the linear power
spectrum is not observable, it is instructive to compare the information content of the linear
power spectrum to the non-linear power spectrum.

We perform a Fisher analysis in the {Ωm,Ωb, h, ns, σ8,Mν} plane. We use a fiducial
cosmology with Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624, σ8 = 0.834, and
Mν = 0.05eV. To compute derivatives we use a central difference scheme at ±δθ for each
cosmological parameter. Specifically we use δΩm = 0.01, δΩb = 0.002, δh = 0.02, δns = 0.02,
δσ8 = 0.015, and δMν = 0.025eV. For the linear covariance between probes x and y, we use
CX = 2P 2

X/Nk, where Nk = 4πk2kF/k
3
F , and kF = 2π/L is the fundamental wavenumber

which we take for a box of volume 1 (Gpc/h)3. For the non-linear results we use the Quijote
simulations [383], and for the linear results we use CAMB [239], using the same derivative
computation method and binning as Quijote.

Fig. 4.7 shows the marginal error on Mν as a function of kmax for the various linear
and non-linear power spectra. As expected there is good agreement between the linear and
non-linear results on large scales, where cosmic evolution is approximately linear. Moving to
smaller scales, we see that the non-linear power spectra for cb and Ωm have a factor 2 times
lower constraining power compared to their linear counterparts. Note that the non-linear
power has worse constraints because its covariance has positive off-diagonal elements due
to mode coupling, which in turn degrades the information content after marginalizing [62].
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Figure 4.7: Marginal error on Mν for Pcb (blue), PΩm (red), and Pm (green), in both the linear
(solid) and non-linear (dashed) regime, for a volume of 1 (Gpc/h)3.

This means that there is still potential room for improvement upon the constraints from the
non-linear power spectrum, and one may benefit from around a factor 2 by using statistics
beyond the power spectrum. Thus, on their own, the cb and Ωm fields give a marginal error
on the neutrino mass of just under 1eV in a 1 (Gpc/h)3 volume.

On the other hand, the linear and non-linear marginal error on Pm match well all the
way to kmax = 0.5h/Mpc. But, regardless of this, it was shown in the previous section that
there is additional information in the phases of the 3d matter field that is not fully captured
by the power spectrum, and there is thus additional information to be found in higher-order
statistics.

4.6 Discussion and Conclusions

In this paper we have investigated how much non-linear information regarding neutrino
mass one can expect to find in various cosmological fields by comparing one-fluid (CDM)
to two-fluid (CDM+ν) simulations with matched initial conditions. In real space, we found
that the cb field and Ωm (lensing) field do not contain additional information regarding
neutrino mass that is unique to the two-fluid dynamics up to k ≲ 1h/Mpc. Essentially, the
evolutionary effect of including a massive neutrino fluid can be faked by a solitary CDM fluid.
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This implies that the cb field, and derived quantities (e.g. the halo field), and weak-lensing
convergence, contain little information regarding neutrino mass beyond that which exists in
the linear power spectrum over the same scales. We have also shown that there is much
non-linear information regarding neutrino mass in the 3d matter overdensity field, however,
this is not currently experimentally detectable. The fundamental quantities we considered
are the coherence and power spectrum ratio between the two simulations, summarized in
Table 4.1, which alone quantify the amount of non-linear information at the field level. We
then explicitly verified these findings for various higher-order statistics, including the void
size function and marked power spectrum.

Consequently, one can expect constraints on neutrino mass a little lower than 1eV in a
volume of 1 (Gpc/h)3 when using the cb or lensing fields alone at a single redshift. Hence,
using only this information, a very large volume of 104 (Gpc/h)3 would be needed to reach
an error of 0.01eV (corresponding to a ∼ 5 sigma detection), which exceeds the available
volume of currently realistic surveys.

We note that even in the face of these findings, there is still motivation to consider
statistics beyond the power spectrum to detect neutrino mass. A first consideration is the
choice of redshift(s). In our analysis we have matched the linear physics at a single redshift,
z = 0. Similarly, [284] used hydrodynamical simulations to find one can fake the effects of
massive neutrinos in the non-linear power spectrum up to k ≲ 10/Mpc for the Ly-α forest
(z = 3). While the effects of massive neutrinos can be faked at a single redshift, the real
and fake universes have, in principle, different evolution. Therefore, combining the fields
at multiple redshifts should help discriminate between the two and improve constraints on
Mν . It will thus be imperative to combine multiple redshifts (from CMB redshift of 1100 to
today) and tracers (CMB, galaxies, and weak lensing) to obtain tight constrains on neutrino
mass in upcoming surveys. For example, combining weak lensing and galaxy clustering, can
reach 0.02eV with Rubin (LSST) and Stage IV CMB [319].

Second, the late-time linear power spectrum is not an observable quantity, as cosmic
evolution is indeed non-linear. Hence, even though the linear power spectrum may provide
a bound for the error in the case of cb and lensing, the non-linear power spectrum does
not quite reach this bound. We have shown this effect corresponds to around a factor of 2,
thus a different non-linear statistic may be able to obtain slightly better constraints than

Table 4.1: Summary of key results. The coherence and power spectrum ratio between the real
and fake simulations for the cb, Ωm, and m fields, for k ≤ 1h/Mpc. Note that while the power
spectrum ratio for the Ωm field differs from unity at the 1% level, this is only at low k which is
sample variance limited.

Field ζ − 1 Preal/Pfake − 1

cb ≲ 0.01% ≲ 0.1%
Ωm ≲ 0.01% ≲ 1% (low k)
m ≲ 0.1% ≲ 1%
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the non-linear power spectrum. This factor of 2 can also be recovered by reconstructing the
linear field from the non-linear field [329].

Third, we consider lensing measurements to be directly sensitive to the product Ωmδm.
This is exact if the sources are at low redshift. However, the comoving distance in Eqn. (4.3)
implicitly depends on Ωm as well, so for sources at higher redshift the relation is more
complicated. Thus all possible combinations of Ωm and δm that keep Ωmδm fixed may
not be compatible with the observed lensing signal because they will modify the comoving
distances. If one could obtain strong constrains on Ωm from the redshift-distance relation,
then combining it with lensing measurements may be able to probe δm directly, rather than
the product Ωmδm. We also note that neutrinos are non-relativistic at low redshift and thus
will not induce a significant geometric effect on lensing observables which is known to arise
in the context of dark energy [339, 404].

Fourth, we have motivated that redshift-space distortions (RSD) may provide non-linear
information regarding neutrino mass, thus considering higher-order statistics in redshift space
is a worthwhile pursuit. RSD adds new information because velocities are determined by
the growth factor f , which is sensitive to matter density Ωm and neutrino density Ων . While
RSD can be difficult to model, it could be a key source of information in upcoming surveys
[160]. For example, [224] illustrates how halo velocities can aid in constraining neutrino
mass. A further improvement on f may be possible from redshift dependence, which we did
not consider in this paper.

Fifth, it might be argued that even for the cb or Ωm fields one could find information
regarding Mν beyond the linear power spectrum, as there may be a non-linear statistic with
more favourable parameter degeneracies. For example, a particular non-linear statistic might
constrain some other cosmological parameter much better than the linear power spectrum,
and thus after marginalizing over this parameter, the constraints on Mν will outperform
the linear power spectrum. However, the other parameters of key relevance in the case
of neutrino mass are Ωm and As, for which non-linear cosmic evolution does not induce
additional information beyond that which exists in the linear initial conditions. We illustrate
this in the appendix for this chapter (Section 4.7). Thus it is not expected that degeneracies
will cause a big improvement in the constraints on Mν . One could also consider non-standard
cosmological parameters, for example related to primordial non-Gaussianty or exotic neutrino
interactions [221]. For the latter to have an effect there would likely need to be a mechanism
which couples the non-linear evolutions of the cb and neutrino perturbations much more
strongly than what happens through the Poisson equation. In principle this is possible given
a sufficiently strong neutrino-baryon or neutrino-neutrino interaction, and this could help
break-degeneracies with neutrino mass if one had a means to measure this non-standard
effect.

Numerous recent works have proposed that one can obtain information regarding neutrino
mass beyond the power spectrum [246, 242, 120, 254, 11, 178, 177, 366, 257, 62, 223, 109, 371].
Some forecast O(0.1eV) constraints by employing tomography, which is in good agreement
with our results. On the other hand, some works find constraints that are over an order
of magnitude smaller than linear theory. Given our findings we are able to explain exactly
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where this information comes from. In the case of [178, 177] the information arises from
working in redshift space, while for [366, 257, 62] it comes from working with the 3d matter
field. Regarding [223], which considers the real-space halo field, the information comes from
assuming knowledge of the bias model as a function of cosmology. The bias model can be
thought to transfer information on small scales in the cb field to larger scales in the halo
field, thus information at k > 1h/Mpc in the cb field could move to scales of k < 1h/Mpc
in the halo field. Hence, if one knew the bias model one could obtain tight constraints on
the neutrino mass with modern measurements of the halo field. However, the bias model
parameters can have strong degeneracies with the cosmological parameters, for example, the
linear bias b1 is essentially degenerate with σ8. It is thus important to marginalize over bias,
and apply halo mass or number density cuts, to obtain realistic constraints.

Many of the works that compute constraints on Mν are based on Fisher forecasts, for
which one must take great care to avoid inaccurate results [71, 393, 67]. Additionally, a Fisher
analysis employs asymptotic limits using the Taylor expansion of the log likelihood, which
may not be justified in a realistic data analysis where the posteriors are often non-Gaussian.
Thus, while some practitioners do go to great lengths to show that their Fisher matrices have
converged, it is unclear how credible such forecasts are for higher-order statistics. There is a
growing trend in modern Statistical Inference and Machine Learning to use cross-validation
as a golden standard for validation of results. The same standard should be adopted in
cosmology as well. This means setting aside some fraction of simulations that are not used
for training (i.e. not used to evaluate the covariance or derivatives of summary statistics),
and performing an end-to-end analysis on these validation simulations all the way to the
cosmological parameters of interest, where the result can be compared to the truth in terms
of bias and variance. Such an analysis is expensive, even more so if the validation simulations
are chosen to be produced by an independent simulation code, but this could be a worthwhile
standard validation procedure. Another worthwhile verification strategy is to use null tests,
in which one explicitly performs the analysis on setups where the signal is known to be null.
An example is running non-Gaussian statistical analysis on Gaussian data to demonstrate
that the Fisher analysis does not give more information than what is available in the Gaussian
field. Thus a useful piece of future work would be to train a neural network to learn the
effects of massive neutrinos on the various cosmological fields and perform all of these tests.
In the absence of such work, we intend for our results to give a useful rule of thumb when
proposing new statistics to measure the non-linear effects of massive neutrinos.
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4.7 Appendix A: Other Parameters (Ωm and As)

In this paper we have studied the effect of neutrino mass, Mν , on non-linear cosmic evolu-
tion. We now briefly discuss the effects of two other cosmological parameters relevant for
disentangling the effects of neutrino mass from large-scale structure: Ωm and As.

We first perform the real-versus-fake analysis on the cosmological parameter Ωm. We
seek to test if non-linear evolution leaves an imprint at the field level. To do so, we match
the linear P (k) of two Mν = 0 simulations, but differ the value of Ωm by 10% between
the two, during both backscaling and the forward N -body simulation. Fig. 4.8 shows the
coherence between these two simulations, which is shown to be ≲ 0.01% for k ≲ 1h/Mpc.
This suggests there is negligible additional information regarding Ωm coming from the non-
linear evolution that would be present in higher-order statistics, since the agreement is exact
at the field level. Interestingly, this is about the same value as the coherence found for
the real-versus-fake Mν coherence found in Fig. 4.1. Note that this analysis does not take
into account any change in the shape of P (k) due to a change in Ωm, which is information
contained in the initial conditions.

The other parameter of relevance when it comes to neutrino mass is the amplitude of
linear fluctuations, As. As this is the amplitude of the initial linear power spectrum, it
is a property of the initial conditions. Thus late-time non-linear evolution cannot produce
additional information on As.

We thus conclude that there is little information regarding Mν ,Ωm, or As coming from
non-linear cosmic evolution. Hence, for k ≲ 1h/Mpc in the cb or Ωm fields, there is no
non-linear statistic that will constrain these parameters significantly better than the linear
power spectrum, even after marginalizing.

https://github.com/franciscovillaescusa/Quijote-simulations
https://github.com/franciscovillaescusa/Quijote-simulations
https://github.com/franciscovillaescusa/Pylians3
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Figure 4.8: The real part of the coherence between the cb fields from two Mν = 0 simulations with
matched linear P (k) at z = 0, but with Ωm differing by 10%. It can be seen that the coherence
is 1 up to k = 1h/Mpc to ≲ 0.01%. This implies that there is negligible non-linear information
regarding Ωm in the cb field. The vertical range is identical to Fig. 4.1 to enable comparison.
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Chapter 5

Joint velocity and density
reconstruction of the Universe with
nonlinear differentiable forward
modeling

The contents of this chapter was originally published in [59],

Joint velocity and density reconstruction of the Universe with nonlinear differentiable
forward modeling
Bayer A.E., Modi C., Ferraro S. (arXiv:2210.15649) (submitted to JCAP)

Reconstructing the initial conditions of the Universe from late-time observations has the
potential to optimally extract cosmological information. Due to the high dimensionality of
the parameter space, a differentiable forward model is needed for convergence, and recent
advances have made it possible to perform reconstruction with nonlinear models based on
galaxy (or halo) positions. In addition to positions, future surveys will provide measurements
of galaxies’ peculiar velocities through the kinematic Sunyaev-Zel’dovich effect (kSZ), type Ia
supernovae, the fundamental plane relation, and the Tully-Fisher relation. In this chapter, we
develop the formalism for including halo velocities, in addition to halo positions, to enhance
the reconstruction of the initial conditions. We show that using velocity information can
significantly improve the reconstruction accuracy compared to using only the halo density
field. We study this improvement as a function of shot noise, velocity measurement noise,
and angle to the line of sight. We also show how halo velocity data can be used to improve
the reconstruction of the final nonlinear matter overdensity and velocity fields. We have
built our pipeline into the differentiable Particle-Mesh FlowPM package, paving the way
to perform field-level cosmological inference with joint velocity and density reconstruction.
This is especially useful given the increased ability to measure peculiar velocities in the near
future.
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5.1 Introduction

Reconstructing the initial conditions of the Universe from cosmological data is a pressing
task dating back many decades [183, 357, 76, 325]. Recently, there has been much work
to achieve this in the context of galaxy surveys, weak lensing, and the Lyman alpha forest
[329, 266, 267, 196, 197, 75, 207, 206, 296]. Furthermore, this procedure can be extended
to infer cosmological parameters using a field-level approach, which improves constraints
compared to a traditional 2-point analysis [329]. This is of particular interest as surveys
probe progressively smaller scales in which the effects of nonlinear gravitational evolution
moves cosmological information beyond the 2-point statistics. Many summary statistics
beyond the power spectrum have been proposed to extract some of this information (see
e.g. [353, 323, 64, 213, 315, 245, 248, 211, 332, 255, 246, 242, 222, 120, 310, 254, 11, 178,
177, 129, 366, 20, 175, 188, 46, 257, 110, 109, 62, 223, 58, 371, 370, 147]), however, a
field-level approach could enable optimal extraction of this information [329].

While much of the reconstruction literature focuses on using only the galaxy overdensity
field as the data, one could consider including additional information in the reconstruction
process, such as galaxy peculiar velocities [297]. This is of particular interest as modern
surveys begin to provide accurate measurements of peculiar velocities. Current galaxy pe-
culiar velocity catalogs include the 6dF galaxy survey (using fundamental plane) [87] and
Cosmicflows-4 (using the Tully-Fisher relation) [220]. In addition, the DESI Bright Galaxy
Survey [143] will provide many more measurements of galaxy peculiar velocities using fun-
damental plane measurements.

Peculiar velocity information can also be obtained from type Ia supernovae measurements
[304, 214], for example from the DSS survey [347]. This information can be combined
with galaxy surveys [215] or gravitational waves [280] to understand the nature gravity.
Furthermore, upcoming CMB experiments, such as Simons Observatory [360] and CMB-S4
[3] will provide accurate measurements of the kinematic Sunyaev-Zel’dovich (kSZ) effect from
which peculiar velocities can be obtained [144, 341].

Adding information from peculiar velocities vr to the reconstruction framework is ex-
pected to greatly reduce reconstruction error on large and intermediate scales. This is
because (in linear theory) the reconstruction error from peculiar velocity scales as k2 [341,
270], while density reconstruction has an approximately k-independent noise. Therefore on
sufficiently large scales, depending on the shot noise of the galaxy field, the reconstruction
from velocity will have lower noise. This is of great importance for measuring parameters
like primordial non-Gaussianity of the local type which are sensitive to the very large scales
and can be measured with reduced sample variance [326]. This has been studied analytically
in linear theory in [270], and it is also a sensitive probe of more general models of multi-field
inflation as discussed in [157, 24]. Reconstruction from velocities may also help improve the
reconstruction of the Baryon Acoustic Oscillations (BAO), especially close to the boundary
of the survey [403].
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Figure 5.1: The linear matter power (solid black), shot noise (dotted black), and the error on radial
modes of density (µ = 1) given measurements of the line-of-sight velocity with varying measurement
error σvr [in km/s] (dashed colored). The shot noise corresponds to a halo comoving number density
of n̄ = 10−6(h/Mpc)3.

The shot noise1, which corresponds to the error in reconstructing the initial field δ using
halo overdensity δh information, is approximately given by

Nδ|δh(k) ≈ 1

n̄
, (5.1)

where n̄ is the comoving number density of halos2. Note that this is an approximation, and
the shot noise can differ from the value above due to the effects of exclusion and non-linear
clustering [35]. The effect of this term is to decorrelate the true halo density field from the
model halo density field, in turn limiting the accuracy of reconstruction from the density
field.

1Shot noise arises due to the discrete sampling of objects such as halos and galaxies, and is apparent in
finite resolution simulations such as our own. In principle, if one had perfect knowledge of halo and galaxy
formation, and could run a high enough resolution simulation to model it, one could elude shot noise. While
such an endeavour is beyond the scope of this paper, we note that there have been advances in forward
modeling progressively smaller scales with progressively higher resolutions to better map the positions of
halos from the initial conditions [313].

2We will work with halos, as opposed to galaxies, in the remainder of this paper.
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Similarly, it is often the case that peculiar velocities are measured for each halo with
independent errors of size σvr [341]. In this case, the noise on the velocity power spectrum
is simply given by

Nvr|vh,r ≈
σ2
vr

n̄
. (5.2)

We note that σvr may depend on the redshift of the tracer, with the error growing with
distance.

The velocity and density power spectra, in linear theory, are related by the continuity
equation:

Pvr(k) = µ2

(
faH

k

)2

Pδ(k), (5.3)

where f is the growth rate, a is the scale factor, H is Hubble’s constant, µ is the cosine
of the angle between k and the line of sight (so that µ = 1 corresponds to radial modes),
and Pδ is the linear density power spectrum. Thus, the error in the density power spectrum
given measurements of the velocity is given by

Nδ|vh,r(k) =
1

µ2

(
k

faH

)2

Nvr|vh,r ≈
1

µ2

(
k

faH

)2 σ2
vr

n̄
. (5.4)

From the previous equations, we can see that while Nδ|δh,r is independent of k (Eqn. 5.1),
Nδ|vh,r scales as k2 (Eqn. 5.4) and thus we expect the latter to be smaller on sufficiently large
scales.

We illustrate this in Fig. 5.1, where we show the linear matter power spectrum, together
with the error expected from measurement of the halo density field (i.e. shot noise), as well
as the error on density from measurements of the halo velocity for two different velocity
measurement errors. It is apparent that for the configuration considered here, we expect
reconstruction from velocity to dominate on large scales.

Note that here we focus on reconstruction based on measurements of the radial velocities
vr given the more immediate observational prospects. Velocities can also be measured via
direct astrometry, e.g. with GAIA [275]. Moreover, future experiments might also provide
measurements of the transverse velocity through the “moving lens” effect [70, 198]. The
same formalism described in this paper applies to reconstruction using transverse velocities
or a combination of radial and transverse, potentially with different noise properties.

In recent applications of field-level inference, the 3-dimensional initial density field is
typically comprised of many millions of modes (or voxels); this is determined by compu-
tational memory and speed, but in principle an arbitrarily fine resolution could be used.
Furthermore, the dynamics of the forward model linking the initial field to the final halo
field are highly nonlinear. Reconstruction thus involves performing inference over a highly
nonlinear parameter space with millions of dimensions. Knowledge of the derivative of the
forward model with respect the initial modes is therefore crucial to efficiently perform the
inference. We use FlowPM3 [264], a differentiable Particle Mesh (PM) simulation code writ-

3https://github.com/DifferentiableUniverseInitiative/flowpm

https://github.com/DifferentiableUniverseInitiative/flowpm
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ten in TensorFlow. This is entirely differentiable end-to-end, providing derivatives of the
forward model, and in turn the data likelihood, with respect to the initial modes and the
cosmological parameters. It is also GPU-accelerated which aids the computational efficiency
on modern computing nodes4. Furthermore, this technique can readily be combined with
machine learning techniques to go beyond the traditional N-body approach, and for example
connect galaxies and halos [266].

In this work we apply a fully nonlinear forward model using FlowPM together with a bias
model to map matter to halos. We assess how reconstruction of the initial field from velocity
data compares to reconstruction from density data. We also investigate joint reconstruction
of the initial field from a combination of both datasets. We consider the effects of the amount
of shot noise, velocity measurement noise, and angle to the line of sight.

A further application one might be interested in is predicting another field given the
reconstructed initial field. This can simply be achieved by running high fidelity forward
models using the reconstructed initial density field. For example, to reconstruct the final
matter velocity field, one can run a forward model for the final matter velocity field on
the reconstructed initial field. In the case of reconstructing the final matter velocity field,
attempts have been made using various approximations, such as assuming the velocity follows
a scalar potential and linear approximations [65, 139, 391, 390, 195, 344, 397, 165, 122, 364,
365, 194, 234, 232, 235]. Applications to kSZ measurements are also considered in [274].
More recently [297] used the BORG algorithm [207, 206] to perform reconstruction with
peculiar velocity data using a Lagrangian perturbation theory (LPT) forward model on dark
matter, finding it to outperform linear reconstruction. To improve upon this, in this work
we extend to using a fully nonlinear forward model and consider performing reconstruction
with joint velocity and density data.

The structure of the paper is as follows. In Section 5.2 we review the Bayesian procedure
of initial mode reconstruction, and discuss how it can be used to perform field-level inference.
We also discuss the datasets and forward model employed in this paper. In Section 5.3 we
show the quality of reconstruction for both, the initial (linear) and final (nonlinear) matter
density fields, as well as the matter velocity field. We conclude in Section 5.4.

5.2 Method

In this section we review the Bayesian methodology of field-level inference. We start in the
context of reconstruction from density data, and then describe how velocity can be included.
We then discuss the data and forward model employed in this work. For the sake of clarity
we will present the theory both for reconstruction and cosmological parameter inference,
even though we will not perform cosmological parameter inference in this particular work.

4For example, on Cori KNL at NERSC, which has 64 CPUs and 4 GPUs per node, one N-body step
using GPU-accelerated code is substantially faster. We invite the reader to consult [264] for a thorough
analysis of the GPU performance of FlowPM, and [154] for the performance of FastPM (which performs the
same computation but is written in C and intended to be run on CPU).
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Field-level inference

Bayes theorem states that posterior distribution of parameters θ given data d is given by

p(θ|d) =
p(d|θ)p(θ)
p(d)

, (5.5)

where p(d|θ) is the likelihood, p(θ) is the prior, and p(d) is the evidence. In the cosmological
context θ might refer to cosmological parameters which we wish to estimate, and d can
refer to the galaxy overdensity field or peculiar velocity data. In principle one would like to
estimate the full posterior distribution of θ, but a more tractable, approximate, alternative
is to estimate the best-fit value, i.e. the maximum a posteriori (MAP) value, of θ, denoted
θ̂, and the width of the posterior around the maximum to quantify the uncertainty of the
estimate.

In addition to the parameters we wish to infer, θ, there will typically also be nuisance
parameters which we wish to marginalize out of the problem, denoted z. In cosmology,
this corresponds primarily to the initial conditions i.e. the initial density distribution of the
Universe. Then, the marginalized likelihood required to evaluate Eqn. 5.5 is computed by
integrating out the nuisance parameters from the joint likelihood p(d|θ, z) as follows,

p(d|θ) =

∫
dz p(z, d|θ) =

∫
dz p(d|θ, z)p(z|θ), (5.6)

where p(z|θ) is the prior of z conditioned on θ.
Thus, to compute the posterior, p(θ|d), Eqns 5.5 and 5.6 show that there are 3 ingredients

required: the joint likelihood, p(d|θ, z), the prior of z conditioned on θ, p(z|θ), and the prior
on θ, p(θ).5 We will now discuss each ingredient separately.

Likelihood

In this work we consider data corresponding to the halo overdensity field δ and peculiar
velocity along the line of sight v, thus d = {δ, v}6. The halo overdensity field data corresponds
to a 3D mesh containing the value of the overdensity field in each voxel. For clarity of
notation, the overdensity field δ can be thought of as a vector consisting of each pixel in
the map. On the other hand the peculiar velocity data corresponds to the peculiar velocity
of each halo. We thus note that the overdensity is considered at the field level, while the
velocity data is considered at the object level.

To reconstruct any latent field, one must make use of a forward model of the data
f(θ, z, ...) which in general depends on the parameters θ and z. This typically corresponds

5Note that the evidence, p(d), is a constant and can be dropped when one is only interested in finding
the maximum or width of the posterior.

6From now on, we use the shorthand v to denote the peculiar velocity. While we only consider peculiar
velocities in this work, we note that our formalism is general and can be applied to any component of the
velocity field.
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to a perturbative model or N-body simulation. There will inevitably be some error in the
forward model, as well as some noise in the data. In this analysis we assume these to be
Gaussian and uncorrelated, with variance

σ2 = σ2
model + σ2

data. (5.7)

Under this assumption, the negative log likelihood is given by the chi-squared difference
between the data and a forward model. For halo overdensity data alone the likelihood is
thus given by

−2 log p(δ|θ, z) =
∑

k

|δ̃(k) − fδ̃(k; θ, z)|2
σ2
δ̃
(k)

, (5.8)

where the sum is performed over all modes k, and the δ subscript denotes this is the forward
model and error for the overdensity data. Note that the density field is evaluated in Fourier
space (denoted by the ∼), as the model error is typically k dependent. Eqn. 5.8 corresponds
to approximating the likelihood to be Gaussian; this assumption works well on large and
intermediate scales, but a more sophisticated likelihood would be required to accurately
describe small scales, and also to account for observational systematics such as masking,
light cones, luminosity dependence, and depth modulation.

Analogously to Eqn. 5.8, for velocity data alone we have

−2 log p(v|θ, z) =
∑

i

[vi − fv(xi; θ, z)]2

σ2
v

, (5.9)

where the sum is over all velocity tracers, labeled by i. The forward model for the velocity
of the ith halo, fv(xi; θ, z), depends on the position of the the halo xi, as will be described
in Sec. 5.2. We note that a more sophisticated likelihood may be required when analyzing
data, for example depending on the technique used to extract the signal (e.g. matched filter),
and including a tracer-dependent error (here σv is the same for all tracers).

While we will consider both density and velocity data individually in this paper, we will
also consider the effects of combining density and velocity data. In such a case, and under
the assumption of independence, the log likelihood is simply given by the sum of Eqns. 5.8
and 5.9,

−2 log p(δ, v|θ, z) = −2 log p(δ|θ, z) − 2 log p(v|θ, z) (5.10)

=
∑

k

|δ̃(k) − fδ̃(k; θ, z)|2
σ2
δ̃
(k)

+
∑

i

[vi − fv(xi; θ, z)]2

σ2
v

. (5.11)

Priors

There are two priors to consider, the prior of z conditioned on θ, p(z|θ), and the prior on θ,
p(θ). In the context of density reconstruction, the nuisance parameters z refer to the initial
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overdensity field modes, and θ corresponds to the cosmological parameters. The prior on θ
will typically be motivated by previous measurements of the cosmological parameters from
experiments such as Planck [292]. In our analysis we will not do inference on θ and fix θ at
it’s true value, thus this prior term is not relevant. Based on inflationary theory, which has
been verified by Planck, the prior on the initial modes z is taken to be Gaussian with mean
0 and variance proportional to the power spectrum. Hence the prior of z conditioned on θ
is given by

−2 log p(z|θ) =
∑

k

|z̃(k)|2
P (k; θ)

, (5.12)

where P (k; θ) is the power spectrum of the initial modes, and depends on the cosmological
parameters θ. Note that the initial modes are written in Fourier space, and can thus be
complex.

Posterior

Adding Eqns 5.11 and 5.12 gives the posterior of z given θ for joint density and velocity
inference,

−2 log p(z, d = {δ, v}|θ) =
∑

k

{
|δ̃(k) − fδ̃(k; θ, z)|2

σ2
δ̃
(k)

+
|z̃(k)|2
P (k; θ)

}
+
∑

i

[vi − fv(xi; θ, z)]2

σ2
v

.

(5.13)
Note that it is z, not z̃, that appears on the left hand side as we perform the inference
on the initial field in configuration space, enforcing the physical constraint that z is a real
field. To compute the posterior on θ from Eqn. 5.5, one must compute the integral over
initial modes from Eqn. 5.6. This can be done using traditional sampling methods, such as
HMC as in the BORG method [207], or via optimization with the Laplace approximation or
other approximation schemes [329, 262]. In this work we are motivated by the optimization
approach, whereby the first step to performing the marginalization integral is to find the
value of z which maximizes p(z, d|θ). In this approach one will first iterate to find the MAP
θ, and then find the MAP z to perform the inference. We refer the reader to [329] for further
details, but we mention this to note that finding the MAP z is not only interesting from
the perspective of reconstructing the initial modes, but also in terms of parameter inference.
In this work we will focus on computing ẑ ≡ maxz p(z, d|θ), in which the cosmological
parameters θ are fixed at their true values. We will explore performing inference on θ in
future work. We will additionally be interested in the quality of the reconstructed final matter
density and velocity fields, which we compute by running the forward model using ẑ as the
initial conditions. We note that these results could be biased as the forward modeled MAP
initial field is not necessarily the MAP final field – the MAP does not generally commute
with the nonlinear forward model. A more thorough, unbiased, approach would be to go
beyond the MAP and obtain the full posterior, but that is beyond the scope of this work.
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We note that one could also use more accurate forward models to obtain the final fields from
the inferred initial field to improve the small scale agreement (e.g. [29]).

Data

We consider simulated halo field as data observables. To generate this data, we use FastPM

[154, 57] with Ncdm = 10243 CDM particles, and a Ngrid = 20483 resolution force grid. We use
the following cosmological parameters: Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624,
σ8 = 0.834, and Mν = 0. We begin the simulation at redshift of 9 and use 20 steps to evolve
to redshift 0. The halo catalog is computed using the Friends-of Friends (FoF) algorithm
with a linking length of 0.2. The halo positions xdata

h and velocities vdatah are computed at
the halo center-of-mass using nbodykit [185]. The halo overdensity field is computed using
the cloud-in-cell (CIC) method. We do not consider the effect of redshift space distortions
in the main text, as they have little effect on the reconstruction accuracy for halo models on
the scales considered in this work. We explicitly show the effect of redshift space distortions
on reconstruction in the appendix for this chapter (Section 5.5).

Our fiducial data considers a box of side length L = 4 Gpc/h. We select the 67,000 most
massive halos, corresponding to a number density of n̄ ≃ 10−6 (h/Mpc)3, a minimum halo
mass of Mmin ≃ 6.8 × 1014M⊙/h, and a bias of b1 ≃ 4.0. This data has a high shot noise to
illustrate the benefits of velocity reconstruction.

We inject white noise into the velocity data with standard deviation σv,data = 300 km/s.
We inject no noise into the density field σδ,data = 0 (although there is still the natural Poisson
shot noise due to considering discrete tracers) to understand how helpful velocity data is in
this limiting case. Throughout the results we will consider the effect of perturbing individual
components of this fiducial setup.

We will additionally consider a lower shot-noise example consisting of a L = 400 Mpc/h
box with the 10,000 most massive halos, corresponding to a number density of n̄ ≃ 1.6 ×
10−4 (h/Mpc)3, a minimum halo mass of Mmin ≃ 3.0 × 1013M⊙/h, and a bias of b1 ≃ 0.67.
This example allows studying effects on smaller, nonlinear, scales.

Forward models and errors

In this subsection we describe our forward models for both the halo overdensity, fδ̃(k; θ, z),
and the peculiar velocity, fv(xi; θ, z). We will also discuss the model errors.

Halo overdensity field forward model

We first compute the matter overdensity field using FlowPM [264] (a TensorFlow version of
the FastPM simulation which was used to generate the data). For the matter-halo connection
we use a linear LPT effective field theory model, namely

fδ̃(k) = δ̃model
h (k) =

∫
d3q [1 + b1δ1(q)] e−ik·(q+ψ(q)), (5.14)
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Figure 5.2: Comparison of the best fit bias model to the true FoF halo data. We plot for the
fiducial 4Gph/h box (blue) when the signal-to-noise is low, and a 400Mph/h box with higher
signal-to-noise (orange). Left: bias model (solid), true FoF (dashed) power spectra, and Poisson
shot noise (dotted). Middle: cross correlation between model and truth. Right: transfer function
between model and truth.

where k is the wavenumber, q are the grid coordinates, b1 is the linear bias parameter, δ1 is
the linear matter overdensity field (which corresponds to z in the Sec. 5.2 discussion), and
ψ(q) is the Lagrangian displacement field. The cosmological parameter θ dependence enters
via δ1 and ψ, but we drop this from the notation to avoid clutter.

We compute ψ with FlowPM using 5 steps between redshift 9 and 0. We use Ncdm = 1283

matter particles, and force grid with resolution Ngrid = 1283. Note the differences in the
forward model and the data generation described in Sec. 5.2.

We define the model error as the ‘stochastic’ or ‘shot noise’ term,

ϵ(k) = δ̃model
h (k) − δ̃datah (k). (5.15)

The variance on the the overdensity model is thus given by the error power spectrum, defined
as

σ2
δ̃,model

(k) = Perr(k) =
1

Nmodes(k)

∑

k:|k|=k

|ϵ(k)|2, (5.16)

where Nmodes(k) in the number of modes in the k bin.
The integrand in the square brackets of Eqn. 5.14 is equal to the Lagrangian field at q,

namely δLh (q) = 1+b1δ1(q). One could extend this relation to include higher order bias terms
(see e.g. [319, 318, 317]), however for the number density of tracers considered here, we did
not find improvement from using higher order terms and thus a linear bias model is sufficient
for the purpose of this work. We note that the choice of model can bias the reconstruction
in various ways (see [273] for a detailed review).

We fit the bias parameter b1 before performing reconstruction by minimizing |ϵ(k)|2,
from Eqn. 5.15, as in [319]. Note we only fit using scales with k ≤ Ncdm/L; this choice is
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Figure 5.3: Velocity information for fiducial (4Gpc/h) setup. Left: scatter plot of the model
velocity compared to the true (data) velocity for an Nmesh = 1024 (blue) and Nmesh = 128 (orange)
forward model. Middle: the corresponding root squared difference between the truth and model
velocities. Right: halo abundances as a function of velocity.

somewhat arbitrary, but is chosen because the bias model breaks down at high k (see e.g. [319,
273]). We then fix the bias parameter to this best fit value throughout the analysis – in a
full analysis one would infer the bias parameters, along with the cosmological parameters,
while performing the reconstruction. We show the best fit model for our fiducial 4 Gpc/h
and 400 Mpc/h setups (described in Section 5.2) in Fig. 5.2. It can be seen that the cross
correlation and transfer function between the model and truth is considerably less than unity
in regions of high shot noise. This occurs on all scales for the bigger box, while only on small
scales for the small box. This is expected since we are trying to fit a discrete tracer field with
a continuous bias model field, which limits the ability of density-based reconstruction. Note
that one could also consider a neural network forward model for the halo overdensity field
[266] to model individual discrete objects, but we do not pursue that here. The velocity-based
reconstruction however does not suffer from this noise.

Peculiar velocity forward model

For the velocity forward model we assume an unbiased forward model, i.e. we ignore halo
velocity bias terms which should vanish on the large scales considered here due to the equiv-
alence principle [33]. We thus assume that the halo velocity directly traces the underlying
matter velocity field. This is not a complete description because, for example, halos may be
in multistreaming regions (see e.g. [112, 116, 232]), but such effects are beyond the scope of
this work. The matter velocity field can be computed using the final matter particle position
and velocities from FlowPM as follows. First we define the momentum field at position x as,

V(x) = [1 + δ(x)]v(x). (5.17)
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This is evaluated using CIC interpolation to paint the overdensity field δ weighted appro-
priately by the velocities v. As noted above, in this work we assume that the velocity is
only measurable along the line of sight, thus, we simply use v to denote the velocity pro-
jected along the line of sight. Given data corresponding to halo positions xdata

h and peculiar
velocities vdatah , the model velocity is computed as

fv(x
data
h ) ≡ vmodel

h =
V(xdata

h )

1 + δ(xdata
h )

. (5.18)

The error in this forward model has a strong dependence on the mesh resolution used
in the CIC assignment scheme. Fig. 5.3 shows the scatter between the true halo velocity
and model velocity (left), and the corresponding error variance on the model velocity as a
function of the true velocity (middle). The model velocity corresponds to Eqn. 5.18 using
Nmesh = 1024 (blue) and Nmesh = 128 (orange) for CIC. It can be seen that the model error
is larger when using a coarser mesh. For Nmesh = 128, the error approximately scales as
0.7vtrueh , i.e. it is an 70% effect. On the other hand, for Nmesh = 1024 the error is almost
negligible for low velocity halos, and only a ∼ 20% effect for the fastest halos. In this work,
for tractable reconstruction, we use a Nmesh = 128 for the forward model. Since the majority
of halos have low velocities (Fig. 5.3 right panel) this is able to provide a sufficient quality of
reconstruction for this work, however one can expect the results to improve as we use higher
resolution forward models. We thus use an interpolated form of the orange line for velocity
model error, σv,model.

Optimization

Given the data and forward model, we maximize the posterior to get the MAP estimate of
the initial field. Since the parameter space consists of 1283 ≈ 2 million dimensions, we need
to use optimization algorithms which make use of the gradient information that is readily
provided by our differentiable PM code. In this work, we use the LBFGS-B algorithm [86]
which uses gradients at each step, and additionally keeps track of them over the trajectory
to approximate the Hessian with a low memory cost. As there is much noise, and many more
modes to be fitted on small scales than large scales, we anneal the posterior as we optimize
to iteratively fit the modes up to a give scales k < kiter. Mathematically, we multiply the
density term in the loss from Eqn. 5.11 with a step function A(k − kiter) as follows,

−2 log piter(z, d = {δ, v}|θ) =
∑

k

{
A(k − kiter)

|δ̃(k) − fδ̃(k; θ, z)|2
σ2
δ̃
(k)

+
|z̃(k)|2
P (k; θ)

}

+
∑

i

[vi − fv(xi; θ, z)]2

σ2
v

, (5.19)

where A(k) = 1 if k ≤ 0 and 0 if k > 0. We iteratively increase kiter in steps of the funda-
mental frequency, kF = 2π/L, up to some maximum value kmax beyond which convergence
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breaks down. In this work we use kmax = 16kF . We note that the cutoff for scales smaller
than kmax could affect the quality of reconstruction on scales larger than the cutoff [273],
but such effects are sufficiently small to not affect the conclusions of this work. A similar
annealing approach has been applied and studied in [266]

To ensure the optimizer has sufficiently converged we average over 5 datasets, each start-
ing at a different initial guess for the initial modes. We refer the reader to [153] for a thorough
analysis of the posterior surface and how the starting position of the optimizer can affect
the reconstruction, but such effects are sufficiently small to not affect the conclusions of this
work.

5.3 Results

We quantify the reconstruction accuracy in terms of the cross-correlation coefficient and
transfer function between the reconstructed field and the data field. Because we consider
only line-of-sight velocity data, we plot the reconstruction quality in three equally sized µ
bins (with centers µ = 0.17, 0.5, 0.83), where µ ≡ cos θ and θ is the angle to the line of sight
for an infinitely far away observer (corresponding to the flat-sky approximation). Given the
power spectrum of the data field Pdata, the power spectrum of the reconstructed field Precon,
and the cross power spectrum Pdata,recon, the cross-correlation coefficient is given by

r(k, µ) =
Pdata,recon(k, µ)√

Pdata(k, µ)Precon(k, µ)
, (5.20)

and the transfer function is given by

T (k, µ) =

√
Precon(k, µ)

Pdata(k, µ)
. (5.21)

We note that the power spectrum in a (k, µ) bin is calculated as

P (k, µ) =
1

Nk,µV

∑

k : |k|=k, k·kz=µ

δ(k)δ(−k), (5.22)

where the sum runs over all wavevectors with magnitude k (plus/minus the bin width) and
angle to line of site µ (plus/minus the bin width), Nk,µ is the number of modes in the (k, µ)
bin, and V is the volume of the box.

Fig. 5.4 shows the reconstruction for the fiducial setup described in Section 5.2, namely:
4 Gpc/h, n̄ = 10−6 (h/Mpc)3, and σv = 300 km/s. We first focus on the top row which shows
the reconstruction of the initial linear field. The middle panel shows that the reconstruction
using only density data (dashed) is decorrelated on large and intermediate scales with a
correlation value of approximately 0.6. Furthermore, the right panel shows the transfer
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Figure 5.4: Reconstruction of the initial linear matter field, final matter field, final matter velocity
field (top to bottom) for fiducial setup: 4Gpc/h, n̄ = 10−6 (h/Mpc)3, and σv = 300 km/s. All
future plots will perturb one feature of this. The left panel shows the true power spectrum (black),
and the reconstructed power spectra using density-only (dashed), velocity-only (dotted), and joint
density+velocity (solid). Three µ bins are considered, centered at µ = 0.17 (blue), µ = 0.5 (orange),
and µ = 0.83 (green). The middle panel shows the cross-correlation between the reconstructed and
true fields, while the right panel shows the transfer function between the two.

function to be approximately 0.5 on the largest scales. The poor reconstruction on small
scales is due to the annealing described in Sec. 5.2 – as we only anneal to kmax = 16kF smaller
scales are never fitted. On the other hand, doing velocity-only reconstruction (dotted) greatly
improves the large-scale correlation in the two highest µ bins, while the µ = 0.17 performs
worse than density-only reconstruction. The story is similar for the transfer function which
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Figure 5.5: Like top row of Fig. 5.4 but with a higher velocity noise of σv,data = 1000 km/s.
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Figure 5.6: Like top row of Fig. 5.4 but with a ≈5 times higher number density of n̄ = 5.2 ×
10−6 (h/Mpc)3.

is increased to 0.8 in the highest µ bin on large scales. Finally we consider reconstruction
using the joint density and velocity data, using the full posterior of Eqn. 5.13 (solid). It
can be seen that this further improves the correlation and transfer function on intermediate
scales. The second and third rows of Fig. 5.4 show the reconstruction of the final matter
density and velocity fields respectively. In both cases the reconstruction quality is of similar
quality to the initial field.

Fig. 5.5 considers increasing the error in the velocity data from 300 to 1,000 km/s. In
this case the density reconstruction is unchanged compared to the fiducial. The velocity-only
reconstruction now performs worse than in the fiducial setup and is only slightly better than
density-only for both the correlation coefficient and transfer function along the line of sight.
Combining velocity with density slightly improves upon density-only reconstruction along
the line of sight.

Fig. 5.6 considers increasing the number of halos in the fiducial setup by a factor of
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Figure 5.7: Like top row of Fig. 5.4 but with ≈5 times fewer halos with peculiar velocity data.

approximately 5 by lowering the minimum mass cut; the number density is now n̄ = 5.2 ×
10−5 (h/Mpc)3 and the minimum halo mass Mmin ≃ 1.2 × 1015M⊙/h. Given the higher
number density, there is now lower shot noise and density-only reconstruction performs better
compared to the fiducial case. Velocity-only reconstruction also benefits from the inclusion
of additional halos, as there is now 5 times more halo data to use for reconstruction. The
correlation coefficient and transfer function are now unity on the largest scales in the two
highest µ bins.

So far we have assumed all halos used for density reconstruction also have velocity data.
This is the case for kSZ, however, galaxy surveys are typically only able to measure the
velocities of the most massive halos. Fig. 5.7 considers the modification of the fiducial setup
such that only the most massive 20% of halos have velocity data. It can be seen that the
velocity, and thus joint, reconstruction performs worse, with the correlation coefficient and
transfer function dropping to around 0.8 on the largest scales for largest µ bin.

Until now we have considered velocity reconstruction on large scales in the high shot
noise regime. To study the effect on smaller scales we divide the box size of the fiducial
setup by a factor of 10, giving a 400 Mpc/h box. We also consider a lower velocity noise of
σv,data = 100 km/s. The top row of Fig. 5.8 shows the reconstruction of the initial linear field.
It can be seen that there is a small gain from joint reconstruction compared to density-only
in terms of the correlation coefficient and transfer function. We also plot the reconstruction
of the final (nonlinear) matter density and peculiar velocity fields in the second and third
rows of Fig. 5.8. The reconstruction of the final density can be seen to be of comparable
quality to the initial field reconstruction. One the other hand, the reconstruction of the
velocity field is improved on small scales by performing joint reconstruction compared to
using density or velocity alone.
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Figure 5.8: Like Fig. 5.4 but with 10 times smaller box size (number of halos different now due to
different resolution of simulation), and σv = 100km/s.

5.4 Discussion and Conclusions

In this paper we have developed the formalism for including peculiar velocity information
in field-level reconstruction of the initial conditions of the Universe. We have implemented
it in the differentiable forward modelling code FlowPM to reconstruct the initial conditions
using halo overdensity data, halo peculiar velocity data, and a combination of the two. We
also considered the reconstruction of the final matter density and velocity fields. We showed
that in shot noise dominated cases, reconstruction from density data alone is decorrelated
from the truth, but this is greatly improved by including velocity data.

We studied this as a function of shot noise, error on velocity, and number of velocity
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tracers. We found that the benefit of including velocity data is very much dependent on
these quantities. We also showed that even in cases of low shot noise, combining velocity
and density data, together with the non-linear model implemented in FlowPM, benefits the
reconstruction of the final matter velocity field on nonlinear scales (k > 0.1h/Mpc).

We expect this work to have wide applicability to future surveys: for example, upcoming
observations by DESI [143], together with CMB maps from the Simons Observatory [360],
will produce kSZ measurements with signal-to-noise ≳ 100: indeed the reconstruction from
velocities is expected to dominate in statistical power for scales k ≲ 0.02h/Mpc [341] and
be even more powerful with CMB-S4 [3]. In addition, Rubin Observatory’s LSST will dis-
cover hundreds of thousands of type Ia supernovae, for which a redshift can be obtained by
DESI and individual peculiar velocities can be obtained with a few percent scatter [215]. In
each case, forecasts based on linear theory suggest large improvements for measurement of
cosmological parameters such as growth rate f [215] and local primordial non-Gaussianity
fNL [270]. This is in part due to the lower noise overall in the reconstruction of the initial
conditions, and in part to the fact that galaxy positions and velocities trace the same under-
lying matter density, and therefore quantities like f and fNL can be measured with reduced
sample variance when combining the two measurements [326]. The joint reconstruction for-
malism developed in this work is a natural way to optimally combine the data available,
and inference of cosmological parameters from this is an important next step, which is left
to future work. To enable such future work, our code will be made publicly available upon
publication of the paper.
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5.5 Appendix A: Redshift Space Distortions

Here we repeat the analysis performed in the main paper for the fiducial example, but include
redshift space distortions in the data and the modeling. Redshift space distortions include
some velocity information and so it is appropriate to see what effect this has relative to the
peculiar velocity information.

To transform the data to redshift space, assuming the flat sky approximation, we shift
the configurations space coordinate of each halo by vz/(aH), where vz is the velocity in the
z direction. To model redshift space distortions, we make two alterations to the model in
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Figure 5.9: Like top row of Fig. 5.4 but with redshift space distortions.

the main paper. Firstly, while we use the same bias model as in the main paper, we now
fit the bias parameters to the redshift space halo field (see [320] for application of the bias
model to redshift space, note in particularly that the form of the model is the same to linear
order, which is the order used in this work). Secondly, we displace the matter particles by
their redshift space displacement, vz/(aH), before applying the bias model.

The results including redshift space distortions are shown in Fig. 5.9. By comparison to
its configuration space analog, found in the top row of Fig. 5.4, it can be seen that the quality
of reconstruction is comparable. This is to be expected for halos on the scales considered in
this work, however redshift space distortions will become more important when considering
lower mass objects.
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Chapter 6

Super-sample covariance of the power
spectrum, bispectrum, halos, voids,
and their cross-covariances

The contents of this chapter was originally published in [63],

Super-sample covariance of the power spectrum, bispectrum, halos, voids, and their
cross-covariances
Bayer A.E. et al. (arXiv:2210.15647) (submitted to PRD)

In this chapter, we study the effect of super-sample covariance (SSC) on the power spec-
trum and higher-order statistics: bispectrum, halo mass function, and void size function. We
also investigate the effect of SSC on the cross-covariance between the statistics. We consider
both the matter and halo fields. Higher-order statistics of the large-scale structure contain
additional cosmological information beyond the power spectrum and are a powerful tool to
constrain cosmology. They are a promising probe for ongoing and upcoming high preci-
sion cosmological surveys such as DESI, PFS, Rubin Observatory LSST, Euclid, SPHEREx,
SKA, and Roman Space Telescope. Cosmological simulations used in modeling and vali-
dating these statistics often have sizes that are much smaller than the observed Universe.
Density fluctuations on scales larger than the simulation box, known as super-sample modes,
are not captured by the simulations and in turn can lead to inaccuracies in the covariance ma-
trix. We compare the covariance measured using simulation boxes containing super-sample
modes to those without. We also compare with the Separate Universe approach. We find
that while the power spectrum, bispectrum and halo mass function show significant scale-
or mass-dependent SSC, the void size function shows relatively small SSC. We also find sig-
nificant SSC contributions to the cross-covariances between the different statistics, implying
that future joint-analyses will need to carefully take into consideration the effect of SSC.
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6.1 Introduction

Ongoing and upcoming cosmological missions such as DESI1, PFS2, Rubin Observatory
LSST3, Euclid4, SPHEREx5, SKA6, and Roman Space Telescope7 will probe ever larger
volumes of cosmic structure in the small-scale, nonlinear regime. These data contain rich
information that can be used to constrain fundamental physics, such as dark energy, dark
matter, and neutrino mass. To fully realize the potential of these surveys, many higher-order
(or non-Gaussian) statistics have been proposed to extract additional information beyond
the power spectrum (2-point function). These include, for example, the bispectrum (3-point
function), halo mass function, void size function, probability distribution function, marked
power spectrum, and wavelet scattering transform [353, 323, 64, 213, 315, 245, 248, 211,
332, 255, 246, 242, 222, 120, 310, 254, 11, 178, 177, 129, 366, 20, 175, 188, 46, 257, 110,
109, 62, 223, 58, 371, 370, 147]. They have been studied intensively in recent years and are
becoming standard tools for cosmological inferences. Moreover, there is increased interest
in joint analysis, in which second and higher-order statistics are combined to maximize the
information gain (see e.g. [62, 182, 146, 281, 142]).

Models for higher-order statistics usually rely on simulations for validation of analytic
theories, calibration of semi-analytic models, or as the base of simulation-based inferences. To
compute the covariance matrix of higher-order statistics, one typically requires a large set of
simulations with different random initial conditions [383]. Such simulations assume periodic
boundary conditions and are normally much smaller than the typical observed volumes of
the Universe. Importantly, the mean density of these simulations is the cosmic one, and so
by construction, they do not take into account the effects of perturbations with wavelengths
longer than the size of the simulation. These so-called “super-sample modes” can however
contribute sizeably to the covariance matrix; this effect is called the super-sample covariance
(SSC) effect and must be carefully included to achieve accurate results.

To make contact with past literature, SSC has been studied as the “beat-coupling” (BC)
effect in the mildly nonlinear regime using perturbation theory, as “halo sample variance”
(HSV) in the highly nonlinear regime using the halo model, and was sometimes called the DC
mode effect as an analogy between the constant background fluctuation and constant electric
Direct Current [340, 169]. It was first studied in the context of the power spectrum [184,
352], and its effects have since been quantified using direct simulations [137], perturbation
theory [355, 34, 54, 53], and separate universe simulations [240, 384, 359]. It has also been
studied in relation to cluster counts [200, 315, 287], the matter bispectrum [323, 99, 50, 121],
the matter one-point probability density function [367], the redshift space galaxy power

1https://www.desi.lbl.gov
2https://pfs.ipmu.jp/index.html
3https://www.lsst.org
4https://www.euclid-ec.org
5https://www.jpl.nasa.gov/missions/spherex
6https://www.skatelescope.org
7https://wfirst.gsfc.nasa.gov/index.html

https://www.desi.lbl.gov
https://pfs.ipmu.jp/index.html
https://www.lsst.org
https://www.euclid-ec.org
https://www.jpl.nasa.gov/missions/spherex
https://www.skatelescope.org
https://wfirst.gsfc.nasa.gov/index.html
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spectrum [15, 14, 241], and the lensing power spectrum [52]. Furthermore, the effects of
baryons on the SSC has been studied in [268, 56, 180]. The SSC effect associated with
gravitational potential perturbations in cosmological with local primordial non-Gaussianity
(i.e. fNL ̸= 0) has also recently been studied [93]. Fast, approximate, methods exist to
account for the SSC in forecasts for upcoming lensing and photometric surveys [226, 173,
227].

In this paper, we study the effects of SSC for the power spectrum and several higher-
order statistics: the bispectrum, halo mass function, and void size function. To do so, we
compare the statistics measured using small periodic boxes, which ignore SSC, to those using
equally-sized boxes that are embedded in a much larger simulation, which include SSC. We
study the effect of SSC in both the total matter field and the halo field. We also validate
our results against the separate universe (SU) approach, in which the SSC contribution is
calculated semi-analytically using the response of the statistics to certain changes in the
cosmological parameters.

Our work is the first to investigate the effects of SSC for voids. Cosmic voids have been
studied intensively in recent years [294, 80, 349, 208, 288, 277, 310, 118, 374, 222, 62, 223]
and have achieved cosmological constraints with observational data [182, 181, 117, 78]. The
bias parameters of voids have also been recently studied using SU simulations [205, 100].
Our work is also the first to study the effects of SSC on the cross-covariance between the
combinations of all of these statistics.

The paper is organized as follows. Section 6.2 outlines the methods employed to compute
the SSC of the power spectrum, bispectrum, halo mass function, and void size function.
Section 6.3 presents the results for SSC of these statistics and their cross-covariances. We
conclude in Section 6.4.

6.2 Method

In this section, we describe the methods used to run the N-body simulations, to compute
the statistics, and to compute the SSC. We also briefly describe the SU approach.

Covariance

The covariance matrix between an observable Oα and another observable Oβ is given by

Cαβ = ⟨(Oα − ⟨Oα⟩) (Oβ − ⟨Oβ⟩)⟩ , (6.1)

where ⟨⟩ denotes the mean over realizations. The α and β subscripts can refer to different
bins of particular statistic, or two completely different statistics. The covariance can be
estimated by evaluating Eqn. 6.1 using an ensemble of simulations with different random
realizations of the initial conditions.

We quantify the SSC effect by comparing the following two sets of simulations:
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• sub-boxes that are embedded in a much larger simulation, where the effect of SSC is
properly captured;

• small boxes that are of the same size and resolution as the sub-boxes, but are in-
dependently simulated with periodic boundary conditions and have no super-sample
modes.

Because the super-sample modes are only present in the former and not in the latter, the
SSC is given by

CSSC = Csub − Csmall, (6.2)

where Csub is the covariance computed using sub-boxes and Csmall is that using small boxes.

N-body simulations

We use FastPM [154, 57], a particle-mesh (PM) N-body simulation, to simulate a big
box of side-length 5 Gpc/h with 20483 matter particles. We then split this big box into
83 = 512 sub-boxes. We compare these to 512 independent, periodic, small boxes of size
5000/8=625 Mpc/h, each with 2563 particles. The resolution of the small boxes is chosen to
match the big box. We consider a maximum scale cut of kmax = 0.8h/Mpc as scales with
lower k than this are well modeled by our simulations. In all cases, we begin the simulations
at z = 9 and take 60 steps to z = 0. The resolution of the force mesh is 2 times the number
of particles. For simplicity, we consider and discuss only the results at z = 0, which is when
SSC is expected to be the strongest.

Our cosmological parameters are h = 0.6774, Ωm = 0.3089, Ωb = 0.0486, σ8 = 0.8159,
ns = 0.9667, Mν = 0.

To identify halos, we use the Friends-of-Friends (FoF) algorithm with a linking length
of 0.2. We generate the particle and halo overdensity fields using the Cloud-in-Cell (CIC)
method with Nmesh = 256 using nbodykit [185]. Further, we consider the halo field in real
and not in redshift space. We compensate the field for window effects before calculating
the statistics [210]. For matter the overdensity field is computed as δ = (ρ− ρ̄)/ρ̄, where ρ
is the matter density, while for halos it is computed as (n − n̄)/n̄, where n is the number
density. In order to compute the overdensity field in the sub-boxes, there are two choices
for the mean density ρ̄ (or n̄): using the “global” mean of the big box, or the “local” mean
of the sub-box. Realistically, for weak lensing surveys it is appropriate to use the global
mean as the mean density can be directly calculated from the cosmological model, moreover,
the measured weak-lensing shear field is sensitive to the global-mean density. However, for
galaxy surveys, since one does not know how to predict from first principles the total number
of galaxies, the local mean is what is most appropriate as we measure the galaxy statistics
w.r.t. the observed galaxy number density in the survey. We consider both cases in our
analysis.
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Figure 6.1: Power spectrum (top left), halo mass function (top middle), void size function (top
right), and three bispectrum configurations (bottom) averaged over all small boxes. We show
results for the halo (solid) and matter (dashed) field. For the void size function, we show results
for two density thresholds used for void searching, δth = −0.5 (blue) and δth = −0.3 (orange).

Statistics

We now define the various statistics considered in this work, and the method used to compute
them. We plot the statistics averaged over all the sub-boxes in Fig. 6.1.

• The power spectrum P (k) is defined as the Fourier transform of the 2-point corre-
lation function ξ(x1 − x2) ≡ ⟨δ(x1)δ(x2)⟩, where δ is the overdensity field. Defining
the fundamental frequency of the box as kF ≡ 2π/625h/Mpc, we use 15 linear bins
between bin edges [0, 80kF ], with ∆k = 5kF .

• The bispectrum B(k1, k2, k3) is defined as the Fourier transform of the 3-point cor-
relation function ⟨δ(x1)δ(x2)δ(x3)⟩. We consider three particular configurations of the
bispectrum: equilateral (k1 = k2 = k3), isosceles (k1 = k2 ̸= k3), and squeezed (k1 =
k2, k3 ∼ 0). More concretely, we consider the squeezed mode as k3 = 3.6×10−2 h/Mpc.
We compute the bispectrum using the bskit package [162], which employs the FFT-
based bispectrum estimators of [321, 322]. The k binning is the same as for the power
spectrum.

• The halo mass function (HMF), denoted dnH/d lnM , is defined as the comoving
number density of halos nH per unit of log halo mass lnM . We consider 7 logarithmic
bins bounded by Mmin = 1014M⊙/h and Mmax = 1016M⊙/h.
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• The void size function (VSF), denoted dnV /dR, corresponds to the comoving number
density of voids nV per unit of void radius R. We consider spherical voids in smoothed
density fields. The Nmesh = 2563 field is smoothed with top-hat filters of size Rfilter in
7 linear bins between Rmin = 12.2 Mpc/h and Rmax = 100.1 Mpc/h, with ∆R = 6dgrid
where dgrid ≈ 2.44 Mpc/h is the grid size. We search hierarchically, first finding the
largest voids and then the, more abundant, smaller voids. Voids of size R = Rfilter are
defined as local minima in the Rfilter-filtered field, with values lower than a predefined
threshold δth, unless they overlap with existing larger voids. In this work we investigate
thresholds of δth = −0.3 and −0.5. The void finding algorithm was developed by [47]
and we use the implementation in Pylians3 [378].

Separate universe simulations

We now briefly summarize an alternative method to compute the SSC using Separate Uni-
verse (SU) simulations; we refer the reader to [240, 384] for more details. In this approach,
the effect of a super-survey density mode that is constant inside the box and has amplitude
δb is mimicked by adjusting the cosmological parameters such that ρ̄m → ρ̄m (1 + δb), where
ρ̄m is the mean physical matter density; if the fiducial cosmology is a spatially flat universe,
this implies that the separate universe has non-zero curvature (Ωk ̸= 0). The response of
any summary statistic O to δb is computed by considering the difference between simulations
run with different δb. The SSC is then approximated by

Cij
SSC−SU ≃ σ2

b

dOi

dδb

dOj

dδb
, (6.3)

where σ2
b is the variance of the linear matter density fluctuations on the size of the survey

described by a window function W ,

σ2
b ≡ 1

V 2
W

∫
d3k

(2π)3
|W (k)|2Plinear(k), (6.4)

where VW =
∫
d3x W (x) is the survey volume and Plinear(k) is the linear matter power

spectrum. The window function used in this work corresponds to a 3d cube of side-length
625 Mpc/h, giving σ2

b = 6.8 × 10−5. Concretely, we evaluate the responses using finite
difference methods on simulations with δb = ±0.03, and averaging over 20 realizations of the
initial conditions.

The δb mode modifies the background expansion history, which implies some care when
choosing the box size of the simulations with δb ̸= 0. In our simulations here, we choose the
comoving box size to match at all times in Mpc units. This corresponds to the “growth-
dilation” methods in the notation of [240], or equivalently, with our SU simulations we
measure the so-called “growth-only” responses in the language of [384]. Importantly, when
identifying halos in the simulations, the FoF linking length in the separate universe needs
to be rescaled by the ratio of the scale factors in the two simulations to guarantee matching
halo definitions (see e.g. [55] for a discussion.)
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Since the simulations with different δb values can be initialized with the same random
phases of the initial conditions, the SU approach has the significant advantage of converging
with much fewer simulations than the sub-box approach (discussed in Section 6.2). We
note, however, that our SU simulations account only for the impact of isotropic density
perturbations as super-survey modes, i.e., they do not account in particular for the effect of
super-survey tidal fields [316, 256, 13]. Here, we consider angular averaged spectra in real
space, for which the impact of super-survey tidal fields averages out, but we note that for
analyses in redshift space [15, 241, 14] and weak-lensing applications [52] this is not the case
and the super-survey tidal fields can have a non-negligble effect. Further, the super-survey
tidal fields contribute also to the SSC effect of halo and void counts, although in a weak
manner since this happens only at second order. On the other hand, the SSC calculated
using the sub-box approach automatically includes both the effects of density and tidal fields.

6.3 Results

Here we show the effect of SSC for individual statistics as well as their cross-covariances. In
all plots, error bars are computed using bootstrapping and correspond to the 95% confidence
interval.

Matter field statistics

Fig. 6.2 shows the results of the SSC contribution for the power spectrum, void size function,
halo mass function, and three bispectrum configurations. Each statistic contains two panels,
the upper of which shows the diagonal term of the covariance computed with and without
SSC, using sub- and small boxes, respectively. For sub-boxes, we show results using both the
local mean and the global mean density. The lower panel shows the ratio between the sub
and small box, which is equal to Csub/Csmall = 1 +CSSC/Csmall (using Eqn. 6.2). Shown also
is the result from the SU approach (marked by the red crosses and pluses for the local and
global mean cases respectively), which agrees reasonably well overall with the SSC estimated
from the sub-box approach.

For the case of our power spectrum and bispectrum results, we note also that while the
SSC does not depend to first order on the size of the wavenumber bins, other contributions
to the covariance typically do, which can have an impact on the exact values of Csub/Csmall

(note this does not mean there is a dependence of the signal-to-noise on the bin size). This
does not have an impact on the main takeaway points of our results, but it is useful to
keep in mind especially when comparing quantitatively to results obtained previously in the
literature.

Power spectrum

The SSC of the matter power spectrum can be seen to be a just under a 100% effect at
k = 0.7h/Mpc in the local mean case. However, the SSC is much larger when using the
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Figure 6.2: Covariances for the power spectrum (top left), halo mass function (top middle), void
size function (top right), and three bispectrum configurations (bottom) in the matter field. Each
statistic contains two panels, the top of which shows the diagonal term of the covariance computed
in the small box (dashed), and in the sub-box using local (solid) and global (dotted) mean. The
lower panel shows the ratio between the sub- and small boxes, where the dashed horizontal grey
line indicates no SSC. For the void size function, we show results for two density thresholds used for
void searching, δth = −0.5 (blue) and δth = −0.3 (orange). We also show separate universe results
for SSC computed using local and global mean densities, marked in “x” and “+”, respectively.
Shaded regions correspond to 95% confidence intervals.

global mean, with the ratio Csub/Csmall increasing with k to a factor of ∼ 4 at k = 0.7h/Mpc.
This can be explained as follows: the local mean density is modified with respect to the global
mean by the background density δb, as ρ̄local = ρ̄global(1 + δb). Thus the power spectrum with
respect to the local mean is given by Plocal(k) = (1 + δb)

−2Pglobal(k), where Pglobal(k) is the
power spectrum with respect to the global mean. The local and global responses are then
related as,

d lnPlocal(k)

dδb
≈ d lnPglobal(k)

dδb
− 2, (6.5)

where we use the fact that δb = 0.03 ≪ 1. It can be shown with perturbation theory that
the global response is close to 2 for the scales considered in this paper [137, 352, 240], hence
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the local response is much suppressed in comparison to the global. Recall, the SSC of the
power spectrum referenced to the global density is what is relevant to weak lensing analysis,
and this strong response is ultimately the reason why SSC is the most important piece of
the off-diagonal covariance in cosmic shear 2-point function studies [52, 51].

Halo Mass Function

We find the SSC has very little contribution to the counts of massive halos ≳ 1015M⊙/h,
while it increases towards less massive halos, with the ratio Csub/Csmall becoming roughly
a factor of 3 for masses of ∼ 1014M⊙/h. The fluctuation in the number density of halos
δn = δn(M) in a mass bin M is a biased tracer of the underlying matter field δm

δn

n̄
= bδm, (6.6)

where b = b(M) is the halo bias in the mass bin. The diagonal term of the sub-box HMF
covariance divided by the shot noise Csmall = n̄/V is thus [200],

Csub/Csmall = 1 + σ2
b b

2N̄ , (6.7)

where N̄ = n̄V is the number (or abundance) of halos. The second term on the right is the
SSC contribution. While massive halos tend to be more biased (by a factor of few compared
to low mass halos), their abundance is exponentially suppressed. Thus, the most massive
halos are in the shot-noise dominated regime with little contribution from SSC.

Void size function

Recall, we consider spherical voids with density thresholds δth = −0.5 and −0.3, whose
results are shown on the top right panel of Fig. 6.2. The SSC contribution for voids is
generally small for all void radii shown. Following from the discussion above for the HMF,
this is as expected since voids are approximately 100 times less abundant than the halos,
and their bias values remain of order 0 − 10 [205, 100]. Thus, the covariance is strongly
dominated by shot noise and the SSC effect is negligible. Note further that for certain void
radii, and contrary to the case of halos, the void bias can be zero, in which case even an
infinite abundance would have no SSC.

Bispectrum

All three configurations of the bispectrum that we consider have a much smaller SSC than the
power spectrum, typically a factor 1–2 effect for k ≲ 0.7h/Mpc. Similarly to the power spec-
trum, the global case has a larger effect than local. This agrees within error bars with [99],
which considered the equilateral and isosceles cases using an analytical response approach
and simulations. Also [121] found the SSC effect to be small for the matter bispectrum. Our
results are also in good agreement with [50] which analytically derived that the SSC effect
is small for the squeezed matter bispectrum.
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Figure 6.3: Same as Fig. 6.2 but for the halo field, with a minimum mass cut Mmin = 1014M⊙/h.
The halo mass function plot (top middle) is duplicated here for completeness.

Halo field statistics

Fig. 6.3 shows the results for statistics computed from the halo field, which is a biased tracer
of the matter field. Here, we apply a minimum mass cut of Mmin = 1014M⊙/h. The halo
field SSC shows qualitative similarities to that of the matter field, namely larger SSC on
smaller scales for the power spectrum and the bispectrum, and a small SSC for voids.

One noteworthy difference concerns the relative size of the local and global cases for the
power spectrum, which is now comparable. This is because the local and global responses
for halos are related as

d lnP h
local(k)

dδb
≃
d lnP h

global(k)

dδb
− 2b. (6.8)

Unlike in the case of the local matter response (Eqn. 6.5), where the global response nearly
cancels with the −2 term, the global halo response is corrected by −2b1. In our work the bias
is b1 ≈ 2.5, which leads to a negative local halo response (see Fig. 12 of [36] and derivation
therein), so much so that the local effect is now comparable to the global effect after taking
the square of the response in Eqn. 6.3. The exact value of the response is mass and redshift
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Figure 6.4: Difference in correlation coefficient between the sub and small box ∆r ≡ rsub − rsmall.
From left to right: matter global, matter local, halo global, halo local.

dependent, as halo bias increases when considering more massive halos and/or halos at higher
redshift. Analogous considerations apply to the case of the halo bispectrum.

Cross-covariance

In this section, we study the SSC contribution to the cross-covariance of the statistics.
Higher-order statistics typically have large off-diagonal terms in the covariance compared to
the power spectrum and are usually studied jointly with other statistics. Therefore, it is im-
portant to study not only the variances of individual statistics, but also their cross-covariance.
To focus on the off-diagonal terms, we normalize the covariance using the diagonal term to
obtain the correlation matrix

rij ≡ Cij/
√
CiiCjj, (6.9)

where C is the covariance matrix with indices run through the bins of all the statistics
studied here. Fig. 6.4 shows the difference in correlation coefficient between the sub- and
small box, ∆r ≡ rsub − rsmall, for the both the matter and halo fields, using local and global
mean densities.

For the power spectrum and the bispectrum, the SSC contribution to the cross-covariance
is positive in all cases. The amplitude is the smallest in the local matter case, due to the
local mean response cancellation discussed in Sec. 6.3. The local and global halo cases
see comparable contributions, also similarly to what was observed for the diagonal term in
Sec. 6.3.

For the HMF, we see a large contribution of SSC to the cross-covariance with other
statistics. The effect is positive in all cases, except for the halo local-mean case.

For the VSF, we observe a relatively small contribution of SSC to the cross-covariance
with other statistics, except for the global-mean matter field. This is consistent with the
observation of almost negligible SSC in VSF variances in Sec. 6.3, where we discussed that
the SSC is low due to the low abundance of voids.
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6.4 Conclusions

We study the effect of SSC on the power spectrum, bispectrum, halo mass function, and
void size function, as well as on the cross-covariance between them. We consider both the
total matter and halo fields. We compare the covariance that includes the SSC (computed
using 625 Mpc/h sub-boxes of a 5 Gpc/h simulation), to the covariance without (computed
using 625 Mpc/h small periodic boxes). We now summarize our main results together with
additional discussion:

• We see an increasing impact of SSC on smaller scales for the matter and halo power
spectrum, reaching a factor of a few compared to the covariance that ignores SSC from
k ≈ 0.2h/Mpc and beyond. The exception is the case of the power spectrum referenced
to the local-mean density, for which the effect is less than 100%. This is in agreement
with previous studies [184, 137, 352, 240, 355].

• For the halo mass function, the SSC has little effect on massive halos above 1015M⊙/h,
as they are dominated by shot noise. However, the effect of SSC increases to a factor
of 2–3 for lower mass halos, consistently with previous studies [200, 315, 287].

• For the void size function, we found a relatively small SSC effect, due to the low
number density of voids compared to that of halos for a given survey volume, and also
the low bias. This is an attractive feature of voids, making their covariance simpler
to approximate without considering the SSC. In this work we considered spherical
voids, however one might consider different void finding algorithms, such as VIDE [350].
However, as long as the void abundance and bias are comparable to those we considered,
our general conclusions should hold for other void definitions as well.

• While the matter bispectrum receives less SSC contribution, an approximately 50%
effect, in good agreement with previous studies [99, 50], the halo bispectra shows
dependence on the bispectrum configuration and the choice of local or global mean
density. Concretely, the level of SSC remains low (≈10% level) for all three halo
bispectrum configurations (equilateral, isosceles, and squeezed) when using the global-
mean density and for squeezed bispectrum using the local mean. However, the SSC
contribution becomes a factor of a few for the equilateral and isosceles halo bispectra
referenced to the local mean.

• For the cross-covariances, we see non-negligible contribution of SSC, in particular for
the halo field statistics. We also observe a negative effect of SSC (or reducing the
off-diagonal terms) for HMF × other statistics in the halo-local mean case, and VSF
× other statistics in some radius bins. This indicates the importance of including the
effect of SSC in future joint-statistic analysis.

In summary, our work shows that future cosmological analyses with the power spectrum
and higher-order statistics, as well as their joint analysis, should need to carefully consider
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the effect of SSC. Analyses where many higher-order statistics are combined can have large
data vector sizes, which puts pressure on simulation-based methods for the covariance
because of the need to have a sufficiently converged covariance matrix that is stable under
inversion (which is what is needed in parameter inference analyses). This therefore strongly
motivates more simulation-based works like ours here towards a robust understanding of the
super-sample covariance and cross-covariance of higher-order statistics. The level of impact
of SSC depends in particular on the box/survey size, halo sample and redshift, which would
be interesting to investigate with more detail. In the future, it would also be interesting to
assess the impact of the SSC on these statistics at the level of final parameter posteriors
in simulated likelihood inference analyses for ongoing and future surveys. It would also be
fruitful to use our simulations to quantify the SSC of other higher-order statistics. To enable
such future works, our simulations will be made publicly available upon publication of the
paper.

Acknowledgements

We thank Masahiro Takada, Eiichiro Komatsu, Yue Nan, Uroš Seljak, James Sullivan, and
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Chapter 7

The look-elsewhere effect from a
unified Bayesian and frequentist
perspective

The contents of this chapter was originally published in [60],

The look-elsewhere effect from a unified Bayesian and frequentist perspective
Bayer A.E., Seljak U. (arXiv:2007.13821) JCAP 10 (2020) 009

When searching over a large parameter space for anomalies such as events, peaks, objects,
or particles, there is a large probability that spurious signals with seemingly high significance
will be found. This is known as the look-elsewhere effect and is prevalent throughout cosmol-
ogy, (astro)particle physics, and beyond. To avoid making false claims of detection, one must
account for this effect when assigning the statistical significance of an anomaly. This is typi-
cally accomplished by considering the trials factor, which is generally computed numerically
via potentially expensive simulations. In this chapter, we develop a continuous generalization
of the Bonferroni and Šidák corrections by applying the Laplace approximation to evaluate
the Bayes factor, and in turn relating the trials factor to the prior-to-posterior volume ratio.
We use this to define a test statistic whose frequentist properties have a simple interpre-
tation in terms of the global p-value, or statistical significance. We apply this method to
various physics-based examples and show it to work well for the full range of p-values, i.e. in
both the asymptotic and non-asymptotic regimes. We also show that this method naturally
accounts for other model complexities such as additional degrees of freedom, generalizing
Wilks’ theorem. This provides a fast way to quantify statistical significance in light of the
look-elsewhere effect, without resorting to expensive simulations.
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7.1 Introduction

A common problem in statistical analysis is to find evidence for a physical signal in a large,
continuous parameter space, where the true position of the signal is not known a priori. By
searching over a wide parameter space one increases the probability of finding large signals
caused by random statistical fluctuations, as opposed to a physical source. This is known as
the look-elsewhere effect – or sometimes the “problem of multiple comparisons” in discrete
cases – and must be accounted for when performing a hypothesis test [263, 331]. Ignoring
this effect would lead to an overestimation of the statistical significance, sometimes by a
considerable amount, and thus incorrectly concluding the detection of a physical signal.

The look-elsewhere effect is prominent throughout (astro)particle physics and cosmology.
One of the most commonly known occurrences is in collider searches for new particles, for
example it was a key consideration in the Higgs boson discovery [1, 102]. In this example, one
searches a large range of masses for a resonance, without a priori knowledge of the true mass
of the particle. Similarly, in astrophysical searches for particles one seeks resonances in the
energy flux of various astrophysical spectra, where the true energy signature of the particle
is unknown. Examples include: constraining the dark matter self-annihilation cross-section
via gamma ray emission from galaxy clusters [23], searching for WIMPs via charged cosmic
rays [302], searching for non-baryonic dark matter via X-ray emission from the Milky Way
[324], and explaining the source of high energy astrophysical neutrinos [2, 151]. In terms of
cosmology, the look-elsewhere effect occurs in searches for gravitational wave signals from
black hole or neutron star mergers [88, 4, 261]. Here one searches large time series for a
signal, where the time and shape of the event are unknown. A further cosmological example
is searching for signatures of inflation in the primordial power spectrum [155, 156, 201].

The look-elsewhere effect is also prevalent in other areas of physics and beyond, for
example: in astronomy it occurs when detecting exoplanets via stellar photometry, where
the period and phase of the planets’ transits are unknown (e.g. [307]); in biology it occurs
when considering large DNA sequences to study genetic association [32, 348]; in medicine
it occurs when testing the effectiveness of drugs in clinical trials [298]; and in theology it
occurs when attempting to find hidden prophecies in religious texts [259]. Therefore, given
the apparent ubiquity of the look-elsewhere effect, there is much motivation for a fast method
to account for it.

Many simple general methods exist to mitigate for the look-elsewhere effect in the case
of discrete problems, for example if one is testing multiple drugs for their effectiveness at
treating a disease [298]. The number of drugs tested, more generally known as the trials
factor, quantifies the extent of the look-elsewhere effect. The larger the trials factor, i.e. the
more drugs tested, the larger the chance of a false positive arising due to a statistical fluctua-
tion. Methods such as the Bonferroni correction [77] and Šidák correction [338] use the trials
factor to correct the conclusions of a hypothesis test in light of this effect. There is however
no unique definition of the trials factor when searching a continuous parameter space for a
signal, making it unclear how to implement these corrections in such cases. Therefore, a com-
mon, brute-force approach to account for the look-elsewhere effect in continuous problems
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is to perform many simulations of an experiment assuming there is no signal. One can then
estimate the p-value of a chosen test statistic, usually related to the maximum likelihood,
and in turn define a relation between the significance of a signal and the test statistic. This
means that to conclude a detection at the 5-sigma level, corresponding to a p-value of order
10−7, one would need to simulate more than ∼ 107 realizations of the experimental data,
which is computationally expensive. A faster method, developed in the context of high en-
ergy physics, is to approximate the asymptotic form of the p-value by counting upcrossings,
requiring fewer simulations [174]. In both of these cases new simulations are required each
time a new model is considered, and the simulations may not be an accurate representation
of the data. In this paper we seek an approach that can be directly applied to experimental
data, without the need for simulations.

Our approach applies Bayesian logic to tackle the look-elsewhere effect. The Bayesian
evidence is equal to the prior-weighted average of the likelihood over the parameter space,
which can be considerably lower than the maximum likelihood if the prior is broad. This
integration over the prior accounts for the look-elsewhere effect by penalizing large prior
volumes. When considering large prior volumes, the likelihood is typically multimodal, with
most of the peaks corresponding to noise fluctuations rather than physical sources. In order
to estimate the location of a physical signal, and its associated statistical significance, one
typically considers a point estimator, such as the maximum a posteriori (MAP) estimator
which maximizes the posterior density. By applying the Laplace approximation, we introduce
a Bayesian generalization of the MAP estimator, referred to as the maximum posterior mass
(MPM) estimator, which corrects the MAP estimator by the prior-to-posterior volume ratio.
Then, by drawing an analogy between Bayesian and frequentist methodology, we present a
hybrid of the MAP and MPM estimators, called the maximum posterior significance (MPS)
estimator, which determines the most significant peak in light of the look-elsewhere effect.
The frequentist properties of the MPS estimator are shown to be independent of the look-
elsewhere effect, providing a universal way to quantify the p-value, or statistical significance,
without the need for expensive simulations.

The outline of this paper is as follows. In section 7.2 we review Bayesian posterior infer-
ence and hypothesis testing for a multimodal posterior, by discussing MAP estimation and
then introducing MPM estimation. We then draw an analogy between Bayesian and fre-
quentist philosophy in section 7.3 to motivate MPS estimation as the appropriate technique
to tackle the look-elsewhere effect. The following three sections then apply this method to
various examples: section 7.4 considers a resonance search, which can be thought of as a toy
example of a collider or astrophysical particle search; section 7.5 considers a white noise time
series, which can be thought of as a toy example of a gravitational wave search; and section
7.6 considers a search for non-Gaussian models of cosmological inflation using Planck data
[290]. Note that section 7.4 is the main example, as it illustrates the key advantages of MPS,
with the other examples complementary. Finally, we summarize and conclude in section 7.7.
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7.2 Bayesian posterior inference and hypothesis

testing

Two of the main tasks of Bayesian statistical analysis are posterior inference and hypothesis
testing. Consider a model with parameters z = {zj}Mj=1, and data x = {xi}Nd

i=1 that depends
on z. The inference of z is given by its posterior

p(z|x) =
p(x, z)

p(x)
=
p(x|z)p(z)

p(x)
, (7.1)

where p(x|z) is the likelihood of the data, p(z) is the prior of z, and p(x) =
∫
dz p(x|z)p(z)

is the Bayesian evidence, also known as the normalization, marginal likelihood, or partition
function.1 Typically, one can evaluate the joint probability p(x, z), but not the evidence,
which makes the posterior inference analytically intractable. This is usually handled using
simple approximations or Monte Carlo Markov Chain methods [105].

A related problem is that of a hypothesis testing. In this case there are two different
hypotheses, H and H0, each with their own, potentially different, set of model parameters.
In Bayesian methodology, hypothesis testing is performed using the Bayesian evidence ratio
of the two hypotheses, which gives the Bayes factor

B ≡ p(x|H)

p(x|H0)
, (7.2)

where the Bayesian evidence, or marginal likelihood, for hypothesis H is given by

p(x|H) =

∫
dz p(x|z, H)p(z|H). (7.3)

If the prior on each hypothesis is equal, i.e. p(H) = p(H0) = 0.5, then the Bayes factor is
equal to the posterior odds ratio, B = p(H|x)/p(H0|x).

The Bayesian evidence and Bayes factor are also analytically intractable and harder
to evaluate than posteriors, especially for high dimensional z, although recent numerical
methods such as Gaussianized Bridge Sampling [209] have made the problem easier. For the
sake of exposition we will not consider such methods in this work, but instead use analytical
approximations that give the Bayes factor an intuitive meaning. It is worth keeping in mind
however that the full Bayes factor calculation can always be performed numerically, without
any approximations.

Maximum a Posteriori (MAP) estimation

Given the analytical intractability of posterior inference and hypothesis testing, one often
chooses an estimator to extract useful information from the posterior. A common estimator is

1Note that throughout this paper we use the letter p to refer to likelihood, prior, posterior, and evidence,
even though they each refer to different functions. This notation has the advantage of making the probabilistic
nature of each function clear, while the identity of the function should be clear from its argument.
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the maximum a posteriori (MAP) point estimator, which corresponds to the global maximum
of the posterior. If the prior is flat, as it will always be in this paper, this equals the
maximum likelihood estimator (MLE), which maximizes the likelihood. Mathematically,
MAP is defined via

MAP : arg max
z

p(z|x), (7.4)

i.e. the MAP is located at the argument, z, that maximizes the posterior. For the purpose
of comparing data to a null hypothesis, a useful quantity to define is

qL(z) ≡ 2 ln
p(x|z)

p(x|zn)
, (7.5)

where zn represents the values of the parameters under the null hypothesis, and a subscript
of L is used because the argument of the logarithm is the Likelihood ratio. To assess the
significance of a result one considers the maximum value of qL, which in the case of a flat
prior is equal to qL evaluated at the MAP: q̂L = qL(zMAP). For a Gaussian likelihood, this is
equal to the chi-squared (χ2), and in the absence of the look-elsewhere effect

√
q̂L typically

gives the statistical significance. However, we will see that this test statistic greatly suffers
from the look-elsewhere effect. This is because qL effectively assumes the prior on z to be
a delta function located at the best fit value. Such a prior is unreasonable because it has
been determined a posteriori (after seeing the data), and ignores the fact that when looking
elsewhere in parameter space the prior will be broad and in turn penalize the significance.
We will now explore this in more depth, and later discuss what a reasonable prior means.

Maximum Posterior Mass (MPM) estimation

MAP is often a good point estimator in low dimensions if there is a single mode in the
posterior. However, if the posterior has several modes, a more reasonable point estimator
associates with the highest posterior mass. We refer to this as the maximum posterior mass
(MPM) estimator.

For the purposes of this work, we will consider the example of a multimodal posterior
consisting of a sum of multivariate Gaussian distributions; this has been shown to be a good
approximation in many practical cases [327]. We thus consider a posterior of the following
Gaussian mixture form,

p(z|x) =
∑

l

wlN(z;µl,Σl), (7.6)

where N(z;µ,Σ) is a multivariate normal distribution with mean µ and covariance matrix
Σ.Note that working with a posterior of this form is equivalent to applying the Laplace
approximation to a general multimodal posterior in the upcoming derivations. In this model,
the mass of mode l is proportional to the weight wl, which is normalized such that

∑
l w

l = 1.
Assuming that only one component contributes at each peak, the weight of mode l is

given by evaluating the posterior at the location of the mode, z = µl,

lnwl = ln p(µl|x) − lnN(µl;µl,Σl) = ln p(µl|x) +
1

2

[
ln detΣl +M ln(2π)

]
. (7.7)
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Figure 7.1: Plot of a bimodal Gaussian posterior for a 1d example in which 90% of the posterior
mass is assigned to the right peak and 10% to the left. MPM yields the mode that maximizes the
posterior mass and is close to the true mean, whereas MAP maximizes the posterior density and
can be distant from the mean and represent only a small fraction of posterior mass.

Given the aforementioned analytical intractability of the posterior, we multiply each weight
by the normalization p(x) to give a quantity that can be readily computed. We call this
quantity the mass ml, and it is defined by

lnml ≡ lnwl + ln p(x) = ln p(x|µl) + ln p(µl) +
1

2

[
ln detΣl +M ln(2π)

]
. (7.8)

Thus the mass of each mode is equal to the likelihood multiplied by the product of the prior
density and the posterior volume at the peak, where the posterior volume is defined as

Vposterior ≡ (2π)M/2
√

detΣ. (7.9)

The MPM estimator corresponds to the mode with the highest mass, thus

MPM : arg max
z

[
p(x|z)p(z)

√
detΣ(z)

]
. (7.10)

To determine the MPM mode one would compute the lnml by first finding the positions of
all local posterior maxima µl, and then computing Σl using the inverse of the Hessian at
each peak. Qualitatively, MPM corresponds to maximizing the posterior density multiplied
by the posterior volume ∼

√
detΣ, whereas MAP only maximizes the former. It is apparent

that if there are multiple modes in the posterior, the one that has the largest posterior
mass does not necessarily have the largest posterior density, as shown in figure 7.1. In some
situations the MPM mode will dominate the posterior mass such that the MPM mode alone
gives a useful way to summarize the posterior.
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Hypothesis testing with MPM

Consider a model with parameters z1, z2, ..., zM , with z1 corresponding to the amplitude of a
feature, and z2, ..., zM corresponding to the properties of the feature. For example, z1 might
correspond to the amplitude of a signal detected in a time series at time z2. We will use
the notation z ≡ (z1, ..., zM)T as the vector of all parameters, and z>1 ≡ (z2, ..., zM)T as the
subvector of non-amplitude parameters, i.e. excluding z1. A typical analysis would scan over
z>1, finding the best fit value for the amplitude z1 at each point, giving rise to a multimodal
posterior.

In this work we wish to determine whether or not a dataset contains a true anomaly.
In the language of hypothesis testing, we wish to compare the hypothesis that there is an
anomaly H, corresponding to z1 > 0, to the null hypothesis that there is no anomaly H0,
corresponding to z1 = 0. We assume the common case that the parameters of H0 are a subset
of the parameters of H, with H reducing to H0 when z1 = 0. There may also be parameters
other than z that are common to both models, but these are of secondary importance when
considering the look-elsewhere effect and we drop these from the notation.

Using equation 7.8 with
∑
wl = 1 implies that the Bayesian evidence for hypothesis H

is given by

p(x|H) =

∫
dz p(x|z, H)p(z|H) =

∑

l

ml, (7.11)

where the ml correspond to the masses under hypothesis H. Hence, each mode contributes
its mass to the evidence. It follows that the mass of mode l corresponds to the Laplace ap-
proximation of the evidence integral in equation 7.11, integrated over the region of the mode.
Because the null hypothesis does not depend on z>1, the evidence for the null hypothesis is
given by the likelihood evaluated at z1 = 0, that is p(x|H0) = p(x|z1 = 0) ≡ p0(x). Together
with equation 7.11 this gives the Bayes factor

B ≡ p(x|H)

p(x|H0)
=

1

p0(x)

∑

l

ml ≡
∑

l

bl, (7.12)

where bl is defined as the contribution of mode l to the Bayes factor. Using equation 7.8
gives

bl =
p(x|µl)

p0(x)
p(µl)(2π)M/2

√
detΣl =

p(x|µl)

p0(x)

Vposterior(µ
l)

Vprior(µl)
, (7.13)

where we have introduced the effective volume of the prior at µl as,

V −1
prior(µ

l) ≡ p(µl), (7.14)

appropriate for the case of a narrow posterior relative to the prior. In the remainder of this
paper we will drop the µl dependence of the prior volume, as appropriate for a flat prior on
z.
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Intuitively, one can think of each bl as the Bayes factor one would get if mode l were
the only mode in the posterior. If the maximum bl is sufficiently large, it alone can provide
a useful approximation to the Bayes factor, meaning the MPM mode dominates the Bayes
factor. The first ratio on the right hand side of equation 7.13 corresponds to the likelihood
ratio of the signal hypothesis to the null hypothesis, evaluated at the location of the peak,
z = µl. This is greater than or equal to 1 since adding parameters to the null hypothesis can
only improve the fit. The second ratio gives the ratio of the posterior volume to the prior
volume at the peak, which is always less than 1. This acts as a penalty to the likelihood
ratio, often referred to as the Occam’s razor penalty [251], or model complexity penalty,
and compensates for the look-elsewhere effect in the case of a multimodal posterior. The
higher the prior-to-posterior volume ratio, the higher the chance that peaks with a high
likelihood will occur because of statistical fluctuations, thus the larger the penalty required
to compensate.

Just as qL is the estimator associated with MAP, we can define qb ≡ 2 ln b as the estimator
associated with MPM, such that

qb = qL − 2 ln
Vprior
Vposterior

. (7.15)

The MPM mode corresponds to the mode with maximum qb. This illustrates how the MAP
estimator ignores the look-elsewhere penalty by effectively considering the posterior and prior
to be overlapping delta functions, which presumes a priori knowledge of the parameters and
gives a prior-to-posterior volume ratio of unity.

An interesting question to consider is whether one can relate qb to the look-elsewhere
corrected statistical significance in a frequentist sense. In the absence of the look-elsewhere
effect, the significance is given by

√
qL, but simply taking

√
qb as the look-elsewhere corrected

significance would not be correct. In the next section we turn to a frequentist description of
the look-elsewhere effect to motivate a new estimator which applies a small modification to
qb and has a simple interpretation in terms of the significance, or p-value.

Before ending this section we discuss the choice of priors appropriate for a look-elsewhere
analysis. If one has no prior knowledge regarding the location of an anomaly, then a uniform
prior for the z>1 parameters is appropriate. If the prior is wide and posterior narrow this
induces a large look-elsewhere effect. This choice of prior is not controversial. On the
other hand, the choice of prior for the amplitude parameter z1 is less clear. If one has
no prior knowledge of the signal amplitude, then one should be open to a signal of any
size, however one does not want the amplitude prior to induce a look-elsewhere penalty.
In Bayesian hypothesis testing the amplitude parameter is treated analogously to the other
parameters, thus if one uses too broad an amplitude prior it will induce an unwanted look-
elsewhere penalty, whereas if one chooses too narrow an amplitude prior one risks discounting
a large signal. Based on this we rewrite b in the following form, explicitly separating the
marginalization over z>1 and z1,

b = eqL/2
V>1,posterior

V>1,prior

V1,posterior
V1,prior

. (7.16)
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The posterior volume terms are given by the covariance matrix, as in equation 7.9, and
V>1,prior is given by the choice of prior on z>1. It thus remains to justify a choice of V1,prior,
which we will do by turning to a frequentist description of the look-elsewhere effect in the
next section.

7.3 From Bayesian to frequentist hypothesis testing

Standard statistics literature states that Bayesian and frequentist hypothesis testing follow
different methodologies and may give very different results. One famous illustration of this
is the Jeffreys-Lindley “paradox” [243], however, there is much debate as to whether this
is indeed a paradox and how relevant it is for scientific discourse (see [123] for a review
in the context of high energy physics). While Bayesian statistics uses the Bayes factor for
hypothesis testing, frequentist statistics uses the maximum likelihood ratio, or q̂L. One of the
most important aspects of frequentist methodology is the computation of the false positive
rate using the p-value, which quantifies how often a test statistic, for example q̂L, will take
a specific value or larger under the assumptions of the null hypothesis. This has an intuitive
interpretation as it directly relates to the false positive rate of the test statistic. On the other
hand, Bayesian methodology rejects the p-value. The basis for this rejection is the likelihood
principle, which states that any inference about the parameters z from the data x can
only be made via the likelihood p(x|z). When the likelihood principle is applied to testing
a hypothesis with parameters z one must use the marginal likelihood by integrating out
these parameters – as in the Bayesian evidence of equation 7.3 – thus Bayesian methodology
explicitly satisfies the likelihood principle. It is commonly argued that p-values violate the
likelihood principle, because they rely on the frequentist properties of a distribution that go
beyond the likelihood principle. However, the Bayes factor provides a less reliable tool for
model comparison, as it is often interpreted in terms of arbitrary, model-independent scales
[272], unlike the p-value which directly relates to the false positive rate.

We seek to elucidate how the answers of the two schools of statistics relate to one and
other when it comes to the hypothesis testing. Both schools of statistics should give a
similar, or at least related answer, when the question is phrased similarly. For uncertainty
quantification it is often argued that the two schools do not answer the same question,
since the Bayesian school treats data as fixed and varies the models, while the frequentist
school varies the data at a fixed model. However, when it comes to hypothesis testing the
distinction is less prominent: for example, when comparing two discrete hypotheses without
any marginalizations, the answer in both cases gives the likelihood ratio as the optimal
statistic (assuming equal prior for the two hypotheses). For continuous hypotheses it is
often argued this is not possible. Here we will show that the two answers, the p-value and
the Bayes factor, can be related with a specific choice of prior. It is important to emphasize
that we are not claiming to equate the Bayesian and frequentist methodologies, but rather
motivate a connection.

In this work we define the p-value as the probability under the null hypothesis, H0, of
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a random variable, Q, to be observed to have a value equal to or more extreme than the
value observed, q. We thus use the notation P (Q ≥ q) for the p-value. To compute the p-
value of a test statistic, one must consider how the test statistic is distributed under the null
hypothesis. For the example of q̂L this distribution is not universal: scanning over continuous
variables, as in the look-elsewhere effect, will modify this distribution in a model dependent
manner. Moreover, increasing the model complexity in other ways, for example by including
extra degrees of freedom, will further modify the distribution. To account for extra degrees
of freedom, Wilks’ theorem [389] provides the asymptotic distribution of q̂L for a hypothesis
test where H has ν more degrees of freedom than H0. However, Wilks’ theorem relies on
technical conditions, such as the observed value not being at the edge of the interval, and
does not consider the look-elsewhere effect. Generalization of Wilks’ theorem for the look-
elsewhere effect have been considered in [133, 134] and have been translated into a practical
procedure in [174]. As a result, a frequentist approach consists of a series of considerations to
determine the change in the distribution of q̂L due to different sources of model complexity.
This is unlike the Bayesian methodology where all forms of model complexity are accounted
for in the same way, as they are encoded into the Bayes factor. By connecting the two
methodologies, we will present a test statistic whose distribution is universal, regardless of
the model complexity and look-elsewhere effect.

Maximum Posterior Significance (MPS) estimation

We start by considering the typical case of one degree of freedom, corresponding to a single
signal with amplitude z1 and features described by z>1. We denote qL maximized over
the amplitude parameter only as q̌L(z>1) ≡ maxz1 qL(z), not to be confused with q̂L ≡
maxz qL(z) which is qL maximized over all parameters. For a t-tailed test (where t is equal
1 or 2), Wilks’ theorem gives the asymptotic p-value of q̌L, at any position z>1, as

P (Q̌L ≥ q̌L) =
t

2
F̃1(q̌L)

q̌L→∞−−−−→ t√
2πq̌L

e−q̌L/2, (7.17)

where F̃ν is the complementary cumulative distribution function (CCDF) of a chi-squared
random variable with ν degrees of freedom. This maximization over z1 at a fixed choice of
z>1 corresponds to the p-value in the absence of the look-elsewhere effect, referred to as the
local p-value. Further maximizing over z>1 introduces the look-elsewhere effect, which can
be parameterized by multiplying by the trials factor N such that

P (Q̂L ≥ q̂L) = N
t√

2πq̂L
e−q̂L/2. (7.18)

This is referred to as the global p-value. It is this form that encapsulates the Bonferroni
correction [77] which effectively multiplies the local p-value by N to account for the look-
elsewhere effect. For discrete problems the trials factor equals the number of trials performed.
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However, in the continuous case it is ill-defined, but it quantifies how the probability of find-
ing a spurious peak increases as one looks elsewhere in the space spanned by z>1. Accounting
for the look-elsewhere effect thus requires an expression for the trials factor.

It follows from equation 7.18 that one can define a test statistic,

qS = qL − 2 lnN + ln 2πqL − 2 ln t (7.19)

such that the global p-value tends to

P (Q̂S ≥ q̂S) → e−q̂S/2, (7.20)

as either N → ∞ or q̂S → ∞, so this also applies for N = 1. See the appendix for this
chapter (Section 7.8) for a derivation. Unlike q̂L, q̂S has a distribution that is independent
of N – the look-elsewhere effect has been absorbed into the test statistic. Intuitively one
can think of the 2 lnN term as a penalty to qL to correct for the look-elsewhere effect, while
the ln 2πqL term removes qL dependent bias, ensuring the p-value depends on q̂S alone in
the asymptotic limit. Thus to account for the look-elsewhere effect one need only compute
q̂S and use this equation to compute the p-value. Because the p-value is a monotonically
decreasing function of q̂S, one can think of selecting the peak with maximum qS as selecting
the peak with minimum p-value or maximum statistical significance. We refer to the mode
with maximum qS as the MPS mode, deferring an explanation for this nomenclature until
the end of the subsection. The similarity of qS to qb from equation 7.15 suggests a connection
between the frequentist and Bayesian pictures, and we now invoke this connection to find an
expression for N and in turn generalize the Bonferroni correction to continuous parameters.

Heuristically, the Bayes factor describes the probability of the alternative hypothesis
relative to the null, determined by the likelihood (as measured by q̂L), while the p-value
averages its inverse over all values larger than q̂L and will be smaller than the likelihood.
We expect that for higher q̂L the effect is larger because we are further into the tail of the
distribution. There is no unique relation between the two, but one simple option is that
the p-value scales as B−1/q̂L ≈ b̂−1/q̂L, where hats now indicate quantities associated with
the MPS mode. Because we have the freedom to choose the prior on z1, we can define the
relation between the Bayes factor and p-value as

b̂−1

q̂L
≡ P (Q̂L ≥ q̂L). (7.21)

Comparing equation 7.16 with equation 7.18 then gives

V>1,prior

V̂>1,posterior

V1,prior

V̂1,posterior

e−q̂L/2

q̂L
= N

t√
2πq̂L

e−q̂L/2. (7.22)

By requiring that this relation holds in the absence of the look-elsewhere effect, the trials
factor can be identified as

N =
V>1,prior

V̂>1,posterior

, (7.23)
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and the amplitude prior volume is given by

V1,prior = t
√
q̂L
V̂1,posterior√

2π
= t
√
q̂Lσ̂1 ≈ tµ̂1. (7.24)

In the final steps we used V̂1,posterior =
√

2πσ̂1, where σ̂1 is the error on the amplitude pa-
rameter, µ̂1, and that the signal-to-noise ratio obeys

√
q̂L ≈ µ̂1/σ̂1. Since the look-elsewhere

effect leads to large q̂L, this prior volume will be larger than the posterior volume. This
choice of amplitude prior volume ensures that there is no trials factor associated with the
amplitude, as intuition would dictate. Substituting equations 7.23 and 7.24 into equation
7.19 yields

qS = qb + 2 ln qL. (7.25)

Hence, we have effectively applied a modification to the MPM estimator to give a combination
of the MPM and MAP estimators, so that the asymptotic p-value is neatly given by e−q̂S/2.
In the context of the look-elsewhere effect, the mode with maximum qb will typically also be
the mode with maximum qL, and thus maximum qS. However, this equivalence of MAP and
MPM may not always be the case, as shown in figure 7.1.

A pure Bayesian might argue that equation 7.24 is not a valid prior, since it depends on the
a posteriori amplitude parameter µ̂1; however, this prior does have an intuitive justification.
If a scientist is willing to consider a signal of any amplitude, the prior cannot be zero at
µ̂1, as it would not make sense to discard the signal. On the other hand, making the
prior significantly broader than µ̂1 implies the scientist has some additional information on
the nature of the amplitude. When there is no justification for broadening the prior, the
narrowest possible prior still consistent with the measured value can be more reasonable
than arbitrarily fixing the size of the prior a priori. This choice of amplitude prior is simply
designed to allow for a signal with any amplitude, without inducing an unwanted look-
elsewhere penalty.

Note that the explicit dependence on q̂L and the marginal likelihood, via b̂, in equation
7.21 is what makes the p-value inconsistent with the likelihood principle. One could instead
consider equating b̂−1 directly with the p-value, making it consistent with the likelihood
principle. This would require an amplitude prior of V1,prior = tσ̂2

1/µ̂1, which we deem unrea-

sonable as it is smaller than the posterior volume V̂1,posterior. We emphasize that the equality

of b̂−1/q̂L to the p-value is not required for our approach to the look-elsewhere effect, but
provides insight on the Bayesian-frequentist connection. At its core, our method considers
the test statistic q̂S, from equation 7.19, and replaces the trials factor N with the prior-
to-posterior volume of the non-amplitude parameters z>1. Intuitively one can think of the
number of trials as the number of posterior volumes that fit within the prior volume, and
this intuition suggests b̂−1 scales linearly with the p-value.

Because the asymptotic p-value scales linearly with the prior volume, the non-asymptotic
form of the p-value can be derived by dividing the prior volume into K ≫ 1 regions and
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Figure 7.2: Equation 7.27 is a good approximation to F̃1(q) over the entire range of q. This
suggests that MPS is still accurate in the absence of the look-elsewhere effect for a two-tailed test,
even non-asymptotically.

evaluating the p-value for each. Assuming independence between these regions, the product
of the p-values for each region can be used to obtain p-value of the full volume. Further
assuming that the asymptotic regime still applies, this gives

P (Q̂S ≥ q̂S) = lim
K→∞

[
1 −

(
1 − e−q̂S/2

K

)K
]

= 1 − exp
(
−e−q̂S/2

)
. (7.26)

Just as equation 7.20 is a generalization of the Bonferroni correction, equation 7.26 is a gen-
eralization of the Šidák correction [338] to continuous variables. This expression generalizes
the p-value into the non-asymptotic regime.

For N ≫ 1 every realization will have a positive peak, hence even the one-tailed p-value
will approach 1 for sufficiently low q̂L, which equation 7.26 predicts to be for q̂S < 0. In the
absence of the look-elsewhere effect (N = 1) a one-tailed test should approach a p-value of
0.5, while equation 7.26 approaches 1 as q̂S → −∞. Thus, the non-asymptotic agreement
breaks down for t = 1 and N = 1. On the other hand, if t = 2 and N = 1, substituting
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qS = qL + ln 2πqL − 2 ln 2 into equation 7.26 gives

P (Q̂L ≥ q̂L)N=1,t=2 = 1 − exp

[
−
(

2

π

1

q̂L

)1/2

e−q̂L/2

]
. (7.27)

The term in the square brackets can be identified as the asymptotic expansion of F̃1(q̂L). We
show the non-asymptotic agreement of this equation with F̃1(q̂L), the true two-tailed p-value
for N = 1, in figure 7.2. This illustrates the ability of the generalized Šidák correction to pro-
duce correct non-asymptotic results, even in the absence of the look-elsewhere effect. Hence,
although we have applied asymptotic approximations throughout the above calculations, we
have obtained a result that is valid even in the non-asymptotic limit. Inverting equation
7.27 gives the significance, or number of sigma, S, as

S2 ≈ q̂S − ln 2πq̂S + 2 ln t, (7.28)

with corrections of order O(q̂−1
S ). In the limit of q̂S → ∞, the significance can be interpreted

as
√
q̂S, in an analogous way to

√
q̂L in the absence of the look-elsewhere effect. This

motivates the name maximum posterior significance (MPS) as qS depends on the posterior
via the trails factor N , and is monotonically related to the significance S.

In summary, by considering a frequentist description of the look-elsewhere effect we
introduced q̂S as a natural test statistic to use, such that the asymptotic p-value is given
by e−q̂S/2. We derived a general expression for the p-value which also applies in the non-
asymptotic regime, and when there’s no look-elsewhere effect. Adopting the prior of equation
7.24, we showed that one can write the p-value in terms of Bayes factor as b̂−1/q̂L. This
intrinsically accounts for the look-elsewhere effect by identifying the trials factor as the
prior-to-posterior volume ratio of z>1 at the MPS mode. While one can compute the Bayes
factor using a variety of methods, we will use the Laplace approximation to evaluate the
posterior volume of each mode, as in section 7.2. To outline the step-by-step approach:

Maximum Posterior Significance (MPS) estimation:

1. Scan over the space of non-amplitude parameters, z>1, locating peaks in the
posterior with any amplitude, z1. Often only the highest few peaks are needed.

2. Compute qL and the posterior volume, using equation 7.9, for each peak.

3. Compute qb for each peak using equation 7.15 with the amplitude prior of
equation 7.24.

4. Compute qS = qb + 2 ln qL for each peak.

5. Find the peak with maximum qS.

6. Compute the (global) p-value using equation 7.26 and significance using 7.28.



CHAPTER 7. THE LOOK-ELSEWHERE EFFECT FROM A UNIFIED BAYESIAN
AND FREQUENTIST PERSPECTIVE 121

Multiple degrees of freedom

For models with multiple degrees of freedom, the frequentist approach is to apply Wilks’
theorem [389]. This is valid in the asymptotic limit, where, for a two-tailed test, the local
p-value is given by

Pν(Q̌L ≥ q̌L) = F̃ν(q̌L)
q̌L→∞−−−−→ 1

Γ(ν/2)

(
q̌L
2

)ν/2−1

e−q̌L/2, (7.29)

for a model with ν degrees of freedom. Note that the limit assumes q ≫ ν, but for ν = 2
it is exact for any q. Wilks’ theorem can address the model complexity problem of having
multiple (ν) continuous amplitude parameters. A specific example from particle physics is
a decay process with ν decay channels, each with amplitude Ai (0 ≤ i ≤ ν). In such a
case max{Ai} qL({Ai}, ...) ∼ F̃ν . Wilks’ theorem is not sufficiently general: it fails if the
parameters are at the edge of their distribution, and it does not naturally handle the model
complexity of the look-elsewhere effect, where one scans over a wide range of values for
one or more parameters. Upon introduction of the look-elsewhere effect a frequentist would
typically consider single trials distributed as ∼ F̃ν , and then use a ν-dependent trials factor
[174]. Thus in a frequentist approach extra degrees of freedom and the look-elsewhere effect
are treated separately. On the other hand, a Bayesian approach accounts for both in the
same way.

To apply the Bayesian methodology, we first reparameterize the model so that there
is only a single amplitude parameter by introducing branching ratios αi, such that each
amplitude parameter is Ai = αiz1, where z1 is the total amplitude parameter and

∑ν
i=1 α

2
i =

1. To remove the constraint we adopt rotation angles: for example, for ν = 2 we can work
with a phase angle ϕ, such that α1 = cosϕ and α2 = sinϕ. Thus, instead of working with A1

and A2 and considering maxA1,A2 qL(A1, A2, ...) ∼ F̃2, we consider maxz1 qL(z1, ϕ, ...) ∼ F̃1

with z>1 = (ϕ, ...). We can then directly apply the MPS prescription for ν = 1, as in the
previous subsection, by additionally marginalizing over ϕ to account for the model complexity
with an additional prior-to-posterior volume penalty.

To be agnostic, one would choose a prior volume for ϕ of Vϕ,prior = π (in practice a more
complex prior may be appropriate, but it will typically be O(1)). Furthermore, the average

error on ϕ is typically equal to the relative error on the amplitude, thus σϕ ≈ σ1/µ1 ≈ q
−1/2
L .

This gives a model complexity correction of

Vϕ,prior

V̂ϕ,posterior
=

π√
2πσ̂ϕ

=
√
π

(
q̂L
2

)1/2

=
F̃2(q̂L)

F̃1(q̂L)
. (7.30)

This shows that increasing the model complexity with an extra degree of freedom is accounted
for in the Bayesian framework by marginalizing over ϕ. Thus, the Bayesian answer to an
increase in model complexity, whether it be due to including extra degrees of freedom, or
looking elsewhere, is identical: marginalization over the non-amplitude parameters z>1. The
ν dependence of the local p-value in equation 7.29 can be interpreted as a Bayesian model
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complexity penalty: a fixed p-value corresponds to a larger q̂L as ν increases. Thus, MPS
intrinsically generalizes Wilks’ theorem by relating the trials factor to the prior-to-posterior
volume.

7.4 Example I: Resonance searches

To test the theory of section 7.3 we first consider a resonance search example. These appear
in many different areas of physics, including astroparticle and high energy physics. We
consider a search for a new particle whose mass and cross-section are unknown. The data x
could correspond to measurements of the invariant mass in the case of collider searches, or
the energy flux in astroparticle searches. The probability density for a single measurement,
xi, is given by

p(xi|f, x∗, σ∗) = fps(x
i|x∗, σ∗) + (1 − f)pb(x

i), (7.31)

where ps and pb are the normalized signal and background distributions respectively, and
f is the fraction of events belonging to the signal. We assume that the form of the signal
and background are known; we take the signal to be a normal distribution ps(x

i|x∗, σ∗) =
N(xi|x∗, σ∗), and the background to be a power law. Thus the resonance has position x∗ and
width σ∗. Given data x = {xi}Nd

i=1, the likelihood is given by the product of the individual
probability densities over the data. Using equation 7.31 this gives the likelihood as

p(x|f, x∗, σ∗) =

Nd∏

i=1

[
fps(x

i|x∗, σ∗) + (1 − f)pb(x
i)
]
. (7.32)

Note that the Bayesian evidence under the null hypothesis is independent of the parameters,
namely

p0(x) ≡ p(x|f = 0) =

Nd∏

i=1

pb(x
i). (7.33)

While the likelihood depends on the number of data Nd, quantities such as the p-value
will have converged provided Nd is sufficiently large to resolve the resonance. Throughout
this section we fix Nd = 10Vx∗,prior/σ∗ to ensure sufficient convergence. We note that more
complex models might consider drawing Nd from a Poisson distribution, however this is
unnecessary for our proof of concept.

We first consider a uniform prior on x∗, with range (0, 103), i.e. a prior volume of Vx∗,prior =
103. We do not fit for σ∗ and fix it to σ∗ = 0.5 a priori, corresponding to the narrow-width
approximation. In this case the posterior is only multimodal in the x∗ dimension, thus to
find peaks we split the parameter space along the x∗ dimension into narrow bins of size ∆x∗
and compute the maximum likelihood of equation 7.32 within each bin. Ensuring ∆x∗ is
sufficiently small, we determine the location of all peaks in the posterior, µl, by comparing
adjacent bins. The Hessian at each peak is then computed using finite differencing, and
inverted to give Σl. Note, in this example we have an analytical form for the likelihood,
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Figure 7.3: The local chi-squared (left axis) and local p-value (right axis) for an example data
realization with true amplitude f = 5× 10−3, position x∗ = 500, and width σ∗ = 0.5. While there
is a peak with q̌L ≈ 10 at the correct position, the look-elsewhere effect leads to other, sometimes
larger, peaks at random positions.

enabling verification of the numerical computation with analytical results. The value of qb
at each peak is then computed using equation 7.15, in turn giving q̂S.

Figure 7.3 shows the local chi-squared and local p-value as a function of x∗ for an example
data realization. We use true parameters f = 5 × 10−3 and x∗ = 500. Recall from equation
7.17 that the local chi-squared and p-value correspond to the values obtained by maximizing
over f at fixed x∗, i.e. they correspond to the values obtained without having corrected for
the look-elsewhere effect. The local chi-squared q̌L can also be thought of as the projection
of qL onto the x∗ axis. It can be seen that although there is a peak with qL ≈ 10 at the
correct position, there are also multiple spurious peaks throughout the parameter space,
with q̂L ≈ 14 in this example. This illustrates the look-elsewhere effect: peaks with a local
p-value of ∼ 10−4 are produced by noise, meaning a signal with such a local p-value should
not be considered as significant as its local p-value naively suggests.

We now consider 105 different data realizations without a signal (f = 0) to study the
distributions of q̂L and q̂S under the null hypothesis. The plots in figure 7.4 show the global
p-value in terms of q̂L and q̂S for a variety of scenarios. One can think of the vertical axes
as corresponding to the false positive rate (FPR) of a hypothesis test using threshold q.

We first compare three different prior volumes on x∗, Vx∗,prior = 103, 102, 101, to show the
effectiveness of our method for large and small N . The top left plot of figure 7.4 shows that
the p-value of q̂L has a considerable prior volume dependence. This is the look-elsewhere
effect: a larger prior volume leads to a larger trials factor and thus an increased probability
of finding a higher maximum likelihood. On the other hand we see that q̂S shows no prior
dependence and is in good agreement with equation 7.26, even in the non-asymptotic regime.

We also investigate the variation of the p-value with the value of the width of the signal
σ∗. This is shown in the top right plot of figure 7.4 where we consider σ∗ = 0.1, 0.5, 1.0.
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Figure 7.4: CCDFs of q̂L (dotted) and q̂S (dashed), computed using 105 simulations with no signal
(f = 0). (Top Left) compares three prior volumes: 103 (red), 102 (blue), and 101 (magenta).
(Top Right) compares different values of signal width σ∗: 0.1 (red), 0.5 (blue) and 1.0 (magenta).
(Bottom Left) compares the dimensionality of x∗: 0d (red), 1d (blue), 2d (magenta), and 3d
(green). (Bottom Right) compares the un-binned f -parameterization (red) against a binned Poisson
parameterization (blue). In all cases the p-value of q̂L has large variation, whereas q̂S does not.
Furthermore, q̂S closely follows the predictions of equation 7.26 (black).
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to the average

√
q̂L over all data realizations.

Smaller σ∗ leads to a smaller posterior volume and thus a larger trials factor. Much like the
discussion above for prior volume variation, q̂L has a large σ∗ dependence, unlike q̂S.

Next, we investigate the variation of the p-value with the dimensionality of the look-
elsewhere effect. To do this we extended the model to consider a signal at vector position
x∗. Each data point now corresponds to a vector xi, and we extend the signal and background
in a symmetric fashion across each dimension, keeping the total prior volume fixed. Within
the context of collider searches, the components of x∗ might correspond to a collection of
invariant mass and jet properties. For astroparticle searches, the multiple dimensions might
correspond to different directions in the sky. The bottom left plot of figure 7.4 shows the
variation of the test statistics for dimensionality of 1, 2, and 3, for a constant prior volume
of 100. It can be seen that, while the p-value of q̂L is dependent on the dimensionality, the
p-value of q̂S is not. This justifies the naturally arising (2π)M/2 prefactor in the posterior
volume in equation 7.9. We also plot the 0d case, corresponding to only fitting for A with
fixed x∗. Even though there is no look-elsewhere effect in this case, asymptotic agreement
with equation 7.26 is still achieved. This shows our approach is still reliable in the N → 1
limit, justifying its applicability for arbitrary N . As discussed in section 7.3, non-asymptotic
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agreement is not expected for a one-tailed test in the absence of the look-elsewhere effect,
as the p-value tends to 0.5 as q̂L → 0; on the other hand, a two-tailed test would give
non-asymptotic agreement as shown in figure 7.2.

The above discussion concerns an un-binned model, parameterized by the signal fraction
f . Often in particle physics, one performs a binned analysis with the number of events in
each bin modelled as a Poisson distribution [124]. We find similar results when using this
Poisson parameterization, as pictured in the bottom right of figure 7.4. The Poisson line
agrees with the black line slightly better than the f line does, likely because the Laplace
approximation is more accurate in the Poisson case.

When it comes to hypothesis testing, the relation between the true positive rate (TPR)
and the false positive rate (FPR) determines the predictive power of a test statistic. In order
to compare the relative power of the test statistics we consider an ROC plot for a variety
of true f values, shown in figure 7.5. We also quote the (local) signal-to-noise ratio (SNR),
which we define as the average

√
q̂L across 104 realizations for the given f . It can be seen that

q̂S and q̂L have approximately equivalent ROC lines, suggesting MAP and MPS have equal
predictive power. This is expected as the relation between the test statistics is approximately
monotonic, as seen in equation 7.19. This agrees with the findings of [164] which considered a
different Bayesian-inspired test statistic, and showed it to have an approximately equivalent
ROC curve to the p-value of the likelihood. Also, it can be seen that the predictive power
increases with true f – as expected a larger true signal is more likely to be correctly detected.

7.5 Example II: White noise

While we could continue the discussion in the context of resonance searches, we now consider
a white noise time series example to illustrate the application of MPS to different models.
This can be thought of as a toy model of a gravitational wave search. In this section we show
how MPS handles additional model complexity as theorized in section 7.3. We consider a time
series y(x) comprising of measurements at Nd times, x = {xi}Nd

i=1, with spacing xi+1−xi = 1.
In the absence of a signal, each data point yi ≡ y(xi) is assumed to be a standard normal
random variable, i.e. we assume white noise. We consider a model with 2 degrees of freedom
(dofs), with signal given by

ps(x|A1, A2, x∗,∆, σ∗) = A1N(x|x∗, σ∗) + A2N(x|x∗ + ∆, σ∗) (7.34)

where A1,2 > 0 are the amplitudes of each dof, x∗ and x∗ + ∆ are the positions of the dofs,
and σ∗ is the common width.

As motivated in section 7.3, we reparameterize so that there’s a single amplitude param-
eter, z1 = A, and other parameters describing the properties of the single degree of freedom,
z>1. We thus transform variables using A1 = A cosϕ and A2 = A sinϕ, with A > 0 and
0 ≤ ϕ ≤ π/2 for a one-tailed test. By substituting the transformations into equation 7.34,
the signal in the new parameterization is given by

ps(x|A, ϕ, x∗,∆, σ∗) = A [cosϕN(x|x∗, σ∗) + sinϕN(x|x∗ + ∆, σ∗)] . (7.35)
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Figure 7.6: CCDFs of q̂L and q̂S averaged over 105 simulations with no signal (A = 0). The
parameters in the square brackets are those being maximized, with other parameters being held
fixed (as discussed in the text). The p-value of q̂L varies depending on the model complexity,
whereas q̂S consistently follows the prediction of equation 7.26 (solid black).

The corresponding chi-squared difference between the data and the null hypothesis, equal to
two times the log-likelihood-ratio, is given by

qL(x|A, ϕ, x∗,∆, σ∗) =

Nd∑

i=1

[
yi
]2 −

[
yi − ps(x

i|A, ϕ, x∗,∆, σ∗)
]2
. (7.36)

We consider a uniform prior on x∗ with range (0, 100), i.e. a prior volume of Vx∗,prior = 100,
and Nd = 100. We do not fit for σ∗ or ∆ and fix them to σ∗ = 0.5 and ∆ = 10. The
application of MPS is identical to the previous section, so we will not repeat the methodology
here.

Considering 105 data realizations with no signal, figure 7.6 shows how q̂L and q̂S are
distributed for different levels of model complexity. First we maximize over A, while holding
all other parameters fixed. In this case q̂L ∼ F̃1(q̂L)/2 (red dotted line) as expected for
a one-tailed test with one degree of freedom. Additionally maximizing over ϕ allows for
2 dofs, and gives q̂L ∼ F̃2(q̂L)/4 (blue dotted line). This is expected because there are 4
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permutations of each dof having positive or negative amplitude, and A1,2 > 0 considers 1 of
these 4. For both of these cases, q̂S follows the same asymptotic distribution as predicted
by equation 7.26. This verifies that the Bayesian picture of marginalizing over ϕ successfully
reduces a model with 2 dofs to the same scale as 1 dof, in other words Wilks’ Theorem has
been replaced by marginalizing over ϕ. There is some discrepancy in the non-asymptotic
regime for the maximization over A only (red dashed line), as discussed in section 7.3 for a
one-tailed test.

We now introduce the look-elsewhere effect by allowing x∗ to vary. First we maximize
over A and x∗ for fixed ϕ = 0, as shown by the magenta lines. This is equivalent to a
model with 1 dof because ϕ = 0 corresponds to A2 = 0. We see that the distribution of q̂L
(magenta dotted line) is shifted to the right compared to the red and blue dotted lines due
to the look-elsewhere effect. However, the distribution of q̂S (magenta dashed line) continues
to follow the line predicted by equation 7.26. Finally, when maximizing over A, ϕ and x∗,
i.e. a model with 2 dofs in the presence of the look-elsewhere effect, q̂L (green dotted line) is
further right-shifted, whereas q̂S (green dashed line) again agrees with equation 7.26. The
slight discrepancy in the A, ϕ, x∗ maximization case is due to using too large a prior volume:
there is a slight preference to having two well fitted peaks compared to one very well fitted
peak, thus the distribution of ϕ is clustered towards ϕ = π/4. Using a more appropriate
prior for ϕ would improve agreement.

In summary, while the distribution of q̂L is highly dependent on the model complexity,
via the extra degrees of freedom and look-elsewhere effect, q̂S has a universal distribution.

7.6 Example III: Non-Gaussian models of

cosmological inflation

There is much interest in detecting non-Gaussian models of inflation via the cosmological
power spectrum [253, 125, 219, 326, 291, 115]. A specific type of such a feature model adds
the following oscillatory perturbation to the ΛCDM power spectrum,

P (k) = P0(k)[1 + A sin(2ωk + ϕ)], (7.37)

where P0(k) is the featureless (ΛCDM) power spectrum and A, ω, and ϕ are the amplitude,
frequency, and phase of the oscillatory perturbation. Such models are searched for using
Planck 2013 data in [156] using the frequentist look-elsewhere analysis technique of [155]. In
this section we seek to reproduce the conclusions of these papers using MPS.

Equation 7.37 can be written in the form P (k) = P0(k) + ∆P (k) with

∆P (k;A, ω, ϕ) = AP0(k)[cosϕ sin(2ωk) + sinϕ cos(2ωk)]

≡ A cosϕPs(k;ω) + A sinϕPc(k;ω),
(7.38)

where in the last line we explicitly separate terms with A and ϕ, as only ω couples to k.
Assuming a linear relation, one can write Cℓ = Cℓ,0 + ∆Cℓ, with

∆Cℓ(A, ω, ϕ) = A cosϕCℓ,s(ω) + A sinϕCℓ,c(ω), (7.39)
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Figure 7.7: Planck results. Top: Plot of q̌L, the projection of qL onto the ω axis; this corresponds
to qL evaluated at the A and ϕ that maximize qL at each ω. Middle: The errors obtained for the
parameters, as well as a comparison with the determinant of the covariance matrix having removed
the amplitude parameter, Σω,ϕ. Bottom: A plot of qL (blue) and qS (cyan) for each peak, with the
look-elsewhere correction depicted by the vertical black lines.

where Cℓ,s and Cℓ,c are the angular power spectra corresponding to Ps and Pc respectively.
The Planck Likelihood [290] is given by

−2 logL(Ĉℓ|A, ω, ϕ) = [Ĉℓ1 − Cℓ1(A, ω, ϕ)]∆ℓ1ℓ2 [Ĉℓ2 − Cℓ2(A, ω, ϕ)], (7.40)

where Ĉℓ are the PCL estimates, and ∆ℓ1ℓ2 = ⟨∆Ĉℓ1∆Ĉℓ2⟩ is the PCL covariance matrix. In
order to compute the likelihood for the null hypothesis, CosmoMC [238] was used to find the
best fit values for the cosmological and nuisance parameters. When computing the likelihood
for the signal hypothesis, the cosmological parameters were held fixed at these values; while
they should really be re-fitted for the signal hypothesis, this is found to have little effect in
[156]. The Cℓ are evaluated using CAMB [239] with a sufficiently high accuracy setting to
ensure resolution of the rapid oscillations. To speed up the evaluation of the likelihood over
parameter space, Cℓ,s(ω) and Cℓ,c(ω) were computed over a discrete range of ω between 0
and 4000 with step-size ∆ω = 5, with intermediate values computed via spline interpolation.
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A flat prior was chosen for ω and ϕ. The rest of the analysis is analogous to the previous
examples: we find all the local maxima of the posterior, compute the Hessian using finite
differencing, compute the covariance matrix, and use this to find q̂S. Unlike the previous
examples, we note that ω and ϕ are correlated, as illustrated in the middle plot of figure
7.7, so it is important to use the determinant of the full covariance matrix and not just its
diagonal components. It is also interesting to note that higher peaks have smaller errors.

The results obtained using the CAMspec component of the 2013 Planck likelihood2 are
pictured in figure 7.7. The maximum occurs at ω ≈ 3660 with q̂L = 15.4, giving a naive
significance of

√
q̂L ≈ 4 sigma. However, we find that q̂S = 3.0, giving a global p-value of

1 − exp(1 − e−3/2) = 0.20 using equation 7.26, and significance of S = 1.3 sigma. Thus the
signal is in fact far less significant in light of the look-elsewhere effect. The prescription of
[156] gives a p-value of 0.13, which is in reasonable agreement. Note that our likelihood profile
does not match [156] exactly due to our approximate approach, hence the p-value quoted
here is the value one would obtain by applying the prescription of [156] to our likelihood
profile. We applied the same analysis to the 2015 plik lite likelihood [8] and found a
p-value of approximately 1, suggesting no evidence for such models of non-Gaussianity.

7.7 Conclusions

This work has employed Bayesian and frequentist thinking to provide a fast method to
account for the look-elsewhere effect when scanning over a large parameter space. We started
by considering the Bayesian approach, and explained how maximizing the posterior mass,
as in MPM, is a more appropriate choice than maximizing the posterior density, as in MAP.
Bayesian methodology naturally considers model complexity and the look-elsewhere effect
by marginalization, which penalizes the likelihood by the prior-to-posterior volume ratio.
(Under the Laplace approximation, the posterior volume is simply related to the determinant
of the covariance matrix.) We then considered the frequentist approach by writing the global
p-value as the local p-value multiplied by the trials factor. By drawing an analogy between
the two approaches we identified the trials factor as the prior-to-posterior volume ratio of the
parameters being scanned over, in turn generalizing the Bonferroni correction to continuous
problems. We introduced qS and in turn MPS, a hybrid of MPM and MAP, which considers
the mode with maximum qS. Finally, we generalized the Šidák correction to continuous
problems, providing a universal way to assign the global p-value in both the asymptotic and
non-asymptotic regimes.

We illustrated the effectiveness of MPS by considering several examples from (as-
tro)particle physics and cosmology, showing it to have equal predictive power to MAP while
naturally accounting for the look-elsewhere effect. MPS effectively shifts the hypothesis
testing threshold of the maximum likelihood ratio to a generic scale: while the maximum
likelihood ratio, or equivalently the best fit chi-squared χ2 = q̂L, depends on the model

2One should sum the different components of the likelihood, but this is unnecessary for our proof of
concept.
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complexity and extent of the look-elsewhere effect, q̂S does not. In other words, instead of
considering fixed q̂L thresholds, one should consider fixed q̂S thresholds.

Unlike current methods that rely on performing numerous simulations, MPS accounts for
the look-elsewhere effect by using information from the data alone, as one need only compute
the likelihood and the posterior volume to evaluate qS. This provides a more efficient way
to quantify statistical significance as it does not require expensive simulations. In a typical
situation one would focus on the most promising anomalies only, with q̂S providing a scale
that gives good guidance on what false positive rate one should expect. Subsequently, one
would obtain additional information to verify the veracity of an anomaly when possible.

For our proof of concept it was sufficient to only consider simple physical examples in
this paper, but there are many real-world applications where our methods can be employed.
Examples include searches for new particles in astroparticle and particle data, searches for
gravitational wave signals in LIGO/VIRGO data, searches for exoplanets in transit and
radial velocity data, as well as many more. In some of these cases the look-elsewhere penalty
can be considerably large, reaching beyond 6 sigma. The problem is very general, as almost
every search for unknown objects, events, new physics, or other phenomena whose existence
is unknown, has to deal with the look-elsewhere effect. We note that while this work only
explored the look-elsewhere effect from scanning over parameter space, we expect that similar
methods can be applied to other manifestations of the look-elsewhere effect, for example
scanning over models when fitting gravitational wave templates.

The goal of a data analyst searching for anomalies is to report the most promising anoma-
lies in terms of having a small p-value, or a high Bayes factor. By clarifying the origins of
the look-elsewhere effect and model complexity penalty for continuous parameters we hope
to open the way to refinements in anomaly searches that can improve the overall success
rate of a detection. This should be a common goal of any experimental analysis regardless
of which school of statistics one belongs to.
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7.8 Appendix A: Derivation of the CCDF of q̂S

The asymptotic (large qL) CCDF of the global maximum of qL is for a one-tail test is given
in equation 7.18 as

PQL
(QL ≥ qL) = N

1

2
F̃1(qL) (7.41)

= N
1√

2πqL
e−qL/2 +Nq

−1/2
L e−qL/2O

(
q−1
L

)
, (7.42)

where here we include the leading order correction, and drop hats and take t = 1 for conve-
nience. Consider the transformation of variables to qS, defined by

qS ≡ g(qL) ≡ qL − 2 lnN + ln 2πqL. (7.43)

It can be shown that the inverse of g is given by

qL = g−1(qS) = W0

(
N2eqS

2π

)
(7.44)

= qS + ln
N2

2π
− ln

(
qS + ln

N2

2π

)
+ O

(
L2

L1

)
, (7.45)

where W0(z) is the principal branch of the Lambert W function. The asymptotic expansion
has been performed in the final line, with the shorthand Li ≡ lni N2eqS

2π
. Assuming N is

constant to study the limiting behaviour, the CCDF of qS is thus

PQS
(QS ≥ qS) = PQL

[
QL ≥ g−1(qS)

]
(7.46)

= e−qS/2e−O(L2/L1)
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2π


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e−qS/2

qS + ln N2

2π

)
(7.47)

→ e−qS/2, (7.48)

where the limit corresponds to either N → ∞ or qS → ∞. This means the result still applies
asymptotically in the absence of the look-elsewhere effect (N = 1).
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Chapter 8

Self-calibrating the look-elsewhere
effect: Fast evaluation of the
statistical significance using peak
heights

The contents of this chapter was originally published in [61],

Self-Calibrating the Look-Elsewhere Effect: Fast Evaluation of the Statistical Signifi-
cance Using Peak Heights
Bayer A.E., Seljak U., Robnik J. (arXiv:2108.06333)
MNRAS 508-1 (Nov 2021) 1346–1357

In experiments where one searches a large parameter space for an anomaly, one often
finds many spurious noise-induced peaks in the likelihood. This is known as the look-
elsewhere effect, and must be corrected for when performing statistical analysis. This chapter
introduces a method to calibrate the false alarm probability (FAP), or p-value, for a given
dataset by considering the heights of the highest peaks in the likelihood. Specifically, we
derive an equation relating the global p-value to the rank and height of local maxima. In
the simplest form of self-calibration, the look-elsewhere-corrected χ2 of a physical peak is
approximated by the χ2 of the peak minus the χ2 of the highest noise-induced peak, with
accuracy improved by considering lower peaks. In contrast to alternative methods, this
approach has negligible computational cost as peaks in the likelihood are a byproduct of every
peak-search analysis. We apply to examples from astronomy, including planet detection,
periodograms, and cosmology.
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8.1 Introduction

When searching a large parameter space for a signal, with limited a priori knowledge of the
signal’s location, the likelihood distribution is often multimodal with the vast majority of
peaks corresponding to spurious noise-induced events. This is known as the look-elsewhere
effect, or problem of multiple comparisons, and must be accounted for when performing a
hypothesis test to avoid reporting a false detection [263, 331].

This effect is particularly prevalent in astronomy, with numerous examples including
searching for gravitational waves and exoplanets. In the gravity wave example, one searches
for a signal of many different possible known shapes and unknown time, which can lead to a
large look-elsewhere effect, modifying the p-value by many orders of magnitude (see e.g. [88,
4, 261]). A similarly large effect occurs when searching for exoplanetary transits in stellar
photometry experiments such as Kepler [79], where the period, phase, and other properties
of the transit are unknown [37, 43, 44, 140]). Additionally, the look-elsewhere effect can
occur in wavelet analysis: this has many astronomical applications, one of which is detecting
asteroid families in the main belt [see e.g. 38, 45, 40, 39, and references therein].

The look-elsewhere effect is also prominent in searches for new particles, where the mass
of the particle is unknown: this issue gained much attention when the LHC detected the
Higgs boson [1, 102]. Just like collider searches, astroparticle experiments also suffer from the
look-elsewhere effect, with examples including: constraining the dark matter self-annihilation
cross-section via gamma ray emission from galaxy clusters [23], searching for WIMPs via
charged cosmic rays [302], searching for non-baryonic dark matter via X-ray emission from
the Milky Way [324], explaining the source of high energy astrophysical neutrinos [2, 151],
and in the spectral analysis of solar neutrinos [301]. The look-elsewhere effect additionally
appears in inflationary cosmology when searching for anomalies in the primordial power
spectrum [155, 156, 201], and when detecting planar structures in the satellite systems of
galaxies [98].

The look-elsewhere effect is also relevant in numerous areas outside of physics. In biology,
modern DNA sampling techniques can be used to perform genetic association to find links
between genotypes and phenotypes [32, 348]. When large DNA sequences are used there
is a high probability of obtaining spurious signals and thus a large look-elsewhere effect.
Another medical example is the process of testing the effectiveness of drugs in clinical trials
[298]. Furthermore, it is important to consider when attempting to find hidden prophecies in
ancient religious texts [259]. The look-elsewhere effect is ubiquitous in physics and beyond
and there is thus much motivation for a fast method to account for it.

When performing a hypothesis test, frequentists typically consider the p-value, whereas
Bayesians consider the Bayes factor. The p-value is often referred to as the false positive
rate (FPR) or false alarm probability (FAP), as it quantifies how often a given test statistic
is expected to take on a particular, or more extreme, value under the assumptions of the
null hypothesis. Hence, the smaller the p-value, the less likely the null hypothesis and the
larger the statistical significance of the alternative hypothesis. Typically one considers the
p-value of the likelihood ratio between the alternative and the null hypotheses, in which case



CHAPTER 8. SELF-CALIBRATING THE LOOK-ELSEWHERE EFFECT: FAST
EVALUATION OF THE STATISTICAL SIGNIFICANCE USING PEAK HEIGHTS 135

the look-elsewhere effect causes an increase in the p-value at a fixed value of the likelihood:
discretely speaking, if one performs N trials, the probability of a spurious event increases by
a factor of N . Conversely, the likelihood required to achieve a given p-value is increased by
the look-elsewhere effect, meaning one needs to find peaks with a larger likelihood to achieve
a given statistical significance.

A brute force method to account for the change in the p-value is to perform simulations of
the null hypothesis and determine the p-value numerically. This, however, is extremely com-
putationally expensive: for example, to determine the 5-sigma level, which corresponds to a
p-value of ∼ 10−7, one would need to perform ∼ 107 simulations. To achieve a balance be-
tween efficiency and accuracy, scientists have often applied the theory of [133, 134] to find an
upper bound for the p-value. [37, 43, 44] applied this to the Lomb-Scargle periodogram [249,
314], and various generalizations, by performing intricate analytical calculations. However,
these calculations depend on the type of periodogram considered and are thus not applicable
to more general situations. For example, in the task considered by [41] it was found that an-
alytic approximations are either inaccurate or slow to compute. Furthermore, [174] applied
the theory of [133, 134] in the context of particle searches by using the expected number
of upcrossings to approximate the asymptotic p-value via the Taylor approximation. This
method still requires multiple simulations, although fewer than the brute force approach.

An alternative approach to account for the look-elsewhere effect, which requires neither
simulations nor model-specific calculation, has been recently developed by [60]. Drawing a
connection with Bayesian methodology, it associates the look-elsewhere effect trials factor
with the prior-to-posterior volume ratio. This method has been shown to be effective for a
variety of models when evaluating the Bayes factor using the Laplace approximation and the
posterior volume using the Hessian matrix. This makes the computation very fast, however,
when considering models of increased complexity where the Laplace approximation is not
valid, one may have to employ Monte Carlo (MC) methods (e.g. [106]) to accurately evaluate
the Bayes factor, which would increase the computational time.

In this paper we work towards a general approach to account for the look-elsewhere effect,
which requires neither simulation, nor model-specific calculations, nor explicit evaluation
of the Bayes factor. To achieve this, we consider the distribution of peak heights in the
multimodal likelihood computed from the data. We show that, given this information alone,
one can estimate the p-value directly from the likelihood of the data in examples of varying
complexity. Since the peak heights are a byproduct of a peak search, this information is
readily available and provides a very fast way to estimate the p-value. Because this approach
accounts for the look-elsewhere effect by using information from the data alone, we name
the method self-calibration.

The paper is organized as follows. Section 8.2 reviews the look-elsewhere effect and
defines quantities such as the trials factor. Section 8.3 then motivates the method to self-
calibrate the p-value and trials factor. This is then illustrated in Section 8.4 for a variety
of examples related to planet detection (spots in exoplanetary transit light curves, the LS
periodogram, and a Kepler exoplanet search) and an example from cosmology (searching
for oscillatory features in the primordial power spectrum). Finally, conclusions are given in
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Section 8.5.

8.2 Background

This section briefly summarizes the look-elsewhere effect (see [60] for a more thorough dis-
cussion). We consider a model with M parameters, z, such that z1 is the amplitude of a
signal, and z>1 describes the properties of the signal that one is scanning over, or fitting for.
For example, searching for the signal of a planet transit with amplitude z1, orbital period
z2, and phase z3.

From a frequentist perspective, one is interested in comparing the data x against the null
hypothesis H0 of there being no signal (z1 = 0). Writing the likelihood as p(x|z), a common
test statistic to consider is related to the likelihood ratio,

qL(z) ≡ 2 ln
p(x|z)

p(x|z0)
, (8.1)

where z0 represents the values of the parameters under H0. To assess the significance one
typically considers the maximum value of qL, denoted q̂L, but below we will generalize this
concept. For a Gaussian likelihood, qL is equal to the difference in χ2 between the null and
signal hypotheses, thus we will often simply refer to this as the chi-squared. In such a case,
and in the absence of the look-elsewhere effect,

√
q̂L gives the number-of-sigma significance.

This can then be related to the p-value, often referred to as the false positive rate (FPR)
or false alarm probability (FAP), depending on the problem in question: for example in the
case of a chi-squared random variable with s degrees of freedom, the p-value is given by
the complementary cumulative distribution function of a chi-squared random variable with
s degrees of freedom.The p-value in the absence of the look-elsewhere effected is referred to
as the local p-value.

In the presence of the look-elsewhere effect the p-value must be corrected, sometimes by
many orders of magnitude. This is often done by introducing the trials factor, N , such that
the look-elsewhere-corrected p-value is parameterized as

P (Q̂L > q̂L) = NPlocal(Q̂L > q̂L), (8.2)

where Plocal is the local p-value, and Q̂L is the random variable associated with q̂L. The
look-elsewhere-corrected p-value is often referred to as the global p-value as it considers the
probability that the global maximum of the likelihood occurs above a specific threshold. The
trials factor thus quantifies the extent of the look-elsewhere effect, with N = 1 corresponding
to no look-elsewhere effect, and progressively larger values corresponding to a more severe
look-elsewhere effect. Computing the trials factor is the main challenge in accounting for
the look-elsewhere effect, and is typically done either by (i) performing model-dependent
analytical calculations [37, 43, 44], (ii) running many numerical simulations [174], or (iii)
by evaluating the Bayes factor [60]. In the next section we present self-calibration as a
fast method to estimate N and the p-value directly from the data, without any expensive
computation.
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8.3 The Self-calibration Method

In this section we introduce our proposal for self-calibrating the p-value using the heights of
peaks in the likelihood. We present a Bayesian derivation in the appendix for this chapter
(Section 8.6), but give a more concise frequentist motivation in this section.

In the presence of a large look-elsewhere effect (N ≫ 1), the parameter space will contain
many peaks. Various works have derived the number of upcrossings (or the number of local
maxima in the case of multidimensional fields) that breach a particular threshold, τ , of the
chi-squared [see e.g. 303, 7, 133, 134, 31]. One can write the expected number of upcrossings
as

⟨nup(τ)⟩ = Cταe−τ/2, (8.3)

where α and C are model dependent quantities, and we have ignored boundary effects which
are negligible for large trials factor N . Note that the trials factor is absorbed into C.

By evaluating the expected number of upcrossings from Eq. 8.3 at the maximum chi-
squared value, denoted q̂L, one obtains an asymptotic (large q̂L) approximation of the p-value
as

P (Q̂L ≥ q̂L) ≃ ⟨nup(q̂L)⟩ = Cq̂αLe
−q̂L/2. (8.4)

In the case of chi-squared random variable with s degrees of freedom α = (s − 1)/2 [134].
Many problems of physical interest obey this form, for example a periodogram with 1 har-
monic signal corresponds to s = 2 [37], or s = 2h in the case of h harmonic signals [42],
while particle physicists hunting for a mass resonance typically consider s = 1 [124]. We will
assume this form of α in the remainder of the text.1

On the other hand, the coefficient C can be complicated to compute as it is sensitive to
the look-elsewhere effect and has a high degree of model dependence. Efforts have been made
to compute it for many different scenarios [37, 42, 43, 44]; however, this requires a specific
calculation for each example considered, and for many problems can become analytically
intractable [41].

To avoid having to compute C, we eliminate it by combining Eqs. 8.3 and 8.4. This gives

P (Q̂L > q̂L) ≃ ⟨nup(τ)⟩
(
q̂L
τ

)(s−1)/2

e−(q̂L−τ)/2 (8.5)

= e
− 1

2

[
q̂L−τ−2 ln⟨nup(τ)⟩−(s−1) ln

q̂L
τ

]
. (8.6)

In essence, Eq. 8.6 is calibrating the expected number of upcrossings at the maximum value
of the chi-squared, q̂L, by using the number of upcrossings at a lower value from the chi-
squared, τ .

This relation in Eq. 8.6 was also found by [174] using a slightly different argument. In
order to apply their method, [174] suggests to evaluate ⟨nup(τ)⟩ by performing thousands

1One can consider non-linear models for which τα is replaced by a model-dependent polynomial function
of τ [see e.g. 43], however we will demonstrate that this is often unnecessary to a good approximation in
§8.4.
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of simulations and computing the numerical average. While this requires fewer simulations
than evaluating the p-value directly it can still be computationally expensive [17].

In self-calibration we bypass such simulations, and quickly obtain the p-value directly
from a single dataset. We do this by firstly noting that the number of peaks is a good
approximation to the number of upcrossings in the asymptotic q̂L limit. Using peaks instead
of upcrossings is beneficial because peaks are a byproduct of any peak-search analysis, making
them readily available. Secondly, we use the fact that, by definition, there are n peaks with qL
larger than or equal to the nth highest peak, q

(n)
L . We thus take τ ≈ q

(n)
L and ⟨nup(τ)⟩ ≈ n.

Substituting this into Eq. 8.6 enables application to a single dataset, negating the need
for simulations. Finally, we apply the Šidák correction [338] to Eq. 8.6 to improve the
non-asymptotic behaviour. The Šidák correction replaces the asymptotic p-value such that
P → 1 − e−P , to provide better agreement in the non-asymptotic (large P ) regime [see e.g.
60].

In this paper we will consider models with 1 amplitude parameter and s other parameters,
i.e. s degrees of freedom, thus the total number of parameters is given by M = s+ 1. Using
bars to denote self-calibrated values, the self-calibrated p-value is thus given by

P̄ (Q̂L > q̂L) ≡ 1 − exp

(
−e−

1
2

[
q̂L−τn−2 lnn−(M−2) ln

q̂L
τn

])
, (8.7)

where τn is known as the threshold. We provide discussion on choices of τn in the appendix
for this chapter (Section 8.6), but τn ≈ q

(n)
L is a suitable approximation which we will often

employ. Hence, Eq. 8.7 relates the p-value to an exponential function of the difference in peak
height between the highest peak and the nth highest peak (via the q̂L− τn ≈ q̂L− q

(n)
L term),

and some logarithmic correction terms that depend on the choice of n and the dimensionality
of the model M . We will discuss the choice of n in Section 8.4.

The form of the self-calibrated calibrated p-value can be more succinctly written as

P̄ (Q̂S > q̂S) ≡ 1 − exp
(
−e−¯̂qS/2

)
, (8.8)

where
¯̂qS ≡ q̂L − τn − 2 lnn− (M − 2) ln

q̂L
τn
. (8.9)

It is beneficial to work with the qS test statistic instead of qL as the look-elsewhere dependence
is absorbed into qS, making the p-value relation in Eq. 8.8 independent of the look-elsewhere
effect [60]. In the case of a one-tailed test (i.e. positive amplitude), it follows from [60] that
the self-calibrated statistical significance, or number of sigma, S̄, is given by

S̄ =

√
¯̂qS − ln 2π ¯̂qS, (8.10)

for large ¯̂qS. Note for sufficiently large ¯̂qS, S̄ ≈
√

¯̂qS. Moreover, the self-calibrated trials
factor, N̄ , is given by

2 ln N̄ = τn + 2 lnn+ ln 2πq̂L + (M − 2) ln
q̂L
τn
. (8.11)
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The above discussion concerns the distribution of peak heights for pure noise. In practice,
a dataset might contain one, or more, physical peaks; applying Eq. 8.7 to such a dataset
would give the significance of a signal under the null hypothesis, i.e. assuming all peaks
are noise. The existence of physical peaks will cause an overestimation of τn and in turn an
overestimation of the p-value, or an underestimation of the significance. This could introduce
false negatives, but not false positives, making this a conservative approach. However,
this overestimation of the p-value will be small for n larger than a few due to the slowly
varying logarithmic term lnn. In cases where there are multiple peaks introduced by physical
sources, one can reduce this effect by iteratively removing non-maximal physical signals and
appropriately relabeling the peaks in terms of n. More generally, Eq. 8.9 shows that to
self-calibrate q̂S for M = 2 one must correct q̂L by τn + 2 lnn. Plotting this correction as a
function of n and comparing to the expected variance of τn + 2 lnn will indicate if the data
is consistent with noise and thus whether the result of self-calibration is reliable.

To perform self-calibration there is thus one parameter to be chosen, the index of the
peak n. We will explore this choice in depth in Section 8.4. Meanwhile, it is instructive
to consider Eq. 8.9 for n = 2. In this case, the self-calibrated q̂S is simply given by the χ2

difference between the highest and second highest peaks (using τn ≈ q
(n)
L ), apart from small

logarithmic corrections. If the highest peak is known to be physical, and the remaining
peaks noise, this would give the χ2 difference between the physical peak and the highest
noise-induced peak. So, in its simplest form, self-calibration corresponds to computing the
look-elsewhere-corrected p-value from this difference in χ2. Furthermore, for sufficiently large
q̂S, the look-elsewhere-corrected chi-squared, S2, approximately equals this difference in χ2.

It is sometimes the case that the χ2 is only known up to a constant factor: for example
in periodograms used for radial-velocity exoplanet searches, unknown jitter effects mean the
measurement errors are only known up to a constant factor [see e.g. 37]. In such cases, it
is common practice to consider different normalizations of the χ2 to cancel out this factor,
resulting in different analytical formulae for the p-value for each choice of normalization.
These formulae can be complicated and have dependence on the number of data points, Nd.
Instead, we can use self-calibration to analyse such cases in a general manner. If we only
know the chi-squared up some constant factor, k, we have qL = kq′L and τn = kτ ′n. We can
thus self-calibrate k by applying equation 8.9 twice using the nth and mth peaks, resulting
in the following simultaneous equation:

¯̂qS = k(q̂′L − τ ′n) − 2 lnn− (M − 2) ln
q̂′L
τ ′n

(8.12)

= k(q̂′L − τ ′m) − 2 lnm− (M − 2) ln
q̂′L
τ ′m
. (8.13)

Solving for k gives the self-calibrated k as

k̄ =
2 ln n

m
+ (M − 2) ln τ ′m

τ ′n

τ ′m − τ ′n
. (8.14)
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This can then be substituted into Eq. 8.12 to compute the self-calibrated q̂S, and in turn the
significance using Eq. 8.10.

8.4 Results

In this section we apply self-calibration of the p-value to various astrophysical examples.
We start with a search for a Gaussian peak in white noise in subsection 8.4. This is a
very common example when searching for a single event in the data: it could for example
correspond to detecting a single transient in an exoplanetary lightcurve (e.g. a starspot). We
then consider the Lomb-Scargle (LS) periodogram in subsection 8.4, where we allow for data
with non-fixed spacing to investigate the effects of aliasing on self-calibration. We then study
a more complex (non-linear) planet transit model in subsection 8.4, where we apply it to a
Kepler exoplanet search. Finally, in subsection 8.4 we consider an example from cosmology,
namely searching for oscillatory features in the primordial power spectrum using data from
Planck [289].

Single Transient

We now apply self-calibration to an example of a search for a Gaussian peak in a white
noise time series. Physically speaking, this could correspond to searching for Gaussian-like
transients in lightcurves (e.g. starspots), Gaussian-like peaks in spatial maps, as well as
numerous other examples. We consider a time series of data measurements y(x) comprising
of Nd data points, x = {xi}Nd

i=1, with spacing xi+1 − xi = 1. Each yi ≡ y(xi) measurement
has normally distributed noise with zero mean and unit variance. We seek a signal of the
form AN(x|x∗, σ∗) where A is the amplitude, and N(x|x∗, σ∗) is a normal distribution with
mean x∗ and width σ∗. For these standard normal measurements, qL from Eq. 8.1 equals
the difference in chi-squared between the null and signal hypotheses:

qL(x|A, x∗, σ∗) =

Nd∑

i=1

[
yi
]2 −

[
yi − AN(x|x∗, σ∗)

]2
. (8.15)

To test self-calibration we first consider the case of pure noise. To study different choices
of n we consider 103 pure noise realizations. We use a signal width of σ∗ = 2 such that the
width of the peak is larger than the spacing of data points. Hence, this is a 2 dimensional
problem, M = 2, with parameters A and x∗. We consider 6 prior volumes in the range 250
to 104. Note that Vx∗,prior = 104 contains approximately 700 peaks.

Fig. 8.1 shows the complementary cumulative distribution of ¯̂qS (Eq. 8.9) for different
choices of n. There is excellent agreement with Eq. 8.8 for all choices of n for the full range
of p-values, suggesting the self-calibrated q̂S is distributed as the true q̂S. To investigate the
correspondence between the self-calibrated values and the values computed using the prior-
to-posterior volume, we consider the bias and standard deviation of P̄ /P−1 and S̄−S on the



CHAPTER 8. SELF-CALIBRATING THE LOOK-ELSEWHERE EFFECT: FAST
EVALUATION OF THE STATISTICAL SIGNIFICANCE USING PEAK HEIGHTS 141

4 2 0 2 4 6 8 10
¯̂qS

10-2

10-1

100

P
(
¯̂ Q
S
>

¯̂ q S
)

n= 10

n= 20

n= 30

n= 40

n= 50

1− exp(−e−¯̂qS/2)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Figure 8.1: Complementary cumulative distribution of ¯̂qS averaged over 103 simulations with no
signal (A = 0). Self-calibration is performed with a variety of choices of n, all of which agree with
the theoretical expectation of Eq. 8.8 (black line). The noise at high ¯̂qS is due to the finite number
of simulations used.

left and right of Fig. 8.2 respectively. It can be seen that the bias is close to 0, with variance
decreasing with n and roughly levelling off at around n ∼ 20 − 40. The plots also show
independence of prior volume, provided n is sufficiently small. As Vprior is decreased, the
number of peaks in the data decreases, and thus the maximum possible n that can be used
decreases. It can be seen that the smaller the prior volume, the earlier in n self-calibration
picks up a bias. This bias continues to grow with n, however we cut the lines for the sake
of neatness. Thus the bias remains constant up to a particular value of n which grows with
Vx∗,prior, i.e. the number of peaks in the data.

The variance of the p-value levels of at around n = 20. At this n the rms of the fractional
error of the p-value is around 0.2, meaning the self-calibrated p-value will have an error of
±20%, corresponding to a error in S of ±0.25. We see that even for the case of Vx∗,prior = 250,
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Figure 8.2: Analysis of the bias and variance of the self-calibrated p-value and significance as a
function of n. (Top left) The mean over 103 realizations of P̄ /P − 1 as a function of n. Error
bars represent the standard deviation. (Bottom left) The standard deviation of P̄ /P − 1 as a
function of n. Similarly, (top right) is the mean of S̄−S as a function of n, with (bottom right) the
standard deviation. In all cases 6 prior volumes are considered. An example of a single realization
for Vx∗,prior = 104 is shown by the black line.

which contains approximately 20 peaks per realization, one can self-calibrate the p-value to
±30% using n = 8. This level of accuracy suffices for many applications where one wishes to
quickly quantify the p-value. A final feature of Fig. 8.2 are the black lines in the upper plots,
which show the bias for a single realization, where it can be seen that there is correlation
between different values of n. One might consider taking the average (e.g. the median) value
of the self-calibrated significance computed over a range of n to reduce the effect of random
fluctuations in peak heights from a single realization; however, this correlation between peaks
means that such averaging is not guaranteed to perfectly remove the effect.

As discussed earlier in Section 8.3, the rms of τn + 2 lnn as a function of n can be used
as a diagnostic to verify whether the data is consistent with pure noise, and thus whether
the result of self-calibration is reliable. This is plotted in Fig. 8.3. It can be seen that
the variance is prior independent up to a value of n that grows with Vx∗,prior. The line for
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Figure 8.3: The standard deviation of τn + 2 lnn as a function of n for a variety of prior volumes.
The black line shows a fit to the Vprior = 10, 000 line given by Eq. 8.16.

Vx∗,prior = 104 is suitably converged in the range 1 ≤ n ≤ 100; a fitting formula for this line
is given by

σ [τn + 2 lnn] =
1.87√
n
. (8.16)

While this fitting formula was derived for the M = 2 white noise model considered in this
section, we expect it to still be a good indicator for other models. Thus when performing
self-calibration, we advise plotting τn + 2 lnn against n for the dataset, and comparing this
with the error envelope obtained from the above fitting formula. If the line falls within the
error envelope one can be confident that self-calibration was performed reliably. If not, it
could indicate the presence of physical peaks in the data, in which case one must identify
and remove these physical signals from the data, and then repeat the self-calibration process,
to avoid an overly conservative estimate of the p-value.

Having studied self-calibration in the context of pure noise, we now illustrate the method
applied to data with a physical signal. Fig. 8.4 shows a typical example of a peak at x∗ = 300
with true significance S ≈ 5.4. The left plot shows the distribution of qL projected onto the
x∗ dimension. It can be seen that there are numerous peaks, including a physically injected
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Figure 8.4: An example of self-calibration for a dataset with a true signal at x∗ = 300 and true
significance S = 5.38. Left panel : Distribution of qL projected onto the x∗ axis, i.e. having

maximized over A for each x∗. The maximum qL is defined as q̂L ≡ q
(1)
L ≈ 47, corresponding to a

6.8 sigma signal. Two arrows illustrate q̂L − q
(n)
L for n = 2, 10, with q

(2)
L ≈ 18 and q

(10)
L ≈ 9. Right

panel : The self-calibrated value of the statistical significance S̄ of the peak to be a true peak, as
a function of n with two options for τn (blue and orange). We see these lines are well converged
for n ≳ 5. We also plot the results of self-calibration when one does not know the normalization of
qL and must additionally self-calibrate its normalization, denoted by k (green). In this case results
are noisier — due to the error in the estimate of k — but are still within 1-sigma for n ≳ 15 and
within 0.1-sigma for n ≳ 40.

SELF-CALIBRATING THE P-VALUE
(1) By scanning over z>1 compute the likelihood ratio, and in turn qL, of all high peaks.
(6) Denote the highest as q̂L.
(2) Choose n (as discussed above).
(3) Compute τn, the average qL of the nth and (n+ 1)th highest noise peaks.

(4) Evaluate the p-value of the highest peak as 1 − exp
(
−e−¯̂qS/2

)
, where

(6) ¯̂qS = q̂L − τn − 2 lnn− (M − 2) ln q̂L
τn

.

(5) Evaluate the statistical significance, or number of sigma, approximately as

(6) S̄ =
√

¯̂qS − ln 2π ¯̂qS + 2 ln t.
(6) Plot τn + 2 lnn vs n together with the theoretical error envelope to verify the peaks
(6) are consistent with noise. If not, remove additional physical peaks and repeat. One
(6) can then also repeat the process to evaluate the significance of each physical peak.

Table 8.1: Algorithm for self-calibration of the p-value and statistical significance.
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peak at x∗ ≈ 300 with q̂L ≡ q
(1)
L = 46.6. The right of Fig. 8.4 shows the self-calibrated

significance compared to the true significance, as a function of n and for different choices of
threshold τn given in Eq. 8.41. The simplest form of self-calibration is to use the difference
in height of the highest two peaks, i.e. τn = q

(n)
L with n = 2. Using Eq. 8.9 this gives

¯̂qS = q̂L − q
(2)
L − 2 ln 2. It can be seen that such an approach leads to under-predicting the

number of sigma S by 0.6, so even at n = 2 we obtain a useful diagnostic. Nevertheless,
to achieve a better estimate of S one can use higher n. By considering the blue line it can
be seen that the average of the 1st and 2nd noise peaks produces a better estimate than the
1st noise peak alone, however taking such an average becomes unnecessary for larger n, and
convergence is achieved by around n = 5. This is typical for peaks of significance 5 sigma
and above, thus for cases of physical interest one can often use very low values of n.

We also show the self-calibrated number of sigma for when the normalization of qL is
unknown. While this is not a typical example, this is often the case when the measurement
error is not known in radial-velocity exoplanet searches [see e.g. 37]. To tackle such problem
with self-calibration, one can self-calibrate using 2 peaks to estimate the normalization of
qL, k, using Eq. 8.14. While one is free to use any choice of peaks, indexed by n and m, we
choose m = n/3 for this plot — it is also typically good practice to choose |m − n| ≳ 5 to
avoid correlation between adjacent peak heights. The self-calibrated S̄ in this case is depicted
with the green line in Fig. 8.4. It can be seen that there is now more noise in the estimated
number of sigma, due to the noise introduced by having to estimate k, however results are
still within 1-sigma of the correct value for n ≳ 15 and within 0.1-sigma for n ≳ 40.

In summary, we have shown that one can accurately compute the look-elsewhere cor-
rected p-value by considering the heights of likelihood peaks, without needing to evaluate
the posterior volume or performing simulations. This is true even in the non-asymptotic
limit. One can reliably self-calibrate the p-value to order 10% accuracy, or equivalently the
number-of-sigma significance to ±0.25, using a single dataset. The self-calibration algorithm
for the p-value is summarized in Table 8.1.

Lomb-Scargle Periodogram

The Lomb-Scargle (LS) periodogram [249, 314] (see [372] for a review) corresponds to a
search for a sine wave in a white noise background. Thus instead of the Gaussian signal
considered in the previous subsection, we now consider a signal of the form A sin(ωt + ϕ),
where t is time, ω = 2π/f is the angular frequency of the orbit, and ϕ is the phase. For
standard normal measurements, yi, qL from Eq. 8.1 equals the difference in chi-squared
between the null and signal hypotheses:

qL(t|A, ω, ϕ) =

Nd∑

i=1

[
yi
]2 −

[
yi − A sin(ωt+ ϕ)

]2
. (8.17)

Physically this could correspond to the radial velocity of a star caused by a planet orbiting
it [37], to the spectral analysis of solar neutrinos [301], or to many other examples.
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One of the key features of the LS periodogram over the classical periodogram is its
consideration of non-uniform time measurements. For a time series with span T , we thus
consider Nd time measurements t = {ti}Nd

i=1 between 0 ≤ t < T , with both fixed-uniform
spacing and randomly distributed measurements. For data with fixed-uniform spacing, there
is no information beyond the Nyquist frequency, fNyq = 1/(2∆t), where ∆t = (Nd − 1)/T is
the uniform data spacing. All frequency features beyond the Nyquist are indistinguishable
from their aliases in the f < fNyq region, so in the case of fixed-uniformly space data, the
aliasing follows a periodic pattern with period 2fNyq.

2 Moreover, for uniform sampling we
only need to consider the discrete frequencies fi = i/(2Nd∆t), and since Fourier modes are
orthogonal on this uniform basis the amplitudes of the different frequencies are independent
of each other. In this situation we can fit for each frequency separately and our self-calibration
can be applied without error.

However, data without fixed-uniform spacing can extract frequency features beyond the
Nyquist frequency. As such, the periodic signal associated with a periodogram can introduce
aliasing, whereby a physical signal at a particular frequency will give rise to peaks at both
the true frequency and various other frequencies. Moreover, the peaks become correlated,
and a proper analysis requires a joint fit of all the peaks [163]. Instead, we can try to analyze
the peaks individually without the joint analysis, ignoring the correlations: we will show that
this still provides reasonably accurate results. We refer the reader to the work of [37] for a
detailed mathematical description of the effects of correlations/aliasing on the p-value in the
context of the LS periodogram.

We consider an LS periodogram with time of observation T = 1, and Nd = 100 measure-
ments. The Nyquist frequency is thus fNyq = 50. We additionally apply a low frequency
cutoff of fmin = 0.5 corresponding to the minimum frequency detectable for T = 1. We use
106 realizations to numerically compute the distribution of the self-calibrated q̂S and in turn
the p-value.

The left panel of Fig. 8.5 shows the distribution of self-calibrated q̂S for this LS peri-
odogram. We consider self-calibration using n = 10, but have checked results are robust to
this choice. The solid blue line corresponds to fixed-uniform data spacing with fmax = fNyq.
It can be seen that there is good agreement with Eq. 8.8: this is to be expected as the
maximum of the LS periodogram is known to correspond to a chi-square with 2 degrees of
freedom at any fixed phase [314], and so obeys Eq. 8.2.

The dashed and dotted blue lines of Fig. 8.5 correspond to the p-value for random uni-
formly spaced data (i.e. the data points ti are drawn from a uniform distribution). In this
case we consider maximum frequencies of both 50 and 500, as non-uniformly space data
produces information beyond the Nyquist frequency. It can be seen that the results of self-
calibration for fmax = fNyq = 50 shows slightly worse agreement than the fixed-spacing case,
and that the agreement worsens as we increase to fmax = 10fNyq = 500. The reason for this
worsening is that considering non-uniformly spaced data, and frequencies above the Nyquist,

2Note the LS periodogram contains an additional symmetry P (f) = P (−f), thus P (f) = P (2fNyq − f),
and there is no information beyond fNyq.
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Figure 8.5: Top panel : Distribution of self-calibrated q̂S for the LS periodogram with fNyq = 50.
We consider self-calibration using n = 10, but have checked results are robust to this choice. We
plot lines for fixed data spacing with fmax = fNyq (solid), random data spacing with fmax = fNyq

(dashed), and random data spacing with fmax = 10fNyq (dotted). The fixed-spacing case agrees
well with Eq. 8.8, while the agreement slightly deteriorates for randomly spaced data, and further
as fmax is increased beyond the Nyquist. This discrepancy is introduced by aliasing effects, however
the bottom panel shows the asymptotic fractional error on the number of sigma, S, is at most 10%.

introduces additional peaks to the likelihood, which are correlated with each other. For this
example the self-calibrated number of sigma S is still correct to within 10% in the asymptotic
limit, as shown in the bottom panel of Fig. 8.5. Furthermore, since self-calibration under-
estimates the statistical significance it could lead to false negatives, but not false positives,
so it is a conservative estimate. Given the difference between the local and global p-value is
often many orders of magnitude, self-calibration assuming independent peaks still provides
a useful fast way to approximate the p-value in cases of data without fixed-uniform spacing.
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To illustrate why a joint analysis would be needed, consider fixed-uniform data spacing,
for which the likelihood peaks in the range (0, fNyq] will repeat themselves in each (ifNyq, (i+
1)fNyq], i ∈ Z region due to aliasing. This means that if one were to consider fmax > fNyq

there would be multiple repeated peaks of the same height and using self-calibration on
individual peaks assuming they are uncorrelated would break down. One can instead do a
joint fit of all the peaks. In this specific example this is equivalent to removing the signal
associated with the maximum peak from the data before computing q

(2)
L , and then iteratively

removing the signal of each peak to get to higher n. This will remove all the peaks caused by
aliasing, and generalizes self-calibration to any frequency range in the case of fixed-uniform
data spacing. While this example is not of physical interest, as there is no extra information
beyond the Nyquist frequency for fixed-uniform data spacing, it motivates the solution to
aliasing in cases of non-uniform data spacing. In our experiments we found this procedure of
removing the peaks tends to remove too much signal from the higher order peaks when the
peaks are correlated, so that self-calibration is not very accurate. For this reason we argue
the correct procedure is to fit for all the peaks jointly, which is computationally expensive
and beyond the scope of this work.

Kepler Exoplanet Search

Here we apply self-calibration in the context of exoplanet searches in the Kepler Space Tele-
scope data [217]. The look-elsewhere effect is particularly prominent in these applications:
in a pure-noise simulation a typical highest noise peak will have signal-to-noise ratio of 5.5,
i.e. qL ≈ 30, corresponding to multiplicity, or trials factor, in excess of 107.

We have some time series data of fluxes {yi}Nd
i=0 , measured at discrete time points ti,

which are evenly spaced ti = i∆. The flux is composed of a signal and noise,

yi = s(ti) + Ni. (8.18)

We consider two noise scenarios: (i) when Ni is assumed to be a normally distributed random
variable with zero mean and unit variance which is not correlated with other data points
(i.e. white noise), and (ii) adding realistic Kepler 90 stellar variability. Here we consider a
signal s(t) comprised of a periodic train of T transits with period P . The signal has M = 3
parameters, z = (A,P, ϕ): amplitude, period and phase, respectively. The form of the signal
is given by

s(t|A,P, ϕ) = A
T∑

r=1

U

(
t− (r + ϕ)P

τK(P )

)
, (8.19)

where U(x) is a U-shaped transit template which is nonzero in the region (-1/2, 1/2). We
use Kepler’s third law to give the duration of each transit event as τK ∝ P 1/3, effectively
assuming that planet’s orbits are circular and perfectly aligned with the line of sight.
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Figure 8.6: Distribution of self-calibrated q̂S for exoplanet searches in Kepler-like data. We consider
both white noise (solid) and realistic Kepler 90 stellar variability (dashed). We self-calibrate using
n = 3, 5, 10, and compare with Eq. 8.8.

Following the analysis of [308, 307], matched filtering the data y with the template s0(t|z)
gives the signal-to-noise,

√
qL, as

qL(ϕ|P )1/2 = F−1

{F{y}∗ F{s0}
P

}
, (8.20)

SNR = F−1

{F{d}∗ F{s}
P

}
, (8.21)

where F{·} is the discrete Fourier transform and P is the noise power spectrum (which for
white noise is a constant equal to the number of data points Nd). The template is normalized
such that

∑Nd

i=0 |F{s0}i|2/Pi = 1.
We consider a star like Kepler 90, where data spanning 1465.6 days of observations with

∆ = 29.4 minute intervals is available. To test self-calibration for such a model, we consider
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300 noise-only simulations. We simulate time series, apply matched filtering, and search over
periods in the range 3–300 days and over all phases.

Fig. 8.6 shows the distribution of the self-calibrated q̂S over these noise realizations for a
few choices of peak index, n. The solid lines correspond to the case of white noise, for which
it can be seen that there is good agreement with Eq. 8.8, and thus self-calibration produces
accurate results for all n considered.

Next we add realistic Kepler 90 stellar variability to the model, as shown by the dashed
lines of Fig. 8.6. In this case the model decides whether to fit for the stellar variability or
the exoplanet, or both. The null hypothesis is now noise and stellar variability, on top of
which we are looking for signatures of exoplanets. We model stellar variability as a Gaussian
process, measuring first its power spectrum from the data directly [307], and then fitting for
all of the Fourier components of the stellar variability (approximately 70,000 components).
It has been shown in [308] that the results of this joint fit are equivalent to the matched
filter analysis, where we use the power spectrum for P in Eq. 8.20. We assume that the
different planet peaks do not interact with each other. This makes such analysis feasible,
unlike for the periodogram case where a joint fit of multiple peaks would be very expensive.
Fig. 8.6 shows good agreement between self-calibration and simulations in the case of stellar
variability, although there is a slight discrepancy for large n, so for an optimal analysis it
suffices to use n = 5. For Kepler data we can scramble the data mixing up different time
intervals, which destroys exoplanet periodicity, and guarantees that we have pure noise peaks
in the scrambled data, so we do not need to worry about presence of real planets in the lower
amplitude peaks.

Searching for oscillatory features in the primordial power
spectrum

Here we apply self-calibration to real data, in the context of a search for oscillatory features in
the primordial power spectrum. This is an example of a non-Gaussian model of cosmological
inflation considered by [155, 156]. The model considered adds an oscillatory perturbation to
the ΛCDM power spectrum as follows,

P (k) = P0(k)[1 + A sin(2ωk + ϕ)], (8.22)

where P0(k) is the featureless (ΛCDM) power spectrum and A, ω, and ϕ are the amplitude,
frequency, and phase of the oscillatory perturbation. This is thus an example of an M = 3
model. In this case one is uncertain what the frequency or phase of the oscillation is, and
one scans over a large range of frequencies to seek a fit to theory – introducing a large look-
elsewhere effect. Using the Planck 2013 likelihood [290], we follow the analysis detailed in
§6 of [60] to produce the likelihood distribution on the left of Fig. 8.7. It can be seen to
be highly multimodal with many spurious peaks. The maximum occurs as ω ≈ 3660 with
q̂L = 15.4. Note there are three additional peaks with q̂L ≥ 10, and several more between 8
and 10.
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Figure 8.7: Example of self-calibration when searching the primordial power spectrum for oscillatory
features. Left panel : Distribution of qL projected onto the ω axis, i.e. having maximized over A and
ϕ for each ω. The highest peak is at ω ≈ 3660, with q̂L = 15.4, giving an uncorrected significance
of

√
15.4 ≈ 4 sigma. Right panel : The self-calibrated value of q̂S for the highest peak as a function

of n, with two options for τn from Eq. 8.41 and theoretical error envelope from Eq. 8.16. The true
value of q̂S from using the posterior volume is q̂S = 3.0, and self-calibration shows good agreement
for all n. Using Eq. 8.8 with q̂S = 3 gives the p-value as 0.20, giving a significance of S = 1.3; this
suggests that uncorrected 4-sigma peaks, such as this one, arise relatively commonly from noise
fluctuations.

The true value of q̂S, obtained using the posterior volume, was found to be q̂S = 3. The
right of Fig. 8.7 illustrates self-calibration, as detailed in Table 8.1, showing that a sufficiently
accurate approximation of q̂S is achieved for all choices of n. Furthermore, the pink shaded
region represents the fitting formula for the error envelope presented in Eq. 8.16, and it can
be seen that it encloses the data well. This suggests that self-calibration is reliable and in
general this can be used as a diagnostic, as one typically will not have the true value of q̂S
to compare with. It is useful to note that even though Eq. 8.16 was obtained in the context
of an M = 2 white noise example, it still provides a useful diagnostic for different models.

8.5 Conclusions

This paper presents a new method, self-calibration, to compute statistical significance in the
presence of the look-elsewhere effect by considering only the heights of peaks in the data
likelihood distribution. These peaks are a byproduct of any peak-hunting data analysis, so
there is negligible computational cost in this approach. In contrast, existing methods rely
on simulations, model-dependent analytical calculations, or explicit evaluation of the Bayes
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factor, all of which can be time consuming.
In its simplest form, self-calibration subtracts the χ2 of the highest noise peak, typically

assumed to be the second peak, from the χ2 of the highest peak, to approximate the look-
elsewhere-corrected χ2 of the highest peak. Accuracy is improved by considering lower peaks,
typically at a negligible computational cost since they are also a byproduct of the analysis.
This approach assumes that these lower peaks are dominated by noise; when this is not
the case, i.e. there are multiple physical peaks, one can iteratively remove physical peaks
from the data after verifying that their p-value is small. One can then also self-calibrate the
significance of each physical peak. This is another reason to favor low amplitude peaks for
the subtraction: one may not be certain if the highest peaks are physical or not, but one
is often certain that the lower peaks are generated by noise. An alternative approach to
noise-only peaks is to use some form of scrambled data where we know the signal has been
eliminated. For example, in the exoplanet detections from transits this could either be an
inverted or scrambled time series which eliminates the periodicity of the planet transits.

We showed that self-calibration gives an accurate estimate of the FAP, or p-value, of the
highest peak(s) in various astrophysical examples, including planet detection, periodograms,
and cosmology. We also developed a version of self-calibration which can be applied when
the noise and likelihood are not known, where one must also self-calibrate the normalization.
Our approach is general, but approximate: there are situations where fitting for individual
peaks is inaccurate, and a joint fit accounting for the effects of correlated peaks is required.
An example is periodogram analysis in the case of non-uniform data spacing. This is not
conceptually any different in the sense that if peaks are correlated then a joint fit is required,
but it is computationally difficult, and for specific situations such as periodograms methods
have been developed where one can account for these effects without doing a joint fit [37].
However, we have demonstrated that even without correcting for these effects, self-calibration
provides a simple method to quickly determine whether a significant detection has been made,
and is thus complementary to the more specialized methods that apply to specific situations.
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8.6 Appendix A: Bayesian derivation of

self-calibration

Here we provide a Bayesian derivation of the self-calibration equations presented in Section
8.3, based on the work of [60].

From a Bayesian perspective one considers the Bayes factor, which considers the evidence
ratio for the hypothesis that there is a signal H to the null hypothesis H0. The Bayes factor
is the ratio of Bayesian evidence under each hypothesis:

p(x|H) =

∫
dz p(z|H)p(x|z, H), (8.23)

where p(z|H) is the prior under hypothesis H and p(x|z, H) is the likelihood under hypoth-
esis H. Thus the Bayesian evidence is equal to the prior-weighted average of the likelihood.
For the examples considered in this paper we consider a null hypothesis for which the pa-
rameters are fixed, thus the evidence for H0 is simply given by the null likelihood p(x|z0).

For a multimodal likelihood, the Bayes factor can be approximated by performing a local
integration at each peak. This leads to a sum over contributions from each posterior mode.
If the location of the ℓth highest mode is z = µℓ, this gives Bayes factor as

B ≡ p(x|H)

p(x|H0)
≈
∑

ℓ

bℓ, (8.24)

where each bℓ is the contribution of mode ℓ to the Bayes factor and can be parameterized as

bℓ =
p(x|µℓ)

p(x|z0)
V ℓ
posterior

V ℓ
prior

= eq
ℓ
L/2

V ℓ
posterior

V ℓ
prior

, (8.25)

where V ℓ
prior (V ℓ

posterior) is the prior (posterior) volume associate with mode ℓ. A common
approximation for these volumes is the Laplace approximation [230], in which case the prior
volume is given by

V ℓ
prior ≃ 1/p(µℓ), (8.26)

and the posterior volume is given by

V ℓ
posterior ≃ (2π)M/2

√
detΣℓ, (8.27)

where Σ is the covariance matrix. We note that in principle one can compute Bayes factor
exactly, and the Laplace approximation is only a simple, but often effective, approximation
[60].

One can combine the frequentist and Bayesian perspectives to define a new test statistic

qS ≡ qL − 2 lnN + ln 2πqL − 2 ln t, (8.28)
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where the trials factor is taken as the prior-to-posterior volume ratio for the parameters z>1

at the maximum peak,

N =
V̂>1,prior

V̂>1,posterior

, (8.29)

and t = 1, 2 for a one, two-tailed test. Note that while this is the prior-to-posterior volume
ratio for z>1, we will often simply refer to it as the prior-to-posterior volume. The p-value
is then given by

P (Q̂S > q̂S) ≃ 1 − exp
(
−e−q̂S/2

)
, (8.30)

and applies both asymptotically and non-asymptotically. The key difference between the
p-value expressions of equations 8.2 and 8.30 is that the latter has no explicit N dependence,
meaning the p-value in terms of q̂S is unaffected by the look-elsewhere effect. This makes q̂S
a more useful statistic to use. The statistical significance, or the number of sigma, can be
approximated as

S ≈
√
q̂S − ln 2πq̂S + 2 ln t, (8.31)

with corrections of order O(q̂
−3/2
S ). The look-elsewhere-corrected chi-squared is S2. Note for

sufficiently large q̂S, S ≈ √
q̂S.

Thus all one needs to evaluate the p-value is q̂S, which itself depends on q̂L and N .
Computing N requires the evaluation of the posterior volume over z>1, which can be evalu-
ated using the Laplace approximation, Variational Inference or Monte Carlo Markov Chain
methods. However, we seek a faster alternative.

The asymptotic scaling of the p-value with N , and thus the prior volume, in Eq. 8.30
offers a way to evaluate the trials factor from the distribution of qL across the peaks in a
dataset. One can evaluate the p-value in subvolumes of the data by counting the number of
peaks above some threshold, and then rescale this to give the p-value for the entire volume.
Calibrating N in this way is cheaper than evaluating the posterior volume directly, for
example by using Monte Carlo methods, because peaks in the likelihood are a byproduct of
the peak-search analysis. Moreover, provided the qL peaks are dominated by noise, one can
perform this calibration on the data directly without needing to run simulations. We thus
call this method self-calibration, as one is calibrating N using the peaks belonging to the
measured data itself.

We start by splitting the prior volume of z>1 into K bins, such that the prior volume of
one of the bins is

V ′
>1,prior = V>1,prior/K. (8.32)

We note that for non-uniform priors, one may need to include correction terms in this
splitting of the prior volume to obtain greater accuracy (see e.g. [44] for discussion of splitting
complex prior volumes).

Thinking of the p-value in terms of the false-positive rate (FPR), one can approximate the
p-value of a bin as the fraction of bins containing a peak with qL > τ , for some threshold τ .
Smaller peaks typically have a larger error on z>1, which scales approximately as the noise-
to-signal, i.e. q̂

−(M−1)/2
L . Thus the average posterior volume in one of the bins is related to
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the posterior volume of the full volume by

V ′
>1,posteriror ≃ (q̂L/τ)(M−1)/2V>1,posteriror. (8.33)

Substituting equations 8.32 and 8.33 into Eq. 8.29 gives the trials factor for a single bin
as

N ′ ≃ N

K

(
τ

q̂L

)(M−1)/2

. (8.34)

Denoting the number of bins containing at least one peak with qL > τ as nbins(τ), the FPR
is given by the fraction of bins satisfying this condition. Equating the FPR to the p-value
from Eq. 8.30 gives

nbins(τ)

K
= 1 − exp

(
−e− 1

2
[τ−2 lnN ′+ln 2πτ−2 ln t]

)
(8.35)

= 1 − exp

(
−e−

1
2

[
τ−2 lnN+2 lnK+ln 2πq̂L+(M−2) ln

q̂L
τ
−2 ln t

])
. (8.36)

Rearranging and taking the K → ∞ limit gives an expression for the trials factor

2 lnN → τ + 2 lnnpeaks(τ) + ln 2πq̂L + (M − 2) ln
q̂L
τ

− 2 ln t, (8.37)

where the number of bins with a qL peak larger than τ tends to the number of peaks with
qL larger than τ in the full volume, i.e. nbins(τ) → npeaks(τ) as K → ∞. This provides an
estimate of N that relies purely on the number and height of the peaks, without needing to
evaluate their posterior volumes.3 Combining with Eq. 8.28 this gives q̂S as

q̂S = q̂L − τ − 2 lnnpeaks(τ) − (M − 2) ln
q̂L
τ
, (8.38)

and Eq. 8.30 gives the p-value as

P (Q̂L > q̂L) = 1 − exp

(
−e−

1
2

[
q̂L−τ−2 lnnpeaks(τ)−(M−2) ln

q̂L
τ

])
. (8.39)

In the above formulae, τ is a continuous variable, however a single dataset consists of a
discrete set of peaks. To self-calibrate the p-value of a particular dataset we thus evaluate
the above formulae for the nth peak such that

npeaks(τn) = n, (8.40)

with

τ = τn ≡ q
(n)
L + q

(n+1)
L

2
≈ q

(n)
L , (8.41)

3Note we have ignored boundary effects (see e.g. [43]), however these will be negligible in the case of
large N , i.e. when the look-elsewhere effect is considerable.
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where q
(n)
L is the qL value of the nth highest peak. We choose τ as the average of q

(n)
L and

q
(n+1)
L as a simple way to account for the discreteness of the data: for example, if q

(n)
L = 10

and q
(n+1)
L = 6, one can only conclude that n corresponds to τ in the range 6 < τ ≤ 10.

Having said that, in many cases one can choose τn = q
(n)
L and achieve sufficient accuracy.

We explore both options of τn in the main paper.
Substituting equations 8.40 and 8.41 into equations 8.37, 8.38, and 8.39, gives the self-

calibrated estimate of 2 lnN as

2 ln N̄ ≡ τn + 2 lnn+ ln 2πq̂L + (M − 2) ln
q̂L
τn

− 2 ln t, (8.42)

the self-calibrated estimate of q̂S as

¯̂qS ≡ q̂L − τn − 2 lnn− (M − 2) ln
q̂L
τn
, (8.43)

and the self-calibrated estimate of the p-value as

P̄ (Q̂L > q̂L) ≡ 1 − exp

(
−e−

1
2

[
q̂L−τn−2 lnn−(M−2) ln

q̂L
τn

])
, (8.44)

where bars are used to indicate these expressions are the self-calibrated approximations.
Finally, Eq. 8.31 can be used to compute the self-calibrated significance as

S̄ =

√
¯̂qS − ln 2π ¯̂qS + 2 ln t, (8.45)

for large ¯̂qS. Note for sufficiently large ¯̂qS, S̄ ≈
√

¯̂qS. Eqs. 8.42, 8.43, 8.44, and 8.45
correspond to Eqs. 8.11, 8.9, 8.7, and 8.10, quoted in the main text.
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Chapter 9

Conclusions

High-precision measurements of large-scale cosmic structure are expected to revolutionize our
understanding of fundamental physics, for example by the quantifying neutrino mass and
elucidating the nature of dark energy. To fully realize the potential of these measurements,
this dissertation has tackled various of the theoretical and numerical challenges that must
be addressed.

We started in Chapter 1 by introducing the standard model of cosmology. We motivated
that measurements of cosmic structure on small, nonlinear, scales can provide a wealth
of cosmological information. In particular, small scale information can help measure the
neutrino mass as massive neutrino suppress the growth of structure on these scales. To
analyse the information regrading neutrino mass in cosmic structure, we modelled massive
neutrinos by incorporating them into a particle-mesh simulation, FastPM, in Chapter 2.
By applying an innovative method we were able to bypass the problem of shot noise that
typically plagues neutrino simulations, enabling modeling the effects of massive neutrinos at
a more reasonable computational cost than traditional methods.

In Chapter 3 we then used simulations to investigate the amount of information in the
3d matter field, δm. In particular we considered the power spectrum, halo mass function,
and void size function. We found that these three statistics show very different degeneracies
in the Mν–σ8 plane, meaning that tight constraints are achieved when combining all three.
For the particular setup considered, we find that one can get constraints of 0.018eV using
scales up to kmax = 0.5h/Mpc.

However, the 3d matter field is not observable in modern cosmological surveys. In Chap-
ter 4 we then explored how much information regarding neutrino mass there will be in the
observable galaxy and weak lensing fields. Additionally, instead of looking at specific types
of higher-order statistics, we considered the total information in the field by looking at the
complex phases. By fixing the linear physics between two N -body simulations, we found
that there is actually very little information regarding neutrino mass in the galaxy and weak
lensing fields up to scales of k = 1h/Mpc. We do however find that there is some signal
from velocities, which trace the matter field via δv ∼ fδm. This motivates using peculiar
velocity information, together with accurate modelling of redshift-space distortions, to opti-
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mize constraints on neutrino mass. Moreover, combining large-scale structure with cosmic
microwave background measurements can help break degeneracies, in turn unlocking further
information.

To move towards obtaining optimal constraints, in Chapter 5 we then employ Bayesian
forward modeling with field-level inference to extract all the information in cosmic fields.
We developed a framework to perform a combined analysis of galaxy clustering information
with galaxy peculiar velocity information to reconstruct the initial conditions of the Universe.
We achieve this using differentiable forward modeling. In the future, this approach can be
extended to obtain constraints on cosmological parameters, including for neutrino mass, and
can be combined with analysis from weak lensing and the CMB.

In Chapter 6 we then focus in on a particular challenge in doing inference for cosmological
analyses, the super-sample covariance effect. The is a nonlinear effect on the covariance
matrix which arises due to neglect of modes that are larger than the size of the simulation.
The effect of these missing large modes can cause a significant difference in the covariance
matrix on small nonlinear scales. We created a set of FastPM simulations which we used
to quantify this effect for the power spectrum, bispectrum, halo mass function, and void
size function. These simulations can be used to quantify the effect for other statistics in the
future.

Finally, performing Bayesian inference in high dimensions, or for nonlinear models, can
result in non-trivial volume effects which make it difficult to reliably perform inference.
One such problem is known as the look-elsewhere effect which occurs when scanning a
large parameter space for evidence of a new model or a signal. In such cases it becomes
difficult to quantify the statistical significance of a discovery, moreover, the posterior might
be multimodal making it difficult to determine which peak is the most significant. In Chapter
7 we analyse the look-elsewhere effect from a frequentist and Bayesian perspective, ultimately
marrying the two to produce a unified method that quantifies the effect orders of magnitude
faster than traditional methods. Then in Chapter 8 we presented an even faster method of
self-calibrating the effect by simply computing the significance from the heights and ranks
of peaks in the likelihood. This approach has negligible computational cost as peaks in the
likelihood are a byproduct of every peak-search analysis.

All put together, this dissertation has provided various key ingredients to enable the
cosmology community to move closer to an optimal detection of neutrino mass and beyond.
Much work lies ahead, both in terms of creating accurate forward models which include
effects such as redshift-space distortions, and in terms of developing numerical tools to make
high-dimensional inference more tractable, such as more efficient samplers and optimizers.
Over the coming decades, by combining accurate forward modeling of large-scale structure
on nonlinear scales with innovative methods in Bayesian inference, we can hope to uncover
a wealth of information about our Universe.
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[140] J.-B. Delisle, N. Hara, and D. Ségransan. “Efficient modeling of correlated noise”.
In: Astron. Astrophys. 635 (Mar. 2020), A83. issn: 1432-0746. doi: 10.1051/0004-
6361/201936905. url: http://dx.doi.org/10.1051/0004-6361/201936905.

[141] Joseph DeRose et al. “The Aemulus Project. I. Numerical Simulations for Precision
Cosmology”. In: The Astrophysical Journal 875.1 (Apr. 2019), p. 69. issn: 1538-4357.
doi: 10.3847/1538-4357/ab1085. url: http://dx.doi.org/10.3847/1538-
4357/ab1085.

[142] DES Collaboration et al. “Dark Energy Survey Year 3 Results: Constraints on ex-
tensions to ΛCDM with weak lensing and galaxy clustering”. In: arXiv e-prints,
arXiv:2207.05766 (July 2022), arXiv:2207.05766. arXiv: 2207.05766 [astro-ph.CO].

[143] DESI Collaboration et al. “The DESI Experiment Part I: Science,Targeting, and
Survey Design”. In: arXiv e-prints, arXiv:1611.00036 (Oct. 2016), arXiv:1611.00036.
arXiv: 1611.00036 [astro-ph.IM].

[144] Anne-Sylvie Deutsch et al. “Reconstruction of the remote dipole and quadrupole
fields from the kinetic Sunyaev Zel’dovich and polarized Sunyaev Zel’dovich effects”.
In: Phys. Rev. D 98.12 (2018), p. 123501. doi: 10.1103/PhysRevD.98.123501. arXiv:
1707.08129 [astro-ph.CO].

[145] A. G. Doroshkevich et al. “COSMOLOGICAL IMPACT OF THE NEUTRINO REST
MASS”. In: Annals of the New York Academy of Sciences 375.1 (1981), pp. 32–
42. doi: 10.1111/j.1749-6632.1981.tb33688.x. eprint: https://nyaspubs.
onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.1981.tb33688.x.
url: https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-
6632.1981.tb33688.x.

[146] Andrej Dvornik et al. “KiDS-1000: Combined halo-model cosmology constraints from
galaxy abundance, galaxy clustering and galaxy-galaxy lensing”. In: arXiv e-prints,
arXiv:2210.03110 (Oct. 2022), arXiv:2210.03110. arXiv: 2210.03110 [astro-ph.CO].

[147] Michael Eickenberg et al. “Wavelet Moments for Cosmological Parameter Estima-
tion”. In: arXiv e-prints, arXiv:2204.07646 (Apr. 2022), arXiv:2204.07646. arXiv:
2204.07646 [astro-ph.CO].

[148] Daniel J. Eisenstein and Wayne Hu. “Power Spectra for Cold Dark Matter and Its
Variants”. In: The Astrophysical Journal 511.1 (Jan. 1999), pp. 5–15. issn: 1538-4357.
doi: 10.1086/306640. url: http://dx.doi.org/10.1086/306640.

[149] Daniel J. Eisenstein et al. “Improving Cosmological Distance Measurements by Re-
construction of the Baryon Acoustic Peak”. In: The Astrophysical Journal 664.2 (Aug.
2007), pp. 675–679. issn: 1538-4357. doi: 10.1086/518712. url: http://dx.doi.
org/10.1086/518712.

https://doi.org/10.1086/307636
https://arxiv.org/abs/astro-ph/9812197
https://arxiv.org/abs/astro-ph/9812197
https://doi.org/10.1051/0004-6361/201936905
https://doi.org/10.1051/0004-6361/201936905
http://dx.doi.org/10.1051/0004-6361/201936905
https://doi.org/10.3847/1538-4357/ab1085
http://dx.doi.org/10.3847/1538-4357/ab1085
http://dx.doi.org/10.3847/1538-4357/ab1085
https://arxiv.org/abs/2207.05766
https://arxiv.org/abs/1611.00036
https://doi.org/10.1103/PhysRevD.98.123501
https://arxiv.org/abs/1707.08129
https://doi.org/10.1111/j.1749-6632.1981.tb33688.x
https://nyaspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.1981.tb33688.x
https://nyaspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.1981.tb33688.x
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1981.tb33688.x
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1981.tb33688.x
https://arxiv.org/abs/2210.03110
https://arxiv.org/abs/2204.07646
https://doi.org/10.1086/306640
http://dx.doi.org/10.1086/306640
https://doi.org/10.1086/518712
http://dx.doi.org/10.1086/518712
http://dx.doi.org/10.1086/518712


BIBLIOGRAPHY 173

[150] J. D. Emberson et al. “Cosmological neutrino simulations at extreme scale”. In: Re-
search in Astronomy and Astrophysics 17.8 (Aug. 2017), p. 085. issn: 1674-4527.
doi: 10.1088/1674-4527/17/8/85. url: http://dx.doi.org/10.1088/1674-
4527/17/8/85.

[151] Kimberly Emig, Cecilia Lunardini, and Rogier Windhorst. “Do high energy astro-
physical neutrinos trace star formation?” In: Journal of Cosmology and Astroparticle
Physics 2015.12 (Dec. 2015), pp. 029–029. issn: 1475-7516. doi: 10.1088/1475-

7516/2015/12/029. url: http://dx.doi.org/10.1088/1475-7516/2015/12/029.

[152] Andreas Faltenbacher and Simon D. M. White. “ASSEMBLY BIAS AND THE DY-
NAMICAL STRUCTURE OF DARK MATTER HALOS”. In: The Astrophysical
Journal 708.1 (Dec. 2009), pp. 469–473. issn: 1538-4357. doi: 10 . 1088 / 0004 -

637x/708/1/469. url: http://dx.doi.org/10.1088/0004-637X/708/1/469.
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[404] José Manuel Zorrilla Matilla et al. “Geometry and growth contributions to cosmic
shear observables”. In: Phys. Rev. D 96.2, 023513 (July 2017), p. 023513. doi: 10.
1103/PhysRevD.96.023513. arXiv: 1706.05133 [astro-ph.CO].

https://doi.org/10.3847/1538-4357/ab0d7b
http://dx.doi.org/10.3847/1538-4357/ab0d7b
http://dx.doi.org/10.3847/1538-4357/ab0d7b
https://doi.org/10.1007/s11433-019-1516-y
http://dx.doi.org/10.1007/s11433-019-1516-y
http://dx.doi.org/10.1007/s11433-019-1516-y
https://doi.org/10.1093/mnras/staa1002
https://arxiv.org/abs/1910.02318
https://arxiv.org/abs/1910.02318
https://doi.org/10.1103/PhysRevD.96.023513
https://doi.org/10.1103/PhysRevD.96.023513
https://arxiv.org/abs/1706.05133

	Contents
	List of Figures
	List of Tables
	Introduction
	Cosmological Dynamics and Evolution
	Perturbation Theory
	N-body Simulations
	Massive Neutrinos
	Dissertation Outline

	A fast particle-mesh simulation of nonlinear cosmological structure formation with massive neutrinos
	Introduction
	Methodology
	Results
	Runtime
	Conclusions
	Appendix A: Effective distribution for non-degenerate neutrinos

	Detecting neutrino mass by combining matter clustering, halos, and voids
	Introduction
	Simulations
	Fisher information
	Cosmological probes
	Results
	Discussion and Conclusions
	Appendix A: Robustness of results to numerical systematics
	Appendix B: Combining two probes at a time

	Beware of fake s: The effect of massive neutrinos on the nonlinear evolution of cosmic structure
	Introduction
	Cosmological Information
	Massive Neutrino Information
	Higher-Order Statistics
	Fisher Analysis
	Discussion and Conclusions
	Appendix A: Other Parameters (m and As)

	Joint velocity and density reconstruction of the Universe with nonlinear differentiable forward modeling
	Introduction
	Method
	Results
	Discussion and Conclusions
	Appendix A: Redshift Space Distortions

	Super-sample covariance of the power spectrum, bispectrum, halos, voids, and their cross-covariances
	Introduction
	Method
	Results
	Conclusions

	The look-elsewhere effect from a unified Bayesian and frequentist perspective
	Introduction
	Bayesian posterior inference and hypothesis testing
	From Bayesian to frequentist hypothesis testing 
	Example I: Resonance searches
	Example II: White noise
	Example III: Non-Gaussian models of cosmological inflation
	Conclusions
	Appendix A: Derivation of the CCDF of TEXT 

	Self-calibrating the look-elsewhere effect: Fast evaluation of the statistical significance using peak heights
	Introduction
	Background
	The Self-calibration Method
	Results
	Conclusions
	Appendix A: Bayesian derivation of self-calibration

	Conclusions
	Bibliography



