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Abstract

Gaussian Process Modeling for Upsampling Algorithms with Applications in

Computer Vision and Computational Fluid Dynamics

by

Steven I Reeves

Across a variety of fields, interpolation algorithms have been used to upsample low

resolution or coarse data fields. In this work, novel Gaussian Process based meth-

ods are employed to solve a variety of upsampling problems. Specifically three

applications are explored: coarse data prolongation in Adaptive Mesh Refinement

(AMR) in the field of Computational Fluid Dynamics, accurate document image

upsampling to enhance Optical Character Recognition (OCR) accuracy, and fast

and accurate Single Image Super Resolution (SISR). For AMR, a new, efficient,

and “3rd order accurate” algorithm called GP-AMR is presented. Next, a novel,

non-zero mean, windowed GP model is generated to upsample low resolution doc-

ument images to generate a higher OCR accuracy, when compared to the industry

standard. Finally, a hybrid GP convolutional neural network algorithm is used to

generate a computationally efficient and high quality SISR model.
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Chapter 1

Introduction

Generating new data from sampled data is a prevalent operation in the sci-

ences and in various industrial applications. In this dissertation, new methods for

upsampling are explored for applications in Adaptive Mesh Refinement (AMR)

for Computational Fluid Dynamics (CFD), Optical Character Recognition (OCR)

and Single-Image Super Resolution (SISR) in Computer Vision (CV).

In any data based application, finite samples are measured either by sim-

ulation, experimentation or observation. These samples represent values of an

unknown function for a limited number of independent variable instances. In-

terpolation, or upsampling, is the process of estimating the values an unknown

function would yield given intermediate independent variable data. In many cases,

the unknown function can be non-trivial or not representable in closed form, e.g.

the solution to nonlinear partial differential equations. Interpolation gives an

estimate of this complicated function using bases comprised of somewhat sim-

pler functions, while producing a result that is fairly close to the real solution.

Polynomial based interpolation methods have been widely explored in various do-

mains of science and are often the baselines when researching into interpolation or

upsampling. In this dissertation, however, non-linear non-polynomial approaches
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utilizing Gaussian Process Modeling are used for the aforementioned applications.

This dissertation is organized by application. The rest of chapter 1 introduces

Gaussian Processes as a whole comprising section 1.1. In Chapter 2, two different

Gaussian Process based interpolation methods are presented for the express pur-

poses of generating new mesh data from lower resolution computational meshes.

Chapter 2 also introduces the computational framework in which these algorithms

are implemented. This chapter culminates in a comparison of commonly used tests

for compressible hydrodynamics simulation codes.

For chapters 3, 4, GP based algorithms are produced for upsampling image

data. In chapter 3, a standalone GP algorithm is used to upsample low resolution

grayscale documents for the purposes of enhancing optical character recognition.

This chapter discusses the differences in covariance kernel used to build the Gaus-

sian Process Model and introduces the use of a maximum likelihood estimate for

the mean. Finally, a comparison of the baseline bicubic interpolation and the GP

model is performed on the 2402 issue of Le Nouvel Observateur.

In chapter 4 a hybrid Gaussian Process Deep Learning model is used to gener-

ate realistic looking images from low resolution examples. This chapter features a

simplified version of the GP model generated in chapter 3, the sample pixel win-

dow is reduced from a 5ˆ 5 pixel patch to a 3ˆ 3 pixel patch, and the maximum

likelihood estimate for the mean is not used. This simplified model is compared to

the baseline upsampling method bicubic. However, the state-of-the-art for super-

resolution is more than these baseline upsampling methods. So to meet this need,

a convolutional neural network is constructed to enhance the upsampled image

delivered by the GP method. This creates a fast and high quality super resolution

pipeline that challenges more complex and computationally intensive procedures.

Finally, chapter 5 summarizes the works presented in the previous chapters

2



and offers a final discussion.

1.1 Gaussian Process Modeling

The methods proposed in this dissertation are all fundamentally based on

Gaussian Process modeling and regression. The topic of GP has a wide breadth

and is a fundamental tool in statistics. This section offers a brief overview on

Gaussian Process modeling and constructing a Gaussian Process. Gaussian Pro-

cesses are a family of stochastic processes such that any finite collection of random

variables sampled from these processes are joint normally distributed.

In a more general sense, Gaussian Processes sample functions from an infinite

dimensional function space. However, this function is not explicitly generated

but rather predicts function values are prescribed points. This is the basis of the

interpolating routines described in detail in sections 2.1,3.2, 4.2. The functions

values that the methods describe are be drawn from a data-informed distribution

spaces trained on the sampled (low resolution) data.

To construct a Gaussian Process model, one needs to specify a prior probability

distribution for the function space. Samples (function values evaluated at known

locations) are then used to update this prior probability distribution. Through

the use of Bayes’ Theorem the posterior probability distribution is generated given

the prior and the samples [155, 24].

In general, the construction of the posterior probability distribution over the

function space is the heart of Gaussian Process Modeling and to generate an

interpolating model, functions are drawn from a data-adjusted function space.

Specifically, the posterior may be used to probabilistically predict the value of a

function at points where the function has not been previously sampled, i.e. the

upsampling predictions.
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Gaussian Processes can be fully defined by two functions: a mean function

f̄pxq “ Erfpxqs and a covariance function that generates a symmetric, positive-

definite covariance kernel Kpx,yq : RN ˆ RN Ñ R. Functions, f , that are drawn

from a GP with mean function f̄pxq and covariance Kpx,yq are denoted as f „

GPpf̄ , Kq. This is analogous to finite-dimensional distributions.

The covariance function is defined as

Kpx,yq “ E
“`

fpxq ´ f̄pxq
˘ `

fpyq ´ f̄pyq
˘‰

(1.1)

where expectation, E, is with respect to the Gaussian Process.

One controls the GP by specifying both f̄pxq and Kpx,yq, typically as some

hyper-parameterized functions. These hyper-parameters allow us to give the

"character" of functions generated by the posterior (i.e. length scales, differen-

tiability).

Suppose a Gaussian Process is given along with N locations or independent

variables xn P Rd, d “ 1, 2, 3 and n “ 1, . . . , N at which samples fpxnq are

collected. Then the likelihood L can be calculated– the probability of the data

given the GP model. Let f “ rfpx1q, . . . , fpxNqsT be the sampled data, then the

Gaussian Process likelihood function is

L ” P
`

f |GPpf̄ , Kq
˘

“ p2πq´N{2 det |K|´1{2 exp
„

´
1
2
`

f ´ f̄
˘

K
`

f ´ f̄
˘



. (1.2)

Here K is the covariance kernel matrix generated by evaluating the covariance

function using the independent variable data in the sample, mathematically:

Kn,m “ Kpxn,xmq where n,m “ 1, . . . , N . Furthermore, f̄ “ rf̄px1q, ¨ ¨ ¨ f̄pxNqs.

Using these samples, a probabilistic statement is made about the value of the

function f „ GPpf̄ , Kq at a new unsampled point x˚. That is, a model for the

4



value of fpx˚q is generated using this Gaussian Process. This portion is espe-

cially important for the applications in this dissertation, as new data needs to be

constructed at finer levels or higher resolution.

Applying Bayes’ Theorem with the conditioning property, directly onto the

joint Gaussian prior given the samples f give the posterior distribution of the

predicted value, f˚ given f ,

P pf˚|fq “ p2πU2
q
´1{2 exp

„

´
pf˚ ´ f̄˚q

2

2U2



. (1.3)

Essential for these applications, the posterior PDF gives a new posterior mean

function

f̃˚ ” f̄px˚q ` kT˚K´1
¨ pf ´ f̄q, (1.4)

and posterior covariance

U2
” k˚˚ ´ kT˚K´1

¨ k˚. (1.5)

This shows that Gaussian Process predictions are not only estimates for the up-

sampling value, but also has uncertainty information [155]. The uncertainty in-

formation for is categorized as the marginal distribution at the point of prediction

and manifests itself as a Gaussian distribution or Multivariate Gaussian for multi-

output predictions [35]. The uncertainty characterizaiton is what the posterior

covariance is used for.

However, in the applications presented in this dissertation, the uncertainty

portion of the Gaussian Process will not be used, as an informed interpolation

algorithm will be generated for set upsampling factors. That said, the uncertainty

measure could be feasibly used to detect regions of high uncertainty for an adaptive

upsampling algorithm, where regular intervals of data are not required. None-the-

5



less, for these applications, the posterior mean will be used alone as an upsampling

model.
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Chapter 2

Applications of GP for Adaptive

Mesh Refinement

Since the dawn of the computer era for science and engineering, the primary

role of computational fluid dynamics (CFD) is to advance our theoretical under-

standings. Through experimentation, a wide range of parameter spaces is designed

and modeled in computer simulations. As such, computer-aided simulations tar-

get complex physical conditions in various degrees of disparity adequate to users’

specific theoretical models. As increasingly more complex systems to be consid-

ered for better computer modeling, modern simulation codes face increasingly

versatile challenges to meet expected metrics in a possibly vast parameter space.

These complex simulations need to be able to be interpreted as physically valid

models, at least in an approximated sense.

The fields of geophysics, astrophysics, and laboratory plasma astrophysics are

good exampled where computer simulations are essential (e.g., [73, 101, 211, 135]).

CFD has been (and will continuously be) an indispensable tool to improve our

capabilities to investigate far-reaching research expeditions in these fields of study.

In certain physical scenarios, the experiment could develop into a flow condition

7



in which the required physics become extremely challenging to simulate due to

the great imbalance in length and temporal scales. To alleviate such conditions

in computer simulations, practitioners have explored approaches by which a com-

puter simulation can focus on localized flow regions when the dynamics exhibit

confined features that evolve on a much shorter length scale relative to the flow

dynamics on the rest of the computational domain.

Adaptive mesh refinement (AMR) is one such approach that allows a local and

dynamic change in the grid resolutions of a simulation in space and time. Since

the 1980s, AMR has been an exceptional tool and has become a powerful strategy

in utilizing CFD simulations for computational science across many disciplines

such as astrophysics, geophysics, atmospheric sciences, oceanography, biophysics,

engineering, and many others [150].

There have been many advancements in AMR since the seminal paper by

Berger and Oliger [22]. In their paper, the primary concern was to focus on a

strategy for generating subgrids and managing the grid hierarchy for scalar hy-

perbolic PDEs in one and two spatial dimensions (1D and 2D). In the subsequent

work by Berger and Colella [21], further improvements were made possible for nu-

merical solutions of the 2D Euler equations to provide a robust shock-capturing

AMR algorithm that satisfies the underlying conservation property in on large-

scale computer architectures. The novel innovations in their work have now be-

come the AMR standards, namely including refluxing (or flux correction) between

fine-coarse interface boundaries, conservative (linear) prolongation and restriction

on AMR hierarchies, and timestep subcycling. Bell et al. extended the precedent

2D AMR algorithms of [22, 21] to a 3D AMR algorithm and applied it to solve 3D

hyperbolic systems of conservation laws [20]. They demonstrated that the AMR

algorithm reduced the computational cost by more than a factor of 20 than on

8



the equivalent uniform grid simulations in simulating a 3D dense cloud problem

interacting a Mach 1.25 flow on Cray-2. This is, by far, the main benefit of using

AMR, particularly in large 3D simulations, in that one could gain such a compu-

tational speed-up by exercising the computational efficiency as a consequence of

allowing higher-resolution calculations only locally where needed.

Jameson [98] examined computational gain with AMR further. Simulations us-

ing the traditional second-order AMR schemes (i.e., second-order PDE solutions

solved on AMR grids) could become computationally more expensive than the

compared uniform grid (non-AMR) simulations using high-order (4th or higher)

PDE solvers, particularly when a large fraction of the computational domain con-

tains fine scale structures such as vortices, eddies, rotating flows, turbulence, etc.

In this case, one should rely on high-order PDE solvers on uniform grids to get the

best computational results, by which small scale flow features are better resolved

on a given “static” grid than the second-order AMR calculation. According to

Jameson’s estimation, the amount of the flow of interests such as shocks, vortices,

and other small scale flows should not exceed more than 1/3 of the computational

domain in order that low order AMR schemes become computationally competi-

tive. Also see the study on the effectiveness of AMR in atmospheric simulations

[68]. Of importantly related is the consistency between calculations on AMR and

uniform grids. Mathematically speaking, AMR calculations should converge to the

corresponding uniform grid solutions in the limit of grid convergence; otherwise

exercising AMR for the purpose of gaining computational efficiency becomes no

avail. In a numerical comparison study, Schmidt et al. [172] considered conditions

upon which statistical agreement can be achieved between AMR and uniform grid

calculations at the same effective grid resolutions.

There exist a variety of different approaches in modern AMR implementa-
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tions. Two main types of AMR can be categorized into structured and unstruc-

tured. Unstructured AMR, and meshes in general, are very useful for problems

with irregular geometry (e.g., many structural engineering problems), but is of-

ten computationally complex and difficult to handle when regridding. On the

other hand, structured AMR (SAMR, or block-structured AMR) offers practical

benefits (over unstructured) such as ease of discretization, a global index space,

accuracy gain through cancellation terms, and ease of parallelization.

In block-structured AMR, the solution to a PDE is constructed on a hierarchy

of levels with different resolution. Each level is composed of a union of logically

rectangular grids or patches. These patches can change dynamically throughout

a simulation. In general, patches need not be fixed size, and may not have one

unique parent grid. Figure 2.1 illustrates the use of AMR in a block-structured

environment.

Figure 2.1: Multiple levels for block-structured AMR grid hierarchy
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The approach presented by Berger and Oliger [22] and Berger and Colella

[21] has set the foundation on the patch-based SAMR. An alternative to the

patch-based formulation is the octree-based approach which has evolved into the

fully-threaded tree (FTT) formalism (or cell-based) of Khokhlov [107] and the

block-based octree of MacNiece et al. [131] & van der Holst et al. [212].

Such AMR methods have gained popularity over the past 30 years and have

been adopted by various codes in astrophysics. Some of the well-known examples

implementing the patch-based AMR include AstroBEAR [45], ENZO [28], ORION

[109], PLUTO [138], CHARM [139], CASTRO [9], MAESTRO [145]; the octree-

based AMR has been implemented in FLASH [70, 56], NIRVANA [227], BATS-R-

US [151, 74]; the FTT AMR in RAMSES [197], ART [111]. The AMRVAC code

[105] features both the patch-based and octree-based AMR schemes.

In contrast to these codes that incorporate AMR with the purpose of deliver-

ing specific applications in astrophysics, other frameworks have pursued a more

general functionality. Examples include PARAMESH [131] which supplies solely

the octree-based block-structured mesh capability independent of any governing

equations; AMReX [224] is another a standalone grid software library that pro-

vides the patch-based SAMR support; Chombo [39, 4] and SAMRAI [92], on the

other hand, supply both AMR capabilities and a more broader support for solving

general systems of equations of hyperbolic, parabolic, and elliptic partial differen-

tial equations (PDEs). A more compressive survey on the block-structured AMR

frameworks can be found in [55].

Recently, there have been many noticeable efforts aimed at designing high-

order accurate solvers for governing systems of equations (e.g., [156, 134, 221, 29,

133, 64, 15, 186, 159, ?]) in accordance with a trend of decreasing memory per

compute core in newer high-performance computing (HPC) architecture [11, 54,
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193]. Such high-order (4th or higher) PDE solvers are then combined with the

AMR strategies described above.

Traditionally, a second-order linear interpolation scheme has been commonly

adopted for data prolongation from coarse to finer AMR levels, and a mass-

conserving averaging scheme for data restriction from finer to coarser levels. This

“low-order” AMR interpolation model has been the default choice in the vast ma-

jority of the aforementioned AMR paradigms and algorithms in practice. The

accuracy gap between the underlying high-order PDE solvers and the second-

order AMR interpolation could potentially degrade the quality of solutions from

the high-order PDE solvers when the solutions are projected to AMR grids that

are progressively undergoing refinements and de-refinements. In addition, another

accuracy loss inevitably happens at fine-coarse boundaries. It is therefore natu-

ral to close the accuracy gap in the direction of providing high-order models in

AMR interpolations, to serves better to maintain the overall solution accuracy as

integrated as a whole on AMR grid configurations. The high-order AMR prolon-

gations of Shen et al. [181] and Chen et al. [34] are in this vein. These authors

coupled high-order finite difference method (FDM) PDE solvers with fourth- or

fifth-order accurate prolongations based on the well-known high-order polynomial

interpolation schemes of WENO [175] and MP5 [194], respectively. These studies

have shown that the AMR simulations with a higher-order coupling can produce

better results in terms of increasing solution accuracy and lowering numerical

diffusion, thereby, resolving fine-scale flow features.

The present work focuses on developing a new high-order polynomial-free in-

terpolation scheme for AMR data prolongation on the block-structured AMR

implementation using the AMReX library. Our high-order prolongation scheme

stems from the previous studies on applying Gaussian Process Modeling [155] in

12



designing high-order reconstruction/interpolation in finite volume method (FVM)

[?] and in finite difference method (FDM) [?].

This chapter is organized as follows. In Section 2.0.1 the AMR framework, AM-

ReX, where the method presented is implemented, is overviewed. Sections 2.0.2

and 2.0.3 illustrate the two Gaussian Process based methods for pointwise and

cell averaged contexts. Following this, step-by-step execution details of the GP

volume average algorithm are in Section 2.1. Also, a description on extending

this work to a GPU-friendly implementation by following AMReX programming

directives is outlined. Section 2.2 show the code performance of the new GP pro-

longation on selected multidimensional test problems, and finally, in Section 2.3

a summary of the main results of this work is presented.

2.0.1 AMReX

Developed and managed by the Center for Computational Science and Engi-

neering at Lawrence Berkeley National Laboratory, AMReX is funded through

the Exascale Computing Project (ECP) as a software framework to support the

development of block-structured AMR applications focusing on current and next-

generation architectures [224]. AMReX provides support for many operations

involving adaptive meshes including multilevel synchronization operations, parti-

cle and particle/mesh algorithms, solution of parabolic and elliptic systems using

geometric and algebraic multigrid solvers, and explicit/implicit mesh operations.

As part of an ECP funded project, AMReX takes the hybrid MPI/OpenMP CPU

parallelization along with GPU implementations (CUDA). AMReX is mostly com-

prised of source files that are written in C++ and Fortran. Fortran is solely used

for mathematics drivers, while C++ is used for I/O, flow control, memory man-

agement and mathematics drivers.
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The novelty of the current study is the new GP-based prolongation method

implemented within the AMReX framework. The GP implementation furnishes

an optional high-order prolongation method from coarse to fine AMR levels, al-

ternative to the default second-order linear prolongation method in AMReX. In

this way, the GP results in Section 2.2 naturally inherit all the generic AMReX

operations such as load balancing, guardcell exchanges, refluxing, AMR data and

grid managements, except for the new GP prolongation method.

AMR restriction is another important operation on the AMR data manage-

ment in the opposite direction, from fine to coarse levels. The default restriction

method of averaging down the fine grid data maintains conservation on AMR grid

hierarchies. This approach populates data on coarse levels by averaging down the

corresponding fine level data according to

UC
“

1
R

R
ÿ

i

Uf
i , (2.1)

where UC and Uf are conservative quantities on the coarse and fine grids respec-

tively, R “
ś

d

rd is the normalization factor with rd being the refinement ratio in

each direction d “ x, y, z.

Lastly, maintaining conservation across fine-coarse interface levels is done by

the operation called the refluxing. This process corrects the coarse grid fluxes by

means of replacing them with the fluxes computed on the fine grids abutting the

coarse grid. In practice, the conservation is managed as a posterior correction

step after all fluid variables UC on a coarse cell are updated. For example, let’s

consider a 2D scenario in Fig. 2.2 where there is a fine-coarse interface across an

x-face whose area is given as AC “ ∆y. For illustration purposes assume that

there is no other refinement jump across the other three faces surrounding the

coarse cell. The coarse cell data UC is first updated using all four face fluxes
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Figure 2.2: Schematic visualization of the AMR refluxing operation for conser-
vation at fine-coarse interfaces. After each Godunov update of the cell-centered
conservative fluid variables UC on the left coarse cell using the coarse fluxes in-
cluding the flux FC that shares the fine cell boundaries, UC is to be corrected
using the two fine fluxes of Ff

1 and Ff
2 .

computed on the coarse faces based on the underlying conservation law. After the

update, UC is to be corrected by taking out the coarse face flux FC and replacing

it with the average of the two fine face fluxes, pFf
1 ` Ff

2q{2. In general, this can

be done in terms of making a correction to the quantity
ś

∆xdUC given as

ź

d

∆xdUC
Ð

ź

d

∆xdUC
´∆tCACFC

`
ÿ

i

∆tfAfi F
f
i , (2.2)

where the arrow represents the replacement operation. Here, respectively, AC and

Af are the areas of the coarse and fine cell faces, FC and Ff
i are the coarse and fine

fluxes, and ∆tC and ∆tf are the time steps at those levels. The flux is corrected

in both time and space due to the subcycling algorithm utilized in AMReX. For

other AMR operations related to AMReX, interested readers are encouraged to

refer to [225, 228, 224].
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2.0.2 GP for Pointwise AMR Prolongation

In this section we introduce the first GP-AMR prolongation method that is

suitable for AMR applications where the state data is comprised of pointwise

values. In this case the data the GP-AMR model samples are given as pointwise

quantities. Let ∆xd denote the distance between points in a coarse level in each

d “ x, y, z direction. Using the posterior mean function in Eq. (1.4), we first devise

a pointwise prolongation scheme for AMR, i.e., AMR prolongation of pointwise

data from coarse to fine levels. The choice of x˚ will depend on the refinement

ratio r “ rrx, ry, rzs and there will be
ś

d rd new points generated for the new

level in general. For example, if a refinement by 2 in all three directions in 3D was

requested, 8 new points would be generated. To illustrate the process, suppose

a 2ˆ refinement was required in 1D. In this refinement two refined data values

are to be newly generated for each and every coarse value. Assume here that we

utilize a stencil with the GP radius of one (i.e., R “ 1) in which case the local

3-point GP stencil fi centered at each i-th cell for interpolation is laid out as

fi “ rqi´1, qi, qi`1s
T .

In this example, the fine values qi˘1{2 are generated. Using this stencil, and

Equation 1.4 the refined values follow the equation,

qi˘ 1
2
“ kTi˘ 1

2
K´1

¨ f . (2.3)

In 2D or 3D, data values on a standard p2N ` 1q-point stencil are to be reshaped

into a 1D local array fs in an orderly fashion, where each fs includes corresponding

multidimensional data reordered in 1D between s ´N and s `N . This strategy

will be fully described in Section 2.1.
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A common practice with GP Modeling is to assume a zero prior mean as was

done in Equation (2.3). In these implementations this assumption is also used.

Something to note is that the GP weights (the vector kT˚K´1) are independent of

the samples f , and are constructed based on the length scale parameter ` and the

location of the samples, xn, or prediction point, x˚, alone. This is particularly

useful in block structured AMR applications, as these weights can computed for

each level a priori. If the min and max levels are prescribed for each run each

level’s model weights can be constructed at the beginning of the simulation.

Since the matrix K is symmetric and positive-definite, we can use the Cholesky

solver to help compute K´1, twice faster than the usual LU decomposition. In

practice, we compute and save w˚ “ kT
˚ K´1 using Cholesky followed by back-

substituion only once either at an initial grid configuration step or at the first time

an AMR level is newly used. In this way, there is never the need to store K´1

and the computational cost of the prolongation is reduced by performing only a

dot product between w and f , instead of a matrix-vector product kT
˚ K´1 followed

by another dot product with f for every prolonged point. As a consequence a

compact form is revealed,

qs˘ 1
2
“ ws˘ 1

2
fs, s “ i´ 1, i, i` 1. (2.4)

There are many choices available for the covariance function to build the GP

kernel. One of the most widely used kernels in Gaussian Process modeling is the

squared-exponential (SE) covariance kernel function,

Kpx,yq ” Σ2 exp
„

´
|x ´ y|2

2`2



. (2.5)

The prior mean function is often depicted as a constant mean function for sim-
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plicity, i.e., f̄pxq “ f01, where 1 is a vector whose order is the same as x and

whose entries are all unity. The GP-SE model features three hyperparameters,

namely f0,Σ2, and `. As previously stated f0 “ 0 is stipulated in this chapter. In

GP modeling the hyperparameter Σ is used in the posterior covariance function,

which is used to assess the “quality” of the GP model constructed based on the

sampled data. Since uncertainty is not considered in this application, Σ2 “ 1 is

set as it does not effect the calculation of the posterior mean function. The model

using the SE kernel in Eq. (2.5) and Eq. (2.3) with the prescribed hyper-parameter

choices is our first formula for the pointwise AMR prolongation.

2.0.3 A GP Prolongation for Cell-Averaged Quantities

For the majority of AMReX and fluid-dynamics application codes, the state

data is cell-averaged, as per the formulation of Finite-Volume Methods. The above

GP-prolongation for pointwise data has no safe guards for mass conservation. To

retain conservation alterations to the covariance kernel function in Eq. 2.5 is made

to reflect cell-averaged data. Let G be the vector of cell-averaged samples, whose

elements are Gi “ 〈fpxiq〉 “ 1
V

ş

Ii
fpxiqdV , where Ii Ă RD is the D-dimensional

cell in which xi is the center and ∆xd is the cell length in each d-direction, and V

is the cell volume of Ii. In order to calculate the covariance between cell averaged

quantities an integrated covariance kernel as described in [158] is utilized. That

is,
Ck,h “ ErpGk ´ ḠkqpGh ´ Ḡhqs

“

ż

Erpfpxq ´ f̄pxqqpfpyq ´ f̄pyqqsdgkpxqdghpyq

“

ĳ

Kpx,yqdgkpxqdghpyq

(2.6)
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where

dgjpxq “

$

’

’

&

’

’

%

dx
D´1
ź

d“0

1
∆xd

if x P Ij

0 else
(2.7)

With the use of the squared-exponential kernel as K, Equation (2.6) becomes

Ckh “
D´1
ź

d“0

?
π

ˆ

`

∆xd

˙2
#

ˆ

∆kh ` 1
?

2`{∆xd
erf

„

∆kh ` 1
?

2`{∆xd



`
∆kh ´ 1
?

2`{∆xd
erf

„

∆kh ´ 1
?

2`{∆xd

˙

`
1
?
π

˜

exp
«

´

ˆ

∆kh ` 1
?

2`{∆xd

˙2
ff

` exp
«

´

ˆ

∆kh ´ 1
?

2`{∆xd

˙2
ff¸

´2
˜

∆kh
?

2`{∆xd
erf

„

∆kh
?

2`{∆xd



`
1
?
π

exp
«

´

ˆ

∆kh
?

2`{∆xd

˙2
ff¸+

(2.8)

Here ∆kh “
xd,h ´ xd,k

∆xd
.

Starting with the SE kernel we integrate over the two cells, one being the

sampled stencil Ik, and the other being the target cell I˚, to get the new GP

weight vector,

Tk˚ ” T px,x˚q “
ż

Ik

ż

I˚

Kpx,x˚qdgkpxqdg˚px˚q,

where

I˚ “
D
ą

d“x,y,z

„

x˚,d ´
∆xd
2rd

, x˚,d `
∆xd
2rd



,

in which
Ś

denotes the Cartesian production on sets. Using the SE kernel, a

closed form for Tk˚ is derived,

Tk˚ “ πD{2
D
ź

d“x,y,z

rd

ˆ

`

∆xd

˙2 4
ÿ

α“1
p´1qα

„

φα,derfpφα,dq `
1
?
π

expp´φ2
α,dq



, (2.9)
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where for each α “ 1, . . . , 4,

φα,d “
1

?
2`{∆xd

ˆ

∆k,˚ `
rd ´ 1

2rd
, ∆k,˚ `

rd ` 1
2rd

, ∆k,˚ ´
rd ´ 1

2rd
, ∆k,˚ ´

rd ` 1
2rd

˙

.

Therefore, with the combination of the cell-averaged kernel in Eq. (2.8) and the

weight vector in Eq. (2.9), the second GP-AMR formula is obtained given in the

integral analog of Eq. (1.4) for cell-averaged data prolongation from coarse to fine

levels,

〈fpx˚q〉 “ TT
˚C´1G, (2.10)

where the zero mean is used as before. The vector G of cell-averaged samples

within the GP radius R is given as G “ rGi´R, . . . , Gi`Rs
T . Analogous to the

pointwise method, TT
˚C´1 is cast into a new GP weight vector z˚ to rewrite

Eq. (2.10) as

〈fpx˚q〉 “ z˚G. (2.11)

Many methods perform interpolation in a dimension-by-dimension manner.

In contrast, the above two GP-AMR methods are inherently multidimensional.

Moreover, the use of the SE kernel as a base in each d-direction does facilitate to

obtain the analytic multidimensional form in Eq. (2.8). Our GP-AMR methods,

therefore, provide a unique framework where all interpolation procedures in AMR

grid hierarchies are genuinely developed to support multidimensionality. Further-

more, it is worth to point out that the two prolongation schemes in Eqs. (2.4)

and (2.11) are merely a straightforward calculation of dot products between the

GP weight vectors and the grid data. This is the novelty of the use of GP model-

ing in AMR prolongation, which reveals two new compact prolongation methods

that are surprisingly more simple, not only than one might expect, but also than

conventional prolongation methods based on polynomials.
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2.0.4 Nonlinear Multi-substencil Method of GP-WENO

for Non-Smooth Data

Both of the above GP modeling techniques can suffer from non-physical os-

cillations near discontinuities. The SE and integrated SE kernels work very well

for continuous data, but a type of “limiting” mechanism needs to be implement

in order to protect against any type of unphysical oscillations in flow regions

with sharp gradients. To address this issue, a method to combine GP models

trained on multiple sample locations based on the WENO-JS method is utilized

as used in [158, 160]. As will be shown in details below, this GP-WENO approach

trains multiple sample locations by calculating nonlinear weights ωm based on the

new GP-based smoothness indicators βm. These βm are constructed in terms of

measuring the likelihood of the local data on substencils fm in accordance with

the smoothness of the GP model represented by the GP kernel function Km,σ

(or Cm,σ). There two differences between K and Km,σ in that (i) K P RMˆM

and Km,σ P Rp2D`1qˆp2D`1q, where M “ 2D2 ` 2D ` 1 for each spatial dimension

D “ 1, 2, 3, and (ii) the scale-length hyperparameter for Km,σ, σ is a much smaller

length scale in accordance with the narrow shock-width spread over a couple of

grid spacing. The same differences hold between C and Cm,σ as well.

The first step in this multi-substencil method of GP-WENO is to build 2D`1

substencil data on each substencil Sm, m “ 1, . . . , 2D`1. The data are combined

using linear weights γm derived from an over-determined linear system relating the

weights generated by building a GP model on all substencils Sm and the weights

generated from a GP model on a total stencil S. The last step is to take the

linear weights γm to define nonlinear weights ωm using the GP-based smoothness

indicators βm [158, 160].

In general, given a total stencil S, choose 2D`1 sub-stencils, Sm,m “ 0, . . . 2D,

21



such that
2D
č

m“0
Sm “ txi,ju and

2D
ď

m“0
Sm “ S, the total stencil. That is, the prolon-

gation will have the form:

f˚ “
2D
ÿ

m“0
ωmwT

mfm (2.12)

where wT
m “ T˚,mC´1

m for the cell averaged prolongation or wT
m “ kT˚,mK´1

m for

the point-wise prolongation. The coefficients ωm are defined as in the WENO-JS

method [183],

ωm “
ω̃m

ř

s ω̃s
where ω̃m “

γm
pε` βmqp

.

For this algorithm ε “ 10´36 and p “ 2 are chosen. The terms βm are the

likelihood estimates for the stencil fm, that is

βm “ fTmK´1
σ fm

for the pointwise prolongation and

βm “ fTmC´1
σ fm

for the cell averaged prolongation. Notice that, due to the properties of the kernel

matrices [158], this can cast as

βm “
2D`1
ÿ

i“1

1
λi

`

vTi fm
˘2
, (2.13)

where vi and λi are the eigenvectors and eigenvalues of the covariance kernel

matrix, Km,σ or Cm,σ. As described in [158, 160], the GP-based smoothness

indicators βm defined in this way is derived by taking the negative log of the

GP likelihood of Eq. (1.2). This gives rise to the statistical interpretation of βm

which relates that if there is a shock or discontinuity in one of the substencils,
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say Sk, such a short length-scale (or rapid) change on Sk makes fk unlikely. In

other words, the GP model whose smoothness is represented by the smoothness

property of its covariance kernel, Km,σ or Cm,σ, gives a low probability to fk, in

which case βk – given as the negative log likelihood of fk – becomes relatively

larger than the other βm, m ‰ k.

In this method GP modeling is used both in a regression (prolongation) and in

a classification sense. The regression aspect enables prolongation of GP sampled

over the longer length-scale ` On the other hand, the classification aspect is a

shock detection model for the handling of discontinuities. This is employed by

examining the likelihood of a GP model with a much shorter length-scale σ, which

is then integrated into the eigensystem in Equation (2.13). Smaller than `, the

parameter σ is chosen to reflect the short width of shocks and discontinuities in

numerical simulations, which is typically over a couple of grid spacings. In this

manner, two length scale parameters are used, ` for the interpolation model, and

σ for shock-capturing detection model.

Another key factor are the weights γm. The vector γ, is the least squares

approximation for the weights to construct the optimal combination of the each

GP model (constructed using sample data fm). These weights are retrieved by

solving the overdetermined linear system:

Mγ “ w˚ (2.14)

where the n-th column of M is given by wn, and w˚ is the model weights for the

interpolation point x˚ relative to the total stencil S. As mentioned previously,

these weights are generated using the length scale parameter `. Note that M is

a potentially sparse matrix, and is constructed from the model weights built on

each Sm.
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To illustrate this concept an example is explored. Suppose D “ 2, in which

case and the total stencil S is in the 5 ˆ 5 patch of cells centered at pi, jq and

contains 13 data points. The total stencil is subdivided into five 5-point substencils

Sm, m “ 1, . . . , 5. The natural cross-shape substencil is taken for each Sm on

each of which GP will approximate function values (i.e., state values of density,

pressure, etc.) at 16 new refined locations, i.e., pi˘1{4, j˘1{4q, pi˘1{4, j˘3{4q,

pi˘3{4, j˘1{4q, and pi˘3{4, j˘3{4q. For illustrative purposes, choose xi`1{4,j`1{4

as the location for GP to compute function values for prolongation. Explicitly,

five 5-point substencils are chosen as,

S1 “ rxi,j´1,xi´1,j,xi,j,xi`1,j,xi,j`1s ,

S2 “ rxi,j´2,xi´1,j´1,xi,j´1,xi`1,j´1,xi,js ,

S3 “ rxi`1,j´1,xi,j,xi`1,j,xi`2,j,xi`1,j`1s , (2.15)

S4 “ rxi,j,xi´1,j`1,xi,j`1,xi`1,j`1,xi,j`2s ,

S5 “ rxi´1,j´1,xi´2,j,xi´1,j,xi,j,xi´1,j`1s .

In this example, the total stencil S is constructed to satisfy
5
č

m“1
Sm “ txi,ju and

5
ď

m“1
Sm “ S, containing 13 data points whose local indices range from i´ 2, j ´ 2

to i ` 2, j ` 2, excluding the 12 cells in the corner regions. See Fig. 2.3, for a

detailed schematic of the multi-substencil approach.

Using these locations a 13ˆ5 over-determined system is built to obtain the
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16 newly prolonged cells

Substencil S1 centered at pi, jq

Substencil S2 centered at ip´1, jq

Substencil S3 centered at ip, j ´ 1q

Substencil S4 centered at pi` 1, jq

Substencil S5 centered at pi, j ` 1q

Total Stencil S on a course level

Zoom-in of the old coarse cell pi, jq
now at the new 4-refined level

consisting of new 16 cells

Figure 2.3: GP prolongation using five GP substencils that are combine to
produce 16 new datapoints on a fine 2D grid. The 4ˆ refinement ratio in both x
and y directions is considered here to prolong the single data from the old coarse
cell pi, jq to 16 newly refined locations.
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. (2.16)

which is solved using the QR factorization method for least squares.

Notice that both SE kernel and the integrated SE kernel in Section 2.0.2 and

Section 2.0.3 are both isotropic kernels. Hence, every Km,σ and Cm,σ are identical

over each substencil, illustrating that the WENO combination weights (i.e., wT
m)

and GP model weights (i.e., wT
˚ and TT

˚ ) only need to be computed and saved

once per level, and reused later.

The nonlinear weighting approach of GP-WENO designed this probabilistic

way has proven to be robust and accurate in treating discontinuities [158, 160].

Regardless, the nature of its nonlinearity requires the calculation of nonlinear

weights are to be taken place over the entire computational domain, consuming

an extra computing time. In this regard, one can save the overall computation if
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the GP-WENO weighting could only be performed when needed, i.e., near sharp

gradients, identified by a shock-detector. In this GP formulation, there is already

a good candidate for a shock-detector, that is, the GP-based βm. To meet this,

Eq. (2.13) is slightly modified to introduce an optional switching parameter α,

defined by

α “

2D`1
ř

i“1

1
λi
pvTi fq2

E2
arithrf s ` ε2

. (2.17)

Here, the data array f includes the 2D ` 1 data solely chosen from the center

most substencil, e.g., S1 in Fig. 2.3, E2
arith is the squared arithmetic mean over

the sampled coarse grid data points over 2D ` 1 sized substencil centered at the

cell pi, j, kq, or S1, that is,

E2
arithrf s “

˜

1
2D ` 1

ÿ

xPS1

fpxq

¸2

, (2.18)

and finally, ε2 is a safety parameter in case the substencil data values are all zeros.

Notice that this is just a scaled version of the βm in eq. (2.13) for the central

stencil S1. Since the GP model with ∆x is built with smooth data in mind

prescribed by the smooth SE kernel, this parameter will detect “unlikeliness" in of

the data f with respect to the GP model. Note that the critical value of α, called

αc, will be based on the kernel chosen. Without the normalization by the squared

arithmetic mean, this factor will vary based on mean value of the data. In this

regard, dividing by the average value of the data, f , helps to normalize the factor

without changing the variability detection.

It is necessary to choose a critical value, αc so that shocks, and high variability

in f are detected when α ą αc; smooth and low variability when α ď αc. In this

dissertation it is heuristically set αc “ 100 to meet this strategy. Using this α

parameter, there is a switching mechanism between the more expensive multi-
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modeled GP method and using the single GP model.

Using the multi-substencil GP-WENO method, there are generally 2D`1 dot

products of the stencil size for each prolonged point,
ś

d rd. In patch-based AMR,

even though refined grids are localized around the regions containing shocks and

turbulence, there are often areas of smooth flow in every patch. The use of the

switch α allows a reduction in the computational complexity to one dot product of

the stencil size for each coarse stencil that has smooth data, therefore reducing

the cost to one dot product of the stencil size for each prolonged point. This

method is extremely useful in 3D and when the refinement ratio is greater than

r “ 2.

This section concludes with a remark on one significant feature of GP which

is not explored in this dissertation. The multi-substencil GP-WENO methods,

outlined in [158, 160], in smooth flows can variably increase/decrease the order of

accuracy. However, in the application for AMR prolongation there may be large

grids to be refined, so the increased computational cost can become undesirable.

Note that the linear single model GP interpolation is still Op∆x3q, and serves as

a high-order accurate prolongation that often matches the order of accuracy of

the simulation. Reyes et al. [158, 160] discuss how to vary accuracy as a tunable

parameter within the GP methodology. The studies show that the GP radius R

of the stencil dictates the order of accuracy. The method illustrated in this paper

utilizes a GP radius R “ 1 and is Op∆x3q, however if one uses R “ 2 a method

that is Op∆x5q can be retrieved.

2.1 Implementation

This multi-substencil GP method is implemented within the AMReX frame-

work. Due to the complex algorithmic nature of patch-based AMR, and state-of-

28



the-art high performance computing, the AMReX framework is a hybrid C++/Fortran

library with many routines. To allow for simple data and workflow, the object-

oriented nature of C++ is fully utilized. In AMReX, there is a virtual base class

called, Interpolator. This class has many derivations including: CellConserva-

tiveLinear, an object for the functions related to a cell based conservative linear

interpolation. The methods provided in this paper live in the CellGaussian class.

This class constructs a GP object, which contains the model weights for each of

the
śD´1

d“0 rd new points per cell as member data. When a simulation is executed

in parallelized format, each MPI rank has an Interpolator class, this helps avoid

unnecessary communication. Computationally, this is the order of execution:

1. The refinement ratio and ∆x are passed on to the construction of the GP

object.

2. Build GP covariance matrices for both interpolation K,Km and shock de-

tection Kσ

3. Calculate the GP weights for all
śD

d“1 rd prolonged points.

4. Compute the eigensystem of Km,σ as part of building the shock-capturing

model.

5. Solve for γ for each prolonged point using the weights from Sm and S.

6. For each coarse cell, the switch parameter α is calculated to determine that:

‚ the points are prolonged using the nonlinear multi-substencil GP-WENO

model (e.g., one of the methods in Sections 2.0.2 and 2.0.3, plus the

nonlinear controls in Section 2.0.4) if α ą αc, or

‚ the linear GP model (e.g., one of the methods in Sections 2.0.2 and

2.0.3 without the method in Section 2.0.4) is used if α ď αc.
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If needed, the parameter αc can be tuned to a different value to alleviate

the GP performance relating to sensitivity to shock-detection. By lowering αc

the multi-substencil approach will be utilized more frequently, leading the overall

computation to increase since GP-WENO will be activated on an increased num-

ber of cells. In most practical applications such a tuning would be unnecessary

considering that strong shocks are fairly localized, and in such regions α would

retain a value much larger than αc anyway. Therefore, the condition α ą αc for

nonlinear GP-WENO would be met most likely over a wide span of possible val-

ues of αc users might set. Nonethless, the localized nature of shocks allows the

computationally efficient linear GP model to be used in simulations that do not

require the frequent shock handling mechanism. This value is set αc “ 100 in all

of the numerical test cases presented in Section 2.2.2.

To illustrate, the α values associated with a Gaussian profile elevated by the

circular cylinder of height 0.25 defined by the following function

fpx, yq “

$

’

’

&

’

’

%

1` exp p´px2 ` y2qq if px2 ` y2q ă 0.5,

0.25 else.
(2.19)

is shown. In Fig. 2.4, it is demonstrated how α varies over the profile which com-

bines the smooth continuous profile with the abrupt discontinuity. It is observed

that the α value is close to 2 over the continuous region. However, at the points

corresponding to the sharp discontinuity, px2 ` y2q “ 0.5, α soars to over 300,

resulting in the full engagement of the multi-substencil GP-WENO model near

the discontinuity. In the rest of the smooth region, α becomes much smaller,

triggering the linear GP model to be employed effectively. This also shows that

the linear GP model would be a sufficient AMR prolongation algorithm in an

incompressible setting.
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Figure 2.4: The top plot is the α values associated with the data from the
function fpx, yq, represented by the bottom plot.
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2.1.1 AMReX Programming Directives

The implementation is publicly available at https://github.com/stevenireeves/

amrex in the ‘GPAMR’ branch. Written in C++, it utilizes AMReX’s hardware-

agnostic parallelization macros and lambda functions. The code is designed to

utilize pragmas that declare the interpolation function as callable from either a

CPU or GPU. The AMReX parallelization strategy is similar for both CPU-based

supercomputers (e.g., Cori at NERSC) and GPU-based machines (e.g., Summit

at the Oak Ridge Leadership Computing Facility (OLCF), as well as Perlmutter

at NERSC and the forthcoming Frontier at OLCF). The strategy is to use MPI

for domain decomposition, OpenMP for CPU based multi-threading, and CUDA

(and HIP in the future) for GPU accelerators. Data allocation, CPU-GPU data

transfers and handling are natively embedded in most AMReX data types and

objects. For a more in-depth look into how the AMReX software framework is

implemented we invite the interested readers to refer to [224].

To provide a simple example into the AMReX style of accelerator program-

ming, suppose that the integer value of 1 needs to be added to a whole AMReX

datatype Array4. This datatype is a ‘plain-old-data’ object which is a four dimen-

sional array indexed as pi, j, k, nq. The first three indices are for spatial indices and

the last one for each individual component (e.g., fluid density, ρ). The AMReX

lambda function AMREX_PARALLEL_FOR_4D to expand a 4D loop in

a parallel fashion is used. For instance, AMREX_PARALLEL_FOR_4D

distributes the code segment in Listing 1 to an equivalent format in Listing 2:

Listing 2.1: AMReX Directive for Kernel Launch
AMREX_PARALLEL_FOR_4D(bx , ncomp , i , j , k , n , {

my_array ( i , j , k , n ) += 1 ;

} ) ;
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Listing 2.2: Expanded For Loop
for ( int i = l o . x ; i < hi . x ; ++i ){

for ( int j = l o . y ; j < hi . y ; ++j ){

for ( int k = lo . z ; k < hi . z ; ++k){

AMREX_PRAGMA_SIMD

for ( int n = 0 ; n < ncomp ; ++n)

my_array ( i , j , k , n ) += 1 ;

}

}

}

This formulation allows for one code to be compiled for either CPU running

or GPU launching. The AMReX lambda functions are expanded by the compiler,

and the box dimensions (lo.x - hi.x, etc) are different based on the target device.

For GPUs the lo and hi variables are set based on how much data each GPU

thread will handle. In the CPU version, the lo to hi are the dimensions of target

tile boxes respectively. Essentially the lambda handles the GPU kernel launch or

CPU for-loop expansion for the developer/user.

Assuredly, there are other approaches available to launch a parallel region in

AMReX for GPU extension. Furthermore an interested reader view the GPU

tutorials in AMReX source code for more information on various types of launch

macros [224].

While a detailed description of GPU computing is out of scope for this dis-

sertation, if one wishes to implement the GP-AMR algorithm for GPUs a general

principle of this strategy is provided:

1. Construct the model weights TT
˚C´1 for each stencil Sm, γ and the eigen-

system of Cσ on the CPU at the beginning of program execution or at the

initialization of each AMR level.

2. Create a GPU copy for these variables and transfer them to the GPU global
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memory space. Every core on the GPU will need to access them, but do not

need their own copy.

3. Create a function for the prolongation. This function will require both the

coarse grid data as an input, and the fine grid data as an output. Both

arrays will need to be on the global GPU memory space. This function will

be launched on the GPU, and the fine level will be filled accordingly.

In general, with GPU computing, it is best to do as few memory transfers between

the CPU and GPU as possible because a memory transfer can cost hundreds or

thousands of compute cycles and can drastically slow down an application. To

further explain these steps, Figure 2.5 is of an example call graph along with

CPU-GPU memory transfers. In this diagram, it is already assumed that the

course and fine state variables have been constructed and allocated on the GPU

respectively, as is with the case in AMReX.
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Figure 2.5: Diagram illustrating a call graph for GP-AMR utilizing GPUs as
accelerators.
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2.2 Results

In this section, the performance of the new GP-based prolongation model is

presented in comparison with the default conservative linear polynomial scheme

in AMReX. To illustrate the utility of the new GP-based prolongation scheme in

fluid dynamics simulations, GP-AMR is integrated as the prolongation method

in three different AMReX application codes, including Castro [7] – a massively

parallel, AMR, compressible Astrophysics simulation code, PeleC – a compress-

ible combustion code [93], and finally, a simple advection tutorial code built in

AMReX.

2.2.1 Accuracy

To test the order of accuracy of the proposed method, a simple Gaussian profile

is refined based on the GP prolongation method. This profile follows the formula

fpxq “ expp´||x||2q (2.20)

where x P r´2, 2s ˆ r´2, 2s. The prolonged solution, denoted as fp, is compared

against the true values, f , associated with the Gaussian profile function. The

accuracy of the cell-averaged GP prolongation routine matches with the analysis

in [158, 160]. The convergence rate of the error in 1-norm, E “ ||f´fp||, computed

using the GP prolongation model with R “ 1, exhibits the expected third-order

accuracy, following the theoretical slope of third-order convergence in the grid

scales, Op∆x3q.
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Figure 2.6: Convergence for the GP method. The quantities are measured in
log of base 2 to better cope with the refinement jump ratio of 2.

2.2.2 GP-AMR Tests

There are several test problems that are used to demonstrate the capabilities of

GP-AMR. First will be a single vortex advection, as per the Advection_AmrLevel

tutorial in AMReX. Next a modified version of the slotted cylinder problem

from [41] is presented. The subsequent problems using Castro are some classic

test problems including the Sedov implosion test [176], the double Mach reflec-

tion problem [218], and the Kelvin-Helmholtz instability setup [114]. Lastly, a

pre-mixed flame simulation from PeleC [93] is illustrated.

The first test is a simple reversible vortex advection run. A radial profile is

morphed into a vortex and reversed back into its original shape. The radial profile

initially is defined by

fpx, yq “ 1` exp
”

´100
`

px´ 0.5q2 ` py ´ 0.75q2
˘

ı

. (2.21)
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The profile is advected with the following velocity field:

vpx, y, tq “ ∇ˆ ψ (2.22)

which is the curl of the stream function

ψpx, y, tq “
1
π

sin pπxq2 sin pπyq2 cos
ˆ

π
t

2

˙

(2.23)

Here px, yq P r0, 1s ˆ r0, 1s. In this demonstration, the level 0 grid size is 64 ˆ

64, and has two additional levels of refinement surrounding the radial profile.

The simulation is an incompressible advection problem using the Mac-Projection

to compute the incompressibility condition enforcing the divergence-free velocity

fields numerically, ∇ ¨U “ 0 [8]. The flux is calculated by a simple second-order

accurate upwind linear reconstruction method. Although the overall solution is

second-order which is lower than the third-order accuracy of the GP prolongation

method, this example still illustrates the computational performance of the GP-

based method over the default conservative linear prolongator.

The simulation is finished at t “ 2. We used sub-cycling of time-steps to

improve the overall performance, in which a smaller time-step ∆tf is used on

a finer level to advance the regional solutions for stability. The coarser level

solutions which advance with a larger time-step ∆tc await until the solutions on

the finer levels catch up with the global simulation time tg “ tn ` ∆tc over the

number of sub-cycling steps Nsubcycle “ ∆tc{∆tf . We present the performance

and accuracy results for this problem in Table 2.1.

Since the two methods are of different order, they can yield different AMR

level patterns which can lead to the slight difference in the number of function

calls. In regards to the prolongation functions the default linear prolongation took
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(a) t “ 0 (b) t “ 0.282 (c) t “ 0.651

(d) t “ 1.447 (e) t “ 1.785 (f) t “ 2

Figure 2.7: The progression of the 2D radial profile with 4 levels of refinement
using the multi-substencil GP prolongation algorithm.

Table 2.1: Accuracy and Performance of GP-AMR against the default linear
AMR for the single vortex test on a workstation with an Intel i7-8700K processor,
with 6 MPI ranks.

Execution Time Prolongation Time # of calls L1 error
2D GP-AMR 0.2323s 0.004168s 9115 0.00033
2D Linear 0.2335s 0.008436s 9113 0.00071
3D GP-AMR 1.6523s 0.086361s 21929 0.00151
3D Linear 1.6640s 0.157623s 21893 0.00160
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approximately twice as much time than the GP prolongation. This is due to the

smoothness of the solution not requiring the multi-modeled treatment, allowing

for the simplified GP algorithm to be used. However, the overall simulation times

were equally comparable, since there were larger areas (or more cells) that followed

the profile and were computed in the finest AMR level in the GP case than the

linear case. We note that the cost of computing the GP model weights were

negligible in comparison to the program’s execution time of 0.0002306 seconds on

average, being called twice (since there were two levels) per MPI rank. We also

check the level averaged L1 error between the solution at t “ 2 and the solution

at t “ 0 for both AMR prolongation methods. Furthermore, in the 2D case

the GP-AMR solution is approximately half of the error produced by the default

method.

Another useful examination is the analogous problem in 3D in which the com-

putational stencils for both methods grow. For the 3D version a 32 ˆ 32 ˆ 32

base grid with 2 levels of refinement is used. The details of this simulation can

also be found in Table 2.1. Note that a parallel copy operation becomes slightly

more expensive with GP because the need for the GP multi-substencil grows on

non-smooth regions to handle discontinuities in a stable manner, as managed by

the αc parameter. This becomes more apparent in 3D, as the computational sten-

cil effectively grows from 7 to 25 cells when using the multi-substencil approach.

In this 3D benchmark, the difference in error between these methods is less than

in the 2D case. The GP-AMR simulation still outperforms the linear prolonged

simulation, but to a smaller degree. This is due to the solution at t “ 2 to be

more out of phase with the initial profile with the higher degrees of freedom.

In Figure 2.7 the same 2D single vortex advection with GP-AMR on a base

grid of 64 ˆ 64 with 4 levels of refinement is shown to illustrate the GP method
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with a more production level grid configuration.

Slotted Cylinder as another AMReX Test

Another useful test is the slotted cylinder advection presented in [41]. In

this chapter an exact replica of this problem is not used, but instead the slotted

cylinder is put through a similar transformation as in the previous problem. That

is, the slotted cylinder is morphed using the same velocity used in the Single

Vortex test.

The slotted cylinder is defined as a circle (in 2D) of radius R “ 0.15 centered

at xc “ pxc, ycq “ p0.5, 0.75q with a slot of width W “ 0.05 and height H “ 0.25

removed from the center of the cylinder. The initial condition is given by

φ0pxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, if R ă
a

px´ xcq2 ` py ´ ycq2,

0, if |2xc| ă W and 0 ă yc `R ă H,

1, else,

where px, yq P r0, 1s ˆ r0, 1s. The initial profile is shown in Figure 2.8.

In this test one wants to find the simulation that best retains the profile of

the initial condition when it is completed at t “ 2 as in the previous test. We

have two levels of refinement on a base grid of size 64ˆ 64 resolution. Figure 2.9

contains snapshots of the simulations at times t “ 0.28, 1.44 and t “ 2. The goal

is to retain as much of the initial condition as possible, in a similar fashion to the

previous 2D vortex advection test.

The result shows that the multi-substencil GP-AMR prolongation preserves

the initial condition better than the conservative linear scheme native to AMReX.

Notably, there is far less smearing and the circular nature of the cylinder is better

retained with GP-AMR. Furthermore, it should be noted that a larger area of
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Figure 2.8: The slotted cylinder at t “ 0 over the entire domain with 3 AMR
levels.

the slotted cylinder is covered by the finest grid structure with the GP-AMR

prolongation. The refinement criteria in this test and the previous are set for

critical values of the profile. This is analogous to refining on regions of high density

or pressure. We wish to trace the slotted cylinder’s evolution with the finest grid.

In this way, a direct comparison of the diffusivity in each method can be seen

in how they retain this grid. With this test, the default linear prolongation is

much more numerically diffusive and smears the profile almost immediately. This

results in a far more blurred cylinder at t “ 2. While there is some loss with

GP-AMR, the profile at t “ 2 far better resembles the cylinder at the onset of the

simulation.

Sedov Blast Wave using Castro

A perhaps more useful test of the algorithm is in a compressible setting, where

shock-handling becomes necessary. To illustrate the compressible performance of

this method, the Sedov Blast wave [176], a radially expanding pressure wave, is

utilized. This simulation is solved using Castro with the choice of the piecewise
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(a) Linear AMR prolongation

(b) GP-AMR prolongation

Figure 2.9: The morphed slotted cylinder problem at times t “ 0.28, 1.44, 2,
from left to right in time. Top: (a) Default AMReX with linear prolongation.
Bottom: (b) AMReX with adaptive multi-modeled GP prolongation.
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(a) Sedov with GP-AMR. (b) Sedov with linear.

Figure 2.10: A Sedov Blast Wave solution at t “ 0.1 with two levels of refine-
ment.

parabolic method (PPM) [40] for reconstruction along with the Colella and Glaz

Riemann solver [43]. For the 2D test, the simulation has a base grid of 64 ˆ 64,

two additional AMR levels, using a rx “ ry “ 2.

Figure 2.10 illustrates the propagation of the Sedov blast wave at t “ 0.1, and

allows a comparison between the linear prolongation method and GP-AMR. Al-

though simple, the Sedov blast wave is a good test illustrating the shock-handling

capabilities of the GP multi-substencil model. Notice that visually, the radial

shockwaves in both simulations are identical. However, the vacuum in the center

of the blast wave is closer to 0 with GP-AMR, is in the self-similar solution [176].

In Figure 2.10 the AMR levels track the shock as it propagates radially and the

shock front is contained at the most refined level. At the most refined level, the

shock is handled by the multi-modeled GP-WENO treatment. This increases the

computational complexity in this region. However, the GP algorithm is less ex-

pensive in this example, because the shock is very well localized, and the majority
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Table 2.2: Performance of GP-AMR against the default linear AMR on the
Sedov Blast Wave with 6 MPI ranks on an Intel i7-8700K processor.

Execution Time Prolongation Time # of calls
2D GP-AMR 5.719s 0.07691s 19743
2D Linear 5.698s 0.12610s 19439
3D GP-AMR 64.27s 1.28912s 35202
3D Non-Adapitve GP-AMR 72.81s 5.09467s 35202
3D Linear 67.76s 1.96204s 35202

of the domain is handled by the regular GP model. The standard GP model is

a simple dot-product using the pre-computed weights and the stencil. Table 2.2

contains the performance statistics of the GP-AMR algorithm compared to the

default linear using the same workstation as the previous test.

A 3D Sedov blast was also tested, giving a better look at the multi-substencil

cost in the shock regions. For this benchmark, the simulation utilized a base grid

of 32 ˆ 32 ˆ 32 with additional two levels of AMR, utilizing a refinement factor

of 2 for both levels. The wave was advected until t “ 0.01 with both simulations

(GP-AMR and default) 118 coarse grid timesteps. Table 2.2 also contains the

performance metrics for the 3D test.

By setting αc “ 0 the multi-substencil GP-WENO method is effectively used

over all cells. The metrics for this example are labeled as “Non-Adaptive GP-

AMR” in Table 2.2. Using the multi-substencil GP-WENO method for every grid

is roughly 5ˆ more expensive as a prolongation method. This is expected as the

multi-modeled GP-WENO method combines 5 GP models.

Double Mach Reflection using Castro

The double Mach reflection [218] is a great problem for testing purposes due

to the complex nature of the solution. For this test, Castro with PPM [40] re-

construction and the HLLC [206] Riemann solver is used. The initial condition
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Figure 2.11: The double Mach reflection simulation at t “ 0.2 with 4 levels of
AMR refinement.

describes a planar shock front with an angle of θ “ π{3 extending from the x-axis

which itself is a reflecting wall,

´

ρ, u, v, p

¯

“

$

’

’

&

’

’

%

p1.4, 0, 0, 1q for x ą xshock,

p8, 8.25, ´8.25, 116.5q else,
(2.24)

where

xshock “
y ` 1

6
tan π

3

when y P r0, 1s. The full domain of the problem is r0, 4s ˆ r0, 1s.

Figure 2.11 is of the solution to this problem with 4 levels of refinement starting

at a base level with resolution 512ˆ128 using the GP-based prolongation.

With sufficient resolution and accuracy, vortices along the primary slip line

can be observed, as seen with the copious amount of vortices in Figure 2.11. The

number of vortices serves as a general indication of the numerical diffusivity of

the method, and a quality of Riemann solver. In this context, in the amount

of numerical dissipation of the two different AMR prolongation methods is of

interest.

For reference a labeled schematic of the double-mach reflection containing the
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Figure 2.12: A schematic of the main features in the double mach reflection
problem.

regions of interest for this comparison is presented in Figure 2.12. The features

contained in this diagram will be referred to in the following analysis. Mostly

in the central region encompassing secondary reflected shock, triple point, and

primary slip line.

The default and GP-AMR implementations are compared by zooming into the

aforementioned region. In Figure 2.13 the effects of the each prolongation method

on the number of vortices along the primary slip line can be observed.

As can be seen in Figures 2.13a and 2.13b, there is more onset to Kelvin-

Helmholtz instability along the primary slip line in the GP-based AMR simulation,

resulting in more additional vortices above the secondary reflected shock wave,

along with onset to instability on the primary slip line close to the primary triple

point. As a rudimentary measure, the GP-AMR simulation contains 20 vortices

in this region whereas the default AMR contains 17.

With this simulation, the default linear prolongation is faster, as the adaptive

GP algorithm has more cells to prolongate in the high α regime. Table 2.3 contains

the details about the execution times.

These results were generated using the University of California, Santa Cruz’s

Lux supercomputer, utilizing 8 nodes. Each node contains two 20-core Intel Xeon
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(a)

(b)

Figure 2.13: (a) GP-AMR simulation, (b) Default linear prolongation based
simulation. Both simulations visualized in the triple-point region of the domain
at t “ 0.2.
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Table 2.3: Performance insights for the Double Mach Reflection problem utilizing
8 nodes and 320 cores on Lux.

Execution Time Prolongation Time # of calls
GP-AMR 760.43s 1.1121s 39724
Linear 705.10s 0.7395s 39837

Gold 6248 (Cascade Lake) CPUs. This simulation generates more high α re-

gions, and thus requires the multi-modeled GP-WENO algorithm more often.

This results in the GP-AMR simulation to be slower than the default prolonga-

tion method by 60s. In addition to the increase of computational complexity,

there is an increase of time spent in the parallel copy algorithm. The multi-

modeling GP-WENO algorithm requires 2 growth cells at the boarders of each

patch, therefore increasing the amount of data to be copied.

Pre-Mixed Flame using PeleC

For the final test problem in this chapter, a steady flame is produced using the

AMR compressible combustion simulation code, PeleC [93]. With PeleC, chemical

species are tracked as mass fractions that are passively moved during the advection

phase, and diffused subject to transport coefficients and evolved in the reaction

phase by solving ordinary differential equations to compute reaction rates. In this

problem, the GP-AMR is tied with PPM reconstruction and the Colella and Glaz

Riemann solver [43]. We show the ρw (momentum in the z direction) of the pre-

mixed flame solution in Figure 2.14. For this illustration the base grid had a 32ˆ

32ˆ 256 configuration with two additional AMR levels. Furthermore, Figure 2.14

has a colormap such that the lighter color are regions with high momentum, and

the dark regions have low momentum. The pre-mixed flame is a 3D flame tube

problem in a domain that encompasses r0, 0.625s ˆ r0, 0.625s ˆ r1, 6s. The flame
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Table 2.4: Execution timings of PeleC and AMReX on the PreMixed Flame test
problem on 32 nodes of the Summit supercomputer.

Execution Time Prolongation Time # of calls
GP-AMR 50.23s 0.03281s 940
Linear 52.04s 0.06261s 940

spans the x and y dimension and is centered at z “ 3.0. The gases are pre-mixed

and follow Li-Dryer hydrogen combustion chemical kinetics model [123].

To illustrate some performance metrics the simulation is executed on 32 Sum-

mit nodes, with 196 NVIDIA V100 GPUs. The simulation contains a base level

of 256ˆ128ˆ2048 with two levels of refinement. The performance metrics of GP-

AMR against the default in Table 2.4. In this table GP-AMR is twice as fast as

the default linear on average.

Additionally a weak scaling is performed on this problem for up to 3072

NVIDIA V100 GPUs on Summit, with results illustrated in Figure 2.15. The

y-axis of the figure illustrates the average GP prolongation times and the x-axis

is number of GPUs from 96 nodes to 3072 GPUs on Summit in logarithmic scale

of base-2. Each node on Summit contains 6 NVIDIA V100 GPUs, therefore the

scaling ranges from 16 to 512 nodes. GP-AMR when implemented in AMReX

scales very well on Summit, one of the top-class supercomputers in the modern

leadership computing facilities in the world.
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(a) x´ z section, y “ 0.3125, z P r1, 4s (b) y ´ z section, x “ 0.3125, z P r1, 4s

(c) x´ y section, z “ 3.0

Figure 2.14: Momentum in the z-direction of the pre-mixed flame.
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Figure 2.15: Weak scaling of GP-AMR utilized in PeleC up to 3072 Nvidia
Volta GPUs (512 Nodes on the OLCF Summit Super Computer).

2.3 Chapter Summary

In this chapter a new, efficient, 3rd order accurate, Adaptive Mesh Refinement

prolongation method based on Gaussian Process Regression is presented. Further,

this method is general to the type of data being prolonged, as illustrated with a

substitution of Covariance kernels in Equations 2.5 and 2.8, for pointwise and

cell-averaged data. In order to handle shock waves, a multi-modeled version of

the algorithm inspired by WENO [183] was generated. It is recognized that the

multi-modeled GP is more computationally expensive, and a method to mitigate

this was discovered. By adapting the shock-capturing GP detection model in the

multi-modeled GP formulation, a method switching parameter α was discovered.

In the 3 of the 5 test cases, the adaptive GP method was faster than the

baseline linear interpolation. The other cases had situations where the patches

to be interpolated contained mostly cells where the detection model decided that
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the multi-modeled approach was necessary. The adaptive method is a balance

between speed, stability, and accuracy.

In the scope of this chapter, the tunable parameters ` and σ are either fixed,

or fixed in relation to the grid scale. To further adapt the algorithm, one could

try and maximize the log of Equation 1.2 with respect to the hyper-parameter `

as is done in many applications utilizing Gaussian Process regression. However,

in this application a fixed prescription for ` appears to hold the desired properties

without . The stability of the algorithm is inherently tied to the σ parameter,

which it is recommended to never being larger than 3 times the grid scale. In

many of the test cases, σ “ 1.5∆x was chosen. If additional stability is required,

it is recommended to tune αc to be smaller or to be zero, requiring the algorithm

to only use the multi-modeled GP model.

Utilizing the framework provided, an even higher order prolongation method

can be generated by just by increasing the size of the stencil while utilizing the

same framework. This will be inherently useful as more simulations codes are

moving to increasingly accurate solutions with WENO [183, 200] or GP [158, 160]

based reconstruction methods paired with Spectral Differed Corrections(SDC) [140,

66] can yield a 4th or higher order accurate total simulation. In this case, a 2nd

order AMR interpolation may degrade the overall quality of the solution or incur

additional SDC iterations – increasing the execution time of the simulation.
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Chapter 3

A GP Algorithm to Upsample

Document Images for Optical

Character Recognition

An important problem in computer vision is the retrieval of textual infor-

mation from images of documents. This is especially useful for search engines,

accessibility tools for the visually impaired, and for processing of financial doc-

uments. For these purposes, optical character recognition (OCR) engines have

been constructed. The popular open-source OCR framework Tesseract is used in

this study. Optical character recognition frameworks, in general, are only as good

as the document image that is supplied to them. In many cases, the resolution of

the document image plays a role in how well the characters are extracted. In order

to properly upsample low resolution document images, a new Gaussian Process

Modeling upsampling algorithm is constructed and presented in this chapter.

This chapter is organized in the following way. To begin, OCR is introduced

along with the state-of-the-art OCR extraction software Tesseract. Next, the
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Gaussian Process based upsampling method is discussed, along with a brief study

on the choice of covariance kernels and the use of a maximum likelihood estimate

for the mean. Finally the algorithm is tested against the baseline bicubic upsam-

pling technique by examining the produced OCR accuracy resulting from these

upsampled images.

3.1 Optical Character Recognition

Optical Character Recognition is the conversion of pixel represented words and

characters within images into machine-encoded text. As previously mentioned, the

OCR framework Tesseract [189] is used to extract text in the document images

used in this chapter. Tesseract was originally formulated by HP research between

1984 and 1994. Since then it has changed hands and now is an open-source soft-

ware package managed by Google [147] – under the Apache 2.0 License. Tesseract

4.1.1, the version used in this chapter, generates text based utilizing a type of Neu-

ral Network (NN) called a Long-Short Term Memory (LSTM) network. Tesseract

ingests single-channel images and generates feature-maps based on these images.

Then these feature maps are embedded into an input for the LSTM [189, 147].

A brief on LSTM

To better understand the Tesseract, this section provides a brief introduction

into LSTM. A LSTM is a gated Recurrent Neural Network (RNN) that is specif-

ically formulated to avoid a common problem with RNNs, called the vanishing

gradient problem. Recurrent Neural Networks typically operate on sequences of

data instead of just a single data object alone. Non-LSTM RNNs can keep track of

arbitrary long-term dependencies in data sequences. Recurrent Neural Networks

are composed of units that “unfold” over the sequence. As such, a RNN generally
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accepts two inputs, the features at the current time or point in the sequence xt

and the hidden layer or output from the previous unit ht´1 or zt´1 respectively.

During training, where a gradient descent algorithm is utilized, iterative multipli-

cation of dependencies can cause the back-propagated gradient to either diverge

or “vanish” (go to zero) [91].

Long Short-Term Memory networks mostly avoid these gradient problems by

adding additional complexity to the internals of each network unit. Additionally,

an LSTM unit takes 3 inputs: the feature at the current time xt, the output from

the previous unit ht´1 and a memory term from the previous unit, ct´1. This

memory term informs the current unit on which dependencies to keep. This deci-

sion process informs the network whether to forget or keep certain dependencies,

and is learned during training [91, 72]. Figure 3.1 contains two units, one from

a RNN and one from an LSTM. Each unit contains gates that yield processed

results from features. Both the RNN and LSTM contain the sigmoid activation

function

σpxq “
1

1` exp p´xq , (3.1)

and the LSTM utilizes another activation, φpxq “ tanhpxq [146]. In addition

to these gates (layers), the LSTM unit contains many point-wise operations on

the feature outputs from the gates. Long Short-Term Memory networks have

been used to great success in unsegmented-connected handwriting recognition [78],

speech recognition [125, 166], and OCR [189]. Tesseract specifically, uses LSTM

to generate words from character feature sequences.
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Figure 3.1: An RNN unit vs an LSTM unit [94].

3.2 The Gaussian Process Algorithm

Images are quite different than the type of data presented in Chapter 2. Each

entry in an image is typically an 8 bit unsigned integer – between 0 and 255 –

in contrast to the 64 bit floating point representations necessary in Computa-

tional Fluid Dynamics. They are in general, composed of 3 color channels, and

sometimes an α channel. However, for the purposes of OCR, only one channel is

considered– a composite gray-scale derived from the RGB channels.

Image data is inherently discontinuous, and does not require the same con-

servative qualities that the algorithms in Chapter 2 do. To this avail, a different

covariance kernel function is used.

Text in single-channel document images are defined by pixels with low intensity

values (close to 0 or black), surrounded by pixels of high intensity (closer to

255 or white). Specifically, pixel values are low in the interior of a character,

and pixel values are comparatively high outside of characters. Because of this

specific structure, the type of GP modeling will change. Instead of modeling the

raw values, the deviation from a mean intensity will be modeled. This allows
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the upsampling algorithm to better maintain these intensities in the presence of

characters. This structure is discussed in more detail in subsection 3.2.2 and 3.2.3.

3.2.1 Choice of Covariance Kernel

Due to the nature of the partial differential equations used in CFD, the solu-

tions are continuous almost everywhere. This is why a natural choice of kernel

for that application was the squared-exponential kernel – since functions sampled

from a Gaussian Process built with the squared-exponential kernel belong to C8.

However, with images, an alternative kernel is more appropriate for generating

data of the same caliber. So instead of the SE kernel, a member of Matérn fam-

ily of kernels is used. In the Matérn family of covariance functions, there are 3

hyper-parameters that dictate their character – as indicated in Equation (3.2).

Kmatpx,yq “ Σ2 21´ν

Γpνq

ˆ

?
2ν ||x ´ y||

`

˙ν

Kν

ˆ

?
2ν ||x ´ y||

`

˙

(3.2)

For the Matérn kernels, Σ and ` are the same as they are in the squared-

exponential. The hyper-parameter ν on the other hand, relates the level of

"continuousness" of the functions that are sampled from a Gaussian Process con-

structed from this kernel. The function Kν is the modified Bessel function of the

second kind of order ν. The Matérn family of covariance functions give conti-

nuity properties ranging from functions generated by using Ornstein-Uhlenbeck

covariance function, Kpx,yq “ exp
´

´
||x´y||

`

¯

, and the SE covariance function.

A Gaussian Process with the Ornstein-Uhlenbeck kernel generates functions that

are never differentiable, essentially the opposite of the SE kernel. On one end of

the spectrum ,as ν goes to infinity, the Matérn covariance kernel converges to the

squared-exponential covariance function. And if ν “ 1{2 is selected, the Matérn

covariance function simplifies to Ornstein-Uhlenbeck [155]. Note that these are
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the cases when the distance metric is Euclidean, and the Matérn family holds

difference properties on spaces that are formed with other metrics.

Consideration of the input and output datatypes of the Gaussian Process are

key when choosing or building a covariance function, as can be seen with the

analysis in sections 2.0.2 and 2.0.3. The datatype for this application are document

images, which contain sharp contrasts that are handled better by a low ν Matérn

kernel. The Matérn kernel with ν “ 3{2 is used in this algorithm. For this specific

value, Equation (3.2) can be simplified. By setting ν “ 3{2,

K3{2px,yq “ Σ2
ˆ

1`
?

3 ||x ´ y||
`

˙

exp
ˆ

´
?

3 ||x ´ y||
`

˙

. (3.3)

As in all the algorithms in this dissertation , Σ “ 1 is chosen, as the uncertainty

portion of GP modeling will not be used for this application. Figure 3.2 contains

a graph with a cross-section of the covariance kernels as a function of distance

between two points x and y. The blue curve represents the Squared-Exponential

covariance function and the orange curve is the Matérn 3/2. The Matérn 3/2

kernel decays sharper as the the distance increases, and is not as smooth in its

transitions like the SE function is. In this illustrative example, ` “ 1 is used in

both functions.

In order to discuss the practical difference between the Matèrn 3/2 kernel and

the Squared Exponential, Figures 3.3 and 3.4 are generated utilizing functions

from the Scikit Learn framework [148]. These figures contain prior and posterior

mean functions of the Gaussian Processes generated using the aforementioned co-

variance kernels. The prior mean functions sampled from the Gaussian Processes

offer illustrations of typical functions that "live" in the function spaces that the

covariance kernels stipulate. Ten data points are selected from a uniform distri-
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Figure 3.2: Cross-Section of the Squared-Exponential and Matérn 3/2 Covari-
ance Functions.
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bution between 0 and 5. The sampled response variable follows the formula

Y “ sin
`

pX ´ 2.5q2
˘

(3.4)

where X „ Up0, 5q is the predictor variable. Figure 3.3 contains the prior and pos-

terior mean functions generated from Gaussian Process with the Squared Expo-

nential Kernel using these datapoints. The gray space represents the uncertainty

of the Gaussian Process models. For Figure 3.4 the above process is repeated

utilizing the Matèrn 3/2 kernel instead of Squared-Exponential. Note that in

Figure 3.3, the prior and posterior mean functions are much smoother than the

functions sampled from and produced by the GP with the Matérn kernel, as rep-

resented in Figure 3.4. As mentioned previously, the Squared Exponential based

GP expects input and output functions to be C8, whereas the Matèrn Kernel

essentially generates its differentiability properties based on the value of ν [155].

3.2.2 Maximum Likelihood Estimate for the Prior Mean

As with the application for AMR, Equation (1.4) is used as a base for the

upsampling algorithm. However, in this chapter, a zero prior mean is not assumed

but rather a prior mean function is built. The prior mean function that will be

used is the maximum likelihood estimate for the prior mean, calculated over the

5ˆ5 square patch of pixels. This is done to change the character of the upsampling

model so the model predicts the variation about the mean intensity in each sample.

Typically, non-zero mean functions are used when there is an observed or assumed

trend in the data. In the case of document images, pixel data is expected to retain

certain intensities when inside a character or in the white space of a document.

Because of these characteristics, a constant non-zero mean is chosen. Note that

the derived prior mean functions is only constant over a single window, the prior
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Figure 3.3: Squared Exponential based Gaussian Process, fitted to ten data
points. Top: Prior Mean functions. Bottom: Posterior mean functions based on
the 10 samples.

62



Figure 3.4: Matèrn 3/2 based Gaussian Process, fitted to ten data points. Top:
Prior Mean functions. Bottom: Posterior mean functions based on the 10 samples.
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mean will be constructed over each sample varies over the image.

To calculate the maximum likelihood estimate (MLE) for a constant prior

mean, f̄ “ f01, the log of Equation (1.2) is optimized with respect to f0. That is,

solve
B lnpLq
Bf0

“ 0.

The log of Equation (1.2) is

ln L “ ´1
2
`

f ´ f̄
˘T KT

`

f ´ f̄
˘

.´
1
2 lnpdet |K|q ´ N

2 lnp2πq (3.5)

By setting the derivative of Equation (3.5) to 0

0 “ BL
Bf0

“
B lnpLq
Bf0

“ ´fTK´11´ 1TK´1f ` 2f0
`

1TK´11
˘

is derived. Notice that K is positive definite symmetric by definition. So, K´1 is

also symmetric and

1TK´1f “ fTK´11.

Hence,

´fTK´11´ 1TK´1f ` 2f0
`

1TK´11
˘

“ ´2
`

1TK´1f
˘

` 2f0
`

1TK´11
˘

“ 0.

Therefore the maximum likelihood estimate for the prior mean is:

f0 “
1TK´1f
1TK´11

. (3.6)

Note that this analysis relies on using the Gaussian Process likelihood, Equa-

tion (1.2), for the prior, and by setting this mean to be a constant vector. Dif-

ferent maximum likelihood estimates can be generated under other assumptions.
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Also, this maximum likelihood estimate for the prior mean can be recast as

f0 “

´

ř

i K
´1
ris

¯

¨ f
ř

i,j K´1
ri,js

.

This interpretation is simply a weighted average with respect to the GP model.

3.2.3 Algorithm

In this upsampling algorithm, single channel grayscale document images are

used. The Gaussian Process upsampling algorithm begins with the construction

of the model weights with a length scale parameter derived from the original

resolution of the image - ` “ 20 minp1{h, 1{wq. The upsampling ratio dictates

the number of weight vectors needed, for example, when upsampling 4ˆ, 16 new

pixels are generated and therefore 16 weight vectors are needed. These vectors

are generated by utilizing the Cholesky factorization of K and then applying

back substitution to calculate each kT˚K´1. The key factor is that the covariance

kernel utilized in this methodology is isotropic– it only depends on the distance

between samples. Since a sliding window is used, the upsampling weights only

need to be calculated once and can be used throughout the image. This is because

the distance between sample pixels are related to their pixel index pi, jq. In a

similar fashion to the results in Chapter 2, the distance between the pixel that is

upsampled and the rest of the window is identical for every window.

When performing upsampling over the document image, a sliding 5 ˆ 5 pixel

window is used as the sample for the GP model. Figure 3.5 helps illustrate the

sliding window GP method. The figure contains 3 grids of pixels. The first grid

represents the constant maximum likelihood estimate for the prior mean over

this pixel grid. The second grid represents the deviation of the sampled pixel
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f0 ` kT˚K ¨ pf ´ f̄q

f˚

Figure 3.5: Schematic for the 5ˆ5 GP model for 4ˆ upsampling. The com-
pletely gray grid illustrates the computation of f0 over the sample, while the GP
model combination on the second grid. The last grid illustrates the 16 new f˚
generated by combining the two, effectively replacing the pixel pi, jq

values from the MLE. Together, these grids combine to interpolate 16 new pixels,

replacing the pixel in the pi, jq location.

In the implementation of this algorithm, the maximum likelihood estimate for

the prior mean is generated when the 5 ˆ 5 sample is loaded. Then each GP

weight vector kT˚K´1 is applied to the residual between the MLE and pixels in

the sampled window to model the deviation. The deviation and the MLE are

combined to generate each new pixel f˚.

As an example, Figure 3.6 is used to illustrate the upsampling results utilizing

this Gaussian Processes algorithm. The top image in the figure is the low res-

olution image (resized by copying the nearest pixels to be the same size as the

GP image), and bottom text is from the GP upsampled image. When Tesseract

is used on these images, it yields the following texts. The low resolution image

Tesseract output is:

"desigm £rédacimice en fiflanEm, Et le chiet",
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Figure 3.6: Section of Page 154 of the LRDE dataset. Top: 4ˆ downsampled
image crop. Bottom: 4ˆ GP upsampled.

which is not an accurate representation of the ground truth. However, for the GP

upsampled image, Tesseract generates

"design et regactnce en « Azzmuts ». est le chef ".

It is clear that the GP upsampled version is much closer to the ground truth text

of

"design et rédactrice en « Azimuts », est le chef ".

Tesseract works best when used on near-binary images as an input. In this

case, near binary means that the majority of the pixels in the image are close

to 0 if they are within a character, or 255 if not. However, sometimes the single

channel images are calculated from RGB images that yield other shades of gray.

In this case some images processing techniques can be used to better “binarize”

these images. Aside from binarization, images can contain noise or textures within

them, which can negatively effect the detection of characters. A common way to

handle excess noise and textures is to use a blurring operation to smooth out those

regions. However, utilizing these blur convolutions can lead to unwanted removal

of edges.
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The most utilized blur filter is the Gaussian filter, which is a low-pass filter,

dulling out high frequency information, like noise and texture [82]. In the simplest

case, a Gaussian blur involves convolving the image with the following discrete

kernel:

Bg “
1
16

¨

˚

˚

˚

˝

1 2 1

2 4 2

1 2 1

˛

‹

‹

‹

‚

(3.7)

This Gaussian filter however, has a tendency to smooth edges too much, which can

negatively effect the accuracy of the optical character recognition. However, spu-

rious noise and textures can fool an OCR engine into generating false positives

– detecting characters that are not present in the image. So instead of Gaus-

sian filtering, the bilateral filtering approach illustrated by Tomasi and Manduchi

is used [204]. Bilateral filters reduce noise and textures without compromising

edges, that is, without compromising the upsampled edges generated in the GP

upsampling.

If the image is not approximately binary, a thresholding technique can be used

to force the text to be truly black. An adaptive Gaussian threshold process is

used to generate binary images. Thresholding utilizes a set intensity value and

replaces all pixels below that value to black and all pixels above the threshold to

white. If there are shadows in the image, global thresholding can lead to large

portions of the image to be blacked out. This could result in the majority of words

in a document image to become inaccessible. An adaptive-thresholding technique

utilizes a neighborhood of pixels and calculates the threshold value locally to

perform binarization. With Adaptive Gaussian thresholding, the threshold value

is the weighted sum of neighborhood pixels in a Gaussian window [96, 27].

Figure 3.7 contains the results of the pipeline for processing low resolution

images and is a visual explanation why filtering is necessary, especially when
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Figure 3.7: Top: Noisy grayscale GP upsampled text block. Middle: Adaptive
thresholding with no filter. Bottom: GP upsampled image with bilateral filter
and adaptive thresholding.

performing binarization. The top image is a GP upsampled version of a noisy low

resolution image. The middle image is a thresholded version of the noisy image

without using the bilateral image filter. Binarization, in this case, enhances the

inherent noise, resulting in Tesseract to detect no characters. The bottom image

is the noisy input image with bilateral filtering applied, and then thresholded.

With the last image the Tesseract engine can detect every character.

The OCR pipeline used is as follows. First, a low resolution image is upsam-

pled using the GP model presented earlier. Then, noise and unwanted textures

from the high resolution image are removed while preserving edges by utilizing

bilateral filtering. After the GP upsampled image is filtered, if the image is not

approximately binary, an adaptive thresholding technique is used to convert the

filtered high resolution image into a binary image to be ingested by the Tesseract

OCR engine.

For clarity, Figure 3.8 contains an algorithmic diagram with each process.

69



Low Resolution/quality
image

GP Upsampling

No

Bilateral Fiitering

YesIs approximately binary?

High Resolution Input
Image

High quality OCR text

Adaptive
Threshold

Denoising High Resolution
Grayscale Image

Figure 3.8: The image processing pipeline used for higher quality OCR.
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3.3 Testing

In order to test the methodology, the EPITA Research and Development

Laboratory (LRDE) dataset from [113] is used. This dataset is publicly avail-

able but is copyrighted, ©2012 EPITA Research and Development Laboratory

(LRDE) with permission from Le Nouvel Observateur. This dataset is based

on the French magazine Le Nouvel Observateur, issue 2402, November 18th-

2th, 2010. The original images come from this magazine, and LRDE has gen-

erated the ground truth OCR from these images. This dataset is free for re-

search, evaluation, and illustration and can be downloaded from LRDE’s website:

https://www.lrde.epita.fr/dload/olena/datasets/dbd/1.0/. For illustration pur-

posed, Figure 3.9 contains a page of the magazine that is used for testing.

To test the proposed GP upsampling algorithm, the original images’ resolution

is downsampled 4ˆ in width and height. Then these low resolution representa-

tions are combined with Gaussian noise. Next, the noisy low resolution images

are upsampled using the GP method illustrated in this chapter. Finally, the up-

sampled images are then passed through the image processing pipeline illustrated

in Figure 3.8, to extract detected characters.

For this purpose, accuracy is calculated by comparing the number of words

detected in the upsampled document to those that are present in the ground truth

text. This is a fairly conservative measure, as increased accuracy in upsampling

can lead to increased similarity in generated words with the true words. However,

in this case, number of true words matched is a more direct measurement of

accuracy that will effect applications that utilize image extracted text.

First, the accuracy of the GP method is compared to the OCR extracted

utilizing the low resolution images. Figure 3.10 contains a graph comparing the

accuracy of OCR obtained from the GP upsampled images against OCR from the
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Figure 3.9: Page 11, Le Nouvel Observateur, before grayscale conversion.
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Figure 3.10: GP upsampled OCR accuracy vs the Low Resolution accuracy
with dashed lines denoting average accuracies.

low resolution images, for each image in the dataset. In the figure, the blue line

represents the OCR accuracy for each GP upsampled image, whereas the red line

is the OCR accuracy of the low resolution images. Flat dashed lines are included

to illustrate the mean accuracy of each set. There are several dips in the graph

where both the upsampled accuracy and the low resolution accuracy are very low,

these pages of the magazine are comprised of mostly images where text is not

the dominant feature. The extraneous information limits the capabilities of the

Tesseract OCR engine.

Most applications that require OCR will upsample sufficiently low resolution

images. So, naturally, the GP algorithm is compared against the bicubic interpo-

lation method, a common baseline in upsampling algorithms. For this implemen-

tation the bicubic method used is contained in the Python Image Library [106].

In this test, the text generated by the GP based pipeline is compared against

an analogous bicubic interpolation based pipeline. Figure 3.11 contains a plot of

the relative gain in accuracy when utilizing GP over bicubic interpolation over

the LRDE dataset. In the figure, the relative gain is depicted by the blue dots

for each image in the dataset. Additionally, a line denoting equal performance is
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Figure 3.11: The relative gain utilizing GP upsampling vs bicubic over the
noisy low resolution test set. The blue dots are the individual accuracy gains, and
a reference line corresponding to equal accuracy is plotted in orange.

plotted as an orange line for reference. For the majority of images, the proposed

algorithm’s extracted text better matches the ground truth text over the baseline

interpolation.

Some summary statistics are included in Table 3.1. The GP algorithm per-

forms the best over the base low resoution images, and the bicubic interpolation

based pipeline. The GP algorithm had the highest average accuracy, lowest vari-

ance and the highest minimum and maximum accuracy out of the three tests.

The last column in the table is the relative gain in OCR accuracy by using the

GP algorithm instead of Bicubic or just using the low resolution image. There is

a 6.26% increase in character recognition against the bicubic upsampling.

74



Table 3.1: Summary statistics of the OCR accuracy over the LRDE subsampled
dataset.

Average Variance Max Min GP Relative Increase
GP 0.735020 0.012018 0.844515 0.214765 N/A
Bicubic 0.695874 0.013746 0.835996 0.175597 6.26%
Low Resolution 0.345170 0.014018 0.725663 0.003584 195%

3.4 Chapter Summary

In this chapter, a new Gaussian Process based interpolation model was pro-

duced for the explicit purpose of upsampling single-channel document images.

Testing over a real-word data set revealed an increase in OCR accuracy over the

baseline upsampling method, bicubic interpolation, when used in conjunction with

the Tesseract OCR engine.

One could build a Gaussian Process model over the entire low resolution image

and generate new pixels with inputs in a non-local sense. This provides issues in

multiple areas. The kernel utilized in this context decay rapidly as distance is

increased, so the new information gained will become less of a contribution than a

hinderance when it comes to computation. Even though the weights are calculated

using the Cholesky Factorization of the covariance matrix K, the computational

complexity of factorization is still n3{3 where n is the size of row and column size

of K [210]. So even on a relatively small resolution image, say 500 ˆ 500, K will

have size 250000, which will require 5.208 ˆ 1015 operations. This is realistically

infeasible, which leads well into the approach described in this chapter. The

windowed GP model can be reinterpreted as a Sparse Gaussian Processes that

only utilizes information that is local to the interpolation pixels, which will have

the most relevant information in both models.

Some minor improvements could be gained by optimizing the length scale
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parameter, which could be found by maximizing the log-likelihood with respect

to `. However, each window may have a different optimal length scale, which

again, leads to an unwanted increase in computational complexity. Additionally,

one can tune ` for the dataset, but the value in this chapter appears to be general,

as it depends on the size of the low resolution image.

Utilizing the proposed GP algorithm as an upsampling method for Optical

Character Recognition yields on average a positive gain in accuracy versus a more

traditional bicubic method when used to upsample the images for inputs to the

Tesseract OCR engine. The GP algorithm uses a sliding window of 5ˆ5 pixel sam-

pled across the image. The yield in accuracy against bicubic can help text based

Natural Language Processing (NLP) models become perform better when placed

in an end-to-end environment, like in financial applications, or for accessibility of

documents and scanned images for people who are visually impaired.
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Chapter 4

A Composite Gaussian

Process-Convolutional Neural

Network Model for Single Image

Super Resolution

The previous chapter presented a method based solely on Gaussian Processes

to upsample document images for the express purposes of enhancing word ac-

curacy from Optical Character Recognition. For this purpose, gaining a model

for pixels representing letters is used. However, Single Image Super Resolution

(SISR) is a far more generalized process.

Super resolution models wish to derive images that regain perceptual validity

and textures rather than enabling an OCR engine to detect characters. In this

case, general images can be far more complex than document images, and do not

have a-priori known tendencies or features. Keeping this in mind, a new hybrid

Gaussian Process Convolutional Neural Network approach is employed.
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This chapter begins with a brief on SISR as well as the some of the common

methods to tackle this difficult problem. Following this introduction, the pro-

posed Gaussian Process upsampling model is introduced, along with the dataset

that will be used for training and testing. Also the evaluation metrics and a com-

parison between the proposed GP based model and the baseline bicubic method

is discussed in this section. Following this discussion, the Additive Enhancement

Network is introduced with details on the architecture and training. Next, the pro-

posed Gaussian Process upsampling model with Additive Enhancement Network

(GPAEN) is evaluated against some of the other methods in the state-of-the-art.

Lastly, this chapter culminates on a discussion of the efficacy of GPAEN against

the other models and what it can be used for in conjunction with SISR.

4.1 Introduction

Single Image Super Resolution is a complex problem that has challenged the

field of computer vision and image processing. This problem is the attempt at

generating a high resolution-high fidelity image from a low resolution image. Im-

ages, in general, are digital representations of reality and can be thought of as

coming from complicated function spaces. Sighted humans are visual creatures,

so naturally attempts to recreate high fidelity representations from low resolution

images have tantalized us since the use of digital images.

Due to the possibly complex details in high resolution images, standard inter-

polation methods (polynomial based methods for example), no longer encompass

the state-of-the-art. Most interpolation methods are based on utilizing aspects

of the underlying function space, often C8, like the solutions to differential equa-

tions. Conversely, images do not necessarily belong to C8, and often are not

continuous. Instead, strong discontinuities encompassing (e.g. high contrast and
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textures) can be found in interesting images. Aspects that were garnered in the

previous chapter have inspired some of the methodology in this chapter.

Gaussian Processes have been used for SISR before, but in the context of GP

regression to correct low order upsampling of images [86, 83]. In these papers, a

regular polynomial based interpolation method is used for upsampling, and then

GP regression is used to enhance the data to be more realistic. In the last decade

however, example based artificial intelligence methods such as Convolutional Neu-

ral Networks (CNNs) have dominated the leading edge in the single image super

resolution problem [53, 52, 95, 165, 108, 126]. These approaches learn the SISR

operation by iterating though low resolution images as inputs are comparing the

result of the NN to the ground truth high resolution image.

More recently, complex models involving Generative Adversarial Networks

(GANS) have been employed to great success exemplified by the seminal pa-

per [115]. GANs utilize two neural networks (NN), one NN to generate objects,

and another to discriminate real objects and the objects produced by the gener-

ator. The system of NNs are trained when the discriminator cannot determine

whether the generator’s objects are members of the ground truth. In the case of

super resolution, the generator NN attempts to generate high resolution represen-

tations of the images and the discriminator asserts if the generator’s image is a

member of the ground truth dataset. When the discriminator can no longer tell

the difference between ground truth images and the generator’s, the generator is

used as a NN to perform super resolution.

4.2 Method

Single image Super Resolution can be thought as a combination of two opera-

tions, upsampling and enhancement. The majority of NN based SISR algorithms
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attempt to combine these two operations into one. This has some advantages,

the network will learn an upsampling method that works best on the data, and

can enhance as needed. However, in this case, the network can be more tied to

the loss function, and more standard and well understood loss functions can lead

to unwanted results. Because of this, some researchers have moved to create new

and exotic loss functions, such as the texture loss [76] to be used with GANs.

The method presented here does not attempt to combine the two operations

into a single network. Instead a GP interpolation method is used to upsample the

image data, and then a CNN is used to enhance the upsampled image. The GP

upsampling model shares the covariance kernel with the GP method in Chapter 3.

However, in this context, there is no real apparent pattern within the data, so a

zero mean function will be used instead of an analogous maximum likelihood

estimate.

Rather than input theGP upsampled image into CNN and retrieve the an en-

hanced version as an output, the CNN is used to predict the error between the

image generated by GP upsampling and the true high resolution image. Essen-

tially, the aim is to produce following formula:

Igt “ IGP ` EpIGP q (4.1)

where the error term EpIGP q is approximated using

EpIGP q „ CNNpIGP q. (4.2)

With this approach training is done on the error instead of the image. This can

further help reduce the tendency for the model to be stuck into a local minimum,

as the upsampled image is, at first glance, a good approximation to the high
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resolution image.

The Diverse 2K data from the NTIRE 2017-2018 challenges [5, 198] is used for

training and testing the proposed method. This dataset is comprised of 900 images

with over 2K resolution for the ground truth, and two downsampled versions, one

with a 2ˆ reduction in resolution (in width and height) and the other with a 4ˆ

reduction in resolution. Note that in this chapter as with the previous chapter,

2ˆ is in both width and height, so 4 pixels are generated in the place of one,

likewise with the 4ˆ upsampling 16 pixels are generated.

4.2.1 Gaussian Process Upsampling Model

As previously mentioned, a Gaussian Process model is employed to upsample a

low resolution input image. In this model, a sample 3ˆ3 pixel sample is used and

is windowed across the input image. The posterior mean is used to generate newly

upsampled pixels as in Equation (1.4) using the sample data from this window. In

this chapter, a zero mean Gaussian Process with the Matèrn covariance function

with ν “ 3{2, as illustrated in Equation (3.3), is used – in contrast to the models

utilized in the previous chapters. The size of the sample window was reduced

for better speed, and because an enhancing convolutional neural network will be

used.

An example schematic for the pixels in and out of the GP model can be found

in Figure 4.1. The low resolution sample block is represented by the gray cells

with the black cell in the center in the diagram. The 4ˆ newly upsampled pixels

are shown in black replacing the center pixel from the low resolution sample. Like

in the previous chapters, the model weights are constructed before the processing
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of the image. Additionally, every new pixel is updated following the formula

Î p̃i, j̃q “ wT
ĩ,j̃IS (4.3)

here wĩi,j̃ is the GP model weight vector for the new pixel at index p̃i, j̃q. In

general there are rwrh new pixels to be predicted, where rw, rh are the upsampling

factors for the height and width of the image respectively. In this formulation Î

is the GP uspampled image, and IS is the 3ˆ3 sample pixel patch with indices

ranging from i ´ 1 to i ` 1 and j ´ 1 to j ` 1 for height and width respectively.

The GP model weight vector is generated using

wĩ,j̃ “ kTĩ,j̃K
´1 (4.4)

in a similar fashion to the previous chapters. The covariance vector is produced

by calculating the covariance at the point of interest and along the sample:

kĩpiq “ K3{2p̃i, iq

where i “ pi, jq and ĩ “ p̃i, j̃q. This further illustrates that each weight is spa-

tially constructed, so one can cast the interpolation as an image convolution by

reshaping the weight vectors into a convolution kernel. With this interpretation,

rhrw convolutions are applied to the low resolution image in order to generate the

upsampled image. This can be stipulated in a per-pixel format,

Î p̃i, j̃q “ Wĩ,j̃ f IS (4.5)

where Wĩ,j̃ is the convolution kernel to produce the RGB pixels at index ĩ, j̃.

Then the upsampled image is just the amalgamation of these convolved images.
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Figure 4.1: An illustrative schematic for the 3ˆ3 GP model for 4ˆ image
upsampling.

To illustrate the use of this GP based upsampling operation, Figure 4.2 con-

tains a low resolution crop from image 0028 in the Div2K dataset and the 4ˆ GP

upsampled version. The 4ˆ GP model upsamples the image well, preserving edges

and enhancing detail. However, the super resolution is not complete, there are

many details that are not apparent in the upsampled image that would be present

in a natively high resolution image. Detailed textures that are not exhibited in the

low resolution image will not be able to be generated by GP alone. To generate

a more high fidelity image an operation that distills the fundamental information

that is missed under the GP model is required.

Comparison with Bicubic

To assess the quality of the proposed method, a comparison to the commonly-

used baseline interpolation method, bicubic, is made. A metric called the peak

signal to noise ratio (PSNR) is commonly used to compare the quality of images.

This metric, however, is not the only metric to describe the quality of a represen-

tation of an image. In this chapter, sharpness is also a metric that is used to test
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(a) (b)

Figure 4.2: a): Selected crop from image 0028 of the Div2k dataset downsam-
pled 4ˆ. b): The LR crop upsampled by the GP method to its original resolution.

the SISR methods.

In formula, PSNR (measured in dB) is

PSNR “ 10 ¨ log10

ˆ

Ω2

MSE

˙

“ 20 ¨ log10pΩq ´ 10 ¨ log10pMSEq, (4.6)

here Ω is the max possible value of the image type. MSE is the mean squared

error

MSE “
1
mn

m´1
ÿ

i“0

n´1
ÿ

j“0

´

Ipi, jq ´ Îpi, jq
¯2

(4.7)

where I is the ground truth, and Î is the approximation, and m,n are the width

and height of the image.

Sharpness in this dissertation is calculated as the variance of the Laplacian

operator applied to the grayscale version of an image. That is,

Sharp “ E
”

`

∇2G
˘2
ı

´ E2 “∇2G
‰

(4.8)

where G is the grayscale transformation of I, ∇2 is the Laplacian operator for

images, and E is the ‘expectation’ operator. The standard 3 ˆ 3 Laplacian filter
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kernel is

L “

¨

˚

˚

˚

˝

0 ´1 0

´1 4 ´1

0 ´1 0

˛

‹

‹

‹

‚

(4.9)

when convolved with an image the result is analogous to the numerical Laplacian.

That is,

∇2
pGqpi, jq “

2
ÿ

k“0

2
ÿ

l“0
Lpk, lqGpi´ pk ´ 1q, j ´ pl ´ 1qq. (4.10)

The grayscale transformation is the weighted sum that is computed over the each

channel for each pixel, that is,

Gpi, jq “ 0.299Irpi, jq ` 0.587Igpi, jq ` 0.114Ibpi, jq (4.11)

which follows the CCIR 601 luma format. The subscripts represent the color

channel for the image I, Ir is red, Ig is green, etc. To put sharpness into con-

text the sharpness of the each image is divided by the sharpness of the ground

truth image, to yield a comparative sharpness metric. In this metric, closer to

1 is more desirable. The downsampling operation greatly reduces the sharpness

of the image, effectively applying a low-pass filter to the image. The image up-

sampling method that better constructs the sharpness of the original image will

have a higher comparative sharpness value. Comparative Sharpness is another

good measure of upsampling performance, since downsampling typically acts as a

low-pass filter and removes high frequency information. Effectively, comparative

sharpness examines the intensity of the edges and textures in an image as com-

pared to the original image. Other definitions of sharpness have been proposed,

most notably utilizing Sobel gradients in x and y [67].

To illustrate the use of sharpness, Figure 4.3 contains 3 Laplacian filtered
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(a) HR (CompSharp) (b) GP 2ˆ (0.1463) (c) Bicubic 2ˆ (0.1174)

Figure 4.3: Grayscale Laplacian Crop section of Image 0824 in the DIV2K
validation set (color inverted for better visualization).

Table 4.1: Average Peak Signal to Noise Ratio and Comparative Sharpness of
the bicubic and GP methods over the training portion of the DIV2K dataset.

Upsample 2x Upsample 4x
GP PSNR 31.234 26.649
Bicubic PSNR 31.171 26.653
GP Comparative Sharpness 0.1956 0.0425
Bicubic Comparative Sharpness 0.1636 0.0243

grayscale images. These images are a section of image 0824 in the DIV2K dataset.

The first image is of the filtered grayscale of the true high resolution image. The

second image (center in the figure) is the GP 2ˆ upsampled version. The final im-

age is the Laplacian filter applied to the bicubic 2ˆ upsampled representation. In

this figure, the filtered GP image has greater intensity than the bicubic upsampled

image.

When compared to bicubic interpolation, it is found that for the equivalent

peak signal to noise ratio (PSNR), the sparse GP interpolation yields higher com-

parative sharpness values. Table 4.1 contains some interesting statistics when

used over the 2K dataset, namely the average PSNR and comparative sharpness

values.
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For a more in-depth look into the PSNR and sharpness for each interpolation,

see Figure 4.4 for the 2ˆ values and Figure 4.5 for the 4ˆ metrics. In these figures,

PSNR and comparative sharpness is calculated over the training portion of the

2K dataset, the blue and orange dots represent the values for the GP method

and bicubic respectively. In both upsampling cases, the PSNR for this GP model

and the bicubic interpolation are of the same order, but the sharpness of the

GP upsampled images are much greater. In the 4ˆ upsampling case, the bicubic

method barely surpasses the GP upsampling method in PSNR, but the GP method

has much greater comparative sharpness. However, in the 2ˆ upsampling case, the

GP method surpasses bicubic in PSNR and comparative sharpness as presented

in Table 4.1. Furthermore, in Figures 4.4 and 4.5, the comparative sharpness is

much higher than the bicubic interpolation method across the dataset.

4.2.2 Additive Enhancement Convolutional Neural Net-

work

In order to further enhance the super-resolved images upsampled with the GP

method, a Convolution Neural Network is built. As discussed briefly before, this

CNN will utilize patches of the GP-upsampled image and generate a ’guess’ at the

difference between the modeled image and the ground truth. A form of residual

CNN’s have been used to great effect in image classification with the seminal

creation of ResNet [87], and has been used for SISR as well [126], in a somewhat

different context. In these networks, layer blocks are combined with their inputs

and this is what gives their name.

In this algorithm, the CNN will approximate the residual between correspond-
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Figure 4.4: Peak Signal To Noise Ratio and Comparative Sharpness Values for
Bicubic and GP for 2ˆ upsampling.
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Figure 4.5: Peak Signal To Noise Ratio and Comparative Sharpness Values for
Bicubic and GP for 4ˆ upsampling.
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ing patches of the GP upsampled image, Î and the ground truth, IHR.

F pÎq « IHR ´ Î (4.12)

This plan is illustrated pictorially in Figure 4.6 with a crop of image 0235 of

the Div2K data set. The top left picture is the low resolution crop, and the GP

upsampled version is directly right of it. On the bottom of the figure, a normalized

version of the residual between the ground truth (pictured bottom right) and the

GP upsampled version is displayed. The ground truth contains high frequency

information (mostly textures) that the GP model cannot infer well from the low

resolution examples and this is exemplified in the residual. This is where the

CNN will come in, to create a series of image convolutions that will accentuate

the GP upsampled image into an image that more closely resembles the ground

truth. The network will learn to predict textures and further enhance edges. It is

stressed that the residual presented in Figure 4.6 is scaled for better visualization.

The intensities of residual are actually much lower and centered about 0.

Brief on Convolutional Neural Networks

Before the Additive Enhancement Network in described in detail, a brief sum-

mary of convolutions neural networks is provided. Convolutional Neural Networks

are artificial neural networks whose layers are convolutions [171]. A convolu-

tional layer, in the simplest case, with input size pN,Cx, Hx,Wxq and output size

pN,Cy, Hy,Wyq can be precisely described and formulated as

ypNi, Cjq “ βpCjq `
Cx´1
ÿ

k“0

„

wpCj, kq ˚ xpNi, kq



. (4.13)
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Figure 4.6: Crop of image 0235 in the Div2K dataset. Top left: Low Resolution.
Top right: GP 4x Upsampled. Bottom left: Normalized Residual between GP and
ground truth. Bottom right: Ground truth image.
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In this equation, x is the input to the convolutional layer, and y is the output. The

variable x has a size of pN,Cx, Hx,Wxq, whereN is the batch size, Cx is the number

of channels that x has and Hx,Wx are the height and width of x respectively.

Analogously, y has size pN,Cy, Hy,Wyq. The formula in Equation 4.13, is for the

ith object in the batch and the jth channel in the output channels. Also, ˚ is the

discrete convolution operator with respect to the convolution kernel wpCj, kq, and

βpCjq is the bias for channel j. Essentially, a convolutional layer is comprised of

linear combinations of the input data and convolutional weights and a bias term.

Each βpCjq and wpCj, kq are the trainable parameters discovered when optimized

over the dataset.

The convolutional layer is generally paired with some form of nonlinearity,

called an activation function [146]. For regression type problems, like Single Im-

age Super Resolution, convolutional layers are generally pared with activation

functions like the rectified linear unit(ReLU), which is a linear function if the

weight is positive and 0 else. Variants on this function exist like the leaky ReLU,

and the exponential linear unit. These all feature diminished range for negative

weights [146]. Furthermore, these activation functions seek to enhance features

that are exposed by the convolutions.

In image based applications of deep learning, convolutional layers are often

stacked to create deep neural networks and infer features from the dataset or an

operation. The number of layers to couple and the general architecture of the

CNN are hyper-parameters that one must consider on an application basis.

Neural Network Architecture

Arguably the most important part of a building a neural network is deciding

on the architecture. For this application of enhancing the GP upsampled image
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a deep convolutional neural network is utilized.

Using the entire GP upsampled image as an input for the enhancement network

is impractical and not generalizable. Instead a 0 padded version of the GP image is

reshaped into an array of 128ˆ128 patches, each patch processed by the CNN. The

128ˆ 128 windows are passed into the CNN comprised of an input convolutional

layer, followed by 6 residual blocks, and a channel reduction convolutional output

layer. Each residual block is formulated as follows. The tensor is fed into a

convolutional layer which is then followed by exponential linear unit [146]. The

output of these operations is processed by a second convolutional layer, ending the

block. The output of each block is summed with the output of the previous block.

To better illustrate this concept, Figure 4.7 contains a diagram of the residual

block. Here hi is the ith ‘hidden’ tensor in the network. While technically each

layer produces a new tensor, for clarity only the tensors between residual blocks

are named hi. The convolutions inside each respective ResBlock have the same

size convolution kernel, as to operate in the same receptive fields. In order to

maintain feature size, the input to each convolution is padded using a reflective

method. That is, the feature is expanded using data from just inside the boundary.

The full neural network is comprised of n ResBlock layers sandwiched be-

tween two convolutions. The 128 ˆ 128 GP window is input into the additive

enhancement network. This input is first convolved and is batch-normalized [97].

Next, a series of n ResBlocks are computed and the output of these layers are

summed with the batch-normalized convolved input tensor. Finally, this tensor is

put through the final convolutional layer which generates the predicted residual,

r̂k « yk ´ xk. Figure 4.8 is a architecture diagram illustrating the single image

super resolution pipeline, including the additive enhancement network and how it
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Figure 4.7: The residual block prevalent in the proposed neural network archi-
tecture.
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is utilized.

While Figure 4.8 illustrates the structure of the network, it does not give

details on the hyper-parameter choices. In the method presented, the additive en-

hancement network contains 6 residual blocks, with decreasing convolution kernel

size as the network progresses through each ResBlock. The input layer, and first

ResBlock utilize 7ˆ7 sized convolutional kernels. The second and third ResBlocks

use 5ˆ5 as the convolution kernel size, and the final 3 ResBlocks have convolution

kernels with 3 ˆ 3. The output layer, however, uses a 1 ˆ 1 convolution kernel,

which effectively generates a linear combination of the final ResBlock’s channels

to generate the 3 output channels needed for enhancement. For this application,

the number of channels for each convolution in the ResBlocks are all 64. The

input convolution expands the channels from 3 to 64, and the output channel

combines the 64 channel tensor into the 3 channel residual that is needed for

the enhancement. The channel sizes and structures are all hyper-parameters that

could be changed to meet specific applications, and for the application of Single

Image Super Resolution the selected hyper-parameters work well.

Training the Additive Enhancement Network

The Additive Enhancement Network is a deep neural network that requires

some considerations when training. The training dataset is the DIV2K train-

ing set, containing 800 2K+ resolution images. These images are then split into

128 ˆ 128 windows to utilize in training. In addition to this, the dataset is ar-

tificially enlarged by including a vertically flipped version of the windows. Since

the GP upsampled image and the ground truth contain (to low order) the same

information, training on the residual is advantage – as shown in [108].

During training, the network is fed the GP upsampled 128ˆ128 image patches
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ment Network.
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and the output of the network is compared against the true residual – the difference

between ground truth’s 128 ˆ 128 window and the corresponding window in the

GP upsampled image. The L1 loss function is utilized for training for both the 2ˆ

and 4ˆ cases. Although PSNR is based on the L2 loss, the L1 loss can be a better

training loss since it is less sensitive to outliers, especially in complex problems like

this as seen in [126]. The model weights are initialized by utilizing an orthogonal

initializer presented in [170]. This orthogonal initialization is described as an exact

solution to problems in deep linear neural networks, however, this neural network

through the use of batch-normalization and the non-linear activation function

ELU is a non-linear neural network.

The 4ˆ network was trained over 80 epochs, utilizing a mini-batch of 64 image

tiles. The optimizer used was mini-batch stochastic gradient descent, with an

initial learning rate of 0.001 and a momentum of 0.9. As the model trained, the

learning-rate was decreased by half every 20 epochs. In the 2ˆ case, the network

was trained for 43 epochs, slightly over half of number of epochs required in the

4ˆ case using the same training strategy. Training was halted when the model

ceased to increase in performance.

Training was performed utilizing 2 NVIDIA GPUs, a Titan XP paired with a

GTX 1080Ti. Pairing the GPUs allowed for greater parallelism and reduced the

training time. The 4ˆ model took 45 hours to train, and the 2ˆ model took 24

hours.

4.2.3 Results

The performance of the models are compared with a bicubic baseline, the

GP upsampling method alone, and very deep convolutional neural network super

resolution techniques VDSR proposed in [108] and EDSR illustrated in [126].
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This method does not intend to usurp EDSR of its PSNR throne, but to offer

a much faster alternative that maintains credible enhancements over upsampling

approaches, and inch closer to a viable real-time video super resolution.

In table 4.2, average PSNR, Comparative Sharpness and execution times

are presented for the Gaussian Process with Additive Enhancement Network

(GPAEN), Bicubic, GP, VDSR, and EDSR. The VDSR method utilizes 20 convo-

lutional layers, and much like GPAEN uses 64 channels depths and trains on the

residual between an upsampled image and the ground truth. The EDSR method

is another very deep neural network that is based off of ResNet [87], and contains

36 ResBlocks. The proposed method and EDSR have similar ResBlock structures,

only EDSR utilizes ReLU [146] and includes a residual scaling layer at the end of

each ResBlock. The GPAEN model utilizes a less complex architecture, having

30 fewer ResBlocks than EDSR. Another difference between EDSR and GPAEN

is that with EDSR the upsampling routine is embedded into network architec-

ture following the ResBlocks, utilizing more convolutional layers, and a layer that

reorganizes feature maps into an image called a pixel shuffle layer.

As represented in table 4.2, GPAEN gives the best performance in PSNR

and comparative sharpness per execution time of the Neural Network based ap-

proaches. Although EDSR gives a higher PSNR and slightly higher Comparative

Sharpness, it is over 140ˆ slower than GPAEN in the 2ˆ upsampling context,

and 46ˆ slower in the 4ˆ context. So for super-resolving a single image, one

may prefer the higher performance of EDSR, but for large amounts of image data

(entire directories) or video GPAEN will be a much faster solution.

One way to increase the PSNR performance of GPAEN is to utilize the geo-

metric ensemble technique illustrated in [199]. Geometric ensemble is applied for

GPAEN as follows, the low resolution image is upsampled utilizing GP, and then
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Table 4.2: Mean Peak Signal to Noise Ratio, Comparative Sharpness for 2x and
4x, for GP, GPAEN and other state-of the art techniques over the DIV2K valida-
tion set. Average super resolution times for Bicubic, and GP baselines are CPU
times, whereas the neural network based approaches are GPU times. The results
for VSDR and EDSR are acquired from a publicly available implementations.

PSNR/CSharp 2x PSNR/CSharp 4x Time 2x Time 4x
Bicubic 31.24dB /0.1635 26.81dB/ 0.0254 0.045s 0.022s
GP 31.31dB/ 0.1964 26.79dB/ 0.0455 0.043s 0.032s
VDSR 32.17dB/ 0.2178 27.21dB/ 0.0592 1.01s 1.00s
GPAEN 33.03dB/ 0.4334 27.90dB/ 0.1020 0.56s 0.55s
GPAENG 33.46dB/ 0.4328 28.22dB/ 0.1024 3.98s 3.95s
EDSR 34.61dB/ 0.4501 28.95dB/ 0.2012 71.09s 23.13s

the GP upsampled image is transformed following the permutations in the Dihe-

dral Group 4 – that is, three 90 degree rotations and corresponding flips. This

yields 8 "new" images (including the regular image) that are passed to the Addi-

tive Enhancement Network. Following enhancement, the transformed images are

inversely transformed to yield images that are justified in the same manner as the

original. Next these images are averaged to yield a new super-resolved image. In

table 4.2, GPAENG is GPAEN with geometric ensemble. Notice that there is an

increase in PSNR in both upsampling cases, but in the 2ˆ case, the comparative

sharpness decreases slightly. Utilizing geometric ensemble also increases the com-

putation time by an approximate factor of 8, or the number of transformations

applied.

In figures 4.9, 4.10 and 4.11, representative images from the validation set are

compared utilizing the base line bicubic method, GP standalone, VDSR, GPAEN

and GPAENG.

Figure 4.9, is of two surfers walking to the ocean from some hills. The top

image is of the full ground truth. The to better see the comparison between these

2ˆ Super Resolution methods, a zoomed section around the surfer with the cyan
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wetsuit is examined. The bicubic upsampled image has the most blur and the

GP upsampled image is slightly sharper. However, these two baseline upsampling

methods do not out perform the neural network enhanced approaches. The bottom

row of images contain the VDSR [108] image, and the two GPAEN methods. The

two GPAEN images are the closest to the ground truth crop (shown center left)

and have better detail in grass next to the surfer than VDSR. Although GPAENG

has a higher PSNR value over GPAEN (33.70dB vs 33.75dB respectively) it is not

easily noticeable in these windows.

A similar analysis is made in Figure 4.10 comparing again the 2ˆ super reso-

lution methods. This figure contains image 0821 of the DIV2K dataset, which is

of a stained glass window. This image has many features that can be difficult to

recreate when downsampled and the differences between methods are more subtle.

In the ground truth crop (center left), there are 3 black dots in the blue pane of

glass near the orange and yellow panes. The GPAEN methods best recreate the

intensity of the dark colors in the dots.

In Figure 4.11, the methods are compared when performing 4ˆ super resolu-

tion. This figure is of image 0864, a picture of the Colosseum, the Ancient Roman

stadium. The image produced by VDSR smoothes out some of the vertical lines

in the ridge below the base of the pillars (bottom left), whereas these lines are

better preserved with the GPAEN methods. Additionally, VDSR tends to smooth

out the textures on the base of the pillars and the shape is not well reconstructed.

When compared to the bicubic method, the base GP upsampling seems to better

recreate the shadows on the base of the pillars (center and center right). In all

images, the boundary between the first and second pillars (nearest to the sky) is

somewhat blended. This blending is seen less in with GPAEN and GPAENG.

A direct comparison between GPAEN and EDSR is presented in figures 4.12
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and 4.13 for the 4ˆ. These figures illustrate that the gain in PSNR garnered by

EDSR is not easily noticeable by eye. In image 0862, shown in Figure 4.12, the

GPAEN reconstructed version gains most of the textures of the fox’s fur, present

in the ground truth. The EDSR version has a slightly more noticeable snow flakes

near the fox’s eye.

In Figure 4.13, the GPAEN reconstruction of image 0877 gives qualitatively

similar results to the EDSR reconstruction. In the EDSR image the leaves above

the flower have a slightly more well defined edge. The colors in the EDSR image

are more smoothed out than in the GPAENG image, which gives it a slightly more

clear look.
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(a) Full Ground Truth Image 0811, with crop bounding box.

(b) Left: Ground Truth, Center: Bicubic, Right: GP

(c) Left: VDSR, Center: GPAEN, Left: GPAENG

Figure 4.9: Visual comparison of 2ˆ SR methods for image 0811.
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(a) Full Ground Truth Image 0821, with crop bounding box.

(b) Left: Ground Truth, Center: Bicubic, Right: GP

(c) Left: VDSR, Center: GPAEN, Left: GPAENG

Figure 4.10: Visual comparison of 2ˆ SR methods for image 0821.
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(a) Full Ground Truth Image 0864, with crop bounding box.

(b) Left: Ground Truth, Center: Bicubic, Right: GP

(c) Left: VDSR, Center: GPAEN, Left: GPAENG

Figure 4.11: Visual comparison of 4ˆ SR methods for image 0864.
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(a) Ground Truth Image 0862 with cropped bounding box.

(b) Left: HR crop (PSNR). Center: GPAENG (32.94 dB), Right EDSR (33.30dB)

Figure 4.12: Visual comparison of GPAENG and EDSR for 4ˆ Super Resolu-
tion on Image 0862.
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(a) Ground Truth Image 0877 with cropped bounding box.

(b) Left: HR crop (PSNR). Center: GPAENG (39.07 dB), Right EDSR (41.14dB)

Figure 4.13: Visual comparison of GPAENG and EDSR for 4ˆ Super Resolution
on Image 0877.
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4.3 Chapter Summary

The super resolution algorithm illustrated in this chapter provides a high qual-

ity relative light weight alternative to EDSR. Through the coupling of a new Gaus-

sian Process based upsampling algorithm and the Additive Enhancement Network,

the GPAEN super resolution algorithm gives a high quality images at a fraction

of the computational cost of EDSR [126]. Furthermore the algorithm is faster and

less complex than VDSR [108] while giving superior results. Additionally, the GP

upsampling algorithm gives the user more control over the upsampling. One can

decide on a proper length scale and can compute insightful statistics about the

dataset. Where as the upsampling portion of EDSR is inextricably tied to the

training data and behaves more like a black box.

While GPAEN is still too computationally heavy for realtime video applica-

tions, it is fast enough to be used to super resolve large amounts of image data

offline or on demand. The new upsampling method without additive enhance-

ment, GP, gives superior comparative sharpness than bicubic while retaining the

computational efficiency, and can be used as an alternative for real-time video up-

sampling. Furthermore the GP upsampling algorithm is embarrassingly parallel,

and effectively becomes the process of applying 4 or 16 convolutions for the 2ˆ

and 4ˆ upsampling ratios. For fixed resolution inputs, the kernel weights can be

computed a-priori and used for every image in a dataset, or frame in a video.
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Chapter 5

Conclusion

In this dissertation three different applications of Gaussian Process modeling

were described. The first application was to increase the accuracy in Computa-

tional Fluid Dynamics simulations that utilize Adaptive Mesh Refinement. The

second GP application was to address accuracy issues in low resolution images

when used as inputs for Optical Character Recognition. Finally, the last appli-

cation was for use in a hybrid GP Convolutional Neural Network algorithm to

generate high resolution/high fidelity images from low resolution inputs.

The first application will enable scientists to further use higher order recon-

struction algorithms while utilizing higher order AMR prolongation in any di-

mension. Any degradation that could have been caused by linear prolongation

is avoided when utilizing higher order reconstruction methods like PPM [40],

WENO [183], and the GP methods proposed by Reyes et al [158, 160].

However, this increase in accuracy comes at a computational cost. To maintain

conservation of mass, momentum and energy, a multi-modeled approached based

on the WENO formulation. However, in this formulation, correct calculation re-

quires 2D`1 stencils of size 2D`1. To avoid potential unwanted increase in com-

putation time, an adaptive algorithm was created using a normalized log-likelihood
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of the center-most stencil S1. This allows a less computationally complex algo-

rithm to be used in regions of more laminar flow. These regions correspond to

a high likelihood that the sampled data points come from a Gaussian Process

generated using the Squared Exponential Kernel, meaning the points come from

a smooth function.

Furthermore when the algorithm is implemented in a highly parallelized fash-

ion, the computational complexity is distributed and the time cost is mitigated.

With the coupling of the parallel computing and the adaptive algorithm, execution

time becomes on par with the parallel implementation of the linear interpolation.

With this implementation, scientists can choose between computational perfor-

mance and numerical stability in highly non-laminar flow.

For the application of upsampling for optical character recognition (OCR), low

resolution document images were generated to test a 5 ˆ 5 pixel patch Gaussian

Process upsampling model. In contrast to the GP algorithms for AMR, the covari-

ance kernel selected was not based on the Squared Exponential function. Instead

the Matèrn 3/2 covariance function was utilized for its superior performance on

discontinuous data.

The algorithm focuses on single-channel grayscale document images to improve

edges and features used for character recognition. Using this algorithm, tesser-

act [189] OCR relative accuracy increases by nearly 200% against low resolution

images, and increases 6.26% over the bicubic method. In addition to the raw OCR

accuracy increase, variance in OCR accuracy decreased, and the minimum and

maximum accuracies also increased over the LRDE dataset [113].

The goal of this algorithm was to generate a more accurate representation

of the document image while still being computationally efficient in order to be

effectively used in production OCR pipelines.
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The final application is a generalization of the image upsampling algorithm

found in the previous application. The GP upsampling algorithm has a reduction

in the sample space bringing it down to a 3ˆ 3 pixel window instead of the OCR

algorithms 5 ˆ 5. Additionally, the use of the maximum likelihood estimation is

dropped. The inclusion of the MLE causes constant samples to be interpolated as

constant, which is advantageous in the context of pixel representation of written

characters. In the case of a more generalized super-resolution, the regularization

that the maximum likelihood estimator brings may duff out textures that are

present in the actual representation, and is more computationally costly. Addi-

tionally, the use of the GP algorithm to upsample the can be seen as an initial

condition to produce a true high fidelity representation of the ground truth image.

This GP algorithm has shown to better at reconstructing sharpness in images over

the bicubic baseline algorithm, while maintaining similar or better peak signal to

noise ratios.

In order to bridge the gap between state-of-the-art deep learning methods and

computationally efficient interpolations, the Additive Enhancement Network is

designed to be effective as well as efficient when paired with GP upsampling. The

architecture takes generates a simplified variants of the ResBlock of ResNet [87],

much like the blocks in EDSR [126], but is paired with an upsampling algorithm

like VDSR [108]. Contrary to the previously mentioned deep neural networks,

GPAEN is several layers shallower than VDSR and has 30 fewer ResBlocks than

EDSR. Additionally, the classic ReLU activation function is swapped out for ELU

in order to address vanishing gradient problems prevalent in deep neural networks.

Furthermore, the GPAEN architecture is modular, so one could extend GPAEN

to be deeper, or shallower to match one’s requirements.

Together the Additive Enhancement Network and the Gaussian Process up-
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sampling algorithm form a fast and high quality SISR model. The GPAEN

method yields better performance than VDSR with half the computation cost,

and achieves much of the raw performance EDSR garners without the 70s average

compute time.

This dissertation further illustrates the power and applicability of Gaussian

Processes for general interpolation purposes. Furthermore, pairing GP along with

additional models can solve a breadth of problems, no matter how seemingly

unrelated they appear to be.
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