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Professor Trey Ideker, Chair 

 

 

In multicellular organisms, survival of the organism is favored over survival of individual 

cells. As such, normal cells are subject to limits on proliferation. In cancer, however, the 

accumulation of somatic, and sometimes germline, alterations converges to produce cells which 

are not subject to or can bypass normal growth restrictions, thus enabling the general cancer 

phenotype of dysregulated and excessive cell growth. Over the decades, we have made significant 
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gains towards understanding how individual genetic alterations affect cell biology, and how these 

effects can converge to produce the cancer phenotype. Due to the cancer’s immense heterogeneity, 

however, we have yet to fully understand the whole-cell dynamic properties leading to the diversity 

of cancer sub-phenotypes that are observed in patients. 

The major theme of this dissertation is to interrogate many genetic backgrounds to 

characterize biological processes that are critical in the formation and/or maintenance of the 

general cancer phenotype. In chapter one, I performed a genome-wide screen to characterize the 

ultraviolet light-induced DNA damage response in the model organism Saccharomyces cerevisiae 

using a metric which reflects a time-dependent growth phenotype. This metric allowed me to 

identify a set of mitochondrial-associated genes involved in the response to ultraviolet-induced 

DNA damage. In chapter two, I used a context-aware deep learning model of therapeutic response 

to examine the cellular response to palbociclib, a selective inhibitor of the cyclin-dependent 

kinases four and six. I found that the response to palbociclib is governed by an array of distinct 

biological processes, and that patients and cell line samples are best stratified with the integration 

of all of these pathways.  

Overall, this body of work uses specific measures of context to further characterize 

biological processes critical to the development and maintenance of the cancer phenotype.   



1 

 

INTRODUCTION 

In multicellular organisms, cells exist in a state of homeostasis in which cell division is 

tightly regulated, simultaneously promoting survival of the multicellular organism and ensuring 

the faithful transfer of genetic instructions from mother cell to daughter cell; differentiation is an 

additional layer of control on this process, restricting proliferative capacity to progenitor and/or 

stem cells. Cancer is a disease in which the accumulation of somatic, and sometimes germline, 

alterations converge to produce cells which are not bound by these restrictions. These cells are 

said to have acquired a set of abnormal capabilities and enabling characteristics, which have been 

referred to as the “hallmarks of cancer” (Hanahan, 2022; Hanahan & Weinberg, 2000). In this 

body of work, I specifically consider three features of the hallmarks of cancer:  the enabling 

characteristic of genome mutation, and the acquired capabilities of sustained proliferative 

signaling and evasion of growth suppression.  

Genome instability and mutation are considered an “enabling characteristic” in the 

hallmarks of cancer (Hanahan & Weinberg, 2000). This is evidenced by the heterogeneous 

landscape of cancer genomes. Not only do different patients harbor different mutations, but a 

single tumor in a patient can harbor different clonal populations, each of which has a distinct 

mutation burden (Vogelstein et al., 2013). It is estimated that 105 to 106 DNA errors are produced 

every cell division, and up to 20,000 lesions occur daily as a result of normal metabolic processes 

(Preston et al., 2010). Normal cells, however, are poised to respond to this damage by the 

activation of DNA damage response pathways, resulting in a very low mutation observed rate of 

~1 mutation per genome per division in human cells (Werner et al., 2020). Regardless of the 

mechanism, mutations occur mostly randomly; many mutations have little to no effect on cell 

function and are therefore ‘passenger mutations.’ However, other mutations can confer a growth 
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advantage, even if only slightly. These are considered ‘driver mutations’ (Vogelstein et al., 2013). 

The accumulation of additional driver mutations can culminate in a clonal cell population with a 

significant growth advantage.  

Normal cells do not divide continuously or indefinitely. Studies have demonstrated that 

suboptimal culturing conditions can push cells into a state of reversible quiescence (Cheung & 

Rando, 2013). Other studies of fibroblasts grown in vitro have demonstrated that they have a 

limited replicative lifespan, after which point they enter a state of senescence (Hahn, 2002). Indeed, 

we now know that many cells exist in a state of reversible quiescence, requiring both mitogenic 

signals and the release of anti-proliferative controls to enter the cell cycle (Hanahan & Weinberg, 

2000; Marescal & Cheeseman, 2020); further, cells can reach a state of irreversible senescence, 

after which they will no longer divide (Cheung & Rando, 2013). The state of quiescence is thought 

to be regulated largely by p53 and the retinoblastoma 1 (RB1) axis, which prevents cells from 

entering S phase. Although quiescent cells are not dividing, their DNA is still vulnerable to damage 

due to normal metabolic processes. As such, certain mutations can lead to the acquisition of traits 

such as the ability to produce continuous proliferative signaling or to evade suppression of 

proliferation. For example, chromosomal activating mutations in KRAS promote overactivation 

of the mitogen-activated protein kinase (MAPK) cascade, which stimulates growth (Liu et al., 

2019). Similarly, loss or inhibition of RB1 permits cell cycle re-entry (Cheung & Rando, 2013).  

It is clear that the path from the diverse landscape of cancer genomic alterations to the set 

of stereotyped characteristics in the hallmarks of cancer must be incredibly complex. To better 

understand the pathologic processes enabling tumor development, we need an improved 

understanding of the context-dependent interactions within and across these biological processes, 

preferably at genome-wide scale. Other studies have demonstrated the utility of evaluating 
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biological processes from a context-dependent perspective. For example, a genetic interaction 

study of DNA damage in Saccharomyces cerevisiae consistently highlighted “housekeeping” 

genes in both untreated and treated conditions. Differential analysis, however, revealed a distinct 

set of genetic interactions, demonstrating new functional interactions between protein complexes 

as a result of the DNA damaging treatment (Bandyopadhyay et al., 2010). Similarly, time can be 

considered an element of context-dependence. For example, a time-lapse screen examining the 

saline response in Saccharomyces cerevisiae permitted the identification of 500 gene deletion 

strains with ‘marginal phenotypes’ (Warringer et al., 2003). 

In this body of work, I specifically focus on three features from the hallmarks of cancer‒

genome mutation, sustained proliferative signaling, and evasion of growth suppression‒while 

employing approaches that consider the dynamics and/or context of these processes. Specifically, 

in chapter one, I examine the UV-induced DNA damage response using a metric which reflects a 

time-dependent growth phenotype in the model organism Saccharomyces cerevisiae. In chapter 

two, I used a context-aware deep learning model of cancer therapeutic response to examine the 

cellular response to palbociclib, a selective inhibitor of the cyclin-dependent kinases four and six. 

Overall, this body of work uses specific measures of context to further characterize biological 

processes critical to the development and maintenance of the cancer phenotype. 

References 
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CHAPTER 1: Genome-wide dynamic evaluation of the UV-response 

1.1 Abstract 

Genetic screens in Saccharomyces cerevisiae have allowed for the identification of many 

genes as sensors or effectors of DNA damage, typically by comparing the fitness of genetic 

mutants in the presence or absence of DNA-damaging treatments. However, these static screens 

overlook the dynamic nature of DNA damage response pathways, missing time-dependent or 

transient effects. Here, we examine gene dependencies in the dynamic response to ultraviolet 

radiation-induced DNA damage by integrating ultra-high-density arrays of 6144 diploid gene 

deletion mutants with high-frequency time-lapse imaging. We identify 494 ultraviolet radiation 

response genes which, in addition to recovering molecular pathways and protein complexes 

previously annotated to DNA damage repair, include components of the CCR4-NOT complex, 

tRNA wobble modification, autophagy, and, most unexpectedly, 153 nuclear-encoded 

mitochondrial genes. Notably, mitochondria-deficient strains present time-dependent insensitivity 

to ultraviolet radiation, posing impaired mitochondrial function as a protective factor in the 

ultraviolet radiation response. 

1.2 Introduction 

Genome-wide screening techniques in the model organism Saccharomyces cerevisiae have 

permitted extensive functional annotation of nearly every gene (Baryshnikova et al., 2010; 

Breslow et al., 2008; Douglas et al., 2012; Kofoed et al., 2015; Schuldiner et al., 2005; Winzeler 

et al., 1999). In such screens, the relative contribution of each gene is often determined according 

to the fitness of the corresponding gene knockout strain, as inferred from macroscopic phenotypes, 

such as colony size (Baryshnikova et al., 2010; Bean et al., 2014; Costanzo et al., 2010; Kuzmin 

https://paperpile.com/c/W0UBOP/Ow3E0+CoaHz+Vy0xX+1HMZG+zqflf+QBmve
https://paperpile.com/c/W0UBOP/Ow3E0+CoaHz+Vy0xX+1HMZG+zqflf+QBmve
https://paperpile.com/c/W0UBOP/Ow3E0+CoaHz+Vy0xX+1HMZG+zqflf+QBmve
https://paperpile.com/c/W0UBOP/1HMZG+DIGQU+q7A4L+GPH7R
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et al., 2014) or relative strain abundances (Breslow et al., 2008; Giaever et al., 2002; Schlecht et 

al., 2017; Winzeler et al., 1999). However, biological processes are dynamic (Celaj et al., 2017); 

isolated snapshots may not adequately describe their full complexity (Bandyopadhyay et al., 

2010). Furthermore, genetic perturbations may not always result in notable changes in the observed 

colony fitness, as defects may be small (Baryshnikova et al., 2010; Styles et al., 2016; Thatcher et 

al., 1998), transient or context-dependent (Styles et al., 2016).  

To address these limitations, additional assays have been directed at the capture of dynamic 

responses. For example, high-throughput fluorescence imaging studies can characterize 

microscopic phenotypes such as dynamic protein localizations and abundances (Dénervaud et al., 

2013; Kraus et al., 2017). Although limited in scalability, liquid micro-culture assays, in which 

the growth curves of mutant strains are analyzed, permit characterization of dynamic growth 

responses as well as identification of marginal fitness phenotypes (Toussaint & Conconi, 2006; 

Warringer et al., 2003). Recent efforts have been made to improve scalability of growth curve 

analysis by leveraging existing genetic mutant colony array technology (Banks et al., 2012; Barton 

et al., 2018; Hartman & Tippery, 2004; Shah et al., 2007; Zackrisson et al., 2016).  

The DNA damage response (DDR) is a collection of complex and dynamic mechanisms 

that ensures detection and repair of DNA damage as well as coordination of repair with other 

cellular physiological processes such as cell cycle arrest and damage tolerance. Ultraviolet 

radiation (UVR) is a ubiquitous environmental source of DNA damage, mostly in the form of UV-

A (320-400nm) or UV-B (280-320nm) waves. UV-C waves (200-280nm) are largely filtered by 

the atmosphere (Matsumura & Ananthaswamy, 2004), but, being most efficient in DNA-damaging 

ability (Ravanat et al., 2001), are routinely used in research. UVR primarily causes the formation 

of helix-distorting cyclobutane pyrimidine dimers (CPDs) and 4-6-photoproducts (4-6PPs), which 

https://paperpile.com/c/W0UBOP/1HMZG+DIGQU+q7A4L+GPH7R
https://paperpile.com/c/W0UBOP/Ow3E0+ZlxoP+Vy0xX+nKyx5
https://paperpile.com/c/W0UBOP/Ow3E0+ZlxoP+Vy0xX+nKyx5
https://paperpile.com/c/W0UBOP/K4Ucr
https://paperpile.com/c/W0UBOP/XxxzE
https://paperpile.com/c/W0UBOP/XxxzE
https://paperpile.com/c/W0UBOP/H2ApX+1HMZG+WyWpW
https://paperpile.com/c/W0UBOP/H2ApX+1HMZG+WyWpW
https://paperpile.com/c/W0UBOP/WyWpW
https://paperpile.com/c/W0UBOP/zZFQk+Csue5
https://paperpile.com/c/W0UBOP/zZFQk+Csue5
https://paperpile.com/c/W0UBOP/dQJFs+jpfc6
https://paperpile.com/c/W0UBOP/dQJFs+jpfc6
https://paperpile.com/c/W0UBOP/hD1PQ+vpTPv+UotpU+B2Xrl+qewnK
https://paperpile.com/c/W0UBOP/hD1PQ+vpTPv+UotpU+B2Xrl+qewnK
https://paperpile.com/c/W0UBOP/ZtL6f
https://paperpile.com/c/W0UBOP/ZKuXg
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are repaired by the nucleotide excision repair (NER) machinery. UVR also induces lower levels 

of oxidative DNA damage, single-strand breaks, and protein-DNA crosslinks (Cadet & Wagner, 

2013; de Gruijl et al., 2001), which are repaired by base excision repair and other machinery 

(Prakash & Prakash, 2000; Schärer, 2013; Sinha & Häder, 2002). The DDR is linked to many other 

cellular processes, such as transcription, replication, ubiquitination, and the cell cycle, highlighting 

the dynamic, interconnected nature of this process (Prakash & Prakash, 2000; Srivas et al., 2013).  

Here, we combine classical fitness measurements (i.e. colony fitness, CF) with a dynamic 

fitness evaluation technique, Genome-wide Evaluation Of Dynamic Events (GEODE), to examine 

the response of S. cerevisiae to UV-C radiation. In addition to established DNA repair genes, we 

find components of the CCR4-NOT complex, autophagy, and tRNA wobble uridine modification. 

We also unexpectedly find that many strains deficient in genes with mitochondrial functions are 

insensitive to UVR-induced DNA damage, posing impaired mitochondria as a protective factor in 

the UVR response.

1.3 Results 

1.3.1 High-throughput growth curve analysis with GEODE 

We sought to establish a platform for the efficient capture and analysis of genome-wide 

dynamic growth curves. We achieved this platform by combining time-lapse imaging with an 

ultra-high-throughput 6144-colony array (Bean et al., 2014), which permits interrogation of an 

entire yeast gene deletion library on a single agar plate. We elected to screen non-essential strains 

using the homozygous diploid gene knockout library (Winzeler et al., 1999), which is less subject 

to the effects of secondary site mutations than the haploid library more typically used for genetic 

screens (Giaever & Nislow, 2014). As each parental haploid strain involved in the creation of the 

diploid library had been generated via independent transformations, deleterious secondary site 

https://paperpile.com/c/W0UBOP/pDw2s+LxKdh
https://paperpile.com/c/W0UBOP/pDw2s+LxKdh
https://paperpile.com/c/W0UBOP/8yfje+9OljP+jUI1k
https://paperpile.com/c/W0UBOP/8yfje+yxubr
https://paperpile.com/c/W0UBOP/q7A4L
https://paperpile.com/c/W0UBOP/Ow3E0
https://paperpile.com/c/W0UBOP/uRdlF
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mutations are thus limited to two scenarios: the independent generation of the same mutation in 

both parental haploid strains, or deleterious haploinsufficient mutations created in a single parental 

haploid strain. To further improve screen quality, we verified the identity of all gene knockout loci 

via pooled barcode sequencing, updating strain annotations in 316 cases (Supplemental Methods, 

Fig S1A-D). The yeast library was robotically pinned in 6144-array format and imaged for 40 

hours, (Figure 1A) with or without UVR treatment administered at 4 hours of growth. After spatial 

correction and selection for high-quality growth curves (Materials and Methods), we analyzed the 

growth of 4294 unique diploid knockout strains, encompassing, on average, 11 replicates per strain 

per treatment (Figure 1A, B).  

We noted that many strains followed a similar growth trajectory, approximated by median 

population growth (dashed line, Fig 1C). We observed a diversity of growth trajectories about this 

curve (Figure 1B), raising the question of how to best identify, characterize and compare the 

significant differences. For example, consider the growth of strains deleted for the gene MSR1, 

encoding a nuclear-encoded mitochondrial tRNA synthetase, or RPL37A, encoding a 60s 

ribosomal subunit (Cherry et al., 2012). Both strains demonstrated decreased, yet similar, final 

colony intensities compared to the global population (Figure 1C). However, the two strains 

followed different growth trajectories in untreated conditions: msr1Δ tracked the population 

median trajectory for a short time, but then fell progressively behind the population, whereas 

rpl37aΔ grew slowly throughout the time course.  

To standardize all growth curves for comparison, we normalized each curve to a final 

colony intensity of one, such that each normalized curve reflected progress of growth as a fraction 

of final colony intensity (Figure 1D). Post-normalization, we observed that many colonies now 

followed a similar trajectory (gray lines, Figure 1D) which was well-represented by the population 

https://paperpile.com/c/W0UBOP/A16z0
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median line (dashed line, Fig 1D). Conversely, the example strains were distinctly different: msr1Δ 

(red line, Figure 1D) lay distinctly above the median curve, while rpl37aΔ (blue line, Figure 1D) 

remained below the median curve. 

To quantitatively capture these differences, we calculated 'deviation profiles' from the 

endpoint-normalized curves, reflecting the distance from each curve to the population median at 

any point in time (Figure 1E). We then calculated the integral of this curve, a growth-

comprehensive metric which summarizes overall deviation of any particular growth curve from 

the population median. For reasons discussed below (Figure 2), we named this metric “lag,” when 

negative, and “stall,” when positive. Less fit colonies (determined by traditional endpoint analysis) 

exhibited more variable growth trajectories, and thus tended to have larger magnitudes of this 

metric, which we henceforth call lagVstall (wide range of lagVstall in Figure 1F for low colony 

fitness). Importantly, lagVstall distinguished the growth behaviors of msr1Δ and rpl37aΔ (Figure 

1F).  

1.3.2 GEODE reveals dynamic growth phenotypes across mutant strains 

We inspected the growth curves of strains with extreme lagVstall scores (5th, 95th 

percentiles), which demonstrated strong deviation (Figure 2A). Stall strains (red line, Figure 2B) 

tended to closely follow the population trend for initial growth, but then stalled, falling 

progressively behind the population median (dashed line, Figure 2A). In contrast, lag strains (blue 

line, Figure 2B) tended to grow slowly for the duration of the experiment and stayed consistently 

below the population median. Similar trends were observed upon examination of growth rates: 

stall strains exhibited progressively slower growth rates compared to the population, while lag 

colonies started out with much slower growth rates that eventually matched the population during 

stationary growth (Figure 2C). We found that the lag gene set was enriched for gene functions 
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involved in ribosome synthesis and translation (7/8 enriched Gene Ontology categories, Table 1.3), 

while the stall gene set was enriched for functions involved in respiration and mitochondria (9/12 

enriched Gene Ontology categories, Table 1.3). Together, these results gave us confidence that 

lagVstall is able to translate diverse growth trajectories in a manner that integrates strain fitness 

and growth rates to inform biological function.   

1.3.3 Nomination of UVR-Responders 

We next turned to the comparison of the UVR-treated (UVR) and untreated (UT) datasets. 

Initial inspection of the entire diploid gene deletion dataset demonstrated strong reproducibility 

with high correlation across replicates (⍴ = 0.97UT:UT & 0.92UVR:UVR), and even across treatments 

(⍴ = 0.92UVR:UT) (Figure S2A), indicating that most strains did not demonstrate a change in 

lagVstall due to treatment. We employed a t-test to compare untreated versus UVR-treated 

lagVstall and colony fitness. This test nominated 494 genes whose knockout modulated the 

response; 168 strains were identified by colony fitness, 247 by lagVstall, and 79 by both metrics 

(q-value cutoff = 0.05, Supplemental Table 1.1). We noted that 67 nominated strains were 

annotated to the DDR, representing 5.6 and 2.8-fold enrichments for sets of strains nominated by 

colony fitness and lagVstall, respectively. In addition, 70 nominated strains had previously been 

associated with UVR sensitivity (3.6- and 2.3-fold enrichment for colony fitness and lagVstall, 

respectively, Figure 3A & Table 1.4). Several other relevant gene sets, including cell cycle-

regulated genes and UVR-induced transcriptional up/downregulation, were also enriched in the 

dataset (Figure 3A & Table 1.4). Notably, these groups were not all enriched in a 24hr-restricted 

dataset (encompassing primarily lag and exponential growth phases, Table 1.4), indicating that the 

full 40hr dataset, which includes the stationary growth phase, highlights gene groups that would 



5 

 

otherwise be missed. We thus conclude that we have nominated a set of genes with functional 

relevance to the UVR response.  

To further identify functional linkages among the nominated gene set, we visualized the 

significant results on YeastNet, an integrated gene-gene functional similarity network (Kim et al., 

2014). One notable difference between the colony fitness and lagVstall sets was the differential 

abundance of DDR-annotated and mitochondrion-annotated genes. While colony fitness more 

robustly recovered DDR-annotated strains (62/247 strains, Figure 3B, Figure S3A, Table 1.4), 

lagVstall more robustly recovered mitochondrion-annotated strains (121/326 strains, Figure 3C, 

Figure S3B & Table 1.4). In the YeastNet subnetwork for colony fitness, DDR-annotated genes 

were tightly connected, while mitochondrial genes were more loosely connected, save for a dense 

cluster encoding components of the mitochondrial ribosome (green nodes with black border, 

Figure 3B). The lagVstall subnetwork demonstrated two densely connected clusters, 

corresponding to mitochondrial and DDR genes, respectively. The CCR4-Not complex was 

enriched in this network (yellow nodes, Figure 3C). We also identified components of autophagy 

and tRNA wobble uridine modification (Figure S3C).  

Finally, we sought to understand differences in UVR response behavior for DDR versus 

mitochondrial-deficient strains. Many DDR-deficient strains demonstrated reduced fitness (Figure 

4A) and tended to shift towards a stall phenotype upon UVR treatment, either by increasing in stall 

phenotype severity or by overtly shifting from lag to stall (Figure 4B, Supplemental Table 1.1). 

For example, we observed that disruption of DEF1, an RNAPII degradation factor associated with 

transcription-coupled NER, led to extremely slow growth in non-treated conditions that only 

matched population growth during stationary phase (Figure 4Ci, ii). UVR-treatment severely 

perturbed growth, preventing def1Δ from matching the population even during stationary phase 

https://paperpile.com/c/W0UBOP/A9w65
https://paperpile.com/c/W0UBOP/A9w65
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(Figure 4Ciii, iv). In contrast, disruption of mitochondrion-annotated genes led to increased fitness 

(Figure 4A) and a switch from a strong stalling phenotype to a unique, less-severe stalling 

phenotype upon UVR treatment (Figure 4B, Supplemental Table 1.1). For example, the strain 

mrpl6Δ, which is deficient in a component of the mitochondrial ribosome, fell progressively 

behind population growth in non-treated conditions (Figure 4Di, ii). However, UVR treatment 

reduced this difference such that mrpl6Δ did not fall behind as rapidly, resulting in a modest 

increase in relative fitness by the end of the screen (Figure 4Diii, iv).   

1.4 Discussion 

In this study, we have applied GEODE, an ultra-high throughput dynamic growth analysis 

technique to study the UVR response. In addition to expected findings, such as involvement of 

DNA damage repair genes, we also highlight a role for mitochondria in this response. 

1.4.1 Screen Design 

We elected to screen the homozygous diploid knockout library. With two copies of each 

chromosome, phenotypes due to spurious mutations should be rare. One ongoing issue affecting 

such genome-wide screens, however, is the possibility of strain mixing or strain misidentification, 

as strains are stored in high-density arrays and handled almost exclusively with robotic tools. In 

an effort to minimize the impacts of mis-identified strains, we sequenced barcodes from our yeast 

homozygous diploid knockout library in its 96-well form. This resulted in identity correction for 

316 strains. While it is possible that mixing or alterations could have been introduced at later 

screening stages, use of sequencing to verify strain identities was a crucial initial step towards 

maximizing data quality.  
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1.4.2 Stall and Lag Growth Phenotypes 

Analysis of the dynamic growth data revealed two growth phenotypes: stall versus lag. The 

lag trajectory is characterized by continuous poor growth. Strains demonstrating this phenotype 

were most enriched for ribosome synthesis functions. It can be inferred that these strains are 

deficient in fully-functional ribosomes (Steffen et al., 2008, 2012) and may thus be translation-

incompetent (Steffen et al., 2008, 2012), potentially explaining the depressed growth trajectories 

we and others have observed (Steffen et al., 2008, 2012; Warringer et al., 2003).  

The stall trajectory is characterized by a period of growth that resembles the population, 

after which the colony of interest stalls, falling progressively behind. Strains exhibiting this 

phenotype were most enriched for mitochondrial functions. Our use of glucose-containing medium 

may explain enrichment for these functions. When present, glucose promotes ATP generation by 

fermentation; enzymes required for metabolism of other carbon sources only appear when glucose 

becomes limiting (Gancedo, 1998; Merz & Westermann, 2009). Thus, growth defects for 

respiration-deficient strains are only observed when glucose becomes limiting and a switch to 

aerobic respiration is required. 

1.4.3 UVR-Deviant Strains 

In our application to the UVR response, we nominated 494 UVR-responding genes at an 

q-value cutoff of 0.05. 67 of these strains have a previously identified role in the DDR, known 

sensitivity to UVR, or both; 301 have known or predicted human orthologs, and therefore may be 

functionally relevant outside of Saccharomyces.  

Interestingly, we found that our set of nominated genes contained distinct signals from the 

UVR-induced transcriptional response; colony fitness nominated strains were enriched for 

increasing gene expression, while lagVstall nominated strains that were enriched for decreasing 

https://paperpile.com/c/W0UBOP/TcZot+hZbOu
https://paperpile.com/c/W0UBOP/TcZot+hZbOu
https://paperpile.com/c/W0UBOP/hZbOu+TcZot+dQJFs
https://paperpile.com/c/W0UBOP/jijMo+MvgfF
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gene expression. As noted by others, transcriptional responsiveness is not predictive of knockout 

strain sensitivity to genotoxic agents (Begley et al., 2004; Birrell et al., 2002). However, we note 

that we identified a mix of sensitive and resistant strains with altered transcription in response to 

UVR. In fact, knockout strains identified by lagVstall trended strongly towards resistance, while 

strains nominated by colony fitness trended towards sensitivity, highlighting the need to examine 

both static (colony fitness) and dynamic (lagVstall) metrics to gain a full picture of the UVR-

induced response.  

1.4.4 Phenotypes of DDR-annotated Strains 

A subset of DDR-annotated strains tended to exhibit lag phenotypes in non-treated 

conditions. DDR-deficient strains are known to be afflicted by higher-than-usual basal mutation 

rates, aneuploidies, and chromosomal rearrangements (Evert et al., 2004; Serero et al., 2014); 

consequences of increased basal mutation include abnormal cell growth, morphology, and 

increased DNA content (Evert et al., 2004), all of which could conceivably contribute to a lag 

phenotype. Notably, UVR treatment caused a shift towards stalled growth for some DDR-deficient 

strains, such as def1Δ. The overall impact of UVR treatment is to slow growth until cells repair 

DNA damage. While most strains recovered rapidly from UVR treatment, DDR-deficient strains, 

such as def1Δ, were likely unable to repair damage. The impediment to growth endured into the 

stationary growth phase, thus producing a stall phenotype in some of these strains. 

1.4.5 Mitochondrial-Annotated UVR-deviant Strains 

Mitochondria produce ATP and play important roles in amino acid, nucleotide, and Fe-S 

cluster cofactor metabolism (Malina et al., 2018); they are additionally a significant source of 

intracellular reactive oxygen species (ROS). While it is known that nuclear-mitochondrial cross-

talk mediates coordination between the cell and its energetic factory (Saki & Prakash, 2017), the 

https://paperpile.com/c/W0UBOP/K5WAn+3Z1ST
https://paperpile.com/c/W0UBOP/QHKoB+RHESF
https://paperpile.com/c/W0UBOP/RHESF
https://paperpile.com/c/W0UBOP/BxDe9
https://paperpile.com/c/W0UBOP/BOTEy
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exact relationship between mitochondria and DNA damage remains unresolved. Some studies 

report transcriptional repression (Gasch et al., 2001; Jaehnig et al., 2013) or inhibition of 

respiratory activity (Kitanovic et al., 2009) in response to DNA damage, while other studies report 

a protective role for respiration in response to DNA damage (Bu et al., 2019; Sung et al., 2010). 

Uncertainties regarding the role of mitochondria extend further to tumorigenesis, where 

mitochondrial abnormalities have long been observed.  

We were surprised to find that many strains deficient in genes annotated to mitochondria 

were relatively resistant to UVR treatment. It is possible that slowed growth due to UVR treatment 

was associated with slower glucose depletion and thus prolonged anaerobic growth. However, 

prolonged anaerobic growth would equally benefit all strains, since glucose inhibits respiration. 

Instead, our results would seem to support a role for mitochondrial impairment in improved 

recovery from UVR, as evidenced by weakening of stall growth phenotype for strains such as 

mrpl6Δ. One possible explanation is that an increased basal level of nuclear DNA damage resulting 

from mitochondrial impairment (Rasmussen et al., 2003) ‘primes’ cells to respond to subsequent 

induced DNA damage. If so, the protective effects of mitochondrial impairment may be specific 

to the damaging agent; differential resistance of respiration-deficient strains to H2O2 and 4NQO 

has indeed previously been reported (Rasmussen et al., 2003). Further supporting the possibility 

of damage type specificity, 47 knockout strains whose gene products localize to the mitochondrion 

were previously identified in another screen for UVR sensitivity, but not 4NQO sensitivity (Begley 

et al., 2004). Further research will be required to determine the mechanism by which mitochondrial 

impairment may specifically influence resistance to UVR-induced DNA damage.  

https://paperpile.com/c/W0UBOP/S2SkR+LKKjt
https://paperpile.com/c/W0UBOP/xAo8J
https://paperpile.com/c/W0UBOP/kh8Ah+lPSnq
https://paperpile.com/c/W0UBOP/aWfr7
https://paperpile.com/c/W0UBOP/aWfr7
https://paperpile.com/c/W0UBOP/3Z1ST
https://paperpile.com/c/W0UBOP/3Z1ST


10 

 

1.4.6 Other UVR-deviant groups 

We identified four components of the CCR4-NOT complex, which regulates nucleotide 

production in response to replication stress and DNA damage via induction of ribonucleotide 

reductase genes following treatment (Mulder et al., 2005). Consistent with previous results, three 

knockout strains (ccr4Δ, mot2Δ, and pop2c) demonstrated sensitivity to UVR and other damaging 

treatments, and one strain (caf16Δ) did not. It is notable that this strain was identified on the basis 

of lagVstall in our screen, and not strain fitness, possibly indicating a transient UVR-associated 

phenotype that has yet to be investigated. 

We additionally noted autophagy and tRNA wobble uridine modification components on 

the basis of lagVstall but not colony fitness. It is well accepted that autophagy is induced in 

response to DNA damage and plays roles in both repair of damage as well as cell death resulting 

from DNA damage (Eliopoulos et al., 2016). Likewise, modification of the wobble position on 

tRNAs has been shown to be important in the production of selenoproteins, which are involved in 

the detection of reactive oxygen species (Endres et al., 2015). Notably, inspection of corresponding 

growth curves revealed few obvious changes in growth pattern or strain fitness.  

1.5 Methods 

1.5.1 Yeast Strain Identification 

We chose to screen the diploid homozygous knockout yeast library (ATCC, GSA-7). To 

validate all strain identities, we designed a sequencing strategy by which to identify strains based 

on the unique barcodes incorporated into the Yeast Knockout Library. Primers (Table 1.1) capable 

of amplifying the UPTAG region (strain-specific barcode) were designed such that the forward 

primer contained a well-specific barcode. Combining this well-specific barcode with the amplified 

UPTAG allowed us to uniquely identify strains and their plate locations via pooled sequencing. 

https://paperpile.com/c/W0UBOP/LEtEA
https://paperpile.com/c/W0UBOP/P5fUT
https://paperpile.com/c/W0UBOP/3FUIa
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The diploid library was found to contain 4467 unique strains (See Supplemental Methods and 

Figure S1).  

1.5.2 Library Maintenance and Screening Protocol 

Using a Singer pinning robot (Rotor 100, Singer Instruments), the library was up-scaled 

from 96 to 384-format. A liquid-handling robot (Freedom Evo 200, Tecan) was used to re-array 

the library such that each edge colony also appeared inside the plate. The yeast array was 

maintained on agar + YPAD in 1536 format under G418 selection at 4C (for storage) or room 

temperature (for growth). The evening prior to screening, 1536 plates were replicated onto 2% 

carrageenan plates, prepared as previously described (Jaeger et al., 2015) containing synthetic 

complete media (without G418) and grown overnight at room temperature. To screen, the 

collection was upscaled to 6144-density onto pre-warmed 2% carrageenan plates which were then 

placed facedown (without lids) inside an imaging light-box on a sanded, black acrylic surface. 

Plates were imaged with a Nikon D800e camera, fitted with an AF Micro Nikon 60mm lens, using 

Camera Control Pro 2 Software (Nikon). Grayscale images were taken at five-minute intervals and 

stored as TIFF images. For UVR treatment, plates were taken from the setup immediately after 

image #48 (4 hours), placed, face-up without lid, into a UV cross-linker (Hoeffer UVC500-115V) 

and treated with 15 x 103 µJ/m2 UV-C. They were immediately placed back into the imaging 

station before image #49 was taken at the next five-minute interval (i.e. no images were missed 

due to UVR treatment). Imaging was continued up to 48 hours. The experimental setup was 

repeated nine times, resulting in 18 plates per condition. In further analysis, three of 18 plates were 

removed from analysis due to insufficient imaging time.  

https://paperpile.com/c/W0UBOP/cxbIg
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1.5.3 Image Analysis 

Images were processed using MATLAB Colony Analyzer Toolkit V2, which we make 

available. Image crops were defined manually for each plate before and after UV treatment; colony 

grid placements were manually defined for each plate (images 48, 49, 300) using ManualGrid() 

and were reused for other images. Images were smoothed using MATLAB’s imdiffusefilt() with 

default settings. Colony borders were established with HalfModeMax(). Colony area and colony 

intensity (i.e. the sum intensity of the pixels constituting a colony) were extracted. Note that only 

colony intensities are discussed/reported in this study. Colony intensities were spatially corrected 

on each plate with the SpatialBorderMedian() function with SpatialSmooth() and BorderMedian() 

options. Growth curves were smoothed with smoothdata() using the rlowess option over a window 

of 48 timepoints (4 hours).  

1.5.4 Data Analysis 

Any colony with fewer than six data replicates in either untreated or UVR-treated 

conditions was removed. Data for colonies appearing >1x on the 6144-plate were regarded as extra 

replicates, resulting in analysis of 4294 unique strains. Due to overgrowth at later timepoints, the 

dataset was restricted to the first 40 hours of growth. Growth curves were normalized to a colony 

intensity of zero (total pixel intensity of colony). End-normalized curves were computed by 

normalizing each curve to its final colony intensity. Plate-specific reference curves were calculated 

as the median curve from all strains on a plate. Deviation profiles were calculated by comparing 

plate-specific reference curves to observed colony curves. LagVstall was computed from deviation 

profiles as the sum of distances between a given endpoint-normalized curve and the reference 

curve for that plate. Colony fitness was extracted as the final colony intensity of each colony on 

plates. LagVstall and colony fitness were Z-scored using MATLAB’s normalize() function with 
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‘robust’ settings, which normalizes to a median absolute deviation of 1. Colony intensities or 

lagVstall were compared between UVR-treated and untreated conditions using ttest2(), and q-

values were calculated using mafdr(), based on a previously defined method (Storey et al. 2002). 

Both q-values and uncorrected p-values are reported. Figures with shaded standard deviation 

around growth curves were generated with a modification of stdshade() (Musall 2010). 

1.5.5 GO Term Enrichment, Other Gene Set Enrichment 

The dataset was filtered for the 95th and 5th percentiles of untreated lagVstall, resulting in 

215 genes from each tail. These gene sets (Table 1.2) were tested for Gene Ontology (GO) term 

enrichment by hypergeometric test using MATLAB’s hygepdf(). Significant GO terms were 

selected at an q-value cutoff of 0.05 (adjusted as described previously).  Fold enrichment was 

calculated as the frequency of the term in the nominated strains divided by the frequency of the 

term in the overall dataset. Genes not present in the screen were not considered. Only enriched GO 

Biological Process terms are reported. GO Biological Process terms used for enrichment analysis 

were obtained from the GO Consortium (2020-01-01, doi:10.5281/zenodo.2529950).  

DDR and mitochondrion-annotated gene sets were queried using YeastMine (Balakrishnan 

et al., 2012; Cherry et al., 2012). Specifically, the GO terms “mitochondrion” and “DNA damage 

response” (and children of these terms), as well as the phenotype “UV Resistance Reduced” were 

queried. Other gene sets were obtained from the indicated resources (Figure 3, Table 1.4). 

Hypergeometric tests and fold enrichment analysis were performed as described above. Genes not 

present in the screen were not considered. Three-way Venn diagrams were created with EulerAPE 

(Micallef & Rodgers, 2014). 

https://paperpile.com/c/W0UBOP/A16z0+gbBoe
https://paperpile.com/c/W0UBOP/A16z0+gbBoe
https://paperpile.com/c/W0UBOP/2gZwu
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1.5.6 YeastNet Visualization 

YeastNet v.3 (Kim et al., 2014) was downloaded and visualized in Cytoscape 3.8.0 

(Shannon et al., 2003). The network was subsetted for genes nominated by either colony fitness 

or lagVstall. Note that these networks are slightly smaller than the full gene sets nominated in our 

screen due to YeastNet’s lack of ‘dubious ORFS’ (222/247 colony and 295/326 genes nominated 

by colony fitness and lagVstall, respectively). Edges with weights < 1.5 were filtered. GO 

enrichment was performed and visualized on these subnetworks using BinGO (Maere et al., 2005). 

Alternatively, gene sets of interest were queried on YeastMine and visualized on the network.  

1.5.7 Supplemental methods 

1.5.7.1 Yeast Strain Identification Strategy 

We designed a next-generation sequencing strategy to identify strains present in the diploid 

yeast knockout library. Sequencing libraries were constructed in two sequential PCR reactions, 

yielding amplicons with three variable regions: Barcode #1 (eight base pair well location identifier 

plus a random 12 base-pair unique molecular identifier), the 20 base pair UPTAG sequence 

(corresponding to mutant strain) and Barcode #2 (eight base pair source plate identifier) (Figure 

S1A). PCR #1 amplified the UPTAG sequence flanking the KANMX locus of each yeast strain 

while incorporating Barcode #1. PCR #2 attached adapter sequences necessary for binding and 

amplification in Illumina sequencing technology, while simultaneously incorporating Barcode #2. 

Combining Barcode #1 with the UPTAG allowed us to uniquely identify strains and their plate 

locations. Barcode #2 permitted deconvolution of PCR duplicates from genomic counts. All 

primers used in this study have been included as a supplemental table (Supplemental table 1.2).  

https://paperpile.com/c/W0UBOP/A9w65
https://paperpile.com/c/W0UBOP/g8Bqn
https://paperpile.com/c/W0UBOP/PDHNB
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1.5.7.2 Yeast Library Maintenance and Library Preparation 

Strains were grown at 30C in 96-well format in liquid YPAD with G418 selection. Crude 

genomic DNA was extracted via zymolyase digestion of cultures diluted in PBS. 10µL PCR #1 

reactions (per well, GBioSciences 786-449)) were performed using crude genomic DNA extract 

and primers as discussed above. PCR #11 products were pooled by plate, column-purified (NEB 

T1030L) and bead-cleaned (Beckman Coulter A63881) at an 0.8:1 ratio to remove primer dimer. 

Primer dimer removal was assessed via BioAnalyzer; bead cleaning was repeated if necessary. 

Amplicons were normalized by concentration (dsDNA HS Qubit Assay, Thermo Fisher, Q32851). 

10uL PCR-2 reactions were performed (per yeast library plate, KapaHiFi HotStart ReadyMix, 

KK2602) using NEBNext® Multiplex Oligos for Illumina sets 1 and 2 (E7335L and E7500L). 

Column purification, bead cleaning and BioAnalyzer quality control were repeated; products were 

quantified. In most cases, primer dimer was significantly reduced or eliminated. PCR #2 products 

were pooled at equimolar amounts and then diluted to 40pM with 10% or 2% PhiX (Illumina, FC-

110-3001) in a 150uL mix. iSeq 100 i1 Reagent cartridges (Illumina, 20021533) were thawed at 

4C for 48 hours prior to sequencing. Diluted library was loaded into cartridges according to iSeq 

onscreen instructions and paired-end sequencing was performed over three separate runs of the 

Illumina iSeq.  

1.5.7.3 Data Analysis 

A read alignment approach was used to distinguish knockout strains present in each well 

from the raw sequencing data. First, we constructed a reference sequence for all expected knockout 

strains in the library by concatenating the following: well-specific barcoded primers (Supplemental 

table 1.2), the expected UPTAG region, and KANMX sequence common to all strains. The 

resulting reference sequence comprised approximately 12,000 different possible contigs. Raw 
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sequencing reads were aligned to the custom reference sequence with Bowtie2. Bowtie2 is well-

adapted to confront small indels that may have been introduced during library preparation, as well 

as degenerate reference sequences such as those arising from the barcoding strategy used here. 

UPTAG sequences were extracted as the subsequence aligning to the expected regions of the 

reference and were filtered on a Levenshtein distance of less than 2 from the expected guide 

sequence. Likewise, well-specific barcodes incorporated in PCR1 (denoting strain locations in the 

library) were extracted from the variable region flanking the common primer sequence. Strain 

counts were tallied per well location, resulting in normalized frequencies which were used to 

classify the strain or mixture of strains present in each well. 

Most wells (90%) exhibited at least 30 sequencing reads per well (Figure S1B). Wells with 

<30 were often found to lack yeast growth (not shown). Strain identities determined via sequencing 

were compared to strain identities annotated by the library distributor. In cases where mismatches 

occurred, two metrics were considered. Read Proportion (RP) represents the number of reads 

obtained from a well that can be attributed to a single strain. RP is subject to PCR quality, as primer 

dimer can contribute non-meaningful reads. Chastity Score (CS) represents the proportion of reads 

from the top three strains identified in any well that can be attributed to a single strain. CS is robust 

to PCR quality, as only reads attributable to the top three strains are considered; CS can be 

considered a measurement of well contamination/mixing. CS and RP cutoffs were used to define 

which wells exhibited high enough sequencing quality to warrant re-assignment of strain identity 

annotation in cases where expected and observed annotations differed. For wells with >100 reads, 

cutoffs of 0.6 for CS and 0.5 for RP were used; for wells with 30 > n > 100 reads, cutoffs of 0.8 

for CS and 0.5 for RP were used (Figure S1C). No wells with fewer than 30 reads per well were 
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re-assigned. 316 strain identities were re-assigned as a result of this approach, totaling to 4467 

unique strains in the library (Figure S1D). 

  



18 

 

1.7 Figures 

 

Figure 1.1: UVR Screen Pipeline. 

A) Schematic describing the UVR sensitivity screen. Plates were pinned and imaged for four hours 

at 5-minute intervals. Plates were then treated with UVR and imaging was resumed for 36 hours 

at 5-minute intervals. Growth curves were extracted and analyzed, resulting in the nomination of 

326 genes by lagVstall (q-value cutoff = 0.05) and 247 strains by colony fitness (q-value cutoff = 

0.05), with an overlap of 79 genes. B) Heatmap of growth curves obtained for all strains in 

untreated conditions. Purple and green coloring represent timepoints when a given curve existed 

above or below the median of all strains in the screen. C) Colony intensity (plate-normalized total 

pixel intensity) versus time curves for a subset of ten strains and two strains of interest, msr1Δ and 

rpl37aΔ. Average curves are shown; shaded areas represent standard deviation. D) Endpoint-

normalized growth curves for previously noted strains, reflecting progress to final colony intensity. 

E) Deviation profiles for previously noted strains. F) Median of non-treated replicate Z-scores for 

lagVstall versus colony fitness (normalized pixel area).   
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Figure 1.2: LagVstall Phenotypes. 

A) Deviation profiles for strains with extreme lagVstall. Average curves are shown; shaded area 

represents standard deviation of each group of 214 strains. B) Colony intensity (plate-normalized 

total pixel intensity) versus time. C) Growth rate (dPI/dT; PI, pixel intensity) versus time.  

  



20 

 

 

Figure 1.3: UVR-responsive Strains.  

A) Chart demonstrating results of gene set fold enrichments on strains nominated by colony fitness 

(CF) and lagVstall (LVS). Shading denotes significant result by hypergeometric test; cells with 

under-enriched or non-significant results have been left blank. Full results can be found in Table 

1.4, B, C) CF and LVS-specific subnetworks of YeastNet V3, respectively, with edge weight 

thresholded to ≥ 1.5. Green denotes mitochondrial annotation; black border denotes annotation to 

mitochondrial ribosome. Pink denotes DDR-annotation. Yellow denotes components of the CCR4-

NOT complex.  
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Figure 1.4: Characteristics of DDR and mitochondrial strains in response to UVR. 

A) Histogram of change in colony fitness (UVR - Untreated Z-scores). B) Histogram of change in 

lagVstall (UVR-Untreated Z-scores). C, D) Growth curves for def1Δ (red curves) and mrpl6Δ 

(green curves), respectively. Shaded area represents standard deviation; black line represents 

median curve for all strains in screen. i, Colony intensity (plate-normalized total pixel intensity) 

versus time in untreated conditions; ii, Growth rate (dPI/dT) versus time in untreated conditions; 

iii, Colony intensity (plate-normalized total pixel intensity) versus time in UVR-treated conditions; 

iv, Growth rate (dPI/dT) versus time in UVR-treated conditions.  
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1.8 Supplemental figures 

 

Supplemental Figure 1.1: Diploid library strain identification via barcode sequencing. 

A) Schematic demonstrating PCR and sequencing strategy. Barcode 1 contained eight bp 

specifying well location and a 12 base pair unique molecular identifier. Barcode 2 was an Illumina 

index barcode that was used to identify the source plate. B) Pie chart demonstrating number of 

reads per well across ~6000 wells in the library, demonstrating that most wells had at least 30X 

coverage. Wells with <30 were found to lack yeast growth (not shown). C) Scatter plot of read 

proportion (RP) versus chastity score (CS). Shaded blue area represents RP and CS cutoffs for 

wells with ≥ 100 reads. Shaded green area represents more stringent RP and CS cutoffs for wells 

with 30 ≤ reads < 100. D) The cutoffs described above resulted in correction of strain annotation 

for 316 wells, totaling to 4467 unique strains.  
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Supplemental Figure 1.2: Summary of screen quality. 

A) Chart demonstrating replicate correlation (strain-to-strain Pearson correlation across replicates) 

of diploid screen for all strains, annotated UV-sensitive strains, and DDR-annotated strains. Note 

decreases in correlation for UV-sensitive and DDR-annotated strains upon comparison of 

untreated and UVR-treated replicates, indicating that UVR treatment produced a response in 

lagVstall for these gene sets. B) Line chart demonstrating the number of strains versus p or q-

values. C) Magnification for top 500 strains from C.  
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Supplemental Figure 1.3: DDR and Mitochondrial strains of interest. 

A, B) 3-way, area-proportional Venn diagrams demonstrating overlap between CF and LVS-

nominated gene sets with the DDR and mitochondrion-annotated gene sets, respectively. C) LVS-

specific subnetwork of YeastNet V3 with edge weight thresholded to ≥ 1.5. Black node border 

denotes predicted human ortholog, green node border denotes established human 

complementation, yellow nodes denote CCR4-NOT complex components, blue nodes denote 

tRNA wobble modification components, and orange nodes denote autophagy components.
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1.9 Tables 

Table 1.1: Primers used in this study 

Primer Sequence (5' → 3') 

UP_R_0 
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCGTGCGG 

CCATCAAAATGTAT 

UP_R_2 
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTATGGGC 

TAAATGTACGGGCGA 

Barcode Primers Plate 1 See “Supplemental table 1.2”, tab “Barcode_Primers_Plate_1” 

Barcode Primers Plate 2 See “Supplemental table 1.2”, tab “Barcode_Primers_Plate_2” 

Table 1.2: Lag and Stall Gene Sets 

Lag 

YAL021CYAL021C, YAL047C, YBR015C, YBR035C, YBR106W, YBR126C, YBR181C, 

YBR255W, YBR267W, YCL007C, YCL016C, YCL058C, YCL062W, YCR009C, 

YCR020W-B, YCR028C, YCR031C, YCR077C, YDL013W, YDL035C, YDL063C, 

YDL081C, YDL083C, YDL115C, YDL116W, YDL117W, YDL136W, YDL151C, YDL160C, 

YDL191W, YDR004W, YDR101C, YDR127W, YDR140W, YDR159W, YDR161W, 

YDR173C, YDR174W, YDR176W, YDR207C, YDR226W, YDR245W, YDR293C, 

YDR369C, YDR386W, YDR432W, YDR433W, YDR496C, YEL027W, YEL028W, 

YEL031W, YEL036C, YEL044W, YEL045C, YEL046C, YER014W, YER095W, YFR001W, 

YFR040W, YGL007W, YGL031C, YGL054C, YGL072C, YGL076C, YGL078C, YGL088W, 

YGL105W, YGL244W, YGR078C, YGR081C, YGR104C, YGR105W, YGR148C, 

YGR159C, YGR160W, YGR162W, YGR262C, YGR272C, YHR010W, YHR021C, 

YHR031C, YHR039C-B, YHR060W, YHR066W, YHR081W, YHR151C, YHR154W, 

YHR178W, YIL090W, YIR026C, YJL047C, YJL115W, YJL121C, YJL124C, YJL127C, 

YJL179W, YJL197W, YJL204C, YJR032W, YJR055W, YJR073C, YJR105W, YJR118C, 

YKL006W, YKL048C, YKL054C, YKL073W, YKL098W, YKL118W, YKL204W, 

YKR057W, YKR074W, YKR099W, YLL002W, YLR048W, YLR056W, YLR061W, 

YLR062C, YLR065C, YLR068W, YLR074C, YLR087C, YLR185W, YLR192C, YLR200W, 

YLR235C, YLR264W, YLR358C, YLR370C, YLR384C, YLR388W, YLR402W, YLR403W, 

YLR412W, YLR435W, YLR448W, YML010C-B, YML024W, YML032C, YML036W, 

YML121W, YMR032W, YMR116C, YMR126C, YMR142C, YMR153C-A, YMR179W, 

YMR190C, YMR202W, YMR230W, YMR243C, YMR269W, YMR312W, YNL025C, 

YNL059C, YNL077W, YNL079C, YNL139C, YNL183C, YNL212W, YNL225C, YNL227C, 

YNL228W, YNL246W, YNL248C, YNL250W, YNL271C, YNR052C, YOL002C, YOL003C, 

YOL004W, YOL039W, YOL051W, YOL063C, YOL086C, YOL121C, YOR001W, 

YOR026W, YOR078W, YOR080W, YOR096W, YOR140W, YOR247W, YOR270C, 

YOR308C, YOR309C, YOR331C, YOR380W, YPL032C, YPL070W, YPL087W, YPL091W, 

YPL107W, YPL127C, YPL159C, YPL195W, YPL206C, YPL236C, YPL240C, YPR030W, 

YPR032W, YPR042C, YPR043W, YPR059C, YPR100W, YPR101W, YPR129W, YPR131C, 

YPR134W, YPR138C, YPR152C, YPR158W, YPR160W, YPR163C 
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Table 1.2: Lag and Stall Gene Sets (Continued) 

Stall 

YAL039C, YBL007C, YBL019W, YBL021C, YBL045C, YBL080C, YBL090W, YBR163W, 

YBR251W, YBR268W, YCL029C, YCR003W, YCR028C-A, YCR046C, YCR047C, 

YCR071C, YDL032W, YDL033C, YDL044C, YDL045W-A, YDL056W, YDL069C, 

YDL090C, YDL107W, YDR065W, YDR079W, YDR114C, YDR116C, YDR148C, 

YDR175C, YDR194C, YDR197W, YDR204W, YDR234W, YDR237W, YDR296W, 

YDR298C, YDR322W, YDR332W, YDR337W, YDR350C, YDR375C, YDR377W, 

YDR405W, YDR408C, YEL024W, YEL050C, YER017C, YER028C, YER050C, YER052C, 

YER058W, YER061C, YER068C-A, YER068W, YER070W, YER077C, YER087W, 

YER122C, YER141W, YER153C, YER154W, YFL018C, YFL036W, YGL064C, YGL107C, 

YGL129C, YGL135W, YGL143C, YGL154C, YGL218W, YGL237C, YGR076C, YGR101W, 

YGR102C, YGR112W, YGR150C, YGR165W, YGR171C, YGR174C, YGR208W, 

YGR215W, YGR220C, YGR222W, YGR255C, YHL005C, YHL038C, YHR008C, 

YHR011W, YHR013C, YHR038W, YHR051W, YHR067W, YHR091C, YHR116W, 

YHR120W, YHR147C, YHR168W, YIL070C, YIL093C, YIR034C, YJL003W, YJL023C, 

YJL046W, YJL063C, YJL088W, YJL096W, YJL102W, YJL166W, YJL180C, YJL209W, 

YJR113C, YJR120W, YJR122W, YKL003C, YKL016C, YKL055C, YKL109W, YKL134C, 

YKL148C, YKL155C, YKL169C, YKL170W, YKL208W, YLL006W, YLL009C, YLL027W, 

YLR027C, YLR067C, YLR069C, YLR083C, YLR091W, YLR139C, YLR149C, YLR202C, 

YLR218C, YLR260W, YLR270W, YLR295C, YLR312W-A, YLR369W, YLR382C, 

YLR393W, YLR439W, YML022W, YML061C, YML081C-A, YML090W, YML110C, 

YML129C, YMR038C, YMR064W, YMR097C, YMR098C, YMR135W-A, YMR138W, 

YMR158W, YMR166C, YMR188C, YMR193W, YMR201C, YMR228W, YMR257C, 

YMR282C, YMR286W, YMR287C, YMR293C, YNL003C, YNL005C, YNL184C, 

YNL252C, YNL315C, YNR020C, YNR036C, YNR037C, YNR045W, YOL007C, YOL032W, 

YOL085C, YOL100W, YOR037W, YOR065W, YOR124C, YOR129C, YOR147W, 

YOR183W, YOR186W, YOR192C, YOR199W, YOR200W, YOR209C, YOR220W, 

YOR322C, YOR352W, YOR367W, YPL057C, YPL072W, YPL078C, YPL081W, YPL098C, 

YPL104W, YPL119C, YPL132W, YPL148C, YPL173W, YPL174C, YPL183W-A, 

YPL188W, YPR046W, YPR098C, YPR099C, YPR115W, YPR166C, YPR189W,  
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Table 1.3:  Lag and Stall Gene Set Biological Process Enrichment 

GO Biological Process Terms Enriched in Lag 
Fold 

Enrichment 
Category 

GO:0000028 ribosomal small subunit assembly 5.44 

Ribosome 

Biogenesis 

GO:0000462 
maturation of SSU-rRNA from tricistronic rRNA 

transcript 
4.72 

GO:0006364 rRNA processing 4.52 

GO:0042254 ribosome biogenesis 4.90 

GO:0042273 ribosomal large subunit biogenesis 5.07 

GO:0017148 negative regulation of translation 7.00 
Translation 

GO:0002181 cytoplasmic translation 3.43 

GO Biological Process Terms Enriched in Stall 
Fold 

Enrichment 
Category 

GO:0009060 aerobic respiration 5.10 

Respiration 

GO:0033615 
mitochondrial proton-transporting ATP synthase 

complex assembly 
6.39 

GO:0033617 
mitochondrial respiratory chain complex IV 

assembly 
4.49 

GO:0043457 regulation of cellular respiration 18.37 

GO:0006754 ATP biosynthetic process 15.31 

GO:0070131 positive regulation of mitochondrial translation 8.17 
Mitochondrial 

Translation GO:0032543 mitochondrial translation 8.48 

GO:0000002 mitochondrial genome maintenance 4.49 

GO:0006412 translation 2.71 Other 
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Table 1.4: Overview of Screen Results and Gene Set Enrichments 

  40-Hr Dataset 24-Hr Restricted Dataset 

Metric Colony Fitness LagVStall Colony Fitness LagVStall 

q-value Threshold 0.05 0.05 0.05 0.05 

Strain.s. 

Nominated 
247 326 134 233 

Gene Set Fold Enrichmentsa 

DNA Damage 

Response 

(Total n = 191) 

5.64** 

(n = 62) 

2.28** 

(n = 33) 

7.89** 

(n = 47) 

4.25** 

(n = 44) 

Nucleotide 

Excision Repair 

(Total n = 27) 

10.30** 

(n = 16) 

4.39** 

(n = 9) 

14.24** 

(n = 12) 

7.51** 

(n = 11) 

UV Sensitivity 

(Total n = 250) 

3.55** 

(n = 51) 

2.32** 

(n = 44) 

4.74** 

(n = 37) 

3.61** 

(n = 49) 

Mitochondrion 

(Total n = 796) 

1.31* 

(n = 60) 

2.00** 

(n = 121) 
n.s. n.s. 

Cell-cycle-

regulated  

(Total n = 772) 

n.s. n.s. 
1.53** 

(n = 37) 

1.12* 

(n = 47) 

DDR-induced 

Phosphorylation 

(Total n = 93) 

2.43** 

(n = 13) 
n.s. 

2.41* 

(n = 7) 
n.s. 

Environmental 

Stress Response 
n.s. n.s. n.s. n.s. 

a Fold enrichments are reported for gene sets identified at q-value cutoffs listed in row 3, 

corresponding to the no. of significant genes 

* p < 0.05 

** p < 0.01 

n.s. - not significant 

 

1.9.1 Data Availability 

The following items have been included as supplemental files in GSA Figshare 

(https://doi.org/10.25387/g3.12685667): Descriptions of supplemental files (File_S1), 40-hour 
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dataset (File_S2) including all pre-processed (spatially-corrected) and normalized replicate colony 

intensities; 24-hour restricted dataset (File_S3), scripts used for data processing (File_S4,5), and 

scripts required to reproduce figures presented in this paper (File_S6,7). The MATLAB Colony 

Toolkit Analyzer V2 software is available on GitHub (https://github.com/idekerlab/Matlab-

Colony-Analyzer-Toolkit-v2.git). The following items are available upon request: raw image files 

in TIFF format, preliminary processed datasets, scripts used in image processing and plate 

normalization, and sequencing files/scripts for library strain identification. 
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CHAPTER 2: Understanding palbociclib response via data-driven map of cancer protein 

complexes 

2.1 Abstract 

Palbociclib, an inhibitor of cyclin-dependent kinases CDK4 and CDK6, has revolutionized 

advanced breast cancer therapy, with approximately 50% of patients failing to respond. To better 

understand these differential outcomes, we have constructed an interpretable deep learning model 

of palbociclib response based on a recent map of multi-protein complexes in cancer. The model 

selects 40 complexes which integrate alterations in hundreds of genes to powerfully stratify 

palbociclib-sensitive versus resistant cancer cell lines (odds ratio 40, high-confidence predictions). 

Predictions translate to patients, differentiating sensitive from resistant tumors (median survival 

difference 17 months), in contrast to single-gene biomarkers which do not translate. We interrogate 

13 complexes with CRISPR/Cas9, identifying 8 in which genetic disruptions modulate growth 

combined with CDK4/6 knockout. Validated complexes relate to cell-cycle control, growth factor 

signaling, chromatin regulation, and PML bodies. For example, 45% of tumors harbor alterations 

in a 14-protein EGF/FGF signaling complex, promoting resistance. 

2.2 Introduction 

 

While cell-cycle entry is tightly controlled in normal cells, cell-cycle activation and 

sustained proliferation are hallmarks of cancer (Hanahan & Weinberg, 2000). Cyclin-dependent 

kinases 4 and 6 (CDK4 and CDK6) signal cells to pass the G1/S restriction point by inhibitory 

phosphorylation of retinoblastoma protein (pRB) and its paralogs, thus freeing cells to begin the 

S-phase transcriptional program. Palbociclib, a selective CDK4/CDK6 inhibitor, has been 

approved in combination with endocrine therapy for the treatment of hormone receptor-positive, 
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38 

 

human epidermal growth factor receptor 2-negative (HR+, HER2–) advanced breast cancer (BC). 

It has dramatically improved BC treatment, increasing progression-free and overall survival with 

relatively few side effects (Deng et al., 2020; Portman et al., 2019; Rinnerthaler et al., 2018; Xu 

et al., 2021). On the other hand, an objective response is observed in as few as 50% of patients 

who receive palbociclib as first line therapy (Rubio et al., 2019), and we are only beginning to 

understand the molecular mechanisms that underlie this response rate.  

The current understanding of intrinsic and adaptive resistance mechanisms largely divides 

into two groups of molecular alterations: alterations to anti-proliferative genes such as 

CDKN2A/B/C or RB1, versus alterations to pro-growth genes such as CDK2, CDK4/6, CCND1, 

CCNE1, E2F, or PIK3CA. Genetic alterations in these markers have been thus far described 

predominantly in preclinical in-vitro studies, with clinical evidence mostly limited to retrospective 

analyses and producing inconsistent results (Asghar et al., 2022; Xu et al., 2021). RB1 bears the 

strongest burden of evidence: RB1 deficiency has been extensively associated with CDK4/6 

blockade resistance in cell lines and poor treatment responses in BC patients (Asghar et al., 2022; 

McCartney et al., 2019).  

Recently, deep learning has arisen as a powerful general methodology in predictive 

medicine, including the use of molecular profiles to predict drug responses (Adam et al., 2020; 

Rafique et al., 2021). However, such models are typically trained to maximize the accuracy of 

predicting an outcome (e.g. whether a patient will respond to a drug), without attempting to model 

the internal cellular and molecular mechanisms by which that outcome is achieved. It is therefore 

notoriously difficult to interpret which molecular features are relevant for predictions, and even 

more so to describe how these features integrate with one another in the molecular logic of protein 

complexes and pathways (Watson et al., 2019; Yu et al., 2018). To create models that are both 
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predictive and interpretable, we and others have recently advanced a series of “visible” neural 

network (VNN) architectures (Chen et al., 2018; Deng et al., 2020; Elmarakeby et al., 2021; Hao 

et al., 2018; Kuenzi et al., 2020; Ma et al., 2018) that are guided by knowledge maps of cellular 

components and functions. For example, using such a model, Elmarakeby et al. found that 

metastatic outcomes in prostate cancer were well-predicted by convergent genetic alterations 

within a TP53–associated pathway including alterations in MDM2 and MDM4. Follow-up 

experiments demonstrated that MDM4 expression was associated with anti-androgen therapy 

resistance and cell proliferation, supporting MDM4 as a therapeutic target (Elmarakeby et al., 

2021). The prime advantage of these models is not only that they can make accurate predictions 

of tumor drug responses, but also that they are readily interpretable. 

Thus far, such models have consulted Gene Ontology (Gene Ontology Consortium, 2021) 

or Reactome (Gillespie et al., 2022), general literature-curated databases of cellular components 

and functions that have not been explicitly designed to capture the molecular pathways of cancer. 

To define cancer mechanisms systematically, including those not previously identified, we 

recently created a hierarchical map of multi-protein complexes in cancer called NeST (Nested 

Systems in Tumors) (Zheng et al., 2021). To build this map, we used affinity purification mass 

spectrometry (AP-MS) to systematically map cancer protein interactions, which were then 

integrated with information from other sources to build a large protein interaction network. 

Structural analysis of this network revealed a hierarchy of protein complexes, in which small, 

specific assemblies of proteins nest within larger communities corresponding to broad processes 

and organelles. NeST was defined as the final set of 395 complexes found to be under significant 

selection pressure for somatic mutations in one or more adult tumor types (Figure 1a, (Zheng et 

al., 2021)).  

https://paperpile.com/c/b49EQA/awl92+0vRrl+ahcqJ+zV9fd+6ZQmd+jcxfA
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Here, we use NeST as the foundation for an interpretable deep learning approach to 

understand the genetic architecture of the palbociclib drug response. 

2.3 Results 

2.3.1 Implementation of a cancer-oriented visible neural network 

We first queried NeST (Zheng et al., 2021) to identify protein complexes that contained 

genes commonly assessed on clinical cancer gene panels (Methods), including the FoundationOne 

CDx, Tempus xT, PALOMA-3 trial (Lira et al., 2017) and Project GENIE (Smyth et al., 2020) 

panels (total genes n=718). This set of genes yielded a hierarchy of 131 NeST complexes. The 

architecture of this hierarchy was used to guide neuron connections between complexes, each of 

which was represented by a bank of neurons, producing a model which we call NeST-VNN (Figure 

1b). To train the model, we harmonized data from versions one and two of the Cancer Therapeutics 

Response Portal (CTRP) (Basu et al., 2013; Seashore-Ludlow et al., 2015) and the Genomics of 

Drug Sensitivity in Cancer (GDSC) (Garnett et al., 2012; Iorio et al., 2016), extracting a single 

metric–area under dose response curve (AUC)–as the response variable. We formulated NeST-

VNN to accept three feature types for each sample: mutation, copy number amplification (CNA) 

and copy number deletion (CND). These alterations were integrated through the hierarchy of 

protein complexes in NeST-VNN, flowing first through small focal complexes (e.g. CDK 

holoenzyme complex I) to affect increasingly larger complexes and super-assemblies (e.g., the 

extended network governing cell cycle), finally producing a drug response prediction at the root 

of the hierarchy, corresponding to the output of the model (Methods, Figure 1b). The output signal 

for each complex in the hierarchy, which we refer to as in silico activity, is tuned to optimize 

prediction accuracy; these in silico activities can be interrogated during model interpretation 

(Figure 1b). 

https://paperpile.com/c/b49EQA/8L1LM
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2.3.2 Evaluation of prediction performance 

To provide a comprehensive performance evaluation of NeST-VNN, we trained separate 

models to predict the cell-line responses to 51 different therapeutic compounds. Each drug 

response model was assessed using five-fold nested cross-validation, with each fold setting aside 

64% of data for training, 16% for validation, and 20% for testing (Methods). We assessed the 

predictive performance of NeST-VNN by examining the Pearson correlation between model-

predicted AUC and true AUC, comparing this performance with three state-of-the-art alternate 

models: ElasticNet, Random Forest, and a conventional (black box) artificial neural network 

(Figure 2a). We observed that NeST-VNN was the best performing model for 27 out of 51 drugs 

(Figure 2a).  

One of the top-performing NeST-VNN models was for palbociclib, outperforming all state-

of-the-art competitors  (Figure 2a, ρ=0.53, all other models ρ≤0.46). To further characterize model 

performance, we thresholded the AUC prediction to classify drug response explicitly. In particular, 

predictions greater than one standard deviation above the median AUC were classified as 

“resistant” (~16% of samples given that AUC is approximately normally distributed, see Figure 

X), less than one standard deviation below the median as “sensitive” (~16% of samples), and 

otherwise as “indefinite” (~68% of samples). Discriminating sensitive from resitant samples in 

this way yielded a very high diagnostic odds ratio of 40.2, meaning that samples predicted as 

resistant were ~40 times more likely to test into this category than samples predicted as sensitive 

(Figure 2c). We also considered an alternative binary classification whereby all samples were 

classified as resistant or sensitive based on whether the AUC was greater, or less than, the median, 

yielding an odds ratio of 5.8. While the primary advantage of NeST-VNN is its interpretability, 
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we concluded that NeST-VNN has either state-of-the-art or superior performance characteristics 

in response prediction for multiple drugs, including palbociclib. 

2.3.3 Protein complexes important to the palbociclib drug response 

Having evaluated the overall performance of the palbociclib model, we next sought to 

understand which complexes in NeST-VNN were most important for palbociclib response 

predictions. Following a previous method (Elmarakeby et al., 2021; Kuenzi et al., 2020; Ma et al., 

2018), we reasoned that the in silico activity of important complexes should be predictive of drug 

response, while such a relationship would not be observed for unimportant complexes (Methods). 

We therefore computed this predictive ability for the in silico states of every complex and 

visualized the results on the NeST-VNN hierarchy (Figure 3a, Methods). Complexes in all 

branches of the NeST-VNN were highlighted to varying degrees of importance. As a type of 

positive control, we expected that some of these complexes would contain the primary palbociclib 

drug targets (CDK4 and CDK6). Indeed, all eight complexes containing CDK4 or CDK6 were of 

higher importance than most other systems (green markers, Figure 3b). In addition, we noted an 

additional 32 complexes of equivalent or greater importance that did not contain CKD4 or CDK6 

(Figure 3a,b). We also noted that importance of a component tended to increase with the depth and 

size of that component in the hierarchy, reflecting that information from the input layer was 

progressively integrated to boost the signal at each subsequent layer of the network. For example, 

all seven complexes encoded by more than 100 genes had an importance score of 0.7 or more. 

Taking these observations together, we concluded that palbociclib drug response is not driven 

solely by the CDK4/6 signaling axis but by the integration of genetic alterations across at least 40 

protein complexes functioning in diverse aspects of cancer transcription, signaling, and other 

pathways. 

https://paperpile.com/c/b49EQA/awl92+6ZQmd+0vRrl
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2.3.4 Evaluation of biological meaning of in silico activities 

We next sought to validate whether the in silico activity of a system is reflective of actual 

biological activity. One such measure can be derived from the Cancer Cell Line Encyclopedia 

reverse phase protein array (RPPA) data, which measures the abundance and phosphorylation 

states across many proteins and cell lines (Ghandi et al., 2019). We first examined the correlation 

of a CDK4/6-containing system (“CDK holoenzyme complex I”, Importance=0.57) with various 

downstream direct (RB1) and indirect (CCNE1, CCNE2) targets of CDK4/6. ‘CDK holoenzyme 

complex I’ is a densely-connected complex of 15 core components of the CDK signaling pathway 

(Figure 3c). RB1 inhibits cell cycle progression by blocking G1/S transcription, while CCNE1/2 

activate a positive feedback loop in favor of G1/S transcription, indicating that these components 

work in opposition to one another during regulation of the G1/S transition (Figure 3d). We 

observed that in silico activity of “CDK holoenzyme complex I” was positively correlated with 

RB1 and negatively correlated with CCNE1/2, but not with controls (Figure 3e). We also examined 

a second important complex (“RAS-RAF-MAPK signaling”, importance=0.34) which was 

independent of the CDK complexes (did not share genes). We observed that the in silico activity 

of the complex was reflective of MAPK signaling activity as measured by phospho-MAP2K1 

(Figure 3f). Together, these findings support the concept that the activities of biological processes 

are accurately captured and represented in the palbociclib model of NeST-VNN.  

2.3.5 Clinical evaluation 

 

Next, we investigated whether the NeST-VNN can be used to stratify BC patients. We first 

determined the in silico drug response in all five palbociclib models for 78 BC patients from project 

GENIE (Smyth et al., 2020) who had been treated with a CDK4/6 inhibitor. Patients were assigned 

to ‘predicted sensitive’ or ‘predicted resistant’. We observed that, among patients with consistent 

https://paperpile.com/c/b49EQA/WYecj
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predictions, those assigned to ‘predicted sensitivity’ had significantly higher survival than those 

assigned to ‘predicted resistant’ (log-rank test p-value=0.05, median survival 44 months sensitive 

versus 26 months resistant, Figure 4a). On the other hand, when we stratified 349 patients who had 

not been treated with a CDK4/6 inhibitor, we observed no prognostic survival difference between 

those predicted sensitive versus resistant (p-value=0.33, median survival 43 months sensitive 

versus 39 months resistant, Figure 4b), suggesting that the NeST-VNN is specifically predictive 

of palbociclib response and not simply prognostic of overall survival. Notably, these predictions 

markedly outperformed single-gene biomarkers such as RB1 mutation/deletion (Figure 4f) or 

CCND1 amplification (Figure 4g), previously suggested markers of palbociclib resistance (Li et 

al., 2018) and sensitivity (DeMichele et al., 2015; Finn et al., 2015), respectively . 

We also assessed the consistency of feature importance when moving between cell line and 

clinical data. We therefore recomputed the importance of each protein complex in making 

predictions on the GENIE clinical dataset (Figure 4c). The importance of protein complexes were 

highly correlated between cell line and clinical data (Spearman rho=0.71, Figure 4d). Notably, 

very little correlation was observed at the level of individual gene alterations (Spearman rho=0.06, 

Figure 5e). One way to explain these results is that genetic alterations in individual genes tend to 

be rare and have variable incidence across contexts; in contrast, the effects of these alterations on 

protein complexes are substantially more stable. The concordance of complexes between clinical 

and cell line contexts supports the use of cell line resources such as GDSC and CTRP to model 

cancer, provided that cancer mechanisms can be sufficiently described in maps such as NeST.  

2.3.6 Directed disruptions to important complexes modulate the anti-CDK4/6 response 

Having established that our model predicts and describes palbociclib response in a 

translatable manner, we hypothesized that important complexes might modulate CDK4/6-

https://paperpile.com/c/b49EQA/9vJQJ
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mediated cell growth. To systematically test this hypothesis, we conducted a dual CRISPR 

knockout (KO) screen in which CDK4 or CDK6 (sgRNA1, Figure 5a) was paired with a panel of 

67 other genes that have been well-studied in our lab (sgRNA2, Figure 5a). For a subset of the 

most important complexes (system importance≥0.4), we examined the fitness of dual KOs (system 

genes paired with CDK4 or CDK6), and compared them to a set of control KO (non-important 

genes paired with CDK4 or CDK6 KO). In MCF7 cells, we found that disruptions in 7 of 13 tested 

systems demonstrated a trend towards increased fitness in the context of CDK4/6 KO (4 systems 

p<0.05, 2 systems p<0.1, Figure 5b,c), while 1 system demonstrated a trend towards decreased 

fitness in the context of CDK4/6 KO (p<0.05, Figure 5b,c). Testing in two additional cell lines 

(MDAMB231 and MCF10A) largely agreed with these findings (Figure 5d). Notably, while RB1, 

a well-known marker of palbociclib resistance, was present in four of the systems with increased 

fitness, it was not present in all, indicating that it is not the sole driver of increased fitness (Tables 

2.1 & 2.2). Together, these results confirm that complexes from the palbociclib model indeed 

modulate cell growth, posing mechanisms primarily of resistance to CDK4/6 inhibition (in this 

case, by genetic KO). 

2.3.7 Role of EGF/FGF and chromatin complexes in the palbociclib response 

 

While CDK4/6-mediated initiation of the G1/S transcriptional program has been well 

characterized, one open question is how components of this signaling cascade, including upstream 

modulators and downstream effectors, affect palbociclib response. We examined in more detail 

two of the assemblies which were both important in cell line and clinical contexts and also 

validated in the dual CRISPR KO screens (Figure 4c and Figure 5d). “EGF/FGF-stimulation of 

cell proliferation” (NeST:132) had importance scores of 0.58 and 0.56 in cell line and clinical 

samples, respectively. The gene components of NeST:132 could be largely categorized into three 
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groups: growth factors, growth factor receptors, and downstream effectors (Figure 6a). We 

interrogated our model to determine how alteration of each gene affected palbociclib response 

predictions (Methods). Notably, we found that most genes, with the exception of EGF and MYC, 

pushed predictions towards resistance. To characterize the integration of gene-level features 

through the system, we assessed the alteration frequency (Figure 6b) and cell line stratification 

performance (Figure 6c) of NeST:132 versus its single gene components. Some gene components 

of NeST:132 were frequently altered (e.g. TP53 33% altered and MYC 10% altered), but exhibited 

poor stratification (TP53 OR=1.07, 95% CI [0.7, 1.8]; MYC OR=1.6, 95% CI [1.1, 2.3]). 

Additionally, some single genes performed well in stratification, but this performance was 

unstable, as evidenced by wide confidence intervals (CI), and the genes were infrequently altered 

(e.g. RB1 7% altered, OR=4.9, 95% CIs [3.3, 7.2]; ERBB4 3% altered, OR=3.6, 95% CI [1.7, 7.8]). 

In contrast, NeST:132 was altered in more than 40% of samples and demonstrated stable 

performance in stratifying palbociclib response (OR=2.8, 95% CI=[2.8, 3.96]). We additionally 

observed that the in silico activity of NeST:132 was correlated with true palbociclib drug response 

(Figure 6d). Together, these results support the role of NeST:132 primarily as a contributor to 

palbociclib treatment resistance.  

Next, we examined NeST:85, a densely-connected complex of 15 gene components 

broadly related to chromatin modification for transcriptional activity. These genes could be 

broadly grouped into three categories with a few outliers: transcription factor activity, histone 

acetylase (HAC) activity, and histone deacetylase (HDAC) activity. Two oncogenes (PML and 

MYC) along with HDAC activity genes (HDAC1, HDAC2, and TBL1XR1) pushed predictions 

towards sensitivity; other genes pushed predictions towards resistance. Again, we observed a 

greater stability of stratification performance (OR=2.85, 95% CI [2.1, 4.0]) and alteration 
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frequency (47%) for the NeST:85 system compared to its individual gene components. NeST:85 

supported its role as a contributor to palbociclib drug response (Figure 6f-h). 

2.4 Discussion

Palbociclib has drastically altered treatment for metastatic breast cancer. However, initial 

resistance and development of resistance during treatment are common; there is a great need to 

better understand the palbociclib drug response. Here, we present the first integration of a data-

driven hierarchical model of cancer cell biology with an interpretable artificial intelligence model 

to predict drug response, a design that facilitates the extraction of cancer-relevant explanations of 

drug response mechanisms. To make a step towards clinical utility, we selected genes currently 

assessed on cancer gene panels as input features. While a previous model demonstrated some 

utility in predicting clinical samples without such a change (Kuenzi et al., 2020), this design choice 

increases the proportion of total input features which can be used in predicting clinical samples 

(50% of features here versus 12% of features in Kuenzi, et. al.), and we demonstrate that our model 

stably discriminates between palbociclib sensitive versus resistant patients.  

By analyzing the in silico activities of each protein complex in NeST-VNN, we identified 

a set of 40 systems which contributed to palbociclib response. Unexpectedly, these systems were 

not solely focused inside of the “Cell cycle” component of the NeST-VNN hierarchy, but were 

instead spread across the model, and even included systems such as “Regulation of immune 

responses” (NeST:18). Interestingly, one study found that inhibition of CDK4/6 stimulated tumor 

cell immunogenicity by increasing antigen presentation and promoting cytotoxic T cell-mediated 

clearance of tumor cells in mice (Goel et al., 2017). It is important to note that, beyond this set of 

40 complexes, virtually every protein complex in NeST-VNN contributes, to some extent, to drug 

response prediction‒even the systems of lowest importance make nonzero contributions. These 

https://paperpile.com/c/b49EQA/0vRrl
https://paperpile.com/c/b49EQA/hMKh1
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findings support the concept that, individually, single genes or even complexes cannot govern 

overall palbociclib response; however these individual effects can combine at higher levels to 

produce the observed drug response. This observation can explain the difficulty in identifying 

single gene biomarkers of palbociclib drug response thus far.  

Here, we specifically highlighted the roles of two systems, NeST:132 (“EGF/FGF-

mediated stimulation of cell proliferation”) and NeST:85 (unnamed). It is not surprising that 

alterations in EGFRs, FGFRs, IGFs, or ERBBs are associated with palbociclib resistance. Indeed, 

other studies have recently demonstrated that acquired alterations of these genes are associated 

with palbociclib resistance. For example, EGFR and ERBB2 have been evaluated in vitro (Pancholi 

et al., 2020) and FGFR1/2 and FGF have been evaluated in vitro and in retrospective tumor 

analyses (Mao et al., 2020) as markers of acquired resistance. Ongoing clinical trials are assessing 

the efficacy of CDK4/6 inhibition in combination with IGF inhibition (NCT03099174) and with 

EGFR inhibition (NCT03065387) in various tumor types. However, we additionally implicate 

ERBB3/4 alteration with palbociclib resistance, as well as demonstrate that these genes can be 

indicative of inherent resistance.  

NeST:85 is an unnamed complex of 15 genes, of which 6 have transcription factor activities 

and 6 modulate histone acetylation. E2F-mediated G1/S transcription is repressed by pRB, which 

recruits HDACs in corepressor complexes to E2F-responsive promoters. Additionally, HDACs 

and HACs can directly modify E2Fs themselves: the HAC protein products of EP300 and 

CREBBP can stimulate E2F activity by acetylation, and this can be reversed by HDAC1. 

Interestingly, loss of HDACs leads to a proliferation defect that can be rescued by loss of 

CDKN1A, and specific loss of HDAC3 results in impaired DNA repair; NeST:85 gene TBL1XR1 

is a component of the HDAC3 complex (Telles & Seto, 2012). Together, these results may explain 

https://paperpile.com/c/b49EQA/1hex1
https://paperpile.com/c/b49EQA/1hex1
https://paperpile.com/c/b49EQA/hDa5E
https://paperpile.com/c/b49EQA/SgQt6
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why alterations in the HAC genes EP300 and CREBBP are most strongly associated with 

resistance, while alterations in HDACs are associated with sensitivity. Indeed, one study 

demonstrated synergy between CDK4/6 inhibition and HDAC inhibition in mantle cell lymphoma 

(Chaturvedi et al., 2019). In partial overlap with our study, which indicated that CREBBP deletion 

was associated with palbociclib resistance while mutation was associated with sensitivity, another 

investigation has associated CREBBP loss with sensitivity to CDK4/6 inhibition (Peck et al., 

2021). To our knowledge, associations of palbociclib drug response with genetic alterations of 

other HAC/HDAC genes (EP300, HDAC1, HDAC2, and TBL1XR1) have not yet been reported. 

In vitro reports have found that high c-myc expression was associated with resistance (Ji et al., 

2020), we found that MYC alterations (specifically mutation and deletion) were strongly associated 

with sensitivity. Lastly, we note that the steroid receptor AR was associated with resistance. 

Recently, a phase II clinical trial of an androgen receptor blocker in combination with palbociclib 

in triple negative breast cancer reported promising preliminary results with a number of patients 

progression free at six months (Gucalp et al., 2020). Together, these findings support our model’s 

ability to highlight molecular mechanisms underlying drug responses as well as suggest potential 

synergistic treatment approaches.  

Deep learning approaches have much to offer to the field of precision oncology. 

Interpretable methods, in particular, present an exciting opportunity to aid researchers and 

clinicians alike by mediating our understanding of the complex processes governing cancer 

therapeutic response. Given these potential applications, work is ongoing in our lab to examine 

how interpretable approaches might be expanded to transfer learning, thus enabling better 

prediction in clinical scenarios, where data is sparse.  

https://paperpile.com/c/b49EQA/v4sV6
https://paperpile.com/c/b49EQA/OPMqo
https://paperpile.com/c/b49EQA/OPMqo
https://paperpile.com/c/b49EQA/Dr2wL
https://paperpile.com/c/b49EQA/Dr2wL
https://paperpile.com/c/b49EQA/fVj8t
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2.5 Methods 

2.5.1 Data preparation 

Drug response data were retrieved from the GDSC and CTRP (Basu et al., 2013; Garnett 

et al., 2012; Iorio et al., 2016; Seashore-Ludlow et al., 2015). These data covered a total of 692,859 

cell line drug pairs, comprising 1244 cell lines and 888 drugs. The data from the two datasets were 

harmonized as follows. Until successful, each molecule’s published name, synonym, or SMILES 

string was queried using PubChemPy, and the corresponding associated InChiKey was extracted 

and stored. Duplicate drugs (within or between datasets) were then matched with one another using 

InChiKeys, and PubChemPy was used to extract isomeric SMILES strings. Compounds with no 

matches were occasionally manually annotated. We next prepared cell viability data. For CTRP, 

the average percent viability files, which have been normalized to vehicle control, were consulted. 

For GDSC1, data were normalized to ‘cells-only’ controls on a per-plate basis. For GDSC2, data 

were normalized to DMSO control wells on a per-plate basis. Data were then averaged across 

replicates. For drug response measurement, we used Area Under dose-response Curve (AUC) 

where AUC = 0 corresponds to complete cell killing and AUC = 1 corresponds to no cell killing; 

AUC > 1 represents a growth advantage conferred by the drug. The calculated AUCs were in 

agreement with previous analyses of the datasets (Pearson correlations of 0.92, 0.83, 0.91, and 

0.91 for CTRP1, CTRP2, GDSC1, and GDSC2, respectively).  

NeST-VNN models are regression-based neural networks that predict AUC from genotype. 

Genotypes in NeST-VNN are input as binary vectors of 718 clinically accessible genes, referred 

to as ‘clinical panel genes’. These genes were assembled from FoundationOne CDx, Tempus xT, 

PALOMA-3 trial (Lira et al., 2017), and Project GENIE (Smyth et al., 2020). To compile 

genotypes, we extracted non-synonymous coding mutations and copy number alterations for the 

https://paperpile.com/c/b49EQA/eCXQn+0D4J9+AlGlp+f9hYl
https://paperpile.com/c/b49EQA/eCXQn+0D4J9+AlGlp+f9hYl
https://paperpile.com/c/b49EQA/3Jct4
https://paperpile.com/c/b49EQA/AXcLB
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clinical panel genes from the Cancer Cell Line Encyclopedia (CCLE, release 22Q1) (Barretina et 

al., 2012). We filtered the mutations for the following types: missense, nonsense mutation, and 

nonstop mutations, frame-shift insertions and deletions, splice site and region variations, and in-

frame insertions and deletions. To create a binary representation of copy number alteration data, 

we divided the data into deletions and amplifications. Together, mutations, copy number deletions, 

and copy number amplifications serve as features for each of the clinical panel genes.  

Of 888 drugs available from CCLE and/or GDSC, we selected 51 drugs to evaluate the 

performance of NeST-VNN. We calculated the standard deviation of the AUCs of all 888 drugs 

and retrieved 44 drugs with a standard deviation of 0.3 or more. We also selected an additional 

seven drugs which were of general interest to our lab: palbociclib, nutlin-3a, trametinib, 

dabrafenib, rapamycin, olaparib, and etoposide. 

2.5.2 Model architecture and training 

We queried NeST (Zheng et al., 2021) to identify complexes that contained clinical panel 

genes. Complexes that did not contain any of the clinical panel genes were pruned from the 

hierarchy. Remaining systems were filtered to require at least five clinical panel genes or more 

than one child system, producing a final hierarchy consisting of 131 systems distributed over seven 

layers, which we refer to as NeST-VNN.  

The eight-layer architecture used in training consisted of an additional gene layer 

connected to NeST-VNN. The gene layer is a fully-connected neural network layer that integrates, 

for each gene, three input features: mutations, copy number deletions, and copy number 

amplifications. We denote the input feature vector as I and the output as g, where I 𝜖 [0, 1]3 and g 

𝜖 R. Hence, for any gene gi, a gene layer equation can be given by: 

𝑔𝑖 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑇𝑎𝑛ℎ(𝐿𝑖𝑛𝑒𝑎𝑟(𝐼𝑖))) (1)  

https://paperpile.com/c/b49EQA/29hK8
https://paperpile.com/c/b49EQA/29hK8
https://paperpile.com/c/b49EQA/8L1LM
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NeST-VNN forms the remaining seven interpretable layers of the model where each 

system is represented by N neurons and every parent-child connection follows the edges in the 

hierarchical map. A system-gene pair is connected through Nx1 connections and a system-system 

pair through NxN connections. The number of neurons is a hyper-parameter; all hyper-parameter 

optimization was performed using Optuna (Akiba et al., 2019). Dropout of 0.3 (selected through 

hyper-parameter optimization) was added to layers four through seven. A system in NeST-VNN 

can have both genes and other systems as its children. For a system s that contains K child systems 

and M genes, its state is defined as a function of the states of its K child systems and M genes. If 

we denote its input vector as Is and the output vector as Os, we get: 

𝑂𝑠 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑇𝑎𝑛ℎ (𝑙𝑖𝑛𝑒𝑎𝑟(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝐼𝑠)))) (2) 

Here, Is has a dimension of N x (N*K+M) and Os has a dimension of N. For layers two, 

three, and eight, we remove Dropout. 

Loss in NeST-VNN is a combination of final loss and the loss at every system. We used 

mean squared error (MSE) as the loss function. AdamW (Loshchilov & Hutter, 2017) was used 

for optimizing the weights of the neural networks. Overall, the loss function is defined as: 

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸(𝐿𝑖𝑛𝑒𝑎𝑟(𝑂𝑟𝑜𝑜𝑡), 𝑦) + 𝛼 ∑ 𝑀𝑆𝐸(𝐿𝑖𝑛𝑒𝑎𝑟(𝑂𝑠), 𝑦)𝑠≠𝑟𝑜𝑜𝑡 +  𝛽||𝑊|| (3) 

For our models, we set 𝛼 to 0.3 whereas 𝛽 was tuned during hyper-parameter optimization. 

Linear denotes the linear function used for transforming the vector Oi to a scalar. 

We trained every model with the genotype feature of cell lines using five-fold cross-

validation. For each fold setting, we split 80% of cell lines as a training set and 20% as a test set, 

ensuring that duplicate genotypes were not split between test and training sets. The training set 

was further split to 80% training and 20% validation. All NeST-VNN models were implemented 

https://paperpile.com/c/b49EQA/rLj77
https://paperpile.com/c/b49EQA/FSPwU
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in PyTorch and trained using five GPU servers containing four Nvidia Tesla V100s each with 5120 

CUDA cores and 32GB GDDR6 RAM. 

2.5.3 Alternative models for performance comparison 

For baseline methods, we chose Random Forest (Breiman, 2001) and ElasticNet (Friedman 

et al., 2010), which are state-of-the-art predictive models for drug response prediction reported in 

GDSC study (Iorio et al., 2016). We also assessed a black box artificial neural network (Hinton, 

1990), which has the same number of neurons and layers as the NeST-VNN model. Each of these 

models was trained via 5-fold cross validation using Python’s scikit-learn library (Pedregosa et al., 

2011). 

2.5.4 Explanations of NeST-VNN 

To identify important subsystems that are predictive features for drug response, we used 

linear regression to assess the ability of hidden neuron activities to model predicted drug response. 

We report the importance of a system as the Spearman correlation between NeST-VNN drug 

response and the predicted drug responses. A higher score indicates a complex whose neuron 

values served as good predictors of NeST-VNN predictions, and can therefore be considered 

important; a low score indicates a complex whose neurons were not good predictors of NeST-

VNN predictions, and can therefore be considered of low importance. For our analysis, we 

considered any subsystem with a score less than 0.4 to be of “low-importance.” 

2.5.5 System evaluation using CRISPR experiments 

MCF7, MCF10A and MDAMB231 cell lines were grown in DMEM with 10% FBS, and 

were screened for Mycoplasma contamination by PCR. CRISPR-Cas9 nuclease was stably 

integrated by lentivirus. LentiCas9-Blast (Addgene plasmid # 52962) and lentiCRISPR v2 

(Addgene plasmid # 52961) were gifts from Dr. Feng Zhang (Sanjana et al., 2014). Blasticidin was 

https://paperpile.com/c/b49EQA/WRmhb
https://paperpile.com/c/b49EQA/H6zqC
https://paperpile.com/c/b49EQA/H6zqC
https://paperpile.com/c/b49EQA/L0tkZ
https://paperpile.com/c/b49EQA/L0tkZ
https://paperpile.com/c/b49EQA/PqkCv
https://paperpile.com/c/b49EQA/PqkCv
https://paperpile.com/c/b49EQA/bOVKu
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used to select Cas9 stable integrants. Cas9 protein expression was confirmed by capillary western 

(Wes, Protein Simple).  

A tool library of double gRNA constructs (gene x non-targeting, gene x gene) targeting 

single and pairwise combinations of CDK4 or CDK6 versus 67 secondary genes was used, as 

described previously(Kuenzi et al., 2020). Briefly, each gene pair was targeted by nine gRNA pairs 

consisting of three distinct 20-bp gRNAs per target gene along with three non-targeting controls. 

The library was packaged into lentiviruses, and cells were infected at an MOI of 0.3. Puromycin 

selection (2.5 mg/mL) was started two days after transduction. Selection continued for 7 days after 

which puromycin was removed for the duration of the screen. Cells were maintained in exponential 

growth by harvesting and removing a fraction of cells every two to three days. We selected four 

time points, an initial time point four days after infection and a final time point at approximately 

21 days with two additional intermediate time points. DNA was extracted from cells with a Blood 

and Cell Culture DNA Mini Kit (Qiagen). To assess relative frequencies of gRNAs before and 

after selection, gRNA sequences were amplified by PCR from genomic DNA and prepared for 

HiSeq4000 sequencing (Illumina). Standard Illumina primers were used for library preparation, 

and 100-bp paired end reads were collected. Data quality was assessed with FastQC. Fitness effects 

of gene KOs at a time point were determined as the fold enrichment of a construct compared to 

the relative abundance of that construct in the plasmid library. Fitness measurements were 

normalized to the median fitness for non-targeting guides. Experiments were performed in 

biological duplicates.  

To systematically validate the identified mechanisms of sensitivity to palbociclib, we first 

ranked complexes by importance. This ranking was filtered to retain the top systems that met the 

following criteria: non-redundant complexes (Jaccard < 0.5), three or more secondary genes in our 

https://paperpile.com/c/b49EQA/0vRrl
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CRISPR library, minimum 10% coverage of genes in the complex being tested, and importance of 

complex >0.4. These criteria resulted in the 13 systems assessed in Figure 4. We then defined 

system fitness as the mean of gene pairs in each system. We regarded two biological replicates and 

two time points as replicates, for a total of four ‘system fitnesses’ per tested system. These fitnesses 

were compared to a random sample of the genes that were not included in the13 tested systems by 

Mann Whitney U-test. 

2.5.6 Breast cancer patient analysis 

Project GENIE (Genomics Evidence Neoplasia Information Exchange) data (Smyth et al., 

2020) was used to validate our model on clinical application. The GENIE dataset contains 

mutational profiles across 328 genes for 428 metastatic BC patients and their clinical outcomes. 

We focused on the patients who were treated with a CDK4/6 inhibitor. We filtered out the patients 

who were also treated with other targeted treatments, such as an mTOR inhibitor or an AKT 

inhibitor, resulting in a total of 79 ER+ metastatic BC patients who had undergone treatment with 

a CDK4/6 inhibitor. We encoded their mutation, CNA, and CND information, labeling genes not 

assessed in the clinical trial as unaltered. We predicted patient response to CDK4/6 inhibition using 

all five pre-trained models. Patients were predicted to be sensitive or resistant to palbociclib 

treatment if their predicted AUC was less than or greater than the median predicted AUC of all 79 

patients, respectively. Predictions were considered ‘high confidence’ if they were consistent across 

at least four of the five models; only these predictions were used in the analysis. All the patients 

with an overall survival status of “living” were censored for analyzing the survival. We used a log-

rank test (p < 0.05) to determine the significance of the survival. 

 

  

https://paperpile.com/c/b49EQA/AXcLB
https://paperpile.com/c/b49EQA/AXcLB
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2.6 Figures 

 

Figure 2.1: Architecture and features of NeST-VNN. 

(a) Workflow depicting construction of the NeST hierarchy of protein complexes in tumor cells. 

AP-MS data from 61 cancer protein baits were integrated with a compendium of published protein 

interaction data to produce an integrated protein network. Community detection identified nested 

protein complexes inside the network. The protein complexes under mutational selection pressure 

were identified producing a hierarchy (NeST-VNN), which was pruned to a set of 131 systems 

containing genes assessed on clinical gene panels. (b) Diagram depicting application of NeST-

VNN. 
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Figure 2.2: Predictive performance of NeST-VNN  

(a) Dot plot of model performance (x axis) for each of 51 drugs (y axis) for NeST-VNN (red) 

versus three alternate models: ElasticNet (green), RandomForest (purple) and a conventional 

Artificial Neural Network (ANN, blue). (b) Boxplot of model performances (Pearson correlation). 

* p<0.05 paired, one-tailed t-test of model performances. (c) Waterfall plot of the predictive 

performance of the NeST-VNN model for palbociclib. Each bar represents the actual drug 

response (true AUC) of a tumor cell line. 
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Figure 2.3: Interpretation and validation of systems in the palbociclib model.  

(a) Overview of NeST-VNN interpretation on palbociclib. Nodes indicate systems; node sizes 

indicate system sizes in numbers of proteins; colors indicate degrees of importance for palbociclib 

predictions. Note that only systems with importance > 0.6 are labeled. (b) Swarmplot showing 

system importance in the palbociclib model. Systems related to CDK4/CDK6, which are highly 

ranked, are highlighted in green. (c) Network diagram of NeST protein interactions for “Cyclin D 

holoenzyme complex I” (NeST:110), which contains CDK4 and CDK6. Edge weight reflects 

strength of association between proteins. (d) Diagram of known functional associations for 

proteins from panel c in the context of cell cycle progression. (e,f) Bar charts of the correlation of 

the in silico activity of indicated NeST complexes with palbociclib response (AUC, top panel), or 

protein abundance (reverse-phase protein array, lower panel). e, “CDK holoenzyme complex I”; 

f, “RAS-RAF-MAPK signaling”. 
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Figure 2.4: Analysis of CDK4/6 response predictions in breast cancer patients.  

(a,b) Survival curves for NeST-VNN predicted sensitive versus predicted resistant patients from 

the GENIE clinical trial: a, CDK4/6-inhibitor (CDK4/6i)-treated patients; b, patients not treated 

with CDK4/6i. (c) Overview of NeST-VNN interpretation on CDK4/6i for the GENIE clinical 

trial data. Nodes indicate complexes; node sizes indicate system sizes in numbers of proteins; 

colors indicate degrees of importance for predictions. Only complexes with importance > 0.3 are 

colored. Complexes with similar system importance in both preclinical (cell line) and clinical 

samples are highlighted. (d) Scatter plot of system importance in cell lines versus clinical samples. 

(e) Scatter plot of gene importance in cell lines versus clinical samples. (f,g) Survival curves for 

CDK4/6i-treated patients stratified by RB1 CNDs or mutations, a, or CCND1 CNAs, g. 
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Figure 2.5: Systematic validation of palbociclib drug response explanations.  

(a) Schematic overview of dual KO CRISPR screen. sgRNA for CDK4 or CDK6 (sg{RNA1}) are 

combined with individual sgRNA from a 67-gene panel (sg{RNA2}), and packaged into lentiviral 

particles. Cells harboring Cas9 nuclease are infected and propagated under selection. System 

fitness is defined as the mean of n dual KO fitnesses per complex. Significance is assessed by 

Mann Whitney U test comparing fitness of complex to fitness of control sample. (b,c) Box plots 

of GI. In each experiment sgRNA1 KO is paired with one of n gene KOs from selected important 

systems (rows) or unselected negative control genes (final row); z>0 positive GI; z<0 negative GI; 

**p<0.05 & *p<0.1; b, sgRNA1=sgCDK4; c, sgRNA1=sgCDK6. (d) CDK4 x system dual KO GI 

for MDAMB231 versus MCF10A cell lines. 

  



61 

 

 

Figure 2.6: Assessment of protein assemblies regulating palbociclib response.  

(a-d) NeST 132 (“EGF/FGF stimulation of cell proliferation”); (e-h) NeST:85. (a,e) Network 

diagram of complex. Gold: gene whose alteration pushes prediction towards palbociclib resistance; 

blue: gene whose alteration pushes predictions towards sensitivity. (b,f) Alteration (mutation, 

CNA and CND) frequencies of complex versus individual gene components in GENIE clinical 

trial data. Genes not assessed in trial are colored gray. (c,g) Stratification of palbociclib response 

(odds ratio) by in silico activity of NeST complex versus by individual gene components. Error 

bars represent 95% confidence interval of odds ratio. (d,h) Scatter plot of correlation between in 

silico activity of complex and actual drug response (AUC). 
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2.7 Tables 

Table 2.1: Summary of dual CRISPR KO with CDK4 

System name 

(tested genes) 

Import

ance 

MCF7 MDAMB231 MCF10A 

pval 

Mean 

system 

fitness 

pval 

Mean 

system 

fitness 

pval 

Mean 

system 

fitness 

Histone modification 

(CREBBP, PALB2, PARP1, 

RB1, RUNX1, TP53) 

0.605 0.015 0.939 0.015 0.408 0.015 0.483 

Cyclin D associated events in 

G1 (CDKN2A, CDKN2B, 

RB1, TP53) 

0.636 0.015 0.935 0.015 0.868 0.015 0.706 

PML body (CREBBP, 

NPM1, PARP1, RB1) 
0.534 0.015 0.804 0.015 0.507 0.015 0.467 

MDM2-p53 pathway (ATM, 

ATR, CHEK2, RB1, TP53) 
0.522 0.030 0.589 0.015 0.078 0.015 0.391 

NEST:85 (CREBBP, MYC, 

RUNX1, TP53) 
0.564 0.156 0.520 0.030 -0.070 0.235 -0.007 

Cell cycle arrest (ATM, 

ATR, BRCA1, CDKN2A, 

CHEK2, CREBBP, MYC, 

NPM1, PARP1, RB1, 

TP531) 

0.654 0.056 0.387 0.015 -0.048 0.015 0.140 

EGF/FGF stimulation of cell 

proliferation (EGFR, MYC, 

RB1, TP53) 

0.577 0.030 0.337 0.056 0.010 0.156 -0.382 

Regulation of CDK activity 

(BRCA1, BRCA2, 

CDKN2A, CDKN2B, 

CHEK1, CREBBP, 

FANCD2, MSH2, MSH6, 

MYC, RB1, TP53) 

0.697 0.333 0.173 0.030 -0.086 0.015 0.178 
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Table 2.1: Summary of dual CRISPR KO with CDK4 (Continued) 

System name 

(tested genes) 

Import

ance 

MCF7 MDAMB231 MCF10A 

pval 

Mean 

system 

fitness 

pval 

Mean 

system 

fitness 

pval 

Mean 

system 

fitness 

Cytoskeleton (CHEK2, 

EGFR, GNAQ, GNAS, 

PIK3CA) 

0.537 0.235 0.165 0.015 0.165 0.333 -0.285 

AKT/activin signaling 

(PIK3CA, PTEN, SMAD4) 
0.517 0.443 0.129 0.015 0.573 0.015 0.750 

MAPK signaling (BRAF, 

EGFR, KRAS, MAP2K1, 

MYC) 

0.518 0.443 0.020 0.235 -0.494 0.015 -0.584 

Ribonucleoprotein 

complexes II (CASP8, 

CHEK2, CREBBP, NPM1, 

SF3B1, TP53) 

0.536 0.333 -0.081 0.056 -0.214 0.015 0.166 

Ribonucleoprotein 

complexes (CHEK2, NPM1, 

SF3B1, VHL) 

0.585 0.015 -0.805 0.333 -0.521 0.015 -0.884 
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Table 2.2: Summary of dual CRISPR KO with CDK6 

System name 

(tested genes) 

Import

ance 

MCF7 MDAMB231 MCF10A 

MCF7 

Mean 

system 

fitness 

pval 

Mean 

system 

fitness 

pval 

Mean 

system 

fitness 

Cyclin D associated events in 

G1 

(CDKN2A,CDKN2B,RB1, 

TP53) 

0.636 0.015 1.279 0.015 1.091 0.015 1.121 

Histone modification 

(CREBBP, PALB2, PARP1, 

RB1, RUNX1, TP53) 

0.605 0.015 0.584 0.015 0.365 0.015 0.331 

EGF/FGF stimulation of cell 

proliferation (EGFR, MYC, 

RB1, TP53) 

0.577 0.030 0.424 0.333 -0.094 0.443 -0.242 

MDM2-p53 pathway (ATM, 

ATR, CHEK2, RB1, TP53) 
0.522 0.030 0.400 0.056 0.200 0.015 0.668 

AKT/activin signaling 

(PIK3CA, PTEN, SMAD4) 
0.517 0.097 0.397 0.015 0.686 0.015 0.859 

NEST:85 (CREBBP, MYC, 

RUNX1, TP53) 
0.564 0.056 0.326 0.235 0.018 0.097 0.091 

Regulation of CDK activity 

(BRCA1, BRCA2, 

CDKN2A, CDKN2B, 

CHEK1, CREBBP, 

FANCD2, MSH2, MSH6, 

MYC, RB1, TP53) 

0.697 0.097 0.270 0.030 0.128 0.015 0.227 

PML body (CREBBP, 

NPM1, PARP1, RB1) 
0.534 0.156 0.233 0.015 0.379 0.056 0.065 

Cell cycle arrest (ATM, 

ATR, BRCA1, CDKN2A, 

CHEK2, CREBBP, MYC, 

NPM1, PARP1, RB1, TP53) 

0.654 0.443 0.065 0.097 0.018 0.030 0.165 

MAPK signaling (BRAF, 

EGFR, KRAS, MAP2K1, 

MYC) 

0.518 0.333 0.063 0.056 -0.753 0.015 -0.959 
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Table 2.2: Summary of dual CRISPR KO with CDK6 (Continued) 

System name 

(tested genes) 

Import

ance 

MCF7 MDAMB231 MCF10A 

MCF7 

Mean 

system 

fitness 

pval 

Mean 

system 

fitness 

pval 

Mean 

system 

fitness 

Cytoskeleton (CHEK2, 

EGFR, GNAQ, GNAS, 

PIK3CA) 

0.537 0.333 -0.116 0.015 0.251 0.443 -0.154 

Ribonucleoprotein 

complexes II (CASP8, 

CHEK2, CREBBP, NPM1, 

SF3B1, TP53) 

0.536 0.156 -0.117 0.097 0.013 0.015 0.495 

Ribonucleoprotein 

complexes (CHEK2, NPM1, 

SF3B1, VHL) 

0.585 0.015 -1.033 0.097 -0.554 0.235 -0.048 
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CHAPTER 3: Discussion 

3.1 Summary 

This work has contributed to our understanding of some of the biological processes critical 

to the development and maintenance of the cancer phenotype. Specifically, I characterized aspects 

of genome mutation, sustained proliferative signaling and evasion of growth suppression. While 

these works were largely exploratory in nature, they have enabled identification of phenotypic 

trends across many genotypes.  

In chapter one, my collaborators and I leveraged a genome-wide knockout library in 

Saccharomyces cerevisiae to systematically characterize the UVR-induced  DNA damage 

response. Specifically, I set out to characterize growth phenotype, which can include time-

dependent and transient growth alterations that may or may not impact final survival. To achieve 

this goal, I developed a metric, lagVstall, which incorporated deviation of UV-treated growth 

patterns from untreated growth patterns. I compared this metric to traditional CF, which identified 

many strains with significant growth defects in response to UVR that were enriched primarily in 

DDR pathways. In contrast, lagVstall allowed me to identify a set of strains whose knockouts 

played roles in the mitochondrion. While some mitochondrial strains were also identified by CF, 

what was most striking was that the mitochondria-deficient strains identified by lagVstall 

demonstrated a relative resistance to UVR. This raises the question as to the role of mitochondria 

in genome maintenance in cancer.  

In chapter two, I, along with my collaborators, used an interpretable deep learning model 

of cancer therapeutic response to understand the mechanisms of the palbociclib drug response. We 

specifically sought to identify a clinically-useful predictive marker for response to this drug. To 

ensure clinical utility, we selected as training features the union of genes currently assessed on 
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clinical cancer gene panels. We next selected the NeST hierarchy as a hierarchical model for 

protein interactions in cancer cells. Finally, these aspects were integrated into a deep learning 

model in which neural network architecture is guided by a hierarchical model of cancer cell 

biology. This model can make accurate predictions and facilitate extraction of explanations for 

predictions. It is important to note that stratification of cell lines was improved when using the 

cancer cell hierarchy as the backbone for neural network architecture as opposed to GO, which is 

disease agnostic. Surprisingly, we found that, although palbociclib is a selective inhibitor, 

predictions were influenced by a variety of cellular processes across the cancer cell map. Several 

mechanisms of resistance were validated through dual KO CRISPR screening in breast cancer cell 

lines. Finally, we demonstrated how the information  from single genes is integrated into a system 

to influence palbociclib drug response.  

Together, these studies emphasize the immense complexity of the processes underlying 

cancer phenotypes and demonstrate how consideration of various measures of context can improve 

our understanding of these processes. 

3.2 Limitations 

Much of the work in both chapters one and two has been descriptive. Here, I summarize 

possible limitations of each chapter.  

In chapter one, my collaborators and I conducted a screen to describe broad changes in the 

UVR-induced DDR. Early in this project, I had screened the haploid yeast knockout library. 

However, I ran into a problem where a strain that I was attempting to follow up on (msn4Δ) had 

an off-target mutation in RAD5, a DNA-damage related gene, which accounted for its phenotype. 

Similar observations have been previously reported (Giaever & Nislow, 2014). To reduce the 

chances of off-target mutations causing breakthrough phenotypes, I elected to repeat the screen 

https://paperpile.com/c/iisxRl/bWdd
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using the homozygous diploid knockout library, as recommended by the yeast deletion consortium. 

I also carried out a barcode sequencing protocol to verify that each strain was properly annotated 

by its barcode and to exclude analysis of wells with evidence of mixed barcodes. Several 

limitations arise here. First, it is possible that, during the various rounds/stages of strain 

propagation that were necessary from sequencing to re-array to screen completion, some 

colonies/strains may have become mixed or contaminated. Second, the use of the homozygous 

diploid KO library here necessarily removed the possibility of interrogating essential strains. 

Outside of methodology, another limitation is that the data I have produced does not clarify the 

mechanisms underlying observed phenotypes. Instead, this study has helped to identify new and 

context-dependent broad phenotypes induced by UVR treatment. 

In chapter two, my collaborators and I leveraged an interpretable deep model to 

characterize the palbociclib drug response in tumor cells. There are several existing limitations 

with this approach. First, the term ‘interpretability’ is still relative. It has taken me over a year of 

working with these types of models to truly understand just what kinds of interpretations are 

possible. More work needs to be completed to make these types of models accessible to bench 

scientists and clinicians who may not be versed in deep learning approaches. Another limitation is 

that, at this time, interpretation is mostly limited to broad, pan-model interpretations; sample-level 

interpretations approaches are not yet readily available. Here, we elected to train an independent 

model for each drug. While earlier models were designed in such a way that facilitated prediction 

of essentially any drug (Kuenzi et al., 2020), we found that the generalizability of models produced 

in this fashion was quitel limited, thus justifying our design choice. The limitation is that our 

palbociclib model cannot make predictions about how a patient may respond to another therapy, 

thus limiting its ability to that of distinguishing sensitive versus resistant patients. This model 

https://paperpile.com/c/iisxRl/AKzq
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cannot, at this time, be used to suggest the drug choice. Several final limitations revolve around 

the CRISPR screen. First, the relatively small size of our library limited our ability to 

comprehensively screen the top-ranked protein systems. Second, though I made efforts to limit 

redundancy in the tested set of complexes, some gene KO occurred in multiple complexes. Finally, 

CDK4 and CDK6 have many overlapping roles. It is therefore possible that some phenotypes have 

been missed due to compensation.  

3.3 Outlook 

Thus far, my work has presented many opportunities for future research. Here, I discuss 

some of the possible future directions.  

In chapter one, I discussed how the UVR-induced DDR screen highlighted many 

mitochondrial-deficient strains. Interestingly, these strains demonstrated a relative resistance to 

UVR-induced DNA damage. Mitochondrial genes are divided between the nuclear genome and 

the mitochondrial genome (Malina et al., 2018). It is therefore interesting to consider how 

deficiencies in nuclear-encoded mitochondrial genes might come to effect the observed relative 

UVR resistance. One intriguing possibility could be that pre-existing low levels of mitochondrial 

insufficiency produce a baseline level of nuclear DNA damage that then primes cells to respond 

to additional DNA damage. Indeed, mitochondrial-deficient strains have been demonstrated to 

have an increased basal DNA damage level with differential resistance to oxidizing treatments 

(Rasmussen et al., 2003). Mitochondrial mutations have been repeatedly associated with different 

cancer types (Hertweck & Dasgupta, 2017). Simultaneously, genomic instability is an enabling 

characteristic in cancer. It will be interesting to see if future research finds a link between 

mitochondrial dysfunction and DNA damage tolerance.  

https://paperpile.com/c/iisxRl/zEX4
https://paperpile.com/c/iisxRl/bhlf
https://paperpile.com/c/iisxRl/irMX
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The study in chapter two revealed that the mechanisms underlying the tumor cell response 

to palbociclib are broad and complex. We made efforts to ensure that elements of NeST-VNN 

were not redundant. There is, however, a necessary level of redundancy for parent and child 

complexes, making it difficult to select the most important systems while considering these 

relationships. One promising direction could be to employ some of the recently-reported 

approaches for pruning visible neural networks to retain only the most informative nodes (Huang 

et al., 2021). On the opposite end of the spectrum, the broad importance we observed argues that 

additional genes and complexes outside of NeST-VNN (perhaps using the entire NeST hierarchy) 

could improve predictions. Other future directions will include construction of models which can 

predict multiple drugs, as well as examining the possibilities for sample-level predictions. I 

constructed and performed initial training on a multi-task visible neural network, which learns in 

a similar way to the model reported in Chapter two, but makes simultaneous predictions for 

multiple drugs at the output layer. The advantage of this approach is that samples pertaining to all 

drugs are allowed to contribute to the tuning of the model, though individual predictions remain 

separate. Such an approach has previously been successfully applied for black box models, but has 

not yet been explored for visible models (Yuan et al., 2016). An ability to understand feature 

importance for individual samples could enable physicians to determine which gene mutations are 

functionally relevant to their patients’ cancers. Here, I drew from the field of image processing, 

which has long used saliency maps to examine the contribution of individual features (pixels) to 

the results of image classification tasks. Some of this type of analysis was implemented here to 

determine how alteration of specific gene features affects drug response predictions (e.g. Figure 

6a,e), but that was generalized across the entire model. It will be interesting to see how these, and 

other approaches such as LIME (Ribeiro et al., 2016) might be used to analyze individual samples. 

https://paperpile.com/c/iisxRl/xumL
https://paperpile.com/c/iisxRl/xumL
https://paperpile.com/c/iisxRl/O7Pl
https://paperpile.com/c/iisxRl/SYKh
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