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Abstract

This paper concerns the assessment of direct
causal effects from a combination of: (i) non-
experimental data, and (ii) qualitative do-
main knowledge. Domain knowledge is en-
coded in the form of a directed acyclic graph
(DAG), in which all interactions are assumed
linear, and some variables are presumed to be
unobserved. We provide a generalization of
the well-known method of Instrumental Vari-
ables, which makes allows its application to
models with few conditional independeces.

1 Introduction

This paper explores the feasibility of inferring linear
cause-effect relationships from various combinations of
data and theoretical assumptions. The assumptions
are represented in the form of an acyclic causal dia-
gram which contains both arrows and bi-directed arcs
[9, 10]. The arrows represent the potential existence of
direct causal relationships between the corresponding
variables, and the bi-directed arcs represent spurious
correlations due to unmeasured common causes. All
interactions among variables are assumed to be lin-
ear. Our task is to decide whether the assumptions
represented in the diagram are sufficient for assessing
the strength of causal effects from non-experimental
data, and, if sufficiency is proven, to express the tar-
get causal effect in terms of estimable quantities.

This decision problem has been tackled in the past half
century, primarily by econometricians and social sci-
entists, under the rubric “The Identification Problem”
[6] — it is still unsolved. Certain restricted classes of
models are nevertheless known to be identifiable, and
these are often assumed by social scientists as a mat-
ter of convenience or convention [5]. A hierarchy of
three such classes is given in [7]: (1) no bidirected
arcs, (2) bidirected arcs restricted to root variables,
and (3) bidirected arcs restricted to variables that are
not connected through directed paths.
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Figure 1: (a) a “bow-pattern”, and (b) a bow-free
model

Recently, [4] have shown that the identification of the
entire model is ensured if variables standing in direct
causal relationship (i.e., variables connected by arrows
in the diagram) do not have correlated errors; no re-
strictions need to be imposed on errors associated with
indirect causes. This class of models was called “bow-
free”, since their associated causal diagrams are free
of any “bow pattern” [10] (see Figure 1).

Most existing conditions for Identification in general
models are based on the concept of Instrumental Vari-
ables (TV) [11], [2]. TV methods take advantage of con-
ditional independence relations implied by the model
to prove the Identification of specific causal-effects.
When the model is not rich in conditional indepen-
dences, these methods are not much informative. In
[3], we proposed a new graphical criterion for Tdenti-
fication which does not make direct use of conditional
independence, and thus can be successfully applied to
models in which IV methods would fail.

In this paper, we provide an important generalization
of the method of Instrumental Variables that reduces
the impact of the independence relations implied by
the model on the performance of the method.

2 Linear Models and Identification

A linear model for a set of random variables Y =
{Y1,...,Y,} is defined by a set of equations of the
form

szzcjm+6j j=1,...,n

where the error terms e; are assumed to have normal
distribution with zero mean, and variance/covariance
matrix U, [¥;;] = Cov(e;, e;).
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Figure 2: A simple linear model and its causal diagram

An equation Y = X 4 e encodes two distinct as-
sumptions: (1) the possible existence of (direct) causal
influence of X on Y; and, (2) the absence of causal in-
fluence on Y of any variable that does not appear on
the right-hand side of the equation. The parameter g
quantifies the (direct) causal effect of X on Y. That
18, the equation claims that a unit increase in X would
result in # units increase of Y, assuming that every-
thing else remains the same. The variable e is called
an ”error” or ”disturbance”; it represents unobserved
background factors that the modeler decides to keep
unexplained.

The equations and the pairs of error-terms (e;, e;) with
non-zero correlation define the structure of the model.
The model structure can be represented by a directed
graph, called causal diagram, in which the set of nodes
is defined by the variables Y7,...,Y,, and there is a
directed edge from Y; to Y; if the coefficient of ¥; in the
equation for Y; is different from zero. Additionally, if
error-terms e; and e; have non-zero correlation, we add
a (dashed) bidirected edge between Y; and Y;. Figure
2 shows a model with the respective causal diagram.

In this work, we consider only recursive models, that
is, ¢j; = 0 for 2 > j. The structural parameters of the
model, denoted by #, are the coefficients ¢;;, and the
non-zero entries of the error covariance matrix W.

Fixing the model structure and assigning values to
the parameters 6, the model determines a unique
covariance matrix X over the observed variables
{Y1,...,Y,}, given by (see [1], page 85)

2(0) = (1_0)—1\1/[(1_0)—1]T (1)

where C' is the matrix of coefficients c;;.

Conversely, in the Identification problem, after fixing
the structure of the model, one attempts to solve for
# in terms of the observed covariance ¥. This is not
always possible. In some cases, no parametrization of
the model could be compatible with a given X. In
other cases, the structure of the model may permit
several distinct solutions for the parameters. In these
cases, the model is called nonidentified.

However, even if the model is nonidentifiable, some pa-
rameters may be uniquely determined from the given

Figure 3: Typical Instrumental Variable

assumptions and data. Whenever this is the case, the
specific parameters are identified.

Finally, since the conditions we seek involve the struc-
ture of the model alone, and do not depend on the
numerical values of parameters #, we insist only on
having identification almost everywhere, allowing few
pathological exceptions. The concept of identification
almost everywhere is formalized in section 5.

3 Graph Background

Definition 1 A path in a graph is a sequence of edges
(directed or bidirected) such that each edge starts in the
node ending the preceding edge. A directed path s a
path composed only by directed edges, all oriented in
the same direction. Node X is a descendent of node
Y if there 1s a directed path from'Y to X. Node 7 1s
a collider in a path p if there ts a pair of consecutive
edges in p such that both edges are oriented toward 7
(e.g.... = Z — ...).

Let p be a path between X and Y, and let 7 be an
intermediate variable in p. We denote the subpath of p
consisting of the edges between X and Z by p[X ~ Z].

Definition 2 (d-separation)

A set of nodes 7. d-separates X from Y in a graph,
if Z blocks every path between X and Y. A path p
is blocked by a set Z (possibly empty) if one of the
following holds:

(i) p contains at least one non-collider that is in Z;

(ii) p contains at least one collider that is outside Z
and has no descendant in Z.

4 Instrumental Variable Methods

The traditional definition qualifies a variable 7 as in-
strumental, relative to a cause X and effect Y if [10]:

1. Z is independent of all error terms that have an
influence on Y that is not mediated by X;

2. 7 is not independent of X.

The intuition behind this definition is that all correla-
tion between Z and Y must be intermediated by X.
If we can find Z with these properties, then the causal
effect of X on Y, denoted by ¢, is identified and given
by ¢ = U'ZY/O'ZX~
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Figure 5: Simultaneous use of two I'Vs

Figure 3 shows a typical example of an instrumental
variable. It is easy to verify that variable 7 satisfy
properties (1) and (2) in this model.

A generalization of the IV method is offered through
the use of conditional IV’s. A conditional IV is a vari-
able Z that may not have properties (1) and (2), but
there is a conditioning set W which makes it happens.
When such pair (7, W) is found, the causal effect of
X on'Y is identified and given by ¢ = ozy w/ozx w.

[11] provides the following equivalent graphical crite-
rion for conditional IV’s; based on the concept of d-
separation:

1. W contains only non-descendents of Y;

2. W d-separates Z from Y in the subgraph G, ob-
tained by removing edge X — Y from G;

3. W does not d-separate Z from X in G..

As an example of the application of this criterion,
Figure 4 show the graph obtained by removing edge
X — Y from the model of Figure 2. After condition-
ing on variable W, Z becomes d-separated from Y but
not from X. Thus, parameter ¢ is identified.

However, although the method of conditional TV’s is
very useful, it cannot be applied to a simple model like
the one in Figure (5a). In this case, variables 7Z; and
Z5 do not qualify as IV’s with respect to either ¢; or
cz. Also, there is no conditioning set which makes it
happens. Therefore, the conditional IV method fails,
despite the fact that the model is completely identified.

Figure (5b) shows the graph obtained by removing
edges X7 — Y and X3 — Y from the model. Note
that in this graph, Z; and Z, satisfy the graphical
conditions for a conditional IV. Intuitively, if we could
use both Z1 and 7, together as instrumental variables,
we would be able to identify parameters ¢; and cs.

Next theorem states the main result of this paper,
which extends the method of conditional IV’s to allow
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Figure 6: More examples of new criterion

the use of multiple instrumental variables to obtain the
simultaneous identification of a subset of parameters
of the model.

Theorem 1 Fiz a variable Y, and consider the edges
Xy — Y,...,X, — Y, in a causal graph G.
Assume that we can find triples (71, W1,p1), ...,
(Zn, Wy, pn), such that:

(i) For i = 1,...,n, Z; and the elements of W;
are non-descendents of Y ; and p; is an unblocked
path between Z; and Y including edge X; — Y.

(i1) Let G be the causal graph obtained from G by
deleting edges X1 — Y,... , Xy, =Y. Then, W;
d-separates Z; from'Y in G,

(iit) W; does not block path p; in G, that is, no vari-
able in p; belongs to W;.

(iv) For 1 <i < j <n, variable Z; does not appear
i path p;, and iof paths p; and p; have a common
variable V', then both p;[V ~ Y] and p;[Z; ~ V]
point to V.

Then, the parameters of edges X1 — Y,... , X, =Y
are identified almost everywhere, and can be computed
by solving a system of linear equations.

Figure 6 shows more examples in which the method of
conditional IV’s fails and our new criterion is able to
prove the identification of parameters ¢;’s. In partic-
ular, model (a) is a bow-free model, and thus is com-
pletely identifiable. Model () illustrates an interesting
case 1n which variable X5 1s used as the instrumen-
tal variable for X; — Y, while Z is the instrumental
variable for Xo — Y. Finally, in model (¢) we have
an example in which the parameter of edge X3 — Y
is nonidentifiable, and still the method can prove the
1dentification of ¢; and cs.

5 Preliminary Results

5.1 Identification Almost Everywhere

Let h denote the total number of parameters in model
G. Then, each vector § € R" defines a parametriza-
tion of the model. For each parametrization 6, model
G generates a unique covariance matrix X(6). Let
B(A1,...,An) denote the vector of values assigned by
f to parameters Aqy,..., A,



,An, are lidentified almost every-
where if £(0) = X(¢') implies 0(A1,..., ;) =
6'(A1,...,An) , except when 6 resides on a set of
Lebesgue measure zero.

Parameters Aq, ...

5.2 Wright’s Method of Path Coefficients

Here, we describe an important result introduced by
Sewall Wright [12], which is extensively explored in the
proof.

Given variables X and Y in a recursive linear model,
the correlation coefficient of X and Y, denoted pxvy,
can be expressed as a polynomial on the parameters
of the model. More precisely,

ozy = 3. T(m) (2)

paths p;

where term T'(p;) represents the multiplication of the
parameters of edges along path p;, and the summation
ranges over all unblocked paths between X and Y. We
refer to Eq.(2) as Wright’s Equation for X and Y.

Wright’s method of path coefficients [12] consists in
forming Eq.(2) for each pair of variables in the model,
and solving for the parameters in terms of the correla-
tions among the variables. Whenever there is a unique
solution for a parameter A, this parameter is identified.

We can use this method to study the identification
of the parameters in the model of Figure 5. From
the equations for py, y, and py,y, we can see that
parameters ¢; and cs are identified if and only if
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5.3 Partial Correlation Lemma

Next lemma provides a convenient expression for the
partial correlation coefficient of ¥; and Y3, given
Ys,...,Y,, denoted p13.3. . The proof of the lemma
is given in the appendix.

Lemma 1 The partial correlation p123.. ., can be ez-
pressed as the ratio:

6(1,2,. ..
P(1,3,...

,n)
,n)-(2,3,...,n)

P12.3..m = (3)
where ¢ and psi are functions of the correlations
among Y1,Ys,...,Y,, satisfying the following condi-
tions:

(i) ¢(1,2,...,n)=&(2,1,...,n).
(ii) ¢(1,2,...,n) s

linear on the correlations

P12, P32, - - - Pn2, With no constant term.

(iit) The coefficients of pia2,psa, ..., pPn2, in
#(1,2,...,n) are polynomials on the corre-
lations among the wvariables Yi1,Ys,...,Y,.

Moreover, the coefficient of pi1s has the con-
stant term equal to 1, and the coefficients of
P32, .-+, Pn2, are linear on the correlations
P13, P14, - - - , Pin, With no constant term.

(v) ((ir, ... ,in—1))?, is a polynomial on the corre-
lations among the variables Yi,,... Y, with
constant term equal to 1.

n—17

5.4 Path Lemmas

The following lemmas explore some consequences of
the conditions in Theorem 1.

Lemma 2 W.lo.g., we may assume that, for 1 <i <
J < n, paths p; and p; do not have any common vari-
able other than (possibly) Z;.

Proof: Assume that paths p; and p; have some vari-
ables in common distinct from Z;. Let V' be the closest
variable to X; in path p; which also belongs to path

pj-

We show that after replacing triple (Z;, W;,p;) by
triple (V, W;, p;[V ~ X;]), the conditions of Theorem
1 still hold.

It follows from condition (iv) that subpath p;[V ~
Y] must point to V. Since p; is unblocked, subpath
pi[Zi ~ V] must be a directed path from V to Z;.

Now, variable V' cannot be a descendent of Y, because
pi[Z; ~ V] is a directed path from V to Z;, and Z; is
a non-descendent of Y. Thus, condition (i) still holds.

Consider the causal graph . Assume that there exists
a path p between V and Y witnessing that W; does
not d-separate V from Y in G. Since p;[7Z; ~ V] is a
directed path from V to Z;, we can always find another
path witnessing that W; does not d-separate Z; from
Y in G (for example, if p and p;[Z; ~ V] do not have
any variable in common other than V', then we can just
take their concatenation). But this is a contradiction,
thus condition (i7) still holds.

It is easy to see that condition (¢4¢) holds. Condition
(1v) follows from the fact that p;[V ~ Y] and p;[Z; ~
V] point to V. O

In the following, we assume that the conditions of
lemma 2 hold.

Lemma 3 Foralll < i< mn, there exists no unblocked
path between Z; and Y, different from p;, which in-
cludes edge X; — Y and s composed only by edges

frompy, ... pi.

Proof: Let p be an unblocked path between Z; and
Y, different from p;, and assume that p is composed
only by edges from p1,...,p;.

According to condition (iv), if Z; appears in some path
p;j, with j # 4, then it must be that j > ¢. Thus, p
must start with some edges of p;.



Since p is different from p;, it must contain at least
one edge from py,...,pi—1. Let (V1,V2) denote the
first edge in p which does not belong to p;.

From lemma 2, it follows that variable V; must be a 7},
for some k < i, and by condition (iv), both subpath
p[Z; ~ V1] and edge (V1,V2) must point to V;. But
this implies that p is blocked by V7, which contradicts
our assumptions. a

The proofs for the next two lemmas are very similar
to the previous one, and so are omitted.

Lemma 4 For all 1 < i < n, there is no unblocked
path between Z; and some W;; composed only by edges

from Py, Pi-

Lemma 5 For all 1 < i < n, there is no unblocked
path between Z; and Y including edge X; — Y, with
Jj <1, composed only by edges from p1,...,p;.

6 Proof of Theorem 1

6.1 Notation

Fix a variable Y in the model. Let X = {X;, ..., X}
be the set of all non-descendents of Y which are con-
nected to Y by an edge (directed, bidirected, or both).
Define the following set of edges incoming Y:

Inc(Y) = {(X;,Y) : X; € X}

Note that for some X; € X there may be more than
one edge between X; and Y (one directed and one
bidirected). Thus, |[Ine(Y)| > |X|. Let A1,...,Am,
m > k, denote the parameters of the edges in Ine(Y).

It follows that edges X1 — Y,..., X, — Y, be-
long to Inc(Y), because Xi,...,X,, are clearly non-
descendents of Y. W.l.o.g., let A; be the parameter of
edge X; =Y, 1 <i<mn,andlet A\py1,..., Ay be the
parameters of the remaining edges in Tne(Y).

Let Z be any non-descendent of Y. Wright’s equation
for the pair (Z,Y), is given by

ozy = 3. T(p) (4)

paths p;

where each term T'(p;) corresponds to an unblocked
path between 7 and Y. Next lemma proves a property
of such paths.

Lemma 6 Let Y be a vartable in a recursive model,
and let 7 be a non-descendent of Y. Then, any un-
blocked path between Z and Y must include exactly one
edge from Inc(Y).

Lemma 6 allows us to write Eq. (4) as

m

o7y =3 a5 A (5)

ji=1

09y = A+ aad; + Ay ; ‘
031 = A + B + aak, T a M N
Y1 Y3 Ya

Figure 7: Wright’s equations

Thus, the correlation between Z and Y can be
expressed as a linear function of the parameters
A1, ..., Am, with no constant term. Figure 7 shows
an example of those equations for a simple model.

6.2 Basic Linear Equations

Consider a triple (Z;, W;,p;), and let W; =
{Wi,,...,W;.} . From lemma 1, we can express the
partial correlation of Z; and Y given W; as:

$:i(Z:, Y Wiy,... Wiy ) (6)

PZY Wi = GZ Wiy, Wi )iV, Wiy, Wiy )

RES iy

where function ¢; is linear on the correlations pz,v,
PWi Yy -y PW, Y and ; 1s a function of the corre-
lations among the variables given as arguments. We
abbreviate ¢;(7;, Y, W;,,..., M/Z.kl) by ¢i(Z;, Y, W),
and 1/}2(‘/; M/ila ey M/Zk) by 1/}Z(Va WZ)

We have seen that the correlations pz,y, PWo Y, o
pw,, v, can be expressed as linear functions of the pa-
rameters Ay, ..., A;,. Since ¢; is linear on these cor-

relations, it follows that we can express ¢; as a linear
function of the parameters Ay, ..., Ap.

Formally, by lemma 1, ¢;(Z;, Y, W;) can be written
as:

0i(Zi, Y, W) = bispzyy + bipw, vy + (M)

R bikazkY

Also, for each V; € {Z;} UW;, we can write:

ijY = aijl)‘l + ... + (liijm (8)

Replacing each correlation in Eq.(7) by the expression
given by Eq. (8), we obtain

6i(Z;, Y, W;) = qndi + ...+ ¢imAm (9)

where the coefficients ¢;;’s are given by:

k
qit = g bi;ai;
j=0

d=1,...,m (10)

Lemma 7 The coefficients ¢; n41, .. .
are tdentically zero.

!To simplify the notation, we assume that |W;| = k,
fore=1,...,n



Proof: The fact that W; d-separates Z; from Y in
G, implies that pz,y w, = 0 in any probability dis-
tribution compatible with G ([10], pg. 142). Thus,
¢i(Z;, Y, W;) must vanish when evaluated in G. But
this implies that the coefficient of each of the A;’s in
Eq. (9) must be identically zero.

Now, we show that the only difference between evalu-
ations of ¢;(7;, Y, W;) on the causal graphs G and G,
consists on the coefficients of parameters Ay, ..., A,.

First, observe that coefficients b;,,...,b;, are poly-
nomials on the correlations among the variables
Zis Wi, ..., Wi,. Thus, they only depend on the un-
blocked paths between such variables in the causal
graph. However, the insertion of edges X; — Y, ...,
X, — Y, in G does not create any new unblocked
path between any pair of Z;, W;,,..., W;, (and obvi-
ously does not eliminate any existing one). Hence, the
coefficients b;,, ..., b;, have exactly the same value in
the evaluations of ¢;(Z;, Y, W;) on G and G.

Now, let A; be such that > n, and let V; € {Z;} U
W,;. Note that the insertion of edges X; — Y, ...,
X, — Y, in G does not create any new unblocked path
between V; and Y including the edge whose parameter
is A; (and does not eliminate any existing one). Hence,
coefficients a;,;, j = 0,...,k, have exactly the same

value on G and G.

From the two previous facts, we conclude that, for
[ > n, the coefficient of A; in the evaluations of
¢i(Z;, Y, W;) on GG and G have exactly the same value,
namely zero. Next, we argue that ¢;(7;,Y, W;) does
not vanish when evaluated on G.

Finally, let A; be such that [ < n, and let V; € {Z;} U
W;. Note that there is no unblocked path between V;
and Y in G including edge X; — Y, because this edge
does not exist in G. Hence, the coefficient of A; in the
expression for the correlation py,;y on G must be zero.

On the other hand, the coefficient of A; in the same
expression on (G is not necessarily zero. In fact, it
follows from the conditions on Theorem 1 that, for
| = 1, the coefficient of A; contains the term T'(p;). O.

From lemma 7, we get that ¢;(Z;,Y, W;) is a linear
function only on the parameters Aq,..., A,.

6.3 System of Equations &

Rewriting Eq.(6) for each triple (Z;, W;, p;), we ob-
tain the following system of linear equations on the
parameters Ay, ..., A,:

61(Z1,Y,W1) =  pz,vw,
1 (Z1, Wh) -1 (Y, W)
o = C.
6n(Zn, Y, Wy) = pz.vw,
: "/)n(ZruWn) : L/}n(Y, Wn)

where the terms on the right-hand side can be
computed from the correlations among the variables
Y, Z; Wiy, ..., W;,, estimated from data.

Our goal is to show that ® can be solved uniquely for
the A;’s, and so prove the identification of Ay, ..., A,.
Next lemma proves an important result in this direc-
tion. Let () denote the matrix of coefficients of ®.

Lemma 8 Det(Q) is a non-trivial polynomial on the
parameters of the model.

Proof: From Eq.(10), we get that each entry ¢;; of Q
is given by

k
qit = E bi; - a;;
j=0

where b; is the coefficient of pWiY (or pz,v,if j = 0),
in the linear expression for ¢;(7;,Y, W;) in terms of
correlations (see Eq.(7)); and a;,; is the coefficient of
A7 in the expression for the correlation WY in terms

, Am (see Eq.(8)).

From property (7i¢) of lemma 1, we get that b;, has
constant term equal to 1. Thus, we can write b;, =

of the parameters Aq, ...

1+ Biu, where l;io represent the remaining terms of b;,.

Also, from condition (i) of Theorem 1, it follows that
a;o; contains term T'(p;). Thus, we can write a;5; =
T(p;) + Gioi, Where a;,; represents all the remaining
terms of a;,;.

Hence, a diagonal entry ¢;; of @, can be written as

k
gii = T(P)[L+ big] + @igi -big + > by -aiyi (11)

ji=1

Now, the determinant of ) is defined as the weighted
sum, for all permutations 7 of (1,...,n), of the prod-
uct of the entries selected by m (entry g;; is selected by
permutation 7 if the i*® element of 7 is [), where the
weights are 1 or (—1), depending on the parity of the
permutation. Then, it is easy to see that the term

n

T =[] T(w)

ji=1

appears in the product of permutation = = (1,... ,n),
which selects all the diagonal entries of ().

We prove that det(Q) does not vanish by showing that
T™ appears only once in the product of permutation
(1,...,n), and that T* does not appear in the product
of any other permutation.

Before proving those facts, note that, from the condi-
tions of lemma 2, for 1 < i < j < n, paths p; and p;



have no edge in common. Thus, every factor of T* is
distinct from each other.

Proposition: Term 7™ appears only once in the prod-
uct of permutation (1,...,n).

Proof: Let 7 be a term in the product of permutation
(1,...,n). Then, 7 has one factor corresponding to
each diagonal entry of Q.

A diagonal entry ¢;; of @ can be expressed as a sum
of three terms (see Eq.(11)).

Let ¢ be such that for all [ > i, the factor of 7 corre-
sponding to entry ¢y comes from the first term of ¢y

(i.e., T(p)[1 + by, ]).

Assume that the factor of 7 corresponding to entry g;;
comes from the second term of ¢;; (i.e., @;;-b;, ). Recall
that each term in a;,; corresponds to an unblocked
path between Z; and Y, different from p;, including
edge X; — Y. However, from lemma 3, any such path
must include either an edge which does not belong to
any of p1,...,pn, or an edge which appears in some
of piy1,...,pn. In the first case, it is easy to see that
7 must have a factor which does not appear in 7. In
the second, the parameter of an edge of some p;, I > 1,
must appear twice as a factor of 7, while it appears
only once in T%. Hence, 7 and T™ are distinct terms.

Now, assume that the factor of 7 corresponding to en-
try q;; comes from the third term of ¢;; (i.e., Z;Il b;; -
al-jl-). Recall that b;; is the coefficient of WY in the
expression for ¢;(7Z;,Y, W;). From property (i) of
lemma 1, b;; is a linear function on the correlations
PZW,, - PzW,, , With no constant term. Moreover,
correlation pz,w, can be expressed as a sum of terms
corresponding to unblocked paths between 7; and W, .
Thus, every term in b;, has the term of an unblocked
path between Zi and some W;, as a factor. By lemma
4, we get that any such path must include either an
edge that does not belong to any of pi1,...,p,, or an
edge which appears in some of p;y1,...,pn. As above,
in both cases 7 and T must be distinct terms.

After eliminating all those terms from consideration,
the remaining terms in the product of (1,...,n) are
given by the expression:

Since i)io is a polynomial on the correlations among
variables W;,, ..., W;,, with no constant term, it fol-
lows that T™ appears only once in this expression. O

Proposition: Term 7™ does not appear in the prod-
uct of any permutation other than (1,... n).

Proof: Let m be a permutation different from
(1,...,n), and let 7 be a term in the product of =.

Let i be such that, for all [ > 7, 7 selects the diagonal

entry in the row [ of (). As before, for [ > i, if the
factor of 7 corresponding to entry ¢;; does not come
from the first term of ¢ (i.e., T(p1)[1 + B;D]), then 7
must be different from 7. So, we assume that this is
the case.

Assume that 7 does not select the diagonal entry g;;
of Q. Then, 7 must select some entry ¢;;, with [ < i.
Entry ¢;; can be written as:

ki
Qi1 = biyaig + E bi a;,

ji=1

Assume that the factor of 7 corresponding to entry ¢;;
comes from term b;, - a;,;. Recall that each term in
@i, corresponds to an unblocked path between Z; and
Y including edge X; — Y. Thus, in this case, lemma
5 implies that 7 and 7™ are distinct terms.

Now, assume that the factor of 7 corresponding to en-
try ¢;; comes from term Ele bi;a;,;. Then, by the
same argument as in the previous proof, terms 7 and
T* are distinct. O

Hence, term 7™ 1s not cancelled out and the lemma

holds. O

6.4 Identification of Aq,... A,

Lemma 8 gives that det(Q) is a non-trivial polynomial
on the parameters of the model. Thus, det(Q) only
vanishes on the roots of this polynomial. However, [8]
has shown that the set of roots of a polynomial has
Lebesgue measure zero. Thus, system ® has unique
solution almost everywhere.

It just remains to show that we can estimate the entries
of the matrix of coefficients of system ® from data.

Let us examine again an entry ¢;; of matrix Q:

3
qi1 = bi. - a;
3 3

j:O

From condition (#i7) of lemma 1, the factors b;; in the
expression above are polynomials on the correlations
among the variables Z;, W; , Wi, , and thus can be
estimated from data.
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Now, recall that a;,; is given by the sum of terms cor-
responding to each unblocked path between Z; and Y
including edge X; — Y. Precisely, for each term ¢ in
ai,1, there is an unblocked path p between 7; and Y
including edge X; — Y, such that ¢ is the product of
the parameters of the edges along p, except for A;.

However, notice that for each unblocked path between
Z; and Y including edge X; — Y, we can obtain an
unblocked path between Z; and X;, by removing edge
X; — Y. On the other hand, for each unblocked path
between Z; and X; we can obtain an unblocked path
between Z; and Y, by extending it with edge X; — Y.



Thus, factor a;,; 1s nothing else but pz, x,. It is easy to
see that the same argument holds for a;;; with j > 0.
Thus, aijl = lele, _] = 07 e ,k’.

Hence, each entry of matrix ) can be estimated from
data, and we can solve the system of equations @ to
obtain the parameters Aq,..., A,.

7 Conclusion

In this paper, we presented a generalization of the
method of Instrumental Variables. The main advan-
tage of our method over traditional IV approaches, is
that it 1s less sensitive to the set of conditional indepen-
dences 1implied by the model. The method, however,
does not solve the Identification problem. But, it il-
lustrates a new approach to the problem which seems
powerful enough to achieve this goal.

Appendix

Proof of Lemma 1:

(i, ...

Functions ¢(1,...,n) and
,in—1) are defined recursively. For n = 3,

¢%(1,2,3) = p12 — p13pas
P2(ir,de) = /(1 — P?l,@)

For n > 3, we have

¢"(1,...,n) = (¥""%n,3,...,n—1)"
" 1(1,2,3, ... n—1)
— (¥"%(n,3,...,n—1))?

~¢"1(1,n,3,... ,n—1)

~¢" 1 (2,n,3,... ,n—1)

1/}71_1(2.11 ... 7in—1) = |:(1/}n_2(2.11i21 s 7in—2)
2

. 1/}774_2(2'”_1’2'2’ LR 1in—2))
= (6" Mt inorin, o ine2)]

Using induction and the recursive definition of p15.3. 5,
it is easy to check that:

N (1,2,...,N)
YN-1(1,N,3,..., N—1)¢N-2(N,3,... ,N—1)

P12.3. N =

Now, we prove that functions ¢” and ,,_1 as defined
satisfy the properties (i) — (¢v). This is clearly the
case for n = 3. Now, assume that the properties are
satisfied for all n < V.

Property (i) follows from the definition of
#N(1,...,N) and the assumption that it holds

for N 1(1,... N —1).
Now, ¢V~1(1,...,N — 1) is linear on the correla-
tions p1a,...,pN—12. Since ¢V "2, N,3,..., N — 1)

is equal to ¢V ~1(N,2,3,..., N —1), it is linear on the

correlations pss, ..., pn2. Thus, #N(1,...,N) is lin-
ear on piz, P3a, ..., PN,2, with no constant term, and
property (i¢) holds.

Terms (1/}N_2(N,3,... N - 1))2 and
¢N-Y(1,N,3,...,N — 1) are polynomials on the
correlations among the variables 1,3,...,N. Thus,

the first part of property (#i7) holds. For the second
part, note that correlation p;5 only appears in the first
term of ¢™V(1,..., N), and by the inductive hypothesis

(wN_2(N, 3,...,N— 1))4 has constant term equal to
1. Also, since ¢™(1,2,3,...,N) = ¢N(2,1,3,... ,N)
and the later one is linear on the correlations
P12, P13, - - - , P1N, we must have that the coefficients of
#N(1,2,..., N) must be linear on these correlations.
Hence, property (iv) holds.

Finally, for property (iv), we note that by the inductive
hypothesis, the first term of (1/}N_2(N, 3,...,N— 1))2
has constant term equal to 1, and the second term has
no constant term. Thus, property (év) holds. d
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