
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
RIPPLE: Loop-Free Multi-Path Routing with Minimum Blocking during Convergence

Permalink
https://escholarship.org/uc/item/0gf6x366

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2022-10-01

Data Availability
The data associated with this publication are within the manuscript.
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0gf6x366
https://escholarship.org
http://www.cdlib.org/


RIPPLE: Loop-Free Multi-Path Routing with
Minimum Blocking during Convergence

J.J. Garica-Luna-Aceves
Computer Science and Engineering Department, University of California, Santa Cruz, CA, USA

jj@soe.ucsc.edu

Abstract—The Routing Information Protocol with Probing for
Looplessness and Efficiency (RIPPLE) is introduced for loop-free
multi-path routing. Each router maintains the distance and the
hop-count (called the hop-count reference) along its preferred
path to each destination. Routers are allowed to select neighbors
as next hops to destinations as long as they satisfy an ordering
condition based on the values of hop-count references. If needed,
routers use probes to find valid routes provided by routers
with the same hop-count references as those stated in probes.
RIPPLE is shown to be loop-free, which allows it to converge to
shortest paths within a finite time even when nodes fail or the
network partitions. RIPPLE is also shown to be near-optimal in
terms of the time routers take to attain new loop-free routes to
destinations.

I. INTRODUCTION

Eliminating routing-table loops while converging to optimal
routes is much needed, because network resources are not
wasted in the forwarding of data traffic that cannot reach their
intended destinations.

As Section II points out, the methods used today to attain
shortest paths and eliminate or detect routing loops can be
classified into three types of mechanisms: using destination
sequence numbers, establishing multi-hop router coordination,
and sharing of either path information or complete-topology
information. No new methods for loop-free routing have been
reported for many years. However, existing distributed routing
methods either result in temporary routing loops or in routers
not having valid paths while distributed algorithms converge.

Section III presents the Routing Information Protocol with
Probing for Looplessness and Efficiency (RIPPLE), which
provides multiple loop-free routes to destinations without
incurring long delays converging to shortest-path routes. RIP-
PLE replaces the destination sequence numbers used in routing
protocols like the Destination Sequenced Distance Vector
(DSDV) [3] with hop references, which are the number of hops
along preferred paths to destinations. RIPPLE also replaces
the diffusing computations used in the Diffusing Update
Algorithm (DUAL ) [1] with probes that carry requested hop
references, so that they can be resolved with the first response
that satisfies the requested hop reference. Section IV sows that
RIPPLE is loop-free and converges to optimal routes within a
finite time.

Section V shows that the speed with which RIPPLE con-
verges to valid loop-free paths is inherently much faster than
all prior methods for distributed shortest-path routing. Section
VI provides our conclusions.

II. MOTIVATION FOR RIPPLE

The reader is referred to [1], [2] for summaries of prior work
on shortest-path routing methods. The Distributed Bellman-
Ford (DBF) algorithm is arguably the simplest distributed
approach for shortest-path routing, and has been used in many
routing protocols, including the original ARPANET routing
protocol. However, DBF suffers from the non-convergence
problem usually called the counting-to-infinity problem. In
practice, routing protocols based on DBF are forced to stop
when a predefined maximum-distance value is reached. How-
ever, this does not guarantee convergence to shortest distances.

As a result of the non-convergence problem of DBF, many
routing protocols were developed based on the dissemination
of partial or complete topology information or the use of
complete path information in routing updates . These routing
protocols do not guarantee acyclic routing (avoiding routing-
table loops at every instant), but guarantee convergence by
detecting and breaking loops within a finite time.

All prior work on shortest-path routing protocols that pre-
vent routing-table loops and try to ensure convergence are
based using destination-based sequence numbers, and using
multi-hop router coordination. The signaling used in routing
protocols to attain shortest paths while preventing looping may
result in multiple routers having no valid routing-table entries
for one or more destinations even though physical paths exist
to those destinations. We refer to this problem as blocking,
which may persist for long periods of time, until all routers
make the proper updates to their routing state according to the
protocol.

Several shortest-path routing protocols (e.g., DSDV [3])
have used destination sequence numbers to eliminate the
convergence problems of DBF and try to ensure acyclic
operation. This approach has also been applied to the design
of multi-path routing protocols. Using sequence numbers to
provide acyclic operation is appealing, because it appears to
be simple. However, the basic approach used in DSDV and
similar routing protocols incurs considerable blocking after a
link failure, node failure, or link-weight increase that affects
any routing-table entry. This is the case because the destination
itself must issue a new sequence number for itself to the rest
of the network.

A number of shortest-path routing approaches have been
developed that provide loop-free routes at every instant by
requiring routers to coordinate the updating of routing tables



on a multi-hop basis. The most popular of these schemes is
the Diffusing Update Algorithm (DUAL) [1] and is the basis
of Cisco’s EIGRP (see RFC 7868).

This type of routing protocols convergence incur long con-
vergence delays resulting from pre-update coordination that is
unavoidable, because a router cannot determine from a single
reply from a neighbor whether a reported distance corresponds
to an acyclic path. As a result, a router that coordinates with its
neighbors to update a routing-table entry must wait until all its
neighbors attest that all possible paths that included the router
itself have been eliminated or updated with new distances.
Blocking in this type of routing protocols occurs after link
failures or node failures when routers lose their successors to
a destination and are forced to coordinate the update of their
routing tables with other routers.

III. RIPPLE

We use the following terminology to describe distributed
shortest-path routing algorithms in this section and RIPPLE
in the next section: N is the set of network nodes (routers
and destinations), and E is the set of links in a network. The
set of nodes that are immediate neighbor routers of router k
is denoted by Nk. A node in N is denoted by a lower-case
letter, and a link between nodes n and m in N is denoted by
(n,m), and the weight of the link from router i to router j is
denoted by l(i, j) and l(i, j) ∈ R+. The distance assumed for
a destination for which no path is known is denoted by δ∞,
and the distance from destination d to itself is δ0 = 0.

A. Information Maintained

For each destination, a router maintains a list of neighbors
that can serve as its successors (next hops) along paths to the
destination. The nth path from router k to destination d is
denoted by P k

d (n), the distance and successor (i.e., next hop)
along that path are denoted by δkd(n) and skd(n), respectively.
The shortest distance reported by router k for destination d is
denoted by δkd .

Each router k knows its own identifier (k), its initialization
status (σk), and maintains the following three tables.

Link-Weight Table (LWT k): This table lists an entry for
each link to a known neighbor router n ∈ Nk. The entry for
link (k, n) in LWT k states the weight l(k, n) of the link and a
lifetime LT k

n for the neighbor entry of router n. The maximum
lifetime of a neighbor entry is a constant LT defined for the
network.

Neighbor Table (NT k): This table lists the shortest
distance and hop reference reported by each neighbor for each
destination. The entry in NT k for destination d at router k is
denoted by NT k(d) and for each neighbor p ∈ Nk states the
distance δkdp and the hop reference hkdp reported by neighbor
p. If a neighbor q has not reported any distance for d to router
k, then router k assumes that δkdq = hkdq = δ∞.

Routing Table (RT k): This table lists an entry for each
destination. The entry in RT k for destination d is denoted by
RT k(d) and states: The distance (δkd ); the hop reference (hkd);

the minimum value of a requested reference (µk
d) known to

router k for destination d; the preferred successor (skd); and
the set of successors (Sk

d ).
If router k has no successor for destination d, then skd = 0.

The value of µk
d is initialized to equal hkd and it is updated as

needed to reflect the minimum value of a requested reference
contained in a probe forwarded by the router.

B. Information Shared Periodically

Routers exchange messages reliably and periodically among
one another to update their routing information. A routing
message from router k is denoted by Mk and contains its
identifier k and a list of two types of entries, which are updates
and probes. We assume that a router has a pre-defined neighbor
set, which is the case in wired networks. Minor changes to the
signaling would be needed if unreliable message transmissions
must be used, destinations were of interest to only a subset of
routers, or RIPPLE operated in an ad-hoc wireless network.

RIPPLE Probe: Probes are used by routers to coordinate
the updating of their routing tables. A probe from router k for
destination d is denoted by P (d, δkd , h

k
d, r

k
d , n

k
d), where d is the

destination identifier, δkd is the current distance to destination
d, hkd is the hop reference to destination d, rkd is the requested
reference that a router must have as its own hop reference in
order to originate a response, and nkd is the intended recipient
of the probe. A probe intended for all neighbors states nkd = 0

RIPPLE Update: Updates are used to respond to probes
or inform neighbors of new distances and hop references.
An update from router k for destination d is denoted by
U(d, δkd , h

k
d, r

k
d), which specifies the same elements of a probe.

The value of rkd in an update sent in response to a probe is set
to the requested reference in the probe being answered, or the
requested reference in a response being relayed. Alternatively,
the value of rkd in an update that is not a response to a probe
is equal to hkd .

Router k maintains a timer UT k to ensure that it sends
a routing message soon after it updates its routing table or
decides to forward or respond to a query, and sends routing
messages often enough to inform its neighbors of its presence.
If a router k needs to send a routing message with updates,
it does so after a minimum amount of time tmin has elapsed
from the time it sent its prior routing message.

In the absence of changes in its routing table, router k sends
a message with a “hello” update U(k, δkk = δ0, h

k
k = 0, rkk =

0) to update the lifetime entries maintained for itself by its
neighbors no later than tmax seconds from the time it sent
its last message. The timer tmax is shorter than a maximum
lifetime LT . Router k sets UT k equal to tmax after sending a
routing message, and sets UT k equal to tmin after preparing
updates or queries to be sent in response to an input event.

C. Initialization

Router k is initialized after an initialization delay elapses,
that is long enough to ensure that, in the event that router k is
restarting after a failure, all neighbor routers have processed
previous routing messages from router k and also determined



that it is not operational. The steps taken during initialization
at router k involve setting σk = T ; δkk = δ0, hkk = 0, µk

k = 0,
skk = k, and Sk

k = {k}. In addition, the following values are
initialized for each q ∈ Nk: δkq = hkq = µk

q = δ∞, skq = 0,
Sk
q = ∅, δkqq = hkqq = δ∞, δkkq = hkkq = δ∞, and δkqq =

hkqq = δ∞. Router k then sends a routing message with a
“hello” update U(k, δkk = δ0, h

k
k = 0, rkk = 0) to announce its

presence to its neighbors.

D. Handling Link Failures and Link-Weight Changes

Link failures can be detected in multiple ways, including
keeping track of data packets not being acknowledged by a
neighbor router. Router k assumes that a neighbor router q
from which no signaling has been received for LT seconds
can be declared to have failed. Accordingly, router k sets the
distances and hop reference from router q to every destination
to δ∞. Router k updates LWT k when the weight l(k, q) of
an adjacent outgoing link (k, q) changes.

E. Handling Routing Messages

Router k processes routing messages only if it has been
initialized, which means that σk = T . After initialization, if
router k receives a routing message from a neighbor q, it first
updates the lifetime of the entry for that neighbor (LT k

q ).
Router k detects that a new neighbor q is present when

it receives a “hello” update from q (i.e., U(q, δ0, 0, 0)) and
its local state for q has δkqq = δkkq = δ∞, which indicates
that no messages were being received over link (k, q). In this
case, router k immediately sends a routing message with an
update U(d, δkd , h

k
d, r

k
d = hkd) for each destination d for which

δkd < δ∞. If router k receives an update or a probe from
q ∈ Nk then it updates its neighbor table for destination d (i.e.,
NT k(d)) with δkdq ← δqd and hkdq ← hqd before proceeding to
update RT k(d).

F. Updating Routing State

After router k updates LWT k and NT k, it updates RT k

in two phases as shown in Algorithm 1. The way in which
router k updates RT k depends on whether or not the router
has at least one neighbor that satisfied the following RIPPLE
ordering condition (ROC):

ROC : q ∈ Skd

( [
hkdq < hkd

]
∨
[
(hkdq = hkd) ∧ (δkdq < δkd )

] )
(1)

ROC is similar to the condition used in DSDV [3], with the
key differences being that hop references substitute sequence
numbers and the condition is applied only to those neighbors
in the successor set. ROC(q) = T in Algorithm 1 is used to
denote the fact that neighbor q satisfies ROC.

Phase 1 of Algorithm 1 is meant to eliminate current
successors that, as a result of an input event, have larger
hop references than the hop reference at router k and hence
do not satisfy ROC. However, a neighbor already in the
successor set Sk

d could not change its own successors to
include k with ROC being satisfied; therefore, router k does
not need to consider the distances reported by neighbors in the

successor set to determine which neighbors should remain in
Sk
d . Those neighbors whose hop references are larger than the

hop reference of router k are delete from Sk
d , and the distance

is updated accordingly. Furthermore, the hop reference is not
updated if Sk

d becomes empty, so that its value is remembered
for Phase 2.

During Phase 2, those neighbors outside of Sk
d that satisfy

ROC are brought into Sk
d , and the distance and hop reference

are updated accordingly. This phase allows all neighbors that
satisfy ROC to be considered taking into account the distance
and hop-reference increases caused by successors in Sk

d . The
hop reference is not updated if Sk

d is empty at the end of this
phase, so that its value can be used in probes.

Algorithm 1 Routing Table Update (RT k(d))
INPUT:Nk , Sk

d ,LWTk ,NTk(d) ,RTk(d)
PHASE 1:
for each q ∈ Sk

d do
if (hkdq > hkd) then Sk

d ← Sk
d − {q};

end for
if (Sk

d = ∅) then
hk
d ← hk

d (i.e., hop reference is not updated); δkd ← δ∞; skd ← 0
else

δkd ← Min{δkdn + l(k, n) | n ∈ Sk
d};

skd ← Min{q ∈ Sk
d | δ

k
dq + l(k, q) = δkd}; hk

d ← hk

dsk
d

+ 1

end if
PHASE 2:
for each q ∈ Nk − Sk

d do
if (ROC(q) = T ) then Sk

d ← Sk
d ∪ {q}

end for
if (Sk

d = ∅) then
hk
d ← hk

d (i.e., hop reference is not updated); δkd ← δ∞; skd ← 0
else

δkd ← Min{δkdn + l(k, n) | n ∈ Sk
d};

skd ← Min{q ∈ Sk
d | δ

k
dq + l(k, q) = δkd}; hk

d ← hk

dsk
d

+ 1

end if
return

Sending Updates or Probes: After updating RT k, router
k sends an update or a probe depending on the input event
and whether router k is ordered or blocked.

Router k is said to be ordered, or to be in the ordered state,
if the following ordered condition is true:[

∃q ∈ Nk ( ROC(q) = T )
]
∨
[
∀q ∈ Nk( hkdq = δ∞ )

]
(2)

Eq. (2) simply states that an ordered router has at least
one neighbor that satisfies ROC or it knows that none of its
neighbors have paths to the destination. Else, router k is said
to be blocked, or to be in the blocked state.

If router k becomes blocked as a result of an in-
put event other than a probe, then it originates probe
P (d, δkd , h

k
d, r

k
d , n

k
d = 0) stating a requested reference that

equals the smaller value between its own hop reference and a
requested reference received in a prior probe.

Only blocked routers need to send probes to all neighbors,
and ripples of probes are forwarded by ordered routers towards
the destination. This reduces the signaling overhead induced
by probes. A router forwards a probe to all its neighbors
if it becomes blocked or remains blocked and the probe it
received stated a smaller requested reference than the value
of µk

d . Router k forwards a probe from neighbor q only to its
preferred successor skd if the probe states nqd = k or nqd = 0,
i.e., router k is asked to help, and it remains ordered after



receiving a probe but cannot send a response. The preferred
successor is used for selective forwarding because the intent
of the forwarded probe is to determine whether the shortest
path preferred by router k remains a loop-free shortest path.

A router may send an update as a result of a link-weight
change, an update, or a probe, provided that the router becomes
or remains ordered. This causes ripples of updates to percolate
among routers that continue to be ordered with respect to their
successors.

Router k originates a response to a probe as an update if
its hop reference is smaller than or equal to the requested
reference in the probe. The router may also send an update in
response to a probe if itself and none of its neighbors have
finite distances, which means that the router is not blocked but
there are not available paths. This causes ripples of updates
sent back towards the origin of the probe. A router sending an
update to relay a response states its own distance and hop
reference, and states the same value of the requested hop
reference in the update it received as a response to a probe.

If an update does not constitute a response to a probe, the
values of hkd and rkd are the same in the update. Accordingly,
ripples of updates can serve to respond to probes only if the
origins of the updates have hop references whose values equal
the requested references on the probes. Router k updates the
value of µk

d to equal the smallest known value of requested
references received or created by the router.

A router that sends a probe in RIPPLE can trust the first
response that satisfies the requested reference stated in its
probe. This is possible because a router remembers its own
hop reference that needs to be satisfied for a response to its
probe to be valid.

G. Examples of RIPPLE Operation

Figure 3 illustrates the fast convergence of RIPPLE with a
five-node network example The distance, hop reference, and
successor to destination d are indicated next to each router.
The value of the minimum requested reference stored at each
router for destination d is omitted, given that is not used
in the example. Successors to destinations are indicated by
arrowheads. An update sent by router k regarding destination
d is denoted by U [δkd , h

k
d, r

k
d ].

Figure 3(a) shows the routing state of the routers when link
(c, d) fails. Figure 3(b) shows that router c simply sends an
update after the link failure because its distance increases to 6
but neighbor e satisfiesROC with hcd = hcde = 1 and δcd = 2 >
1 = δcde. As Figure 3(c) shows, the update from router c results
in ROC = T at router b because hbdc = hbd = 2 during Phase
1 of the routing-table update process, and c ∈ Sb

d during Phase
2 once router b updates hbd = 3. Accordingly, router b sends
update U [d, δbd = 7, hbd = 3, rbd = 3] Figure 3(d) shows that the
same outcome occurs at router a when it processes the update
from router b and sends update U [d, δcd = 8, hbd = 4, rbd = 4],
which reflects its shortest distance through router b, and also
keeps router e as a successor. The small ripple of updates
that occur in RIPPLE without blocking while routers update
their distances to reach optimum values contrasts with the

large waves of signaling messages and blocking in DSDV and
DUAL. In this example, routers converge to valid routes just
as fast as with the topology-broadcast method. Furthermore,
fewer signaling messages are needed, and some routers have
multiple loop-free routes to destinations.

Figure 1: Loop-freedom without blocking in RIPPLE

Figure 4 illustrates the loop-free and fast convergence of
RIPPLE after node failures or network partitions. The distance,
hop reference, successor, and minimum requested reference for
destination d are indicated next to each router. Successors to
destinations are indicated by arrowheads. An update sent by
router k regarding destination d is denoted by U [δkd , h

k
d, r

k
d ],

and a probe is denoted by P [δkd , h
k
d, r

k
d , n

k
d].

Figure 2: Loop-freedom in RIPPLE after a node failure or
network partition

Figure 4(a) shows the state of routers when links (c, d)
and (e, d) fail and destination d is unreachable. Figure 4(b)
shows that routers c and e become blocked and send probes
to their remaining neighbors stating a requested reference of 1.
As Figure 4(c) shows, router b becomes blocked but router a
perceives router b as satisfying ROC. Accordingly, router a is
not blocked, forwards a probe to that neighbor only, and also
sends an update to all its neighbors with its new distance and
hop reference, and a requested reference equal to its own hop
reference. However, the update from router a states a requested
reference of 3 and hence cannot serve as a response to the
probe that routers b and e sent stating a requested reference
of 1. This prevents any looping.

As Figures 4(d) to 4(f) show, starting with router a, all
routers receive probes or updates stating distances equal to
δ∞, which makes then stop being blocked and stay at δ∞ for
their distances, hop references, and requested references.

The number of steps needed for all routers to reach a dis-
tance of δ∞ in this example is the same as the number of steps
that would be required with the topology-broadcasting method.



However, no loops are created, and only two additional steps
are spent in RIPPLE by routers going from the blocked to
ordered state.

IV. RIPPLE CORRECTNESS

The following five theorems prove that RIPPLE is loop-
free. The sketch of a proof that it converges to shortest paths
within a finite time follows this result. As needed, the value
of a variable β at time t is denoted by β(t).

Theorem 1: A path in whichROC is satisfied at every router
along the path cannot be a loop

Proof: Assume that ROC is true at every router along
a path L. For the sake of contradiction, assume that L is a
routing-table loop that excludes destination d at time t and let
L = {v1 → v2 → ...→ vh → vh+1}, where vh+1 = v1. Each
router vi ∈ L informs its neighbors of its distance to d at a
time denoted by ti, where ti < t, and its neighbors in L use
that value at a subsequent time to determine whether ROC is
satisfied. The time when router vi ∈ L makes router vi+1 ∈ L
a next hop to d is denoted by t+i and t+i ≤ t, which implies
that svid (t) = svid (t+i ), δvid (t) = δvid (t+i ), and hvid (t) = hvid (t+i )
for all vi ∈ L.

The fact that ROC must be satisfied at each router vi ∈ L
implies that, for all vi ∈ L:
h
vi
d (t

+
i ) = h

vi
d (t) ≥ h

vi
dvi+1

(t) = h
vi
dvi+1

(t
+
i ) = h

vi+1
d (ti+1) = h

vi+1
d (t)

(3)

Eq. (3) implies that, for L to be a loop, it must be true that
hvid (t) = h

vi+1

d (t) for every vi ∈ L. Accordingly, for ROC
to be true at every router along a path L, it must be true that
δvidvi+1

(t) < δvid (t). However, this is a contradiction, because
it implies that δvid (t) < δvid (t) for all vi ∈ L if L is a loop.
Therefore, the theorem is true.

Theorem 2: No routing-table loop can be created in RIPPLE
when routers transition from ordered to blocked state.

Proof: The proof is immediate from the definition of how
RIPPLE operates, because a router that is blocked does not
have a successor.

Theorem 3: RIPPLE is loop-free for any destination d.
Proof: If ROC is always satisfied at every router, then

it follows from Theorem 1 that no routing-table loops can
form. It also follows from Theorem 2 that no routing loop
can occur when routers in a path become blocked. Thus, the
proof needs to show that no routing loop can be created when
a router transitions from blocked to ordered state.

For a router k to become ordered once it is blocked, it must
receive an update or a response such that ROC is satisfied,
and a router n ∈ Nk can send an update or a response to
router k only if it is ordered itself. The path from n to d
either consists of routers that are ordered, or consists of both
blocked and ordered routers. In the first case, it follows from
Theorem 1 that router k cannot create a loop by setting n = skd
because then the path from n to d is loop-free and extending
that path with link (k, n) cannot create a loop. In the second
case, the path from n to d is the concatenation of subpaths,
each consisting of one or more routers that are all ordered or

are all blockede, and it follows from Theorems 1 and 2 that
such subpaths are loop-free and hence extending the path from
n to d with link (k, n) cannot create a loop.

Theorem 4: RIPPLE converges to shortest routes for all
reachable destinations and converges to δ∞ for all unreachable
destinations within a finite time after network changes stop
occurring in a finite network.

Sketch of Proof: The proof uses the fact that RIPPLE
is loop-free at every instant (Theorem 3) to show that routers
receive valid shortest distances from their neighbors to reach-
able destinations, because updates, probes and responses must
propagate over loop-free paths. By the same token, loop-
freedom is used to show that each router converges to δ∞
because there can be no simple path starting from a destination
neighbor to any router in a connected component that does not
include the destination.

V. COMPARING RIPPLE WITH AN OPTIMUM APPROACH

Typically, protocol complexity (e.g., the worst-case number
of steps and messages needed for convergence) is used for
this purpose. Unfortunately, complexity alone does not provide
insight on the blocking or looping that occurs while a protocol
is converging, and does not indicate how the performance of
a protocol compares with the best performance possible.

Accordingly, we define two new performance metrics based
on how the performance of a routing approach deviates from
a notional optimal routing method (NORM) that incurs the
smallest number of steps and messages to converge without
looping after a single link change or node change. We call
these metrics blocking optimality (BO) and communication
optimality (CO).

BO is the additional number of steps after a link change
during which looping or blocking persists for a given destina-
tion compared to a NORM, and CO is the additional number
of messages sent compared to a NORM. These two metrics
are strong indicators of the signaling overhead and how fast a
routing protocol restores valid routing state after input events.

In the following, H denotes the network diameter in number
of hops, A is the largest degree of a router, WP k

d is the weight
of path P k

d , N is the number of routers in the network, and T
is a timer delay that by design must be much longer than the
number of steps needed for an update to traverse the network,
i.e., T = Ω(H). For simplicity, we also assume the routing
methods operate in a synchronous manner.

A. NORM

We assume that routers executing NORM somehow can
differentiate a link failure from a node failure. This func-
tionality does not exist in a practical routing method, of
course, and is used to derive a lower bound on the number
of steps during which routers are blocked. We also assume
that the signaling in NORM is such that, in the worst case,
any router with a path that includes a router that changes its
distance to a destination or a link that changes its status or
weight receives the corresponding routing information in H
steps independently of the weights of the links and without



incurring routing loops. This may be not be possible to attain
in a practical routing method and is used also to derive a
lower bound on the number of steps during which routers are
blocked.

Figure 5 shows a generic topology in which link costs are
such that the shortest path from router nN−1 to destination
d involves all other routers in the network. The number of
hops to destination d at each router along the shortest path
from the router to d is indicated in parenthesis next to the
router. Destination d has only two neighbors, namely routers
n1 and nN−1. The weight of link (nN−1, d) is assumed to be
l(nN−1, d) > WP

nN−1

d and makes path P
nN−1

d include all
routers in the network. A link in dashed lines (e.g., the link
between nw and nN−v) indicates the possibility of having such
a link, and exists only when stated in an example.

Figure 3: Sample topology for comparisons

Case 1: A link-weight increase that affects one or more
paths to destination d: A NORM does not incur any blocking
after a link-weight increase. Routers somehow know to report
larger distances in updates and eventually report shortest paths
when they are attained through the propagation of updates.

Case 2: A link failure affecting all routes to destination
d: Assume that no dashed links exist and link (n1, d) fails.
According to a NORM, a wave of updates reporting δ∞
propagates to all routers including router nN−1 taking up
to H steps, and router nN−1 then issues an update stating
δ
nN−1

d = l(nN−1, d) and a wave of updates taking up to H
steps percolates to all other routers allowing them to correct
their routes to destination d. Accordingly, a NORM would
take O(2H) steps and O(2H×A) messages to have no router
blocked after the failure of link (n1, d).

Case 3: A destination failure or network partition: A
NORM would take Θ(H) steps and Θ(H ×A) messages for
all routers to declare a destination to be unreachable after it
fails or becomes unreachable after a network partition. By
assumption, no routing loops would be formed during any of
the steps needed for convergence.

B. RIPPLE

Case 1: Routers do not experience blocking in RIPPLE
after any link-weight increase, because a neighbor in the
successor set of a router satisfies ROC after the processing
of any input event. Accordingly, RIPPLE has BO = Θ(1)
and CO = Θ(1) in this case.

In the worst case, for routers to obtain correct distances
after link (n1, d) changes its weight, probes must propagate

along the reverse shortest paths from router n1 to router nN−1
and then responses propagate back from router nN−1 all the
way to router n1. Accordingly, RIPPLE takes O(2N) steps
and O(2N ×A) messages to converge in this case.

Case 2: In the network of Figure 5, router n1 sends a
probe P [d, δ∞, 1, 1, 0] that causes probes to propagate all the
way to nN−1 taking N − 1 steps. Router nN−1 then sends
response U [d, δ

nN−1

d , 2, 1] with δ
nN−1

d = l(nN−1, d). This
causes updates to be sent back all the way to n1 taking an
additional N − 1 steps, and then router n1 issues an update
reflecting its new path going through n2. Accordingly, RIPPLE
takes O(2N) steps and O(2N×A) messages to converge, and
hence BO = O(2(N − H)) and CO = Θ(2(N − H)A) in
this case.

Case 3: After the failure of destination d or the concurrent
failure of links (n1, d) and (nN−1, d), it takes O(N) steps and
O(N × A) messages for all routers to set their distances to
destination d equal to δ∞. This is the case because all routers
must receive probes from their next hops stating distances
equal to δ∞ and a requested reference equal to 1, the routers
must forward those probes, and routers that only have neigh-
bors reporting distances of δ∞ must become passive silently
with a distance and reference distance equal to δ∞. Therefore,
RIPPLE has BO = O(N −H) and CO = O((N −H)A) in
this case.

VI. CONCLUSIONS

RIPPLE is a new shortest-path routing protocol that is
simple and attains near-optimum convergence speed and loop-
free multi-path routing using only distance information.

RIPPLE substitutes destination sequence numbers with hop-
count references to define a new ordering condition that does
not incur the extensive blocking required in protocols based on
destination sequence numbers. RIPPLE substitutes diffusing
computations [1], which require a router to receive replies
from all its neighbors to satisfy a query, with probes that can
be answered by the first valid response.

RIPPLE was proven to be correct, and to attain near-
optimal performance after changes in the status or weights of
links. Furthermore, in terms of blocking, RIPPLE is inherently
more efficient than routing protocols intended to be loop-
free and based on either the use of destination sequence
numbers or multi-hop router coordination. This is the case
because RIPPLE does not require sequence numbers to be
reset throughput a network for distances to be trusted, and
it does not force routers to wait for replies from all their
neighbors before they can trust new distances.

REFERENCES

[1] J.J. Garcia-Luna-Aceves, “Loop-Free Routing Using Diffusing Compu-
tations,” IEEE/ACM Trans. Networking, 1993.

[2] J.J. Garcia-Luna-Aceves, “THORP: Choosing Ordered Neighbors To At-
tain Efficient Loop-Free Minimum-Hop Routing,” Proc. IEEE LANMAN
‘22, July 2022.

[3] C. E. Perkins and P. Bhagwat, “Routing over Multihop Wireless Network
of Mobile Computers,” Proc. ACM SIGCOMM ‘94, 1994.




