
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title

Statistical Learning for Efficient Industrial Robot Control

Permalink

https://escholarship.org/uc/item/0gj5j49b

Author

YU, XIAOWEN

Publication Date

2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0gj5j49b
https://escholarship.org
http://www.cdlib.org/

Statistical Learning for Efficient Industrial Robot Control

by

Xiaowen Yu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Masayoshi Tomizuka, Chair
Professor Kameshwar Poolla

Professor Ruzena Bajcsy

Summer 2018

Statistical Learning for Efficient Industrial Robot Control

Copyright 2018
by

Xiaowen Yu

1

Abstract

Statistical Learning for Efficient Industrial Robot Control

by

Xiaowen Yu

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

This dissertation presents a series of statistical learning methods to improve the overall
performance for industrial robots, which are always required to perform accurate and fast
motions in sensing limited scenarios, and/or changing environments. Statistical methods
emphasize on system uncertainties and adaptation to the environment by learning from
the experience. Four aspects have been studied in detail including robust visual servo,
optimal trajectory planning, intelligent system identification for feedforward compensation,
and optimal gain tuning.

For visual servo requiring high precision and high speed but suffering from limited sensing
capability and system uncertainties, a statistical learning approach based on sensor fusion
and robust vision is adopted for sensor data filtering and on-line parameter adaptation.
This method can compensate for the large sensing latency and estimate system parameters
simultaneously. The algorithm is tested on an 6-axis industrial robot performing precision
glass handling task but with only limited quality vision sensors. Trajectory planning is
another fundamental problem for industrial robot, especially for robots operating in ex-
tremely limited workspace. In order to generate obstacle-free trajectories with shortest cycle
time, a statistical learning method, Probabilistic Roadmap (PRM), is first used for optimal
trajectory planning. An optimization problem is then formulated based on spline parameter-
ization. The planning algorithm is tested on a 3-axis industrial robot, and the result shows
the efficiency of the planning method. Statistical learning approaches are also studied for
the precision motion control and vibration suppression for industrial robots. Model-based
controller for parallel robots is always hard to design due to the complexity of the robots. A
model based feedforward controller is designed with dynamic identification with a regression
performed using data generated by experiments with designed trajectory. Also, an exper-
iment based guided gain search is proposed with direct end-effector sensing for vibration
suppression. An optimization scheme is utilized to guide the searching direction with exper-
iments and data learning. It is proved by experiments that the tracking error and vibration
are greatly reduced on an 8-link wafer handling robot.

i

To my little princess, Natalie.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Motivation and Contribution . 1
1.2 Dissertation Outline . 3

2 Statistical Learning and Sensor Fusion for Robust Visual Servo 4
2.1 Introduction . 4
2.2 System Setup and Workflow . 6
2.3 Object Detection and Tool Center Point Calibration 9
2.4 State Estimation For Image Based Visual Servo 25
2.5 Result . 35
2.6 Chapter Summery . 37

3 Optimal Trajectory Planning 39
3.1 Introduction . 39
3.2 Configuration of The Atmospheric Wafer Transfer Robot and The Obstacle . 42
3.3 PRM Planning . 43
3.4 Trajectory Generation Using Cubic B-spline 46
3.5 Simulation Results of The Optimized Trajectory 54
3.6 Chapter Summery . 56

4 Intelligent System Identification for Feedforward Compensation 60
4.1 Introduction . 60
4.2 Dynamics Modeling . 62
4.3 Dynamics Model Decoupling . 67
4.4 Feedforward Control . 73
4.5 Chapter Summery . 77

iii

5 Optimal Gain Tuning 80
5.1 Introduction . 80
5.2 PID optimal gain tuning . 81
5.3 Experimental Result . 85
5.4 Chapter Summery . 87

6 Conclusions and Future Work 88

Bibliography 91

iv

List of Figures

2.1 System overview . 7
2.2 The Grinder . 8
2.3 Generating suction with a venturi pump . 9
2.4 Main steps of work flow . 9
2.5 Image acquired from camera (without checkerboard) 10
2.6 Eye-to-Hand camera setup . 11
2.7 Clustering of the rectified Eye-to-Hand image 12
2.8 Fitting with discretized rectangle . 13
2.9 Identify glass and slots from regression results (Bad fitting: middle left; Good

fitting: middle right; Black lines are distance) 14
2.10 Detection of the glass and slot separately . 14
2.11 Change lighting conditions of workspace . 15
2.12 Detection of the glass edges . 16
2.13 Detection of the slot edges . 16
2.14 Glass piece picked up off-centre . 17
2.15 Transformation of T6c and Tcg as well as glass plane 18
2.16 Work flow of placing glass piece in slot . 18
2.17 Two checkerboards for calibration . 19
2.18 Rotation axis (Rbg) comparison of MAP and prior guess 21
2.19 Transition (tbg) comparison of MAP and prior guess 22
2.20 Experimental test . 23
2.21 Experimental result . 24
2.22 Glass frame and camera frame . 25
2.23 Glass pick up accuracy of the first step . 26
2.24 Glass placing accuracy of the first step . 26
2.25 Position based visual servo frame . 27
2.26 Image based visual servo frame . 27
2.27 Line detection (back camera) and point approximation (slot’s top edge) 29
2.28 Dual-rate UKF for low sampling rate and large latency compensation 32
2.29 Parameter adaptation with UKF dual-est . 35
2.30 UKF with dual-estimation Filtering . 36
2.31 Failure of detection and after filtering . 37

v

2.32 Error convergence comparison of using raw-data, UKF and UKF with dual-
estimation . 38

3.1 A robot manipulator works inside an EFEM of a semiconductor manufacturing
machine . 41

3.2 Model of the 3-axis manipulator works in an EFEM 43
3.3 The Equipment Front End Module (EFEM) is modeled as a closed boundary

obstacle . 44
3.4 Motion is considered inside the EFEM . 45
3.5 Obstacle-free space and samples generated by PRM 47
3.6 The shortest path connects qI and qG searched in roadmap by A∗ 48
3.7 Bounded region of a given piece wise linear path 49
3.8 One link robot example for determining ci . 50
3.9 Control points distribution example . 51
3.10 Trajectory generated by B-spline curve . 52
3.11 The motion sequence of the trajectory . 56
3.12 Position and velocity of the three joints for the optimized trajectory (under con-

straints in Tab.3.2) . 57
3.13 Acceleration for the optimized trajectory (under constraints in Tab.3.2) 58

4.1 Dual blade wafer handling robot . 61
4.2 Kinematics of the dual blade wafer handling robot 63
4.3 Corotational coordinates for extension motion 64
4.4 Multi-body simulation . 69
4.5 Verification of the dynamic model . 70
4.6 Motor rotation angle from simulation . 71
4.7 Trajectory comparison result . 71
4.8 Identification without friction . 72
4.9 Identification with friction . 72
4.10 Trajectory for identification . 73
4.11 Verification of the ID- data #1 . 74
4.12 Verification of the ID- data #2 . 75
4.13 Verification of the ID- data #3 . 75
4.14 Experiment configuration . 76
4.15 Torque feedforward control- extension 1 . 77
4.16 Torque feedforward control- extension 2 . 78
4.17 Torque feedforward control- rotation . 79

5.1 Load side wafer acceleration sensing . 81
5.2 Control loop . 82
5.3 Gradient estimation in design space . 83
5.4 Line search . 85

vi

5.5 Gain tuning result . 86

vii

List of Tables

2.1 Visual servo comparison of using raw data, UKF and UKF w/ dual-estimation 37

3.1 Symbols used when define the B-spline . 51
3.2 Values of kinematic limits . 55

5.1 Comparison of performances of the start and optimal point 87

viii

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor and committee chair
Professor Masayoshi Tomizuka for the continuous support of my Ph.D study and related
research, for his patience, motivation, and immense knowledge. His guidance helped me in
all the time of research and writing of this thesis. I also want to express my special gratitude
to him and his wife Miwako Sensei for being supportive for my newborn baby. Without his
guidance and persistent help this dissertation would not have been possible. I could not have
imagined having a better advisor and mentor for my Ph.D study.

I would like to thank my committee members, Professor Kameshwar Poolla and Professor
Ruzena Bajcsy for their insightful comments and encouragement, and for their extensive
personal and professional guidance. I would like to thank Professor Karl Hedrick, who served
the committee chair of my qualifying exam. His class on nonlinear control heavily influenced
my view on the subject of robotic control systems. I would also like to thank Professor Oliver
O’Reilly and Professor Pieter Abbeel for sitting on my qualifying committee. Discussing with
them were always inspiring and enjoyable, and their hard questions incented me to widen
my research from various perspectives.

Special acknowledgments to my sponsors, Applied Materials, Inc. and Lens Technology
for their financial support. It is them who made my research meaningful by providing inter-
esting and valuable industrial projects. My sincere thanks also goes to Dr. Sanggyum Kim,
Dr. Junwu Zhao, Mr. Alex Minkovich, and Mr. Nir Merry, who provided me opportunities
to join their team as intern, and who gave me access to the laboratory and research facili-
ties. Without their precious support it would not be possible to conduct this research. In
particular, I am very grateful to Dr. Cong Wang for his countless help and mentoring on my
research projects.

I would like to thank my friends both in US and in China, thank you for listening,
offering me advice, and supporting me through this entire process. Special thanks to my
intern, Thomas Baker. It is really admirable that I see the project from conception to
completion with his hard work and brilliant ideas.

I want to thank all the MSC members for the stimulating discussions, and for all the fun
we have had in the past several years. Special thanks to Wenjie Chen, Xu Chen, Michael
Chan, Kan Kanjanapas, Chi-Shen Tsai, Pedro Reynoso, Wenlong Zhang, Yizhou Wang,
Raechel Tan, Minghui Zheng, Junkai Lu, Chung-Yen Lin, Chen-Yu Chan, Changliu Liu,
Yaoqiong Du, Kevin Haninger, Shiying Zhou, Dennis Wai, Shuyang Li, Te Tang, Hsien-
Chung Lin, Yu Zhao, Yongxiang Fan, Wei Zhan, Cheng Peng, Daisuke Kaneishi, Zining
Wang, Kiwoo Shin, Liting Sun, Yu-Chu Huang, and Zhuo Xu.

Last but not the least, I would like to thank my family. I would like to thank my parents
and my grandparents, whose love and guidance are with me in whatever I pursue. I always
knew that you believed in me and wanted the best for me. They are the ultimate role
models. Most importantly, I wish to thank my loving and supportive husband, Yu Zhao.
Words cannot express how lucky I am to have him as both my husband and best friend.

1

Chapter 1

Introduction

1.1 Motivation and Contribution

Nowadays, most industrial robots have fairly primitive sensing. Scenarios where a favor-
able sensing system is not available are very common. In regard to the limited sensing
capability, robots must contend with environment uncertainty and adapt to changes in the
environment. On the other hand, in today’s globally competitive business environment, the
needs of an ever-changing market require manufacturers to continually enhance the pro-
duction line effectiveness. This requires industrial robots to perform at faster speeds, and
with shorter cycle time and idling time without losing performance. Statistical methods [1]
emphasize on uncertainties and adaptation to the environment by learning from the expe-
rience. This dissertation presents a series of statistical learning approaches to improve the
overall performance for industrial robots with limited sensing capability. Four contribution
of this dissertation research are: 1) statistical learning and sensor fusion for robust visual
servo, 2) optimal trajectory planning, 3) intelligent system identification for feedforward
compensation, and 4) optimal gain tuning by learning from the experience.

Statistical Learning and Sensor Fusion for Robust Visual Servo

For visual servo requiring high precision and high speed but suffering from limited sens-
ing capability and system parameter uncertainties, Chapter 2 presents a statistical learning
approach based on sensor fusion and robust vision for sensor data filtering and on-line pa-
rameter adaptation. For visual servo for manufacturing applications, the requirements are
becoming more and more stringent. It is desired that the vision system is low cost and easy
to implement yet performs with high precision and high speed. However, with limited sensing
capability as well as system uncertainties and disturbances, accurate and fast visual servo
is difficult to achieve. A robust vision based on image learning is first proposed for object
detection and disturbance rejection. A non-linear regression is performed to single out those
objects with highest probability to be the objects of interest. Then a Bayesian inference
based filtering algorithm, Unscented Kalman Filter (UKF), is implemented to compensate

CHAPTER 1. INTRODUCTION 2

for the sensing limitations, such as low-sampling rate and large delay. For parameter adap-
tation, a major limitation in adaptive control is that the model must be linear with respect
to the unknown parameters, which is not satisfied in most cases. Thus a dual estimation
scheme along with the UKF is applied for on-line parameter estimation. This method dose
not require any linearity with respect to the model parameters , and thus provides efficient
parameter learning. A closed-loop controller based on sensor fusion is then developed for a
fast and accurate performance. This approach is validated by experiment of a glass piece
“pick and place” task using a Fanuc industrial robot manipulator [2, 3]. The result is given
in Chapter 2.

Optimal Trajectory Planning

Trajectory planning is a fundamental problem for industrial robot. It is particularly chal-
lenging for robots operating in extremely limited workspace without workspace sensing. In
order to generate a obstacle-free trajectory with shortest cycle time and sufficient smoothness
for industrial robots in such environment, Chapter 3 presents a statistical learning method,
Probabilistic Roadmap (PRM), for optimal trajectory planning. Automation of robot tra-
jectory generation is important for robots performing multiple tasks under several working
constraints yet with limited sensing capability. For example, the robot should not collide
with any obstacles while maintaining a smooth motion. Also, the velocity and acceleration
should be constrained in workspace to ensure the payload safety. Actuators’ limits also need
to be satisfied. For manufacturing productivity, the trajectory needs to be further optimized
for shorter cycle time. In most current industrial applications, however, only part of the
constraints are considered due to the complexity of the problem. In Chapter 3, a PRM
method is first used to generate a road map of the workspace so that multiple trajectory
planning can be performed. Then an optimization problem is formulated based on spline pa-
rameterization with all the working constraints. For fast trajectory planning, it is favorable
that the optimization problem starts with a reasonable initial point. A method for finding
such an initial point is given in details. The planning algorithm is tested on a 3-Degree of
Freedom (DOF) industrial robot, and the result shows the efficiency of the planning method
[4].

Intelligent System Identification for Feedforward Compensation

For some industrial robotic machining and precision delivery tasks, robots are required
to perform accurate tracking. With motor-side encoders, the motor-side tracking can be
achieved by precision motion control. However, precision tracking control requires accurate
force/torque compensation. Challenges come from the complex nonlinear coupled multi-body
dynamics that hard to model precisely. In order to obtain high-fidelity models, Chapter 4
discusses in detail the learning method for dynamic modeling and parameter identification.
Although most of the system identification follow a standard procedure, it is worth noting
that for a complex robot multi-body dynamics, problems with model decoupling and regres-

CHAPTER 1. INTRODUCTION 3

sion emerge. A data-driven approach is thus proposed to solve the problem efficiently without
analytical derivation which requires heavy computational load. The modeling technique is
applied to a 8-link parallel robot, whose dynamics is even more complicated than a serial
robot due to the closed-loop chain structure. The robot dynamics is first modeled using La-
grangian method, and then transformed to a decoupled form for identification. Data-driven
method is used to optimize the regression matrix for identification [5]. The identified model
is used in a feedforward controller and tested by multiple experiments.

Optimal Gain Tuning

For the motion control of industrial robots, the end-effector performance is of the ultimate
interest. However, industrial robots are generally only equipped with motor-side encoders.
For precision motion control, controller gains, such as PID gains, are usually tuned based on
motor-side performance. With a non-optimal PID controller, the robot may exhibit a con-
siderable vibration and large tracking error on the end-effector leading to a long cycle time.
Chapter 5 presents a statistical learning algorithm for gain tuning by directly measuring the
performance of the end-effector. Traditional gain tuning methodologies include empirical
methods such as Ziegler-Nichols [6] and analytical methods such as shaping of frequency
response [7]. However, their effectiveness for nonlinear systems such as robots and for reduc-
tion of vibration is not conclusive. Thus an experiment guided gain search method based on
optimization is proposed by direct end-effector sensing, which can provide fast gain tuning
and in the mean time guarantee optimality. A batch of empirical data are first collected
from a cost-effective accelerometer on the end-effector, then a statistical learning algorithm
is performed to search for an optimal gain and provide the guidance for data generation [8].
The gain tuning method is also tested on the 8-link parallel robot in Chapter 4, and the
results show that the optimal gain can be obtained within two iterations.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 will present a filtering and
parameter learning algorithm for robot robust visual servo with limited sensing capabilities.
A closed-loop controller based on robust vision and sensor fusion is also developed. Chap-
ter 3 will introduce a statistical learning method, Probabilistic Roadmap (PRM) for path
generation. A constrained optimization problem is also formulated for optimal trajectory
planning. Chapter 4 will discuss the intelligent learning method for dynamic modeling and
parameter identification. A data-driven approach for complex multi-body dynamics is also
presented for efficient model learning. Chapter 5 will present a statistical learning algorithm
for robot controller gain tuning with direct end-effector measurements. Data are collected by
experiments followed by a learning step to provide the guidance for data generation and also
the optimal gain. Finally, Chapter 6 will summarize the contributions of this dissertation
and give possible future work.

4

Chapter 2

Statistical Learning and Sensor Fusion
for Robust Visual Servo

2.1 Introduction

Robotic automation is normally applied to repetitive and highly-structured tasks, which
correspond to about 45% of industry jobs [9]. Higher value-added elements and complex
tasks in the manufacturing process, such as 3D electro-mechanical-optical parts assembling,
are hard to automate and still require human workers. This trend is accelerating and is
creating a demand for automated systems that can feed and assemble complex 3D parts. A
key element in these systems is vision guidance, using machine vision to locate and identify
parts. However, traditional vision guidance with high precision assembly operations is limited
by the accuracy of the robot it controls. To achieve high accuracy, such as one or two microns,
an extremely expensive, high accuracy robot must be used. While many robots have high-
resolution encoders, their ability to move to an absolute position commanded by a traditional
vision system can be quite limited due to manufacturing variations, thermal expansion and
mechanical effects. Also, traditional vision guidance always relies on the quality of the end-
effector. The accuracy cannot be achieved if the robot uses low-cost end-effectors, such as
vacuum grippers whose gripping suffers a large uncertainty [10].

On the other hand, visual servo closes the control loop visually and can achieve accuracy
based on the robot encoder resolution rather than its absolute accuracy. It can also adapt to
inaccurate grippers since both the part and target are viewed and only their relative positions
are important. This flexibility can also be used to automate processes where parts and targets
change in real time, such as the insertion of sutures into the hole of suture needles. As the
part or target change, the vision system can detect the variations and adjust accordingly.
In most current industrial applications, however, visual servo is controlled by a look-then-
move method, which cannot satisfy the needs for real-time vision guidance. For industrial
vision guidance systems, the visual servo need to be fast and robust while maintaining high
precision.

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 5

Challenges come from various aspects. First, with low-cost cameras, object detection
become intractable due to the limited quality of the camera. One of the biggest challenges
sensors face is detecting transparent clear object, such as glass pieces. The detection of
the glass piece is challenging because the glass is transparent and reflective, leading to un-
predictable contrasts between the glass and the background. Reflections impose additional
problem of adding contours of the surrounding environment. McHenry et al. [11] use hi-
erarchical classifiers and distortions occurring at the boundaries of transparent objects as
visual cues. This method, however, only works for detecting curved glass. Other methods
[12] involve using the structured light camera which are too costly and slow to implement.
In Section 2.3, small, flat, transparent glass pieces are robustly detected with image data
learning based on a Levenberg-Marquardt nonlinear least-squares [13].

Second, robot Tool Center Point (TCP), which usually refers to the center point of the
robot end-effector, is hard to calibrate when special gripper is used for accurate object
handling. For example, the gripper is non-fixed to the robot, which moves along with the
object it is handling. Standard TCP calibration [14] procedure which jogs the robot’s TCP
to a single point with four approaches only works for robots equipped with tip devices.
Another way is to use external camera by calibrating the camera’s position as well as the
transformation between camera and the TCP [15]. Such method only works for robots with
fixed transformation to the gripper. In order to do calibration in such limited condition,
a Maximum A Postiori (MAP) method [16] and a projective transformation method are
proposed in Section 2.3.

Third, the speed of visual servo is limited by the low-cost industrial robot vision system
which is subject to considerable latency and limited sampling rate. In fact, due to the image
processing is usually time-consuming depending on the complexity of the feature extraction,
the delay from visual feedback will be further extended. To compensate for such issues, in
Section 2.4, a nonlinear (due to the nonlinearity of the robot manipulator system) state filter
is desirable. Wang et al. [17] use Extended Kalman Filter (EKF) to compensate for the
low-sampling rate and latency from a position sensitive detector (PSD) camera, which, in
fact, is not a real visual servo case. Besides, EKF [18] suffers from several flaws [19], and
it may result in estimation divergence. Thus an improvement, Unscented Kalman Filter
(UKF) [20], is proposed in Section 2.4 for on-line state estimation.

Last but not least, visual servo suffers from stability and robustness issues in the presence
of system parameter uncertainties, leading to slow and diverging performance. Thus many
researchers have developed adaptive controllers to compensate for the parameter uncertainty.
Papanikolopoulos et al. [21] developed an online estimation method for the depth of the fea-
ture point. Wang et al. [22] developed an adaptive controller for unknown camera parameters
based on a dynamic visual servo. However, most of the adaptive controllers are based on the
camera model linear parameterization, which always involves heavy computational load on
model derivation. In Section 2.5, a dual-estimation method [19] with UKF is proposed for
on-line parameter identification, which does not require any linear parameterization of the
model.

The robust visual servo is tested on an industrial application, which is the precise and

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 6

fast glass piece placing for cell phones’ front glass. The desired placing accuracy is sub-
millimeter. The detection accuracy with only an Eye-to-Hand camera mounted by the robot
is about 3mm, with which, the placing accuracy cannot be achieved. The robot can only
put the glass piece close to the target position. Thus a two step approach is introduced
for this application: the robot first put the glass piece close to the target position with the
Eye-to-Hand camera, and then guide the glass piece to the target position with Eye-in-Hand
cameras using visual servo. Two Eye-in-Hand cameras are thus mounted on the robot end-
effector in a front-back manner to detect the entire piece of the glass (Fig.2.1). All cameras
are chosen as low cost equipment in order to make the system cost not excessive. The 3mm
accuracy of the first step is necessary so that the visual servo will work since it is a local
method, and large initial error will result in divergence.

A closed loop controller based on visual servo is used to guide the glass piece to the target
position. Most of the visual servo techniques [23], [24],and [25] use points as image features
since they are easy for controller design [25]. However, in the glass placing task, not enough
point features are available (explained in Sec.2.4). Line features, on the other hand, can
provide full observation of the scene and richer geometric information for a more accurate
placing performance. However, few literature reports the use of line features. Andreff et
al. [26] use 3D line features based on binormalized Plücker coordinates, which is not for
projected lines. Espiau et al. [27] mention the use of line features yet the derivation is
problematic and no experimental result is given. In this Chapter, a controller of visual servo
using line features is properly designed, and experimental result is provided.

In the rest of this Chapter, Section 2.2 introduces the system setup of the task. Sec-
tion 2.3 presents statistical learning algorithm for transparent object detection as well as
the calibration for vision system. Section 2.4 presents the state estimation and parameter
adaptation using dual rate UKF with dual estimation. Section 2.5 gives the experimental
results of the proposed algorithms. Section 2.6 concludes the chapter.

2.2 System Setup and Workflow

The background of the robot glass handling task is from the cell phones’ protective glass
manufacturing line. Initially, raw glass pieces need to be ground to a desired thickness with
grinders, such as one in Fig.2.2. The desired thickness is achieved by the use of a mould
called toothboard, which is a thin plastic plate. In Fig.2.2, toothboards (see Fig.2.1 for more
details) with the desired thickness (around 1 mm) are on the surface of the lower grinder.
After placing glass pieces into the slots of the toothboard, the upper grinder moves downward
and engages with the lower grinder. By conducting rotational motions of both upper and
lower grinders, the glass pieces are ground on both sides simultaneously. The major issue
in this process is that the placing task is manual. Also, since the tolerance of placing glass
pieces into the slot is very tight (sub-millimeter), the human workers need to place them
individually.

One grinder can only process approximately 20 pieces in a grinding cycle. Thus, hundreds

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 7

Figure 2.1: System overview

of grinders are in demand. Also, due to the complexity of the glass handling, one worker can
only operate one grinder at a time leading to a huge demand on human resources. To study
possible automation of the process, we use a six-axis robot manipulator equipped with vision
sensors as shown in Fig.2.1. An Eye-to-Hand camera is installed to detect glass pieces and
slots, which are randomly placed in the workspace (Fig.2.1). Two Eye-in-Hand cameras are
mounted on the robot end-effector in a front-back manner to detect the entire piece of the
glass (Fig.2.1). All cameras are chosen as low cost equipment in order to keep the system
cost not excessive.

Apart from the cameras, the end-effector is also equipped with a suction cup and a
venturi pump. This enables the robot to securely pick up the glass, manipulate it, and place
it back on the workspace’s surface. The suction cup’s vacuum is generated with the venturi
pump, located directly above the cup. Airflow and pressure required for the Venturi effect
to take place within the pump is supplied by a compressor and a small lightweight tube. A
schematic drawing is shown in Fig. 2.3

Additionally, a paper checkerboard with known sizes is placed into the workspace and
serves as the world frame. The glass piece and the toothboard are initially positioned arbi-

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 8

Figure 2.2: The Grinder

trarily in the workspace. The Eye-to-Hand camera is able to oversee the whole workspace
and the robot arm is placed so that it may reach the complete workspace. As previously
described, the aim is to place one glass piece into one of the four slots of the toothboard.

The work flow is designed to be a two step approach. First an open loop robot control
approach ensures the glass piece is picked up by the manipulator and positioned above a slot.
For this, the Eye-to-Hand camera detects the position and orientation of the glass and the
slot relative to the checkerboard (world frame). The transformation from the world frame
to the robot’s base frame along with its forward kinematics are known. The transformations
from the manipulator’s flange to the Eye-in-Hand camera (camera frame) and suction cup
(tool frame) are calibrated and measured respectively. With this knowledge, a trajectory
can be generated, enabling the robotic arm to move to the glass’ location, pick it up and
position it above the desired slot.

In a second step, a closed loop robot control approach is chosen to correct the first step’s
inaccuracies and finally place the glass into the slot. This is achieved by detecting the
glass and the slot with the Eye-in-Hand cameras, the control law’s sensory input, and by

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 9

Airflow from
Compressor

Suction Cup

Venturi Pump

Venturi Effect

Figure 2.3: Generating suction with a venturi pump

formulating the control error and the control law, an imaged based visual servo approach.
An overview of the main steps of the work flow is given in Fig. 2.4.

Pick up Glass
Piece

Glass and Slot
Detection with

External Camera

Glass Detection
with Eye-in-Hand

Camera

Move Glass to
Slot (first
Estimate)

Place Glass into
Slot with Visual

Servo

Figure 2.4: Main steps of work flow

2.3 Object Detection and Tool Center Point

Calibration

Detection with Eye-to-Hand Camera

An image acquired from the Eye-to-Hand camera is given in Fig.2.5 (excluding the checker-
board). By performing edge detection and clustering, the acquired image is separated into
several clusters with each cluster containing a set of image points. To identify the clusters

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 10

of slots and glass piece, the known geometry of the glass is fitted into each obtained cluster
with Levenberg-Marquardt nonlinear least-squares regression.

Clustering

The setup of the Eye-to-Hand camera is in Fig.2.6. The checkerboard is used as a reference
frame that relates the camera and the robot, and is used only once for calibration, then it
is removed from the workspace. The acquired image is first rectified with the calibration
and converted to a binary image by performing Canny edge detection. The entire image,
after excluding points outside the workspace, is then separated into individual clusters by
clustering with an agglomerative hierarchical cluster analysis. At the beginning of clustering,
each point of the image is a single cluster. Then each pair of closest clusters are merged
iteratively until a pre-set maximum number of clusters is reached. Noise and small clutter
can be further reduced by removing clusters with a small number of points. The result is
shown in Fig.2.7, which contains clusters of glass and slots, and remaining unwanted clusters
need to be further removed.

Slot Frame (S)

Glass Frame (G)

World Frame (W)

TWG

TWS

Figure 2.5: Image acquired from camera (without checkerboard)

Best Fitting by Non-linear Regression

The unwanted clusters can be removed by fitting each cluster with the known rectangular
shape of the glass, which is formulated as an optimization problem:

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 11

Camera (C)
TWC

World Frame (W)

Figure 2.6: Eye-to-Hand camera setup

D = min
β
||f (x,Q(β)) ||2 (2.1)

where β is the variable for the position and orientation of the known size rectangle:

β = [X,U]T (2.2)

where X = [x, y]T is the position vector of the rectangle’s center, and U = [u, v]T is the
orientation vector of the rectangle’s principle direction. The rectangle is discretized to a
set of points Q(β) (Fig.2.8) at a density of 1mm. In Eq.(2.1) x is the set of points of
the cluster, and f represents the distances from the rectangle (Q(β)) to the cluster (x).
A k-nearest neighbor algorithm [28] is used to calculate the distance between each point

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 12

Cluster of Glass Points

Cluster of Slot Points

Remaining
Unwanted Clusters

Figure 2.7: Clustering of the rectified Eye-to-Hand image

in Q(β) and its closest point in the cluster x. For good solution and fast convergence of
the optimization problem, the initial variable β0 should be carefully selected. The cluster’s
centroid and principle direction are chosen as X0 and U0 respectively. The optimization
problem is solved with a non-linear least-squares Levenberg-Marquardt algorithm, and the
fitting result is shown in Fig.2.9 where red lines are image clusters and blue rectangles are
fitting result. Cluster with large fitting distance(D) exceeding a thresholds is not a glass
piece or slot and is removed from the result.

Detection with Two Eye-in-Hand Cameras

When the first step is finished, the glass piece is placed close to the slot, and the second
step, closed loop visual servo is activated. In the closed loop visual servo, each Eye-in-Hand
camera sees a half of the glass piece as well as the slot (Fig.2.10 right). The detected edges
of the glass piece and the slot are extracted as line features as feedback information. The
glass piece stays stationary in the image while the slot moves along with the robot during
placing. The goal is to align the slot with the glass piece in both images of Eye-in-Hand
cameras with the motion of the robot.

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 13

Point Cloud

Discretized Rectangle

Distances

1 mm

Figure 2.8: Fitting with discretized rectangle

The edge detection faces the difficulty of the glass being transparent and reflective. It
is extremely hard to extract glass edges when glass and slot are in the same image due to
the almost invisible edges of the glass (Fig.2.10 right). Thus the detection is separate for
the glass and slot. Glass edges are first detected in a plain background, and slot edges are
detected in the presence of the glass (Fig.2.10).

When detecting the glass piece in a plain background, the glass should be as little trans-
parent and reflective as possible, so the contrast between the glass and the background is
maximized. However, when detecting slot edges with the glass piece in presence, it is desir-
able for the glass to have the opposite properties to reduce the occlusion to the slot. Much
research [11], [12] and effort has gone into methods of separating reflections from the back-
ground in images, and while the results are remarkable, they all have a high processing time
in common. Instead, in this Section, a much simpler and faster approach is chosen. A green
piece of fabric, as shown in Fig.2.11, is installed above the workspace to be advantageous in
both cases.

Detection of The Glass

The detection procedure is as follows: first the green channel of the RGB image is extracted
and a Sobel edge detection is performed to obtain a binary image. Then points that make
up a convex hull of the binary image are singled out. By performing a Hough transform [29]
on the image, three lines with the strongest Hough value representing the glass’ three edges
are detected, as shown in Fig.2.12.

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 14

Figure 2.9: Identify glass and slots from regression results (Bad fitting: middle left; Good
fitting: middle right; Black lines are distance)

Figure 2.10: Detection of the glass and slot separately

Detection of the Slot

The precedure of detecting slot is similar to the detection of the glass piece except that
instead of green channel, the red channel of the RGB image is extracted, shown in Fig.2.13
left. In the red channel, the contrast between the slot and the background is substantially
enhanced and the results of detection are shown in Fig.2.13 right.

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 15

Figure 2.11: Change lighting conditions of workspace

Tool Center Point Calibration

After the robot picks up a glass piece, the loading part can be formulated as a placing
task, in which the robot places the glass piece into a slot. However, system uncertainties
associated with this task reduce the placing accuracy. First of all, the pick up point (which is
placed at the center of the suction cup) relative to the robot’s tool flange frame (the robot’s
6th joint frame) cannot be calibrated very accurately. Even if it were precise, due to the
limitations of the camera’s resolution as well as the disturbance at the pick up step, it cannot
be guaranteed that the glass is picked up directly at its center (Fig. 2.14). The resulting
placing error will be further enlarged when the slot location is not detected accurately. To
address such issue, instead of calibrating from the center of the suction cup to the robot’s 6th
joint frame, the glass frame (after picked up) relative to the robot’s 6th joint frame should
be calibrated which can be catagorized into a Tool Center Point (TCP) calibration problem
with TCP being the glass frame. The standard TCP calibration procedure can be found
in [14]. It jogs the robot’s TCP to a single point at four approach points. A regression is
performed to calibrate the TCP. Another way is to use external camera [15]. By calibrating

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 16

Figure 2.12: Detection of the glass edges

Figure 2.13: Detection of the slot edges

the camera’s position as well as the transformation between camera and the TCP (by feature
point extraction), the TCP is calibrated. However, none of the existing methods for TCP
calibration can be directly utilized in this placing task since the TCP is not fixed relative to
the robot’s tool flange frame due to the uncertainty of the pick-up. In this Section, two TCP
calibration methods are presented with one using Maximum A Posteriori (MAP) method
and one using projective transformation.

TCP Calibration by MAP Method

To calibrate the glass frame relative to the robot’s tool flange frame, two frame transfor-
mations need to be introduced as shown in Fig.2.15. One is the transformation T6c from
the robot’s tool flange frame to the camera frame, and the other one is the transformation
Tcg from the camera frame to a virtual glass plane frame. The origin of the glass plane is
determined by a checkerboard put on the virtual plane (a metal plate). With the definition

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 17

Figure 2.14: Glass piece picked up off-centre

of the two transformations, the first step of the glass placing task can be decomposed into
four steps, as shown in Fig. 2.16.

First the glass piece is detected in the image by the Eye-in-Hand camera. With Tcg, the
glass position in the glass plane frame can be determined. Then the glass frame relative to
the robot’s 6th joint frame is obtained with Tcg and T6c. Finally with the robot kinematics,
the glass piece can be placed to the slot. From the placing workflow, the key issue is the
pre-calibration of T6c and Tcg. In this Section, a prior guess of T6c and Tcg is initialized
by a standard checkerboard detection method. Then the glass piece which is attached to
the robot end-effector, is put at several known positions relative to the robot’s base frame
as observations. A Maximum A Posteriori (MAP) method which maximizes the posterior
probability, given the prior guess of T6c and Tcg as well as observations, is performed to
update T6c and Tcg.

To obtain the prior guess of T6c and Tcg, a checkerboard detection method is adopted due
to its simplicity. As shown in Fig.2.17, two checkerboards are used to calibrate T6c and Tcg
respectively.

Checkerboard 2 in Fig.2.17 is at a known position relative to the robot’s base frame,
which is used for the calibration of T6c. The equation for this calibration is:

T0b = T06T6cTcb → T6c = T−1
06 T0bT

−1
cb (2.3)

where T0b, Tcb, T06 are the transformations from the robot’s base frame (0) to the checker-
board frame (b), from the camera frame (c) to the checkerboard frame, and from the robot’s
base frame to the robot’s tool flange frame (6) respectively. T0b is known, Tcb is calibrated
with the Matlab Computer Vision System Toolbox, and T06 is obtained from the robot’s
forward kinematics. By taking images of this checkerboard at different positions with the
robot, a Least-Square is performed to get the best estimation of T6c.

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 18

Z

Y

X

Camera Frame (c) Z

Y

XRobot’s Tool Flange frame (6)

Y
X

Glass Plane Frame (g)

T6c

Tcg

Figure 2.15: Transformation of T6c and Tcg as well as glass plane

Glass Position
in Glass

Plane Frame

Locate Glass
in Image

Glass
Relative to

Flange Frame

Place Glass
into Slot

Tcg Fwd
Kin.

T6c
Tcg

Figure 2.16: Work flow of placing glass piece in slot

Checkerboard 1 in Fig.2.17 is located on the glass plane. By taking images of this
checkerboard, Tcg is calibrated with the Matlab Computer Vision System Toolbox.

By putting the glass piece (attached to the robot end-effector) to five known positions
on the table, five observations are obtained which are the known transformations from the
checkerboard to the glass plane Tbgi , i = 1, . . . , 5 (also to the robot’s base frame), and Tbg =
Tb0T06T6cTcg. Assume that Tb0 and T06 are known (forward kinematics), the observation is
converted to T6g = T−1

06 T
−1
b0 Tbg. With the observation T6g, the observation model is:

T6g = T6cTcg + noise, (2.4)

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 19

1
2

Figure 2.17: Two checkerboards for calibration

For each transformation T,

T =

[
R t
0 1

]
R ∈ SO(3) := {R|RTR = RRT = I, det(R) = 1}

(2.5)

in which R is the rotational part and t is the translational part. Thus rotation and translation
can be estimated separately.

R6g = R6cRcg + noise,

t6g = R6ctcg + t6c + noise
(2.6)

For the estimation of rotation, the rotation matrix is first vectorized to XR:

R =

RT
1

RT
2

RT
3

 , XR =

R1

R2

R3

 (2.7)

The posterior probability is:

P (XR6c , XRcg |XR6g) ∝ P (XR6c , XRcg , XR6g)

= P (XR6c)P (XRcg)P (XR6g |XR6c , XRcg)
(2.8)

in which P (XR6c) and P (XRcg) are prior probabilities, P (XR6g |XR6c , XRcg) is likelihood.
Assuming Gaussian noise, P (XR6c) ∼ N (µR6c ,ΣR6c), P (XRcg) ∼ N (µRcg ,ΣRcg) with µR6c and
µRcg obtained from the previous section, ΣR6cand ΣRcg obtained from the covariance of the
data in the previous Section. P (XR6g |XR6c , XRcg) ∼ N (µR6g ,ΣR6g) with µR6g = XR6cXRcg ,
and ΣR6g tuned with cross validation.

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 20

For each observation, after taking the logarithm of the posterior probability, the log
probability becomes:

l : = logP (XR6c , XRcg |XR6g)

= logP (XR6c) + logP (XRcg) + logP (XR6g |XR6c , XRcg)
(2.9)

The MAP estimation of XR6c and XRcg are obtained by setting the partial derivatives to
zero.

∂l

∂XR6c

= 0,
∂l

∂XRcg

= 0 (2.10)

where
∂l

∂XR6c

=(µR6c −XR6c)
TΣ−1

R6c

+(XR6g − µR6g)
TΣ−1

R6g
(I3 ⊗RT

cg),

∂l

∂XRcg

=(µRcg −XRcg)
TΣ−1

Rcg

+(XR6g − µR6g)
TΣ−1

R6g
(R6c ⊗ I3)

(2.11)

Similarly, for the translation estimation, the observation model (Eq. 2.6) is transformed
to:

t6g =
[
R6c I3

]︸ ︷︷ ︸
A

[
tcg
t6c

]
︸ ︷︷ ︸
Xt

+noise.
(2.12)

Still assuming Gaussian noise, P (Xt) ∼ N (µt,Σt), and P (tcg|Xt) ∼ N (AXt,Σtcg). The
translation estimation can be obtained by setting the partial derivative with respect to the
log posterior probability to zero.

l : = logP (Xt|tcg)
= logP (Xt) + logP (tcg|Xt),

∂l

∂Xt

= 0

(2.13)

For multiple observations, the log posterior probability becomes the sum of all data
points.

l =
∑
i

logP i(T6c, Tcg|T i6g) (2.14)

Five observations are made (the glass plane is positioned at five known and distinct
locations relative to the checkerboard) to update the prior probability. For cross validation,
four data points are selected as the training set and the other one data point is the test
set. ΣRcg and Σtcg are tuned with cross validation. An optimal estimation is the one that
minimizes the error of Tbg on all five test sets. The comparison of the prior estimation and

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 21

Figure 2.18: Rotation axis (Rbg) comparison of MAP and prior guess

the corrected estimation by MAP for Tbg is given in Fig. 2.18 and Fig. 2.19 for rotation and
translation estimation respectively.

The accuracy of the calibration as well as the detection results are tested on the robot
which is shown in Fig.2.20. Given the slot location from the Eye-to-Hand camera, the robot
first calibrates the glass piece with respect to the robot’s tool flange frame with the Eye-in-
Hand camera, and then calculates the desired joint configuration with inverse kinematics.
Fig. 2.20 shows the experiment used to test the result, and the desired glass position is at 5cm
height from the slot. Fig. 2.21 shows the placing comparison between using prior calibration
and calibration corrected by MAP. The resulting placing error of the prior calibration is
about 10mm while for the calibration corrected with MAP is reduced to around 2 mm
(based on 10 experiments). The error is further corrected by a visual servo technique using
a dual Eye-in-Hand camera setting which finally guides the glass into the slot. The result
will be illustrate in the following Sections.

Real-time TCP Calibration with Dual Eye-in-Hand Camera

For real-time TCP calibration with dual Eye-in-Hand camera, which is a different method
from the MAP method, the transformation to be calibrated is the one from the camera frame

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 22

Figure 2.19: Transition (tbg) comparison of MAP and prior guess

to the glass frame (Fig.2.22), a new Tcg. With pre-calibrated T6c and Tcg, the placing work
flow is the same as shown in Fig. 2.16.

After the robot picks up the glass piece, two Eye-in-Hand cameras detect four corners
(each detects two) of the glass piece and the coordinates of the four corners in the image
are obtained. Also, with the known size of the glass piece, four corners’ coordinates in the
glass frame are obtained. The mapping of a point from image frame to glass frame for each
camera is determined by a projective transformation Hj ([30]):

Hj =

hj11 hj12 hj13
hj21 hj22 hj23
hj31 hj32 1

 =

hj1hj2
hj3

pTji = pTjgHj, j = 1, 2

(2.15)

where pji and pjg are points in the image frame and glass frame respectively, and each Hj

(j = 1, 2) has eight parameters with j being the camera index. The goal is to solve for
H1 and thus the transformation from camera frame to glass frame T1 can be obtained with

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 23

Figure 2.20: Experimental test

camera intrinsic matrix (K). Conversion from H1 to T1 is given in Eq.(2.16).

K =

fx 0 0
s fy 0
cx cy 1

 , λ =
1

‖h1K−1‖

r1 = λh1K
−1, r2 = λh2K

−1, r3 = r1 × r2

R =

r1

r2

r3

 , t = λh3K
−1, T =

[
R t
0 1

] (2.16)

With coordinates of four pairs of points, eight mapping equations (each point has two
coordinates) can be constructed for uniquely solving for H1. H2 is expressed by H1 assuming
the transformation from back camera frame to front camera frame is calibrated in order to
maintain only eight parameters. However, with the relationship between H2 and H1 being
non-linear, the equations are no longer linear and thus very hard to solve. In order to
solve the equations in real-time, a good start point T10 is chosen to enable fast convergence.
Because the glass will be always located at a roughly fixed position with respect to the Eye-
in-Hand camera, a good start point can be determined easily with the size of the glass. The

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 24

Figure 2.21: Experimental result

transformation T1 is initialized as shown below:

T10 =

0 1 0 −30(mm)
−1 0 0 100(mm)
0 0 1 50(mm)
0 0 0 1

 (2.17)

A solution of T1 can be obtained in less than a second, and one solving example is
(depending on the points detected):

T1 =

−0.049 0.996 −0.076 −37.520(mm)
−0.983 −0.035 0.182 131.214(mm)
0.179 0.084 0.980 81.135(mm)

0 0 0 1

 (2.18)

Experimental Result of the Detection Accuracy

To verify the accuracy of the vision detection with Eye-to-Hand camera as well as the glass
frame calibration, 10 experiments are performed. Each time a glass piece and the toothboard
are placed randomly on the table and robot picks up the glass to place it into one slot. The
glass piece and all slots were detected successfully for all 10 attempts. The pick up accuracy
as well as the placing accuracy are given in Fig.2.23 and Fig.2.24. The high accuracy of the
first step ensures the convergence of the second step, visual servo, since visual servo is a local
method and it may diverge when the initial error is large.

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 25

Figure 2.22: Glass frame and camera frame

2.4 State Estimation For Image Based Visual Servo

Task Description

After the robot moves to the target destination (slot position), glass will be above the slot
at a distance. Then the placing step, which is the alignment of glass and slot, is performed
with visual servo. In the placing task, the Eye-in-Hand camera sees both the slot and the
glass. The goal of visual servo is to align the edges of the slot to the edges of the glass with
the motion of the robot. In the ideal case, the alignment of three edges in both Eye-in-Hand
cameras indicates the successful placing.

There are two basic visual servo types: position based and image based (Fig. 2.25 and
Fig.2.26), where position based visual servo controls robot with the target position relative
to the camera. Image based visual servo, on the other hand, takes the relative position
implicitly from the image features. Position based visual servo considers the robot motion

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 26

Figure 2.23: Glass pick up accuracy of the first step

Figure 2.24: Glass placing accuracy of the first step

directly which avoid the motion of robot exceeding reach, yet feature points may leave the
image. Image based visual servo controls the motion of robot directly in the image feature
space. Although 3-D info of feature points are required, it is robust to the depth uncertainty.

During the placing task, because the glass is very close to the slot at the beginning, it can
be assumed that the robot motion is small during the whole process. Also, it is crucial that
feature points are kept in the image at all times for correct control input generation. Thus
it is desirable to use image based visual servo, whose control structure is shown in Fig.2.26.

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 27

PBVS Control

Feature
Extractionf

e+
-

Image
Pose

Estimation!

!des
"
.

Figure 2.25: Position based visual servo frame

IBVS Control

Feature
Extractionf

fdes
e+

-

Image

!
.

Figure 2.26: Image based visual servo frame

Several difficulties for the image based visual servo in this application need to be con-
sidered carefully. First, the image feature points feedback is very slow due to the hardware
limitation (low cost webcam) and image processing. The sampling rate is about 2Hz, which
is very slow compared to the controller sampling frequency (125Hz) and robot motor sam-
pling frequency (1000Hz). Not only the sampling rate is low, the delay is also huge. Because
a high resolution image is required for both feature points detection as well as accurate plac-
ing, it takes a whole period for processing which leads to a one period delay. The delay is

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 28

visible by human naked eyes, which results in robot slow motion or even diverging problem
(feature points leave the image). In addition, although vision detection is robust, it may fail
at some sample steps due to the sensitiveness to the environment change. Although vision
can detect slot points at most of the time, a slight condition change or noise can result in
detection failure. It is desirable that the visual servo is capable of false data rejection.

Another issue is the image based visual servo may suffer from low convergence rate when
parameter uncertainty presents. Although it is robust to the depth estimation error, the
performance will be sacrificed which leads to longer time convergence and lost feature points
during the placing process. In this task, however, fast convergence is required since the table
serves a hard constraints which forces the visual servo converges before hitting the table.

Image Jacobian

The result of edge detection with an Eye-in-Hand camera is given in Fig.2.27. Three edges
of both the glass piece and the slot are detected as line features (e.g. two red lines indicate
left edges of glass piece and slot respectively). Each line need to be transferred to a point
first such that the controller can be designed using image Jacobian (image Jacobian is only
for point features). The point is determined by the perpendicular foot from the image
principle point (which could be intuitively viewed as the center point of the image) to the
line. One example is illustrated in Fig.2.27. This approximation introduces a slight error to
the controller which is negligible.

An image Jacobian based approach is adopted for controller design. The imgae Jacobian
describes the relationship between camera motion and image feature points motion. Suppose
a world point P with coordinates relative to camera is P = (X, Y, Z), camera velocity is
v = (v,ω), and the normalized coordinates of P is x = X/Z, y = Y/Z. The motion of P
relative to the camera is derived as:

Ṗ = −ω ×P− v

[
ẋ
ẏ

]
=

[
− 1
Z

0 x
Z

xy −(1 + x2) y
0 − 1

Z
y
Z

1 + y2 −xy −x

]

vx
vy
vz
ωx
ωy
ωz

(2.19)

Considering the camera intrinsic parameters (intrinsic matrix), the image points (u, v) is
related to the normalized coordinates as:

x =
u− u0

fx
=

ū

fx

y =
v − v0

fy
=

v̄

fy

(2.20)

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 29

Figure 2.27: Line detection (back camera) and point approximation (slot’s top edge)

where fx and fy are focal length for x and y directions. Substituting Eq. 2.20 into Eq. 2.19,
the image Jacobian is obtained as:

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 30

[
˙̄u
˙̄v

]
=

[
−fx

Z
0 ū

Z
ūv̄
fy

−f2x+ū2

fx
v̄
fy
fx

0 −fy
Z

v̄
Z

f2y+v̄2

fy
− ūv̄
fx

− ū
fx
fy

]
︸ ︷︷ ︸

Jp

vx
vy
vz
ωx
ωy
ωz

 (2.21)

For two Eye-in-Hand cameras, the camera velocity in Eq.(2.21) refers to each camera
respectively. For control purposes, the back camera’s velocity needs to be converted to the
front camera velocity with the adjoint operator because two cameras are on the same rigid
body:

vb = Adgbfv
f

Adgbf =

[
Rbf tbf ×Rbf

0 Rbf

]
Tbf =

[
Rbf tbf
0 1

] (2.22)

where vb and vf are the back camera velocity and front camera velocity respectively. Adgbf
is the adjoint operator. Tbf is the transformation from back camera to front camera. The
image Jacobian for the back camera is then:

Jp2 = JpAdgbf (2.23)

Visual Servo and Sensor Fusion

Because the detected edges are all expressed by points, the controller can be designed using
image Jacobian. The control goal is the alignment of all three point pairs for both cameras.
Let the error of the alignment be:

errori = Pi −P∗i =

ūi1 − ū∗i1
v̄i1 − v̄∗i1
ūi2 − ū∗i2
v̄i2 − v̄∗i2
ūi3 − ū∗i3
v̄i3 − v̄∗i3

i = 1, 2

(2.24)

where Pi denotes the three image points of the slot and P∗i represents the three image points
of the glass for the ith camera. A linear controller can be obtained easily if the error is
designed to decay to zero exponentially

Ṗi = λ(P∗i −Pi)

i = 1, 2
(2.25)

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 31

With Eq.(2.21), the velocity of each cameras is computed with:

vi =

Jpi1Jpi2
Jpi3

−1

˙̄ui1
˙̄vi1
˙̄ui2
˙̄vi2
˙̄ui3
˙̄vi3

 = λ

Jpi1Jpi2
Jpi3

−1

(P∗i −Pi)

i = 1, 2

(2.26)

where Jpij (i = 1, 2, j = 1, 2, 3) represents the image Jacobian for the ith camera and jth
point. It should be noted that for a unique solution of the camera velocity, at least three
image points are required such that the image Jacobian is of full rank. Thus only line features
can provide sufficient information of the scene. Then the desired camera velocity is combined
as a weighted summation of two camera velocities.

v = ηv1 + (1− η)v2, (2.27)

where η is determined by the normalized error of two cameras:

η =
err1

err1 + err2
(2.28)

where err1 and err1 are normalized error with the initial error:

err1 = error1/error1(0)

err2 = error2/error2(0)
(2.29)

The camera frame is chosen as the robot end-effector, such that the camera velocity is
directly related to the robot joint velocity by the robot Jacobian Jr, and the control input
q̇ is subsequently calculated:

v = Jr(q)q̇

q̇ = Jr(q)−1v
(2.30)

Dual-rate UKF State Estimation

The naive visual servo framework can only be executed at a very low speed due to the
low frame rate and large latency of the camera. To compensate for such issue, an UKF is
proposed to estimate the system states, which are the coordinates of the image points of the
slot, in real-time. Due to the frequency mismatch between the sensor and the controller, the
UKF is designed at dual-rate, i.e., a high sampling rate of the controller (125Hz) and a low
sampling rate of the sensor (around 2Hz). The low rate sampling time is set to be a constant
multiplication of the high rate sampling time (δTl = LδTh, L = 66), and the latency is set
as a whole period (latency = Tl).

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 32

Figure 2.28 illustrates the dual-rate filtering. When data is available at a low sampling
rate (every L step), a correction action is performed to correct the past states estimation
followed by a L-step prediction action to estimate the current states. Then, single step
predictions are performed at high sampling rate during the gap, before the next sensing data
is available. The low sampling rate model is:

xk+1 = xk + δTlJpiJrq̇k + wk = f(xk) + wk, i = 1, 2

yk = xk + vk = h(xk) + vk
(2.31)

where x represents the coordinates of the image points of the slot, Jpi is the image Jacobian
defined in Eq.(2.21), and Jr is the robot Jacobian given in Eq.(2.30). The robot joint angular
velocity is q̇k, which is the control input to this model. δTl is the low rate sampling time, wk
is modeled as an additive process noise with covariance Q, yk is the measurement from the
vision detection, and vk is modeled as an additive measurement noise with covariance R.

The high sampling rate model shares the similar structure of the low rate model:

xkL+m+1 = xkL+m + δThJpiJrq̇kL+m + wkL+m, i = 1, 2

m = 0, 1, . . . , L− 1
(2.32)

It should be noted that k is the low rate index.

Figure 2.28: Dual-rate UKF for low sampling rate and large latency compensation

At every L steps, when sensing data is available, the states estimation x̂k|k−1 and co-
variance Pk|k−1 from the previous low sampling rate step are given, and x̂k|k and Pk|k are
updated with the correction step. x̂k+1|k and Pk+1|k are updated with the prediction step.

During the correction step, states x̂k|k−1 and Pk|k−1 are first augmented with the mea-
surement noise:

xak|k−1 =
[
x̂Tk|k−1 E [vTk]

]T
P a
k|k−1 =

[
Pk|k−1 0

0 R

] (2.33)

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 33

Then 2M + 1 sigma points and weights (for states and covariance) are generated where
M is the dimension of the augmented states:

χ0
k|k−1 = xak|k−1

χik|k−1 = xak|k−1 + (
√

(M + λ)P a
k|k−1)i, i = 1, . . . ,M

χik|k−1 = xak|k−1 − (
√

(M + λ)P a
k|k−1)i−M , i = M + 1, . . . , 2M

λ = α2(M + κ)−M

W 0
s =

λ

M + λ

W 0
c =

λ

M + λ
+ (1− α2 + β)

W i
s = W i

c =
1

2(M + λ)
, i = 1, . . . , 2M

(2.34)

α, κ, β are parameters that can be tuned. The sigma points are projected through the
observation function h given in Eq.(2.31):

γik = h(χik|k−1), i = 0, . . . , 2M (2.35)

The predicted measurement, predicted measurement covariance and state-measurement
cross covariance are:

ŷk =
2M∑
i=0

W i
sγ

i
k

Pykyk =
2M∑
i=0

W i
c [γ

i
k − ŷk][γik − ŷk]T

Pxkyk =
2M∑
i=0

W i
c [χ

i
k|k−1 − x̂k|k−1][γik − ŷk]T

(2.36)

The UKF kalman gain is:

Kk = PxkykP
−1
ykyk

(2.37)

The corrected x̂k|k−1 and Pk|k are updated as:

x̂k|k = x̂k|k−1 +Kk(yk − ŷk)
Pk|k = Pk|k−1 −KkPykykK

T
k

(2.38)

During the prediction step, 2M + 1 sigma points are generated with x̂k|k and Pk|k with
process noise covariance Q similar to the correction step. Then sigma points are propagated

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 34

through the transition function f as given in Eq.(2.31).

χik+1|k = f(χik|k), i = 0, . . . , 2M (2.39)

As the weights are the same as in the correction step, the updated prediction x̂k+1|k and
Pk+1|k are:

x̂k+1|k =
2M∑
i=0

W i
sχ

i
k+1|k

Pk+1|k =
2M∑
i=0

W i
c [χ

i
k+1|k − x̂k+1|k][χ

i
k+1|k − x̂k+1|k]

T

(2.40)

When sensing data is not available, a high sampling rate single-step prediction is per-
formed at every step with the high sampling rate model as shown in Eq.(2.32). Given x̂kL+m

and PkL+m with m = 0, 1, . . . , L− 1, x̂kL+m+1 and PkL+m+1 are updated with the high-rate
model given by Eq.(2.32). It should be noted that when m = 0, x̂kL and PkL should be
x̂k|k−1 and Pk|k−1 updated from the low sampling rate UKF.

UKF with Dual-estimation

With UKF compensation, although much faster performance is achieved shown in Section
2.5, it is still too slow to meet the requirement. This is due to the fact that the visual servo
suffers from slow convergence under system parameter uncertainty. To further improve
the placing performance, an UKF with dual-estimation is proposed to estimate states and
unknown system parameters simultaneously. At every L steps, two UKFs are running in
parallel on two models (system states and parameters) to update system parameters and the
states simultaneously.

The system parameters are chosen as the displacement vector from the back Eye-in-Hand
camera to the front Eye-in-Hand camera tbf in Eq.(2.22). The model for state estimation is
given in Eq.(2.31) with parameter tbf included to the back camera:

xk+1 = xk + δTlJp2(tk)Jrq̇k + wk

yk = xk + vk
(2.41)

where t represents tbf , and a separate model for unknown parameter t is:

tk = tk−1 + uk−1

yk = xk−1 + δTlJp2(tk)Jrq̇k−1 + vk + nk
(2.42)

At each time step k (low sampling rate index), when measurement yk is available, tk is
updated with yk, x̂k−1|k−1 and tk−1. After tk is updated, x̂k|k and x̂k|k+1 are updated with
tk. The parameter adaptation result is shown in Fig.2.29, in which parameter is initialized
as a nominal value from a pre-calibration, shown in blue dotted line. Red lines show the

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 35

adaptation of actual parameters. Fig.2.29 implies that visual servo is very sensitive to
parameter uncertainty whose range is as small as 2mm.

The UKF filtering result is given in Fig.2.30 for each camera and each line. It should
be noted that for each line, filtering is only good for one coordinate with larger range.
This is due to the point approximation error explained in “Image Jacobian” in this Section.
However, such error does not compromise the placing performance since the filtering error
is very small that is negligible.

Figure 2.29: Parameter adaptation with UKF dual-est

2.5 Result

In the experiment, in fact, failure of detection occurs because the vision sensor is sensitive
to the disturbance or the subtle change of the environment, such as lighting condition. Thus
a filter is first adopted to reject any false detection, shown in Fig.2.31. Blue lines are the
raw data from cameras, and there are multiple jumps (discontinuities implying the failures
of detection) in the raw data. The data after failure rejection is shown by red lines, which

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 36

Figure 2.30: UKF with dual-estimation Filtering

removes jumps in the raw data and gives a more continuous data that can be used by
controller.

The raw data (after failure rejection) and the data with UKF filtering are given in
Fig.2.30. Two rows of plots show the results for front and back Eye-in-Hand cameras re-
spectively. Three columns of plots are for the left, middle and right edges of the slot during
placing respectively. Each plot shows the coordinates in x and y axes of the line (represented
by a point) in the image. Blue lines are the raw data after failure rejection and red lines
are the data after filtering. It should be noted that for each line, filtering is only good for
one coordinate with larger range. This is due to the point approximation error explained
in “Image Jacobian” in this Section. However, such error does not compromise the placing
performance since the filtering error is very small that is negligible.

Figure 2.32 shows the error convergence for a successful placing when using raw data,
UKF only and UKF with dual-estimation. Rows and columns are still for two cameras and
three edges of the slot respectively. The error is defined in Sec.2.4, which is the difference
between slot edges and glass edges. Blue solid lines are the errors of using only raw data,
which takes over 100 seconds for convergence. Red dotted lines are the errors of using UKF
only, and the convergence time is reduced to about 40 seconds. Yellow dashed lines are
the errors of using UKF with dual estimatin, which only takes less than 20 seconds for
convergence. The criteria for a successful placing is the coordinate error less than 20 pixels.
Figure 2.32 shows that the UKF with dual-estimation has superior performance than the
other two methods. Comparison of three methods are also given in Tab.2.1, which shows

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 37

Table 2.1: Visual servo comparison of using raw data, UKF
and UKF w/ dual-estimation

Raw data UKF only UKF w/ dual-est.
Success rate1 90% 90% 100%
Conv time2 102.7s 44.6s 14.6s
1 Based on 10 experiments with randomly placed glass piece.
2 Average convergence time

the success rate and average convergence time based on 10 successive experiments with glass
piece randomly placed on the surface. A video is also available for the robot fast glass placing
demonstration [31].

Figure 2.31: Failure of detection and after filtering

2.6 Chapter Summery

This chapter presented a series of statistical learning approaches to overcome the difficul-
ties for fast, accurate and robust visual servo. The work is intended to help an industrial
manipulator for glass piece handling using real-time visual feedback. Due to the hardware
limitations, challenges come from several aspects, namely, object detection, TCP calibration,

CHAPTER 2. STATISTICAL LEARNING AND SENSOR FUSION FOR ROBUST
VISUAL SERVO 38

Figure 2.32: Error convergence comparison of using raw-data, UKF and UKF with dual-
estimation

visual feedback with large latency and low sampling rate, and system uncertainties. To solve
such issues, a two step approach is proposed to achieve high placing performance. The first
step consists of picking up the glass piece with the robot and moving it above the slot. The
second step focuses on guiding the glass into the slot with real-time visual feedback.

In the first step, glass and slots are both detected robustly with an Eye-to-Hand camera by
a non-linear geometrical regression. Accurate detection ensures that the visual servo, which
is the second step, initiated with a small error. A closed loop controller is implemented to
guide the glass piece into the slot. Instead of using point features of the object, line features
are adopted for higher placing precision. To compensate for the cameras’ very low frame
rate and parameter uncertainties, a dual-rate UKF with dual-estimation is implemented.
Experimental results show the effectiveness of the placing performance.

In the experiment, a 6 DOF Fanuc robot arm is used, however, the method proposed in
this Chapter can be widely applied to other low cost and less accurate robot manipulator
for more cost-effective system. Since the visual servo based closed loop control can achieve
a high precision on the robot encoder resolution rather than the robot’s absolute accuracy.

39

Chapter 3

Optimal Trajectory Planning

3.1 Introduction

Automation of trajectory planning for industrial manipulators working in constrained envi-
ronment is an important topic. Moving all the joints of a robot in a coordinate manner is
particularly challenging since the motion have to respect the kinematic constraints of the
manipulator, avoid collisions with objects in presence, and maintain time optimality. Due to
the non-linearity and complexity of the robot kinetics as well as the constraints, it is impos-
sible for manual planning. Currently, for industrial applications, a “teach point” method,
which is to use teach pendant to manually record the via points along a path, is still in use.
Such method is labor intensive and time consuming which has to be replaced by automatic
motion planning.

Constrained trajectory planning for robotic manipulators [32, 33, 34, 35] has been studied
in great detail over the last several decades. One approach is the sampling based planning.
The idea of sampling based planning is to avoid explicit construction of robot configuration
space (C space) and instead to search through the C space with a sampling scheme. In
sampling-based planning, collision detection is viewed as a black box which seperates the
searching from the explicit robot geometric models. For example, Expansive Space Trees
and Probabilistic Roadmap (PRM) methods [36, 37, 38] are suited for high dimensional
motion planning in robot C space, with kinodynamic constraints. In fact, PRM method
works well in static environments and for multi-query problems. Rapidly-exploring Random
Trees (RRT) [39] was originally developed for motion planning under differential constraints,
and were shown to be successful for general high-dimensional planning. However, sampling-
based methods suffer from the fact that it is hard to take into account the path smoothness
and non-linear differential constraints, which will result in jerky and unnatural motion. Also,
there is no guarantee on optimality or completeness.

Another approach is the optimization based motion planning, which tries to optimize over
an objective function formulated as a combination of smoothness, obstacle collision or/and
other performance criteria of the trajectory. In the potential filed method [40], potential

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 40

energy is composed of two parts: attractive potential and repulsive potential. The agent
gets less potential when near the goal or far away from the obstacle. In the elastic band
method [41], a trajectory is assigned an internal energy related to its length or smoothness,
along with an external energy generated by obstacles or taskbased potentials. Other gradient
based approaches, such as CHOMP [42] and STOMP [43], share much in common with elastic
bands planning, except that the covariant gradient descent method is used, and obstacles are
considered directly in the workspace of the robot, where the notions of distance and inner
product are more natural. These methods, however, usually have heavy computational loads
or work only for a predetermined duration.

One particularly difficult example for constrained trajectory planning of robotic manipu-
lator is for a wafer handling robot. A silicon wafer handling robot works inside the equipment
front end module (EFEM) of a semiconductor manufacturing machine (Fig.3.1). In Fig.3.1,
an EFEM is the interface of a semiconductor manufacturing machine to the factory. One side
of the EFEM connects to the factory through loadports (the portal to the outside environ-
ment of the semiconductor manufacturing machine, i.e, the atmospheric environment). The
other side of the EFEM connects to the wafer processing chambers through loadlocks (the
portal to the vacuum environment of the semiconductor manufacturing machine). Wafers
are picked up by the wafer handling robot from loadports and then transferred to loadlocks.
An vacuum robot picks up wafers from loadlocks and transfers them to vacuum chambers
for wafer processing.

Usually, the EFEM has a near-rectangular internal space. The space inside an EFEM is
extremely limited relative to the size of the atmospheric wafer transfer robot. In addition,
there are usually multiple loadports and loadlocks. The goal is to automate the trajectory
planning, which means that with given loadport and loadlock positions, the trajectory plan-
ner can generate an “optimal” smooth trajectory that the robot can follow without violating
any working constraints. The working constraints are defined in robot work space as well
as in joint space. The first constraint is the obstacle constraint which means that a robot
should not collide with obstacles (which is EFEM in this case). The second constraint is the
end-effector constraint which requires that the initial and final positions and orientations of
the end-effector are favourable for wafer-delivery (pick up). In addition, in order to avoid
the sliding of wafers, which may result in particle contamination and even wafer tip-over, the
acceleration of the wafer should be limited. There are also limits on joint velocity and accel-
eration, which are determined by the capabilities of the motors. A trajectory that satisfies
all constraints mentioned above should be further optimized for shorter cycle time, which is
crucial for semiconductor manufacturing throughput.

The motion planning problem for the wafer handling robot in this Chapter can be cat-
egorized as a multi-query planning problem because of the multiple loadlock and loadport
positions. In a single query planning problem, on the other hand, a robot manipulator only
goes to a single desired goal position with a given initial position. It is thus desirable to ex-
tensively investigate the working environment prior to search for one particular path. PRM
method is suitable in this case since it can rapidly construct a roadmap of the environment.

For trajectory smoothing, one commonly used smoothing method uses shortcutting heuris-

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 41

Wafer processing chamber

Vacuum robot

Wafer cassette (used for

transferring wafers

between machines)

wafer

wafer

Equipment front end module

(the portal between the

machine and the factory)

Load port

Load lock

Door

wafer

Atmospheric wafer

transfer robot

Figure 3.1: A robot manipulator works inside an EFEM of a semiconductor manufacturing
machine

tic, which is to replace a subpath by a shortcut segment when it is collision free [44]. This
method, however, cannot generate trajectories with higher order smoothness and cannot
guarantee any optimality. Spline curve [45, 46] seems to be a suitable choice since they are
able to restrict the trajectory in a safe region and in the mean time parameterize the tra-
jectory with temporal information. For example, Bezier curve can generate curves bounded
by control points. However, the order of the curve grows when the number of the control
points increases . In our case, for example, there are 12 control points, and the order of the
curve will be 11, which is not realistic. Moreover, bezier curve only works for a single piece
of curve. On the other hand, B-spline function [47, 48] is ideal for generating a curve which
is composed of several segments since continuity condition is automatically satisfied. Also,
it is able to restrict the curve in a safe region and in the mean time keeps the order of the
curve constant.

However, direct B-spline fitting always violates the original path and lead to collision.
Gasparetto and Zanotto [49] use B-spline function to generate and optimize a trajectory over
a set of via-points. Although all the kinematics constraints are satisfied, it cannot guarantee
a safe interpolation when obstacles are present.

In this Chapter, a cubic B-spline function is used to fit the path. By carefully locating

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 42

the control points, it is guaranteed that the fitting is collision free. A constrained opti-
mization problem is formulated with the objective function as the total execution time and
constraints as kinematic constraints. The B-spline curve parametrization makes the op-
timization problem extremely simplified and a good initial point can be determined by a
standard routine. On-line implementation is possible with this approach which is desirable
in industrial applications.

The rest of the Chapter is organized as follows: in Section 3.2, the kinematic model of the
robot and a model for the obstacle are described. The path finding problem is defined. In
Section 3.3, an adaptive PRM planner with three types of samplers is introduced to generate
the roadmap with the given obstacles. With a query as an input to the PRM planner,
it returns a piecewise linear safe path which is in fact a shortest path in the roadmap.
Section 3.4 gives the whole algorithm of transferring the piecewise linear path into a smooth
trajectory that the robot can follow while satisfying all the constraints. Section 3.5 shows
by simulation the effectiveness of the algorithm given in Section 3.4.

3.2 Configuration of The Atmospheric Wafer Transfer

Robot and The Obstacle

The atmospheric wafer transfer robot is a 3-axis robot with three revolute joints. The robot
is a planner robot whose motion is restricted in the x-y plane, as shown in Fig.3.2

The robot works in an EFEM, which gives an extremely limited work space. Because
the robot is a planer one, the EFEM is modeled as a closed boundary around the robot.
The top view of the boundary, loadports and loadlocks, as well as the robot are shown in
Fig.3.3. There are multiple positions for loadports and loadlocks. The robot needs to pick
up wafers from loadports and unload wafers to loadlocks. In this Chapter, however, only the
motion inside the EFEM is considered. The beginning of the motion is right after the robot
picks up the wafer from the loadport and retracts back to EFEM. The end of the motion is
before the robot extends to unload wafer to the loadlock, as shown in Fig.3.4. The goal of
trajectory planning is that given the positions of a loadport and a loadlock (and immediately
the corresponding configurations inside the EFEM), generate a safe trajectory which satisfies
all constraints.

The constraints include:

1. the trajectory should be defined in robot joint space.

2. robot should not collide with obstacles (which is the boundary).

3. constraints on the maximum velocity and acceleration of the joints should be satisfied.

4. the wafer-center (end-effector) acceleration amplitude should be limited within a thresh-
old to prevent wafer sliding.

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 43

Figure 3.2: Model of the 3-axis manipulator works in an EFEM

In addition to the constraints, the cycle time should be as short as possible because
productivity is a very sensitive issue in industrial applications. The total time duration of
the trajectory should be minimized without violating any constraints.

3.3 PRM Planning

A probabilistic roadmap (PRM) planner is formulated for the multi-query problem. “The
basic idea behind PRM is to take random samples from the C space of the robot, testing
them for whether they are in the free space, and use a local planner to attempt to connect
these configurations to other nearby configurations. The starting and goal configurations
are added in, and a graph search algorithm is applied to the resulting graph to determine a
path between the starting and goal configurations” (Wikipedia). In this Section, PRM tries
to construct a roadmap that covers the obstacle-free space as much as possible. Because of
the unknown property of the obstacle-free space, an adaptive sampling method is adopted
to adjust samplers. The detailed formulation of this method can be found in [36].

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 44

−600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

x (mm)

y
(m

m
)

LL1 LL2

LP1 LP2 LP3

Joint1

Joint2

Joint3

LL:loadlock

LP:loadport

Figure 3.3: The Equipment Front End Module (EFEM) is modeled as a closed boundary
obstacle

There are three samplers in the sampler pool each with a distinctive strength: Uniform
sampler, Gaussian sampler and Bridge Test sampler. The uniform sampler provides good
coverage of C space while the Gaussian and Bridge Test samplers deal with the narrow
passages if there is any in the C space. The sampling strategy is to give reward to the
sampler that generates useful point and punish sampler that generates useless point. Another
important part in generating roadmap is the collision checking for points in robot C space.
The collision checking for the PRM planner is based on geometric collision model which
considers all the collision scenarios that can happen between the robot and the obstacle.
This approach is complicated and hard to implement. However, when the CAD models of
the robot as well as the EFEM are available, it is possible to utilize these CAD models for
fast collision checking. For example, some bounding volume hierarchy based softwares [50]
are available and can be implemented easily.

The result of the roadmap constructed is given in Fig.3.5 and Fig.3.6. The red region is
the obstacle-free space, all the blue dots are sampled points (robot configurations) generated
by samplers (Fig.3.5 (b)), and all the black lines show the connectivity between two points in
the obstacle-free space (Fig.3.6). The roadmap shows that the proposed method can provide
a good coverage of the whole obstacle-free space.

Once a roadmap is constructed, the PRM planner enters another phase: the query phase.
With a given query, which is a pair of initial and goal configurations (qI and qG), an A-star
search method is adopted to search through the roadmap for a shortest path, as shown in

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 45

−600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

x (mm)

y
(m

m
)

LL1 LL2

LP1 LP2 LP3

a) An initial robot configuration inside the EFEM

−600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

x (mm)

y
(m

m
)

LL1 LL2

LP1 LP2 LP3

b) A Goal robot configuration inside the EFEM

Figure 3.4: Motion is considered inside the EFEM

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 46

Fig.3.6 (red line).

3.4 Trajectory Generation Using Cubic B-spline

With the path searched from the roadmap, it has to be smoothed out and parametrized
by time “t” to become a trajectory. The trajectory must be smooth and safe (no collision
happens). Besides, the execution time should be as short as possible. In this Section,
the trajectory is parametrized by time intervals based on cubic B-spline functions, then it
is optimized with respect to the total execution time while not violating any operational
constraints.

Blending within A Safe Region

The basic idea of trajectory smoothing is to blend the connecting points of the piecewise
linear path searched from the roadmap (Fig.3.6) by spline curves. Because only the piecewise
linear path is feasible, each connecting point of the path is first bounded by a box, which
represents a safe region that the trajectory is safe as long as it remains inside the box, as
shown in Fig.3.7. Once the boxes are generated, safe blending can be performed to generate
smooth trajectory within the box.

The bounding box is generated based on the shortest distance from the robot current
configuration (defined by the connecting point) to the obstacle. The goal is to find a box for
a given connecting configuration q, i.e, to find a ∆q (∆q = [∆q1,∆q2,∆q3]T , and ∆qi > 0,i =
1, 2, 3 for 3 joints) such that a new configuration q′ is a safe one as long as |q′i− qi| < ∆qi, i =
1, 2, 3. With the given shortest distance d from robot to obstacle at the given configuration
q, ∆q can be determined if all points on the robot links travel less than distance d when the
robot moves from configuration q to q′.

This problem can be further decomposed for three joints respectively. First, for each
joint (joint i), a Lipschitz condition is derived as:

‖a(q1, . . . , qi−1, qi, qi+1, . . . , qn)−
a(q1, . . . , qi−1, q

′
i, qi+1, . . . , qn)‖

< ci|qi − q′i|
(3.1)

in which a is any point on the robot, ci is a Lipschitz constant, n is the number of joints
(in this case, n = 3), and the Lipschitz condition is written in a general form. The goal is
to make the Lipschitz constant ci as small as possible to get a bigger variation in qi. One
example of determining ci is in Fig.3.8. In this example, the robot has only one link, and ci
is simply the length of the robot r. The bound of the robot displacement is:

‖a(q)− a(q′)‖ <
n∑
i=1

ci|qi − q′i| (3.2)

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 47

a) Obstacle-free space

b) Samples generated by PRM (1500 nodes and 39900 edges, edges
are not displayed)

Figure 3.5: Obstacle-free space and samples generated by PRM

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 48

Figure 3.6: The shortest path connects qI and qG searched in roadmap by A∗

Let
∑n

i=1 ci|qi − q′i| < d, ∆q is derived as

∆qi =
d

nci
, i = 1, 2, 3 (3.3)

The bounding box for configuration q is determined by ∆q, and the intersection of straight
line segments and bounding boxes are also determined (Fig.3.7(b)).

Parametrizing Trajectory by Cubic B-splines

First, a B-spline curve is defined by its degree k − 1, order k, control points, and nodes. A
B-spline curve p(t) is expressed as a linear combination of base functions weighted by control
points.

p(t) =
n∑
i=0

CPiNi,k(t), tk−1 ≤ t ≤ tn+1 (3.4)

where CP0, . . . , CPn are n + 1 control points, tk−1, . . . , tn+1 are nodes (which is a time
sequence, and it is clamped. i.e, the values have multiplicity k at extremeties so that p(tk−1)
and p(tn+1) coincide with the first and last control points respectively), and Ni,k(t)’s are base

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 49

−1.2 −1 −0.8 −0.6 −0.4 −0.2
−1

0
1

2

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

a) Bounding boxes for all connecting points of a path

b) Bounding box for a single connecting point

Figure 3.7: Bounded region of a given piece wise linear path

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 50

Figure 3.8: One link robot example for determining ci

functions recursively determined by de Boor-Cox formula:

Ni,0(t) =

{
1, ti ≤ t ≤ ti+1

0, else

Ni,k(t) =
t− ti
ti+k − ti

Ni,k−1(t)

+
ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t),

and let 0
0

= 0.

(3.5)

Symbols used when defining a B-spline curve are given in Table 3.1. Because cubic
spline curves are at least twice differentiable, which is a favourable property for trajectory
smoothness, the cubic B-spline is selected for path fitting.

The trajectory should be restricted within the path and bounded boxes obtained in the
previous sections, i.e., the blending curves connecting adjacent straight lines must be inside
bounded boxes. To meet these requirements, with the strong convex hull property of the
B-spline (which is given below), control points are distributed as follows: triple coincident
control points are put at the start and end of the path, which ensures that the start and
the end of the trajectory are complete stops (zero speed and acceleration); Single control
points are put at all connecting points as well as at the midway of intersection points and
connecting points. An example of the distribution of the control points is in Fig. 3.9. With
this distribution, the B-spline curve is connected by several segments, and all of them are
safe.

Strong Convex Hull property: A B-spline curve is contained in the convex hull of its
control poly line. To be specific, if t is in knot span [ti, ti+1),p(t) is in the convex hull of

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 51

Figure 3.9: Control points distribution example

Table 3.1: Symbols used when define the B-spline

Symbol Definition
k − 1 Degree of the B-spline
k Order of the B-spline
p(t) B-spline curve
Ni,k−1(t) Base function of degree k-1
CPi Control points of the B-spline
n+ 1 Number of control points
ti Nodes of the B-spline(time sequence)
k + n+ 1 Number of nodes

control points CPi−k+1, CPi−k+2, . . . , CPi. This is because Ni,k−1(t) ≥ 0,
∑
Ni,k−1(t) = 1.

With this property, for a B-spline curve of degree k−1 = 3, supposing that control points
are CP0, . . . , CPn, k + n+ 1 nodes are needed for a complete B-spline trajectory. Let nodes
be t0, . . . , tk+n, which is in fact a time sequence. The trajectory p(t) is parametrized by time
sequence while under the safe operation condition. One trajectory with a time sequence
substituted is given in Fig.3.10, and the trajectory is a safe one.

The Optimization Problem with Kinematic Constrains

The trajectory parametrized by a time sequence t0, . . . , tn−k+2 features sufficient smoothness
properties, i.e, it is guaranteed that the trajectory, velocity and acceleration are continuous

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 52

−1.2
−1

−0.8
−0.6

−0.4
−0.2

−1
0

1
2

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

xy

z

a) Trajectory with time sequence substituted

b) Zoom in of a segment of the trajectory

Figure 3.10: Trajectory generated by B-spline curve

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 53

functions. In industrial applications, however, the execution time is crucial for manufacturing
throughput. Thus the trajectory should be further optimized while taking into account the
kinematic constraints.

Kinematic constraints are usually boundaries of joints’ velocity and acceleration. How-
ever, in this application, the kinematic constraints are not only defined in robot joint space,
but also in robot work space. The acceleration of the wafer center in the work space must be
limited because the wafer is in contact with the blade only by means of friction. It has been
proved empirically that wafer sliding is avoided when wafer center acceleration is bounded.

To explicitly express the constraints in the optimization problem, some remarks about
the derivatives of the B-spline trajectory are necessary. The derivative of a B-spline curve is

v(t) = p′(t) = (
∑n

i=0 CPiNi,k(t))
′ =
∑n

i=0CPiN
′
i,k(t)

= (k − 1)
∑n

i=1(CPi−CPi−1

ti+k−ti
)Ni,k−1(t)

=
∑n

i=1CPVi ·Ni,k−1(t),

CPVi = (k − 1)(CPi−CPi−1

ti+k−ti
)Ni,k−1(t)

(3.6)

in which CPVi are control points of velocity. Similarly, the acceleration is:

a(t) = v′(t) = (
∑n

i=1 CPViNi,k−1(t))′

=
∑n−1

i=1 CPAi ·Ni,k−2(t),

CPAi =
k − 2

ti+k−1 − ti+1

(CPVi − CPVi−1)
(3.7)

in which CPAi are control points of acceleration. Thus the trajectory, velocity and acceler-
ation are all expressed in B-spline form. Recall the Convex Hull property of B-spline curve,
which states that a B-spline curve is contained by all of its control points. Thus to bound
a B-spline curve, it is sufficient (not necessary) to bound its control points instead. The
kinematic constraints on velocity and acceleration in joint space are then written as:

|CPVj,i| ≤ LVj, i = 1, . . . , n, j = 1, 2, 3
|CPAj,i| ≤ LAj, i = 1, . . . , n− 1, j = 1, 2, 3

(3.8)

in which j is the joint number, and LVj and LAj are limits of velocity and acceleration
respectively. It should be noted that all control points of velocity and acceleration are
functions of time sequence.

The wafer center acceleration in work space is first calculated by forward kinematics and
is expressed as a piece-wise function parametrized by time t and time sequence t0, . . . , tn−k+2.
The acceleration constraints imposed on acceleration function should be held for any time
instant, which is an infinite constraints problem that is hard to address. Moreover, because
of the forward kinematics involves complex non-linearity of the robot kinematics, the acceler-
ation constraints in the work space requires high computational load. A pseudo semi-infinite
constraints approach is proposed to express the kinematic constrains in work space efficiently.

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 54

The acceleration function at all time sequence t0, . . . , tn−k+2 are sampled and set within the
constraints.

|Acc wsj(t = ti; {t0, . . . , tn−k+2})| ≤ LA wsj,
i = 0, . . . , n− k + 2, j = x, y

(3.9)

in which Acc ws is the acceleration function, LA ws is the acceleration limit in work space,
and j stands for two axes x and y.

It should also be noted that there is constraint set on the time intervals, which is due to
the fact that they are lower bounded because of the limits of the joint velocity. It is hard to
get this lower bound because the joint positions are not fixed at the time spot in the time
sequence t0, . . . , tn−k+2. However, it is possible to get a rough lower bound as a substitute
by considering going straight line from initial to goal point at maximum speed. Besides, t0
should be zero.

ti − ti−1 ≥ minj
|qG − qI |
LV

,

i = 1, . . . , n− k + 2, j = 1, 2, 3, t0 = 0
(3.10)

After all kinematic constraints are defined, the objective function of the optimization problem
is defined as the total execution time.

min
{t0,...,tn−k+2}

tn−k+2

subject to kinematic constraints(Eq. 3.8, 3.9, and 3.10)
(3.11)

3.5 Simulation Results of The Optimized Trajectory

The optimization problem formulated in Eq.(3.11) is a constrained non-linear optimization
problem which is usually solved by iteration. Thus the optimization problem is sensitive to
the initial point which affects the running time or even the result.

First the kinematic limits are given in Table 3.2. For the robot moving from loadport1
to loadlock1, the initial and goal configurations corresponding to the given loadport and
loadlock position are shown in Fig.3.4. The solution of the optimization problem is obtained
by an “interior-point” method in Matlab. The “interior-point” method requires that the
initial searching point is feasible. By iteratively increasing the gain of the barrier function,
it is proved that the “interior-point” method converge to a solution [51].

The feasible initial point can be determined by the following steps. First a initial time
sequence h is obtained by considering the lower bound of time intervals with Table 3.2, which
is a uniformly distributed time sequence with the final time as minj

|qG−qI |
LV

, j = 1, 2, 3. Then
by substituting h into Eq.(3.4), the B-spline curve p(t) is obtained, and velocity control
points (CPVi), acceleration control points (CPAi) as well as acceleration in the workspace
(Acc wsj) are all obtained. A scaled time variable τ is defined as: τ = λt, and λ can be
computed by the control points and workspace acceleration, as given in Eq.(3.12). Then the
initial point is h(0) = λh.

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 55

Table 3.2: Values of kinematic limits

Joints
Kinematic limits in joint space

Velocity[rad/s] Acceleration[rad/s2]
1 4.2 8.4
2 8.4 16.8
3 6.3 12.6

Axis
Kinematic limits in work space

Acceleration[mg]
x 100
y 100

λ1 = maxj,i
CPVj,i
LVj

, i = 1, . . . , n, j = 1, 2, 3

λ2 = maxj,i
CPAj,i
LAj

, i = 1, . . . , n− 1, j = 1, 2, 3

λ3 = maxj,i
Acc wsj,i
LA wsj

, i = 1, . . . , n, j = x, y

λ = max(1 λ1

√
λ2

√
λ3)

(3.12)

Fig.3.11 gives the motion sequence of the generated trajectory. The simulation results
in Fig.3.12-Fig.3.13 show that all constraints are satisfied. Figure 3.12 shows the positions
and velocities of robot’s three joints of the optimized trajectory. Figure 3.13 shows both the
accelerations of robot’s three joints and wafer center (in x and y directions in work space).
Noting that the trajectory is far from the constraints in joint velocity and acceleration is
mainly because the workspace acceleration constraint is more limited. The proposed method
also works when the kinematic constraints are small. The change of the kinematic limits will
directly change the initial point (always feasible), and the optimization process will optimize
over the initial point and remain feasible.

The resulting optimized trajectory is not global optimal. It is a sub-optimal trajectory.
First, the kinematic constraints imposed on the velocity and acceleration(Eq.(3.8)) are only
sufficient but not necessary, which means that there might exist a better trajectory though
violating the constraints. Also because the optimization is a non-convex one, it is hard
to guarantee that the solution is global optimal. However, given the optimization with
inequality constraints and feasible initial point, the “interior-point” method is guaranteed
to output an improved feasible solution.

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 56

x (mm)

y
(m

m
)

x (mm) x (mm) x (mm)

x (mm)

y
(m

m
)

x (mm) x (mm) x (mm)

t=2.98(sec)

t=0(sec) t=0.57(sec) t=1.79(sec) t=2.14(sec)

t=4.00(sec) t=4.38(sec) t=5.29(sec)

Figure 3.11: The motion sequence of the trajectory

3.6 Chapter Summery

In this Chapter, automation of trajectory planning for industrial manipulators with op-
erational constraints is attempted to solve with combined statistical learning method and
optimization strategy. Sampling based method, which searches through the robot C space
with a sampling scheme does not consider path smoothness and non-linear differential con-
straints. On the other hand, optimization based method requires heavy computational loads
or only works for a predetermined duration. By combining the two approaches: sampling
and optimization based method, the trajectory planning can be solved not only fast but also
with certain optimality.

One example given in this Chapter is a wafer handling robot that works in the Equipment
Front End Module (EFEM) of a semiconductor manufacturing machine. The generated tra-
jectory is guaranteed to be a safe one without colliding with any obstacles and is optimized
with respect to the total execution time for working efficiency. Unlike most existing methods
for trajectory planning either partially solved the problem or with heavy computational load,
the proposed trajectory planning method for this problem solves the problem with consid-
eration of almost all aspects, which involves obstacle avoidance and cycle time optimization
under kinematic constraints.

For the obstacle avoidance, first a roadmap describes the connectivity of the free space is

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 57

0 1 2 3 4 5 6

−1.5

−1

−0.5

0

0.5

Position

time(s)

ra
d

j1
j2
j3

a) Position of the three joints for the optimized trajectory

0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

velocity

time(s)

ra
d/

se
c

j1
j2
j3

b) Velocity of the three joints for the optimized trajectory

Figure 3.12: Position and velocity of the three joints for the optimized trajectory (under
constraints in Tab.3.2)

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 58

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

4
acc

time(s)

ra
d/

se
c2

j1
j2
j3

a) Acceleration of the three joints for the optimized trajectory

0 1 2 3 4 5 6
−80

−60

−40

−20

0

20

40

acc in workspace

time(s)

m
g

x
y

b) Acceleration in the workspace for the optimized trajectory

Figure 3.13: Acceleration for the optimized trajectory (under constraints in Tab.3.2)

CHAPTER 3. OPTIMAL TRAJECTORY PLANNING 59

constructed by the probabilistic roadmap (PRM) method with multiple samplers adaptively
updated. Then a shortest path is searched for the given query, i.e, the initial and goal
configuration of the robot. With the path searched from the roadmap, the trajectory is
smoothed by means of Cubic B-spline parametrization, and all kinematic constraints are
formulated in this manner.

The problem is formulated as an optimization problem and solved by an “interior point”
method and the results show the effectiveness of the proposed method.

60

Chapter 4

Intelligent System Identification for
Feedforward Compensation

4.1 Introduction

In industrial autonomous manufacturing, robotic manipulators currently play an important
role, which are required to perform accurate tracking in many industrial applications. The
use of parallel manipulators [52, 53], which always have a closed loop kinematic chain op-
posed to serial link robots, has been increased due to some advantages found for parallel
manipulators. Parallel manipulator have higher stiffness, lighter and faster structures which
leads to a better force distribution, easier inverse kinematics computing, and so on. This
class of robots is ideal for a better manipulation of heavy loads which yield accurate posi-
tioning results. Some reported applications for this class of robots are haptic devices, lifting
applications (even lifting of other manipulators), product transportation and classification,
flight simulators, and so on [54].

Typically, parallel robots offer greater efficiency and faster acceleration at the end-effecter,
and therefore are more suitable for fast assembly lines. However, because of the complexity of
related kinematics and dynamics analyses, the derivation of dynamic equations of motion for
parallel robots is more involved. Formulation of such equations that are suitable for controller
design is still an open question. One popular method [55, 56] is to first separate the closed
chain into several open chains, and then derive the equations of motion. This method will
lead to a set of differential algebraic equations that are not easy to solve. Uicker [57] tried to
formulate the equations of motion in terms of all dependent generalized coordinates, and then
eliminated all holonomic constrains to end up with differential equations with independent
generalized coordinates. Getting explicit motion equations are generally impossible because
of the complexity of parallel robot kinematics. But once explicit dynamic equations of motion
are obtained, it is possible to extend the exsisting robot control strategies to parallel robots
[58].

One example is the silicon wafer handling robot. The processing of silicon wafers, which

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 61

is a thin slice of silicon used in the fabrication of integrated circuits(IC), is complex and
is involved with chemistry and physics. During this process, even a small particle may
ruin the entire wafer, and result in hundreds or even thousands of dollars lost. Thus to
successfully transform the silicon wafer into IC, this process must be finished under the
absolute absence of contaminants. Normally, this process is operated in vacuum environment,
with contaminants stringently controlled. Today, etch machines with multiple chambers are
used for wafer fabrication. The wafer handling system is used to automatically transfer
wafers among different chambers of a semiconductor etch machine. The wafer handling
robot is a part of the handling system. To fulfill the handling task, 2 degrees of freedom
is necessary. Due to the nature of high stiffness, kinematical closed loop robots or parallel
robots are more suited for this task than the serial robots (e.g. SCARA). In order to improve
the working efficiency, a parallel robot with dual blade, which adopts two identical closed
loop mechanisms, is used for wafer handling, as shown in Fig.4.1.

Figure 4.1: Dual blade wafer handling robot

Though closed loop mechanism is used to enhance the stiffness of the robot, due to the
chamber entrance size, the link is quite thin and thus introduces some flexibility to the
system. Moreover, the magnetic coupler used for isolation of the robot link and load on
the vacuum side from the motor on the atmospheric side introduces not only compliance
in torque transmission but also actuation-sensing mismatch problem. The result is that,
with only a PID controller, the robot may exhibit a considerable vibration and produce non-
negligible tracking error during the tracking of a desired wafer handling trajectory. Large

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 62

tracking error reduces the quality of products, and vibration results in wafer contamination
by production of particles.

It should be noted that the tuning of the fixed structure controllers such as PID controllers
may not be sufficient for the wafer handling robot to meet the performance specifications.
Robot dynamic control schemes such as the computed torque method may potentially achieve
high trajectory tracking accuracy and tracking smoothness. These approaches always use
robot dynamic model to calculate the desired drive torque. Although it is always hard to
obtain the dynamic parameters of robots, the structure of the wafer handling robot enables
the identification of all dynamic parameters.

In this Chapter, we exploit Lagrange’s equations of motion to derive the dynamic model
of a dual-blade wafer handling robot. An explicit form of dynamic model is obtained. With
the assumption of accurate lengths of links, we transform the dynamic model into a de-
coupled form to enable dynamic identification by least square regression [59]. A data-driven
approach is proposed to solve the problems of decoupling and regression. Both the Lagrange’s
equations of motion and identification procedure are verified through numerical simulation.
Friction is also modeled to make the dynamic model more reliable. Identification experiment
is performed on an actual dual-blade robot. The result has demonstrated the correctness of
the dynamic model and the feasibility of the identification method. The identified model is
finally used by a feedforward controller for improved performance.

The rest of the Chapter is organized as follows: in Section 4.2, the dynamic modeling of
the wafer handling robot is given using Lagrangian method, including the kinematics of the
dual blade robot. In Section 4.3, the robot dynamics is transformed to a decoupled form
for identification, and the identification result is verified by numerical simulation. Section
4.4 shows how a feedforward controller is applied to the robot with the identified dynamic
model. Section 3.5 concludes the Chapter.

4.2 Dynamics Modeling

Kinematics of Dual Blade Wafer Handling Robot

The dual blade wafer handling robot adopts two frog-legged five-bar mechanisms, as shown
in Fig.4.1. From the perspective of kinematics, this robot is equivalent to the diagram shown
in Fig.4.2. The five-bar mechanism adopted in the dual blade robot is driven by the two
rotational joints 1 and 5. The motion of joints 3 and 4 are restricted to ensure the robot
has the desired motion, i.e. the symmetric motion with respect to the extensional axis.
This robot can only perform one rotational motion and one extensional motion, as shown in
Fig.4.2.

Two types of motion of this robot are considered separately. First, the extensional motion
is considered. Specific corotational coordinates are used to simplify the kinematics analysis.
Corotational coordinates are α and ε as specified in Fig.4.3. Note α and ε are not the rotation

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 63

Figure 4.2: Kinematics of the dual blade wafer handling robot

angles of the motors. Their zero reference line is the perpendicular bisector of the wrist link
(l3). All the angles in Fig.4.3 span from −π to π.

The relationships between the angles are:

l1sin(α) + l2sin(β)− l3
2

= 0

γ + π
2

= 0

δ + β + π = 0

ε+ α = 0

l2sin(µ) = l1sin(α + ζ)− l3
2

η = π
2

φ+ µ = π

(4.1)

Again, note α and ε are not the rotation angles of the motors. The solution of the above
equation is:

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 64

Figure 4.3: Corotational coordinates for extension motion

β = arcsin(
l3
2
−l1sin(α)

l2
)

γ = −π
2

δ = −π − arcsin(
l3
2
−l1sin(α)

l2
)

ε = −α

µ = arcsin(
l1sin(α+ζ)− l3

2

l2
)

η = π
2

φ = π − arcsin(
l1sin(α+ζ)− l3

2

l2
)

(4.2)

Now consider the rotation motion with the extension motion. Let the angle between link
i and the x− axis (the one fixed to the ground) be θi, as shown in Fig.4.2. Note θ1 and θ5

are the rotational angles of the motors. The angles have the following relationships:

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 65

θ1 = α + (θ1+θ5)
2

θ2 = β + (θ1+θ5)
2

θ3 = γ + (θ1+θ5)
2

θ4 = δ + (θ1+θ5)
2

θ5 = ε+ (θ1+θ5)
2

θ6 = φ+ (θ1+θ5)
2

θ7 = η + (θ1+θ5)
2

θ8 = µ+ (θ1+θ5)
2

(4.3)

All the angles can be expressed as functions of the rotational angles of the motors:

θ2 = θ1
2

+ θ5
2

+ arcsin(
l3−2l1sin(

θ1
2
− θ5

2
)

2l2
)

θ3 = θ1
2

+ θ5
2
− π

2

θ4 = θ1
2

+ θ5
2
− π − arcsin(

l3
2
−l1sin(

θ1
2
− θ5

2
)

l2
)

θ6 = π − arcsin(
l1sin((

θ1
2
− θ5

2
)+ζ)− l3

2

l2
) + θ1+θ5

2

θ7 = π
2

+ θ1+θ5
2

θ8 = arcsin(
l1sin((

θ1
2
− θ5

2
)+ζ)− l3

2

l2
) + θ1+θ5

2

(4.4)

The relationships between all joint angles and the independent generalized coordinates
are then given explicitly by Eq.4.4.

Dynamics

Dynamics model can be derived by Lagrange’s equations of motion. Lagrangian of this robot
only includes kinetic energy as this is a planar robot. The Lagrange’s equations are:

d

dt

(
∂T

∂θ̇1

)
− ∂T

∂θ1

= τ1

d

dt

(
∂T

∂θ̇5

)
− ∂T

∂θ5

= τ2

(4.5)

where τ1 is the torque applied to link 1 by motor 1, and τ2 is the torque applied to link 5 by
motor 2. T is the kinetic energy, which is the sum of the kinetic energy of all links.

T =
8∑
i=1

Ti (4.6)

where
Ti =

1

2
Jiθ̇

2
i , i = 1, 5

Ti =
1

2
mi‖vvv‖2

2 +
1

2
Jiθ̇

2
i , i = 2, 3, 4, 6, 7, 8

(4.7)

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 66

Ji’s for link 1 and 5 are computed with respect to the origin. Ji’s for other links are
computed with respect to the center-of-mass. mi is the mass of link i. vvvi is the velocity of
the center-of-mass of link i. The explicit kinematics solution enables the explicit relationship
between link velocity and motor speed.

vvvi = JJJvi

(
θ̇1

θ̇5

)
, θ̇i = JJJωi

(
θ̇1

θ̇5

)
(4.8)

Both JJJvi and JJJωi can be obtained through symbolic computation. The terms in La-
grange’s equations can then be derived explicitly as:

d

dt

∂Ti

∂θ̇1
∂Ti

∂θ̇5

 =
(
miJJJ

T
viJJJvi + JiJJJ

T
ωiJJJωi

)
θ̈θθ

+

(
mi

d

dt

(
JJJTviJJJvi

)
+ Ji

d

dt

(
JJJTωiJJJωi

))
θ̇θθ

(4.9)

and ∂Ti∂θ1
∂Ti
∂θ5

 =

1

2
miθ̇θθ

T ∂
(
JJJTviJJJvi

)
∂θ1

θ̇θθ +
1

2
Jiθ̇θθ

T ∂
(
JJJTωiJJJωi

)
∂θ1

θ̇θθ

1

2
miθ̇θθ

T ∂
(
JJJTviJJJvi

)
∂θ5

θ̇θθ +
1

2
Jiθ̇θθ

T ∂
(
JJJTωiJJJωi

)
∂θ5

θ̇θθ

 (4.10)

where θθθ = (θ1, θ5)T . The Lagrange’s equations of motion can be easily rewritten into the
form of

MMM(θθθ)θ̈θθ +CCC(θθθ, θ̇θθ) = τττ (4.11)

where τττ = (τ1, τ2)T . In order to reduce symbolic computation complexity, both MMM and CCC
are decomposed into 8 parts with respect to 8 links as

MMM(θθθ) =
8∑
i=1

MMM i(θθθ)

CCC(θθθ, θ̇θθ) =
8∑
i=1

CCCi(θθθ, θ̇θθ)
(4.12)

where
MMM i(θθθ) = miJJJ

T
viJJJvi + JiJJJ

T
ωiJJJωi

CCCi(θθθ, θ̇θθ) = mi
d

dt

(
JJJTviJJJvi

)
+ Ji

d

dt

(
JJJTωiJJJωi

)
+

1

2
miθ̇θθ

T ∂
(
JJJTviJJJvi

)
∂θ1

+
1

2
Jiθ̇θθ

T ∂
(
JJJTωiJJJωi

)
∂θ1

1

2
miθ̇θθ

T ∂
(
JJJTviJJJvi

)
∂θ5

+
1

2
Jiθ̇θθ

T ∂
(
JJJTωiJJJωi

)
∂θ5

(4.13)

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 67

4.3 Dynamics Model Decoupling

Model Decoupling

We try to identify the dynamic parameters with the most straightforward method, i.e. least-
squares regression. The dynamic model should be transformed into the decoupled form
YYYZZZ = τττ , where YYY is a function of only motor rotation angles and ZZZ is a function of
only the mechanical parameters. This transformation is called YZ decoupling [60]. The
resulting dynamics model treats the motor torque as a linear combination of functions of
mechanical parameters. Assuming that there is no need to identify the lengths of links, this
transformation can be derived.

Refer to section 4.2, MMM and CCC can be rewritten as sum of 8 parts with respect to 8 links
as Equation (4.12). In this case, each link of this robot is treated as a 2-D rigid body instead
of a beam. The center-of-mass can be arbitrarily set on a plane instead of along a line.
This makes dynamics modeling more reliable and more complex. With simply kinematics
analysis, it is not difficult to find for each link a linear relationship between the mechanical
parameters and MMM,CCC in Eq.4.13. This equation can be further derived as

MMM i(θθθ) = KKK1
mi(θθθ)

[
Ji +mi

(
r2
i + s2

i

)]
+KKK2

mi(θθθ)miri +KKK3
mi(θθθ)misi

+KKK4
mi(θθθ)mi

CCCi(θθθ, θ̇θθ) = KKK1
ci(θθθ, θ̇θθ)

[
Ji +mi

(
r2
i + s2

i

)]
+KKK2

ci(θθθ, θ̇θθ)miri +KKK3
mi(θθθ, θ̇θθ)misi

+KKK4
ci(θθθ, θ̇θθ)mi

(4.14)

where [ri, si]
T is the position vector of the center-of-mass of link i in the link’s coordinate

system. KKKj
mi and KKKj

ci are functions of the motor rotation angles and velocities. For either
link 1 or link 5, mechanical parameters include only Ji (i = 1, 5) . Therefore this robot
has at most 4 × 6 + 2 = 26 independent mechanical parameters. This relationship enables
construction of a decoupled dynamics model as(

YYY 1 YYY 2 · · · YYY 26

)
ZZZ = τττ (4.15)

where ZZZ = (J1, J2 +m2 (r2
2 + s2

2) , m2r2, · · · , m8, J5)
T

is a function of mechanical parame-
ters. The aim of dynamic parameter identification is to obtain ZZZ (given YYY). The least-square
regression can be performed when sufficient experimental data has been acquired.

For the ith experimental data,(
YYY i

1 YYY i
2 · · · YYY i

26

)
ZZZ = τττ i (4.16)

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 68

All experimental data (totally k experiments) can be compiled as
YYY 1

1 YYY 1
2 · · · YYY 1

26

YYY 2
1 YYY 2

2 · · · YYY 2
26

...
...

. . .
...

YYY k
1 YYY k

2 · · · YYY k
26

ZZZ =

τττ 1

τττ 2

...
τττ k

 (4.17)

The large YYY matrix above is called the regression matrix, denoted as YYY I . For least-square
regression purpose, YYY I should have a full column rank. For parallel robots, determining
independent columns in an analytical way is difficult and inefficient. Here we use a data-
driven method to find the largest set of linearly independent columns of YYY I .

1) N groups (e.g. 100) of random positions, velocities and accelerations are chosen to
construct the YYY I matrix.

2) A set SSSn is constructed as the largest set of linearly independent columns for the first
n columns of YYY I . Let YYY n denotes the nth column of YYY I . Initialize SSS1 = [YYY 1].

3) From n=2 to 26, if rank ([SSSn−1,YYY n]) > rank (SSSn−1), YYY n must be linearly independent
to columns in SSSn−1 , thus SSSn = [SSSn, YYY n]. Otherwise SSSn = SSSn−1.

The result of this algorithm is

SSS26 = [YYY 1,YYY 2,YYY 3,YYY 4,YYY 6,YYY 7,YYY 8,YYY 10,YYY 11

YYY 12,YYY 14,YYY 15,YYY 16,YYY 19,YYY 20,YYY 22,YYY 24]
(4.18)

Thus the dynamics model of VHP dual-blade robot can be rewritten to YYY ′ZZZ ′ = τττ , where
YYY ′ is a (2× k)× 17 matrix (totally k experiments) with full column rank. For least-square
regression purpose, 2 × k should be greater than 17. In other word, the word “sufficient”
means at least 8 groups of experiment data should be taken. More experiments can be taken
to reduce the effect of noise.

Simulation Verification

To verify the dynamics model, we compare the solution of analytical closed-form model with
a multi-body motion simulation. The analytical closed-form model is solved as differential
equations in MATLAB, and the multi-body motion simulation is performed in commercial
CAD software Pro/ENGINEER. In the simulated motion scenario, two constant torques
with different magnitudes are applied to the two motors respectively. The resulting motion
of the robot involves both rotation and extension. Due to the lack of design parameters
(mass, inertia of moment, center of mass) of the actual dual-blade wafer handling robot, the
mechanical parameters of the simulation are set manually.

The numerical solution obtained by MATLAB and the result of multi-body simulation
are shown in Fig.4.5. The simulation has demonstrated the correctness of the dynamics
model.

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 69

Figure 4.4: Multi-body simulation

Identification has also been simulated to verify the decoupled dynamic model. For this
simulation, the mechanical parameters are set manually in the multi-body model. In the first
simulation for the verification, time varying torques are applied to excite the robot in the
multi-body simulation software, the data of motor rotation is collected, as shown in Fig.4.6.

Dynamic parameters identification is then performed in MATLAB with least-square re-
gression. The identified mechanical parameters are used to generate a torque profile for a
given trajectory. The given trajectory is a cubic function as in Eq.4.19, which has constant
jerk, zero initial value for speed and acceleration.{

θ1 = 55− 35t3(deg)

θ5 = −55 + 35t3(deg)
(4.19)

The torque profile for the given trajectory is then generated using identified dynamic
model. This torque profile is applied to the robot in a new multi-body simulation. The
resulting motion is compared with the given trajectory to verify the correctness of identi-
fication, as shown in Fig.4.7. Only motor angles are shown here. The angular speed and
acceleration have the same consistency.

The simulation procedure has demonstrated the validity of decoupled dynamic model, as
well as the feasibility of the dynamics identification.

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 70

Figure 4.5: Verification of the dynamic model

Identification Experiment

Experiments on the actual dual-blade wafer handling robot indicate that friction has major
influence on the dynamics. Figure 4.8 compares the experimental robot response and the
simulated response based on the identified model with neglected friction. The red lines are
torques computed using the identified model of a sinusoidal motion. The blue lines are
the actual applied torque. The experimental and simulated responses exhibit significant
difference due to the neglected friction. Other sources that may contributed to this includes
joint dynamics and flexibility on the belt (located on joints 3, 4, 7 and 8).

Refering to [61], friction on all joints can be lumped on to the motor shafts, and sorted
as decoupled and coupled friction. Coulomb and viscous friction are considered. We lump
the distributed friction to joint 1 and 5. General viscous friction is in the form of:

τvf =

(
z18 z19

z20 z21

)(
θ̇1

θ̇5

)
(4.20)

The Coulomb friction is the form

τvf =

(
z22sign(θ̇1)

z23sign(θ̇5)

)
+ z24sign(θ̇1 − θ̇5)

(
1
−1

)
(4.21)

where z22, z23, z24 > 0. The dynamics model is:

YYY ′ZZZ ′ + τττ vf + τττ cf = τττ (4.22)

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 71

Figure 4.6: Motor rotation angle from simulation

Figure 4.7: Trajectory comparison result

This model can be easily rewritten into a decoupled form YYY ′′ZZZ ′′ = τττ , where

YYY ′′ =
(
YYY ′ YYY vf YYY cf

)
; (4.23)

YYY vf =

(
θ̇1 θ̇5 0 0

0 0 θ̇1 θ̇5

)
(4.24)

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 72

Figure 4.8: Identification without friction

and

YYY cf =

(
signθ̇1 0 sign(θ̇1 − θ̇5)

0 signθ̇5 sign(θ̇5 − θ̇1)

)
(4.25)

With this friction model, the least-square regression gives a good result, as shown in Fig.
4.9 for the same validation condition as for Fig.4.8.

Figure 4.9: Identification with friction

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 73

In the experiment, the YYY ′′ data matrix needs to be well conditioned for good regression
result. The ideal case is to use random motor angles, which is not possible for the actual
robot. In order to find ’exciting’ trajectories for regression[62], we need to maximize the
minimum singular value of the YYY ′′ data matrix under dynamics constraints. The actual
trajectory for identification experiment is chosen as shown in Fig. 4.10.

Figure 4.10: Trajectory for identification

Identification is then performed to obtain the mechanical parameters. Fig.4.11-Fig.4.13
show the validation results of identification with three different experiments. As shown in
figures, the blue lines are the actual torque data, while the red lines are the computed torque
using the model identified. The velocity after filtering is also shown in the upper part of
the figure. Three different groups of data are chosen. The first one is a sinusoidal motion.
The second one is a relatively arbitrary trajectory. The third one is similar to the data
from identification, but with different amplitude. These figures indicate that the parameters
identification procedure is effective, especially when the speed is not close to zero.

4.4 Feedforward Control

The feedforward controller for torque compensation is applied to the dual blade wafer han-
dling robot using the result of dynamic parameters identification.

Experimental Configuration

The dual blade wafer handling robot adopts a tri-loop feedback control structure to stabilize
the system for basic position servo. Torque and velocity feedforward are added for better

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 74

Figure 4.11: Verification of the ID- data #1

performance. The feedforward torque is computed offline now, and is injected to the drivers
from target PC via EtherCAT communication. For safety, an Emergency Stop(E-stop)
is used. A jig for mechanically adjusting the zeroing motor position is also used. The
experiment configuration is shown in Fig.4.14.

In the experiment, joint angles and angular velocities are obtained by the driver feedback.
Angular accelerations are obtained by differentiate velocities. Torque signal is obtained by
the current feedback.

Experiment Result

Three trajectories are used for the feedforward control: two trajectories for extension and
one trajectory for rotation. Each trajectory is separated into four parts. The first part is
going to an initial position and the last part is going back to the zero position. The other
two parts are the same, both of them include: 1) wait for start at the initial position 2)
perform the desired trajectory 3) wait for start at the end position 4) go back to the initial
position. The difference for these two parts is that the torque feedforward control is added
only to the first desired trajectory.

The first extensional trajectory lasts for 2.69s. The end effecter moves from 304.8mm
to 911.5mm in Cartesian space. The end effecter moves along a S-curve trajectory. The
velocity limit, acceleration limit and jerk limit for this S-curve are: 554 mm/s, 9801 mm/s2,
1000 mm/s3. Figure 4.15 shows the tracking error during the experiment. In the upper

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 75

Figure 4.12: Verification of the ID- data #2

Figure 4.13: Verification of the ID- data #3

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 76

Figure 4.14: Experiment configuration

figure in Fig.4.15, the desired motor position and actual motor position are given. Two
extensions are for comparison between with and without feedforward compensation. Middle
figure shows the comparison result for tracking error. During the first extension (first red
box in the middle figure), because the feedforward compensation is added as a torque offset
in the torque commend (shown in the lower figure), the tracking error is largely reduced
compared to the second extension (second red box in the middle figure).

The second extensional trajectory lasts for 1.76s, which is a faster motion for robot.
The end effecter moves from 304.8mm to 911.5mm in Cartesian space. The end effecter
moves along a S-curve trajectory. The velocity limit, acceleration limit and jerk limit for
this S-curve are: 554 mm/s, 9801 mm/s2, 5000 mm/s3. Figure 4.16 shows the tracking
error during the experiment. In the upper figure in Fig.4.16, the desired motor position
and actual motor position are given. Two extensions are for comparison between with and
without feedforward compensation. Middle figure shows the comparison result for tracking
error. During the first extension (first red box in the middle figure), because the feedforward
compensation is added as a torque offset in the torque commend (shown in the lower figure),
the tracking error is largely reduced compared to the second extension (second red box in
the middle figure).

The rotational trajectory rotates from 0 to 144 deg. Figure 4.17 shows the tracking
error during the experiment. In the upper figure in Fig.4.17, the desired motor position
and actual motor position are given. Two rotations are for comparison between with and
without feedforward compensation. Middle figure shows the comparison result for tracking

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 77

Figure 4.15: Torque feedforward control- extension 1

error. During the first rotation (first red box in the middle figure), because the feedforward
compensation is added as a torque offset in the torque commend (shown in the lower figure),
the large spike of tracking error is removed compared to the second rotation (second red box
in the middle figure).

4.5 Chapter Summery

In this Chapter, the precision motion control for parallel robots performing accurate tracking
in industrial applications is studied. The major challenge lies in the dynamic modeling of the
parallel manipulators which have closed-loop chain structure. Due to the complex non-linear
coupled multi-body dynamics, a model-based controller is thus hard to design.

One example is a dual blade 8-link wafer handling robot which transfers wafers among
chambers in the IC machine. The dynamics modeling and dynamic parameter identification
of the dual-blade wafer handling robot is studied. Both the explicit kinematics and dynamic

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 78

Figure 4.16: Torque feedforward control- extension 2

model for this parallel robot have been derived using Lagrangian method. A decoupled
dynamic model is also formulated for dynamic identification. A data-driven approach is
proposed for a refined decoupling which is in a favorable form for regression.

During identification, experiments on an actual robot indicates the major influence of
friction. Viscous friction and Coulomb friction are then considered to improve the identifi-
cation accuracy. The identified model is utilized in a model based controller: a feedforward
controller. Multi experiments are performed to test the effectiveness of the feedforward
controller. Tracking error is greatly reduced with this model based approach.

CHAPTER 4. INTELLIGENT SYSTEM IDENTIFICATION FOR FEEDFORWARD
COMPENSATION 79

Figure 4.17: Torque feedforward control- rotation

80

Chapter 5

Optimal Gain Tuning

5.1 Introduction

This Chapter is a continuation of Chapter 4: precision motion control for parallel manipula-
tors. For the motion control of industrial robot, the end-effector performance is always of the
ultimate interest. However, only motor-side encoders are available in most cases. Thus con-
troller gains, such as PID gains, are usually tuned based on motor-side performance, which
is not desirable. In silicon wafer processing, with a non-optimal PID controller, the robot
will exhibit considerable vibration and lots of particles will be produced. Because very few
particle can cause wafer damage and tool downtime, a major concern of robot performance is
the vibration on the load side. Thus vibration suppression is the main motivation of optimal
gain tuning.

In order to obtain a better performance, in this Chapter, controller gains are proposed
to be tuned based on end-effector performance with load-side sensing. Traditional tuning
methodologies for the control gains include empirical methods such as Ziegler-Nichols [6] and
analytical methods such as shaping of frequency response [7]. However, these methods are
not very effective in practice. Their effectiveness for nonlinear systems such as robots and
for reduction of vibration is not conclusive. To address this problem, an optimization based
method for gain tuning is developed in this Chapter.

Optimization technique is ideally suited for gain tuning first because it is not a model
based approach. In fact, the optimal gain tuning is an experiment based approach, which
makes it practical for industrial applications. Second, the performance of optimal gain tuning
is guaranteed by modern optimization theories [51]. These two features make the optimal
gain tuning an attractive method for controller tuning of industrial robots.

In this Chapter, an experiment based guided gain search is proposed with direct end-
effector sensing. An optimization scheme is utilized to guide the searching direction, which
can provide fast gain tuning and in the mean time guarantee optimality. The rest of the
Chapter is organized as follows: in Section 5.2, the tuning method is given in detail, including
the description of the controller, and the optimization based tuning with direct end-effector

CHAPTER 5. OPTIMAL GAIN TUNING 81

sensing. Section 5.3 gives the result of the gain tuning, and Section 5.4 concludes the Chapter.

5.2 PID optimal gain tuning

Due to the importance of the vibration suppression on the load side, the optimal gain tuning
procedure is based on the direct measurement of the load side acceleration. An accelerometer
is mounted on the wafer center for vibration monitoring, as shown in Fig.5.1. Acceleration
from both the “side-to-side” direction and the radial direction are measured.

Figure 5.1: Load side wafer acceleration sensing

In the optimal gain tuning, three controller gains to be tuned are: proportional gain in
the position loop (Pp), and proportional and integral gain in the velocity loop (Vp,Vi). The
control loop is shown in Fig.5.2. It should be noted that the variables to be tuned are called
design variables, and the space formed by design variables is called the design space.

A starting set of gains (Pp, Vp, Vi) should be given before the optimal gain tuning starts.
A set of gains (Pp, Vp, Vi) is called a “point” in this Chapter. This is because the space formed
by tuning variables is called the design space, and a set of gains can be viewed as a point in
the design space. Usually, the start point is obtained manually, and it largely depends on the
experience of engineers. Because the non-convexity nature of the gain tuning, the start point
is assumed to be close to the optimal point to ensure the convergence to the global minimum.
The optimal point means the point of the best performance, i.e. the global minimum. For
each point, a score is given based on its performance, such as position tracking error from

CHAPTER 5. OPTIMAL GAIN TUNING 82

Figure 5.2: Control loop

motor side, average oscillation amplitude, acceleration from load side, etc, and it is graded
in a way that the smaller the score, the better the performance. The optimal gain tuning
is to search for the minimum score in the design space. There are two major steps of the
optimal gain tuning: Gradient Estimation and Line Search.

Gradient Estimation

To find the optimal point in the design space, first we need to determine a searching direction
in the design space from the start point. Thus we need to estimate the gradient of the start
point based on performances of points that near the start point. This will give us the steepest
descent direction of the performance score, as shown in Fig.5.3.

The points near the start point should be uniformly distributed to guarantee the estima-
tion accuracy. Because the sobol sequence [63] can distribute points in the design space more
uniformly than other distribution methods, it is used to perturb around the start point. 20
perturbation points should be enough with respect to the range of design space. After the
distribution finished, 21 experiments are performed and scores based on their performances
are generated. The score of each performance is a weighted sum of selected performance
indices:

CHAPTER 5. OPTIMAL GAIN TUNING 83

Figure 5.3: Gradient estimation in design space

a) Position errors(following errors) for both axes

b) Velocity errors for both axes

c) Average oscillation amplitudes for both axes

d) Maximum of average oscillation amplitudes of two axes

e) Maximum side to side oscillation amplitude from load side

f) Maximum radial oscillation amplitude from load side

The position error is related to the trajectory tracking error of both motors, and velocity
error refers to the velocity tracking error of both motors. In the optimal gain tuning, we
use the 1-norm of tracking error as the Position error index as it can give a value in the
sense of average following error. Index c, Average oscillation amplitudes for both axes are
measurements of oscillation amplitudes of two motors. It gives a reference on how far the
tracking is from smooth tracking. This is a major index which indicates the magnitude of
vibration. Index d, Maximum of average oscillation amplitudes of two axes is just to pick
the larger value from index c (which has two values for two axes). Unlike other performance
indices, e and f are measurements from the load side. The load side information is directly
used when evaluate the performance of a point. Because the load side performance is the
most important performance that we care about, the inclusion of load side information

CHAPTER 5. OPTIMAL GAIN TUNING 84

makes the optimal gain tuning more relevant. The weights are carefully chosen for all the
performance indices:

• Position Error: 1.5× 10−3

• Velocity Error: 4.44× 10−19

• Average of Oscillation for both axes: 0.2× 10−10

• Maximum of average of oscillation of two axes: 0.2

• Maximum side to side oscillation from load side: 25

• Maximum radial oscillation from load side: 0.1

Using the sets of gains (noted as x, row vector, 21 sets) and their scores (noted as s,
scalars, 21 values), we can determine the gradient of the start point by pseudo-inverse,
which gives a least-square estimate:

G =

∆s1
...

∆s20

∆x1

...
∆x20

†

(5.1)

Line Search

Line search is to search along the steepest descent direction obtained by gradient estimation
in the design space, as shown in Fig.5.4. The line is generated in a way that when it hits
the boundary, it will turn direction until it reaches another boundary. The boundary of the
design space is determined empirically.

First, 1000 points are distributed on this line. The number 1000 is chosen because it is
dense enough to see the small performance change due to the change of gains. The optimal
point will be obtained among these 1000 points. To make it efficient, a simple bisection
search method is used to search along the line, and with this method, we are able to find
the optimal point in less than 20 experiments.

Usually, Steps 1 and 2 (gradient estimation and line search) should be repeated. To start
with, first round gradient estimation and line search should be performed. Then use the
optimal point from the first round as the new start point to repeat the two steps until a
satisfactory optimal point is obtained. However, in our experiment, there is no need to do
the second round, because the score around the first optimal point are similar. This makes
the process of line search even shorter.

CHAPTER 5. OPTIMAL GAIN TUNING 85

Figure 5.4: Line search

5.3 Experimental Result

It was confirmed by experiments that the optimal set of gains lowered the performance
scores compared to the gains at the start point, which means a better performance and less
vibration. Figure 5.5 shows the performances of both the start point and the optimal point.
In each subfigure of Fig.5.5, the upper plot is the position tracking error of the robot’s two
motors, and the lower plot is the desired and actual acceleration (not the acceleration error)
of the wafer center during the experiment. x is the “side-to-side” direction and y is the radial
direction. The desired acceleration in x direction should be zero (which is not shown in the
plot), and the desired acceleration in y direction is given in the lower plot of each subfigure.
Because the vibration of the wafer center is of the utmost interest, the acceleration plots
should be compared. The result is that, with the PID controller gains of the start point, the
robot end effector suffers a lot vibration, while with the PID controller gains of the optimal
point, the robot vibration of the wafer center is largely reduced in both directions.

Table 5.1 compares the scores of the most important performance indices at the start
point and the end point of tuning process. It should be noted that all the scores were
improved (lowered) after optimization.

CHAPTER 5. OPTIMAL GAIN TUNING 86

a) Performance of the start point

b) Performance of the optimal point

Figure 5.5: Gain tuning result

CHAPTER 5. OPTIMAL GAIN TUNING 87

Table 5.1: Comparison of performances of the start and optimal point

Start Point End Point
Max PosErr(count) 482.9/540.1 441.3/498.3
Max Load side Acc of x(mG) 115 68
Average of Oscillation(count) 45236 30263
Total Score 13931 10557

5.4 Chapter Summery

This Chapter continues the study on precision motion control for parallel manipulators. For
the motion control of industrial robot, the end-effector performance is always of the ultimate
interest. However, in most cases, robots are only equipped with motor side encoders, and the
performance on the load side cannot be satisfied with controller gains tuned based on motor
side performance. In silicon wafer processing, with a non-optimal PID controller, the robot
will encounter considerable vibration and lots of particles will be produced. Because very few
particle can cause wafer damage and tool downtime, a major concern of robot performance
is the vibration on the load side.

In this Chapter, an experiment based guided gain search is proposed with direct end-
effector sensing for vibration suppression. An optimization scheme is utilized to guide the
searching direction with two steps: gradient estimation and line search. It is demonstrated
by experiments that the optimal gain tuning improves the performance by reducing the
vibrations on the load side.

88

Chapter 6

Conclusions and Future Work

This dissertation presented a series of statistical learning methods to improve the overall
performance for industrial robots . Four aspects have been studied in detail including sensor
fusion for robust visual servo, optimal trajectory planning, intelligent system identification
for feedforward compensation, and optimal gain tuning.

Chapter 2 presented several statistical learning approaches to overcome the difficulties for
fast, accurate and robust visual servo. The work is intended to improve the performance of
an industrial manipulator for accurate glass piece handling using real-time visual feedback.
Visual servo is favorable in this scenario since it can achieve accuracy based on the robot
encoder resolution rather than the robot absolute accuracy by closing the control loop visu-
ally. Due to the hardware limitations, challenges come from several aspects, namely, object
detection, Tool Center Point (TCP) calibration, visual feedback with large latency and low
sampling rate due to limited quality of cameras, and system uncertainties. To address all
the problems, first, a glass piece and slots are both detected robustly with an Eye-to-Hand
camera with a statistical learning method: non-linear geometrical regression. Then, a closed
loop visual servo controller is implemented to guide the glass piece into the slot. Instead of
using point features of the object, line features are for the first time adopted for accurate
placing requirement. To compensate for the cameras’ very low frame rate and parameter
uncertainties, a statistical learning method, which is a dual-rate Unscented Kalman Filter
with dual-estimation is implemented. Experimental results show the effectiveness of the
placing performance. Future work can be conducted for further increasing the placing ef-
ficiency. On the one hand, hardware, such as vision sensors can be improved for a better
resolution and higher sampling rate. Furthermore, more unknown system parameters can
be adaptively identified with intelligent adaptive estimator, which can address the problem
of system uncertainties.

Chapter 3 attempted to solve the trajectory planning problem for industrial manipulators
with operational constraints with combined statistical learning method and optimization
strategy. One statistical approach for path planning is the sampling based method, which
searches through the robot C space with a sampling scheme. However, it does not consider
path smoothness and non-linear differential constraints. On the other hand, optimization

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 89

based method, which is favorable for trajectory smoothness and optimal condition, requires
heavy computational loads or only works for a predetermined duration. By combining the
two approaches: sampling and optimization based method, the trajectory planning can be
solved not only fast but also with certain optimality. One example given in this Chapter is
a wafer handling robot working in a very limited workspace. The generated trajectory must
be a safe one without colliding with any obstacles and is optimized with respect to the total
execution time for working efficiency. For the obstacle avoidance, first a roadmap describing
the connectivity of the robot’s obstacle-free workspace is constructed by a probabilistic
roadmap (PRM) method. The sampling scheme is to use multiple samplers each with a
specific strength and update sampler adaptively. Then a shortest piece-wise linear path is
searched from the roadmap for a given query, i.e, the initial and goal configuration of the
robot. With the path searched from the roadmap, the trajectory is first smoothed by a cubic
B-spline, which can guarantee the trajectory with a desired non-colliding shape and in the
mean parameterized it with temporal information, which can be optimized later. B-spline
also has nice properties that all kinematic constraints can be formulated easily. The problem
is formulated as an optimization problem and solved by an “interior point” method and the
results on a 3-axis wafer handling robot show the effectiveness of the proposed method.
Future work will be devoted to consider trajectory outside the current work space, as well
as the optimal control problem which involves the robot dynamics. Also, for a real-time
application, it is desirable to reduce the computational time with more efficient computing
structure.

In Chapter 4 and 5, statistical learning methods for the precision motion control for
parallel robots performing accurate tracking in industrial applications were studied. On the
one hand, the dynamic modeling of the parallel manipulators which have closed-loop chain
structure is very challenging. Due to the complex non-linear coupled multi-body dynamics,
a model-based controller for precision motion control is thus hard to design. On the other
hand, for the motion control of industrial robots, the end-effector performance is always
of the ultimate interest. However, in most cases, robots are only equipped with motor
side encoders, and the performance on the load side cannot be guaranteed with controller
gains tuned based on motor side performance. Chapter 4 designed a feedforward controller
for a dual blade 8-link parallel wafer handling robot using model based approach. Both
the explicit kinematic and dynamic model were derived using Lagrangian method. The
dynamic parameter identification were studied with a decoupled dynamic model. A data-
driven approach was proposed for a refined decoupling which is in a favorable form for
regression. Then a linear regression was performed using data generated by experiments
on the robot with designed trajectory. Tracking error is greatly reduced with this model
based approach and verified by experiments. In Chapter 5, an experiment based guided
gain search was proposed with direct end-effector sensing for vibration suppression. An
optimization scheme was utilized to guide the searching direction with experiments and data
learning. It was demonstrated by experiments that the optimal gain tuning improves the
performance by reducing the vibrations on the load side. Future work can focus on the joint
dynamics, and compliance induced by the magnetic coupler which is used for isolating the

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 90

robot from atmosphere side. Also, the tuning method need to be expanded to other robots
and improved to be a general gain tuning solution.

91

Bibliography

[1] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press,
2005.

[2] Xiaowen Yu, Thomas Baker, Yu Zhao, and Masayoshi Tomizuka. Fast and precise glass
handling using visual servo with unscented kalman filter dual estimation. Journal of
Dynamic Systems, Measurement, and Control, 140(4):041008, 2018.

[3] Xiaowen Yu, Thomas Baker, Yu Zhao, and Masayoshi Tomizuka. Visual servo for fast
glass handling by industrial robot with large sensor latency and low sampling rate.
IFAC-PapersOnLine, 50(1):4594–4601, 2017.

[4] Xiaowen Yu, Yu Zhao, Cong Wang, and Masayoshi Tomizuka. Trajectory planning
for robot manipulators considering kinematic constraints using probabilistic roadmap
approach. Journal of Dynamic Systems, Measurement, and Control, 139(2):021001,
2017.

[5] Xiaowen Yu, Cong Wang, Yu Zhao, and Masayoshi Tomizuka. Dynamics modeling
and identification of a dual-blade wafer handling robot. In ASME 2013 Dynamic Sys-
tems and Control Conference, pages V003T39A004–V003T39A004. American Society
of Mechanical Engineers, 2013.

[6] Aidan O’Dwyer. Handbook of PI and PID controller tuning rules. Imperial college press,
2009.

[7] Katsuhiko Ogata and Yanjuan Yang. Modern control engineering, volume 4. Prentice
hall India, 2002.

[8] Xiaowen Yu, Cong Wang, Yu Zhao, and Masayoshi Tomizuka. Controller design and
optimal tuning of a wafer handling robot. In Automation Science and Engineering
(CASE), 2015 IEEE International Conference on, pages 640–646. IEEE, 2015.

[9] McKinsey Quarterly. Where machines could replace humans–and where they
can’t (yet). http://www.mckinsey.com/business-functions/digital-mckinsey/

our-insights/, 2016. Accessed: 2016-7.

[10] Jim Shimano. Visual servoing–closing the position loop with vision.

BIBLIOGRAPHY 92

[11] Kenton McHenry, Jean Ponce, and David Forsyth. Finding glass. In 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
volume 2, pages 973–979. IEEE, 2005.

[12] Ivo Ihrke, Kiriakos N Kutulakos, Hendrik PA Lensch, Marcus Magnor, and Wolfgang
Heidrich. State of the art in transparent and specular object reconstruction. In EURO-
GRAPHICS 2008 STAR–STATE OF THE ART REPORT. Citeseer, 2008.

[13] Henri Gavin. The levenberg-marquardt method for nonlinear least squares curve-fitting
problems, 2011.

[14] ABB. Programming and tesing-tools. http://developercenter.robotstudio.com/

BlobProxy/manuals/IRC5FlexPendantOpManual/doc99.html, 2016. Accessed: 2016.

[15] Johan Hallenberg. Robot tool center point calibration using computer vision, 2007.

[16] Xiaowen Yu, Thomas Baker, Yu Zhao, and Masayoshi Tomizuka. Robot tool calibration
in precise glass handling. In ASME 2017 Dynamic Systems and Control Conference,
pages V002T16A001–V002T16A001. American Society of Mechanical Engineers, 2017.

[17] Cong Wang, Chung-Yen Lin, and Masayoshi Tomizuka. Statistical learning algorithms
to compensate slow visual feedback for industrial robots. Journal of Dynamic Systems,
Measurement, and Control, 137(3):031011, 2015.

[18] Keisuke Fujii. Extended kalman filter. Refernce Manual, 2013.

[19] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear
estimation. In Adaptive Systems for Signal Processing, Communications, and Control
Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–158. Ieee, 2000.

[20] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to non-
linear systems. In AeroSense’97, pages 182–193. International Society for Optics and
Photonics, 1997.

[21] Nikolaos P Papanikolopoulos, Bradley J Nelson, and Pradeep K Khosla. Six degree-
of-freedom hand/eye visual tracking with uncertain parameters. IEEE Transactions on
Robotics and Automation, 11(5):725–732, 1995.

[22] Hesheng Wang, Yun-Hui Liu, and Dongxiang Zhou. Adaptive visual servoing using
point and line features with an uncalibrated eye-in-hand camera. IEEE Transactions
on Robotics, 24(4):843–857, 2008.

[23] Peter Corke. Robotics, vision and control: fundamental algorithms in MATLAB, vol-
ume 73. Springer, 2011.

[24] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer Science
& Business Media, 2008.

BIBLIOGRAPHY 93

[25] François Chaumette and Seth Hutchinson. Visual servo control. i. basic approaches.
IEEE Robotics & Automation Magazine, 13(4):82–90, 2006.

[26] Nicolas Andreff, Bernard Espiau, and Radu Horaud. Visual servoing from lines. The
International Journal of Robotics Research, 21(8):679–699, 2002.

[27] Bernard Espiau, François Chaumette, and Patrick Rives. A new approach to visual
servoing in robotics. ieee Transactions on Robotics and Automation, 8(3):313–326, 1992.

[28] Gaston H Gonnet. Handbook of algorithms and data structures. Addison-Wesley, 1984.

[29] John Illingworth and Josef Kittler. A survey of the hough transform. Computer vision,
graphics, and image processing, 44(1):87–116, 1988.

[30] Bob Fisher. projective transformation. http://homepages.inf.ed.ac.uk/rbf/

CVonline/LOCAL_COPIES/BEARDSLEY/node3.html, 1997. Accessed: 1997-11-7.

[31] Xiaowen Yu. Auto glass handling by robot. https://youtu.be/E4K5p8eGl1Y, 2017.
Accessed: 2017-2-23.

[32] Yong K Hwang, Peter A Watterberg, Pang Chen, Christopher L Lewis, et al. General
techniques for constrained motion planning. Technical report, Sandia National Labs.,
Albuquerque, NM (United States), 1997.

[33] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[34] Vanni Zanotto, Alessandro Gasparetto, Albano Lanzutti, Paolo Boscariol, and Renato
Vidoni. Experimental validation of minimum time-jerk algorithms for industrial robots.
Journal of Intelligent & Robotic Systems, 64(2):197–219, 2011.

[35] Howie M Choset. Principles of robot motion: theory, algorithms, and implementation.
MIT press, 2005.

[36] David Hsu, Gildardo Sánchez-Ante, and Zheng Sun. Hybrid prm sampling with a cost-
sensitive adaptive strategy. In Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, pages 3874–3880. IEEE, 2005.

[37] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE transac-
tions on Robotics and Automation, 12(4):566–580, 1996.

[38] Lydia E Kavraki, Mihail N Kolountzakis, and J-C Latombe. Analysis of probabilis-
tic roadmaps for path planning. IEEE Transactions on Robotics and Automation,
14(1):166–171, 1998.

BIBLIOGRAPHY 94

[39] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on, volume 2, pages 995–1001. IEEE, 2000.

[40] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In
Autonomous robot vehicles, pages 396–404. Springer, 1986.

[41] Sean Quinlan and Oussama Khatib. Elastic bands: Connecting path planning and
control. In Robotics and Automation, 1993. Proceedings., 1993 IEEE International
Conference on, pages 802–807. IEEE, 1993.

[42] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. Chomp:
Gradient optimization techniques for efficient motion planning. In Robotics and Au-
tomation, 2009. ICRA’09. IEEE International Conference on, pages 489–494. IEEE,
2009.

[43] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan
Schaal. Stomp: Stochastic trajectory optimization for motion planning. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 4569–4574. IEEE,
2011.

[44] Kris Hauser and Victor Ng-Thow-Hing. Fast smoothing of manipulator trajectories
using optimal bounded-acceleration shortcuts. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 2493–2498. IEEE, 2010.

[45] Marko Lepetič, Gregor Klančar, Igor Škrjanc, Drago Matko, and Boštjan Potočnik.
Time optimal path planning considering acceleration limits. Robotics and Autonomous
Systems, 45(3-4):199–210, 2003.

[46] Kevin Judd and Timothy McLain. Spline based path planning for unmanned air vehicles.
In AIAA Guidance, Navigation, and Control Conference and Exhibit, page 4238, 2001.

[47] C-H Wang and J-G Horng. Constrained minimum-time path planning for robot manip-
ulators via virtual knots of the cubic b-spline functions. IEEE transactions on automatic
control, 35(5):573–577, 1990.

[48] Yao-Chon Chen. Solving robot trajectory planning problems with uniform cubic b-
splines. Optimal Control Applications and Methods, 12(4):247–262, 1991.

[49] A Gasparetto and V Zanotto. A new method for smooth trajectory planning of robot
manipulators. Mechanism and machine theory, 42(4):455–471, 2007.

[50] Eric Larsen, Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. Fast proximity
queries with swept sphere volumes. Technical report, Technical Report TR99-018, De-
partment of Computer Science, University of North Carolina, 1999.

BIBLIOGRAPHY 95

[51] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming, volume 2.
Springer, 1984.

[52] Fathi Ghorbel. Modeling and pd control of closed-chain mechanical systems. In Decision
and Control, 1995., Proceedings of the 34th IEEE Conference on, volume 1, pages 540–
542. IEEE, 1995.

[53] Jean-Pierre Merlet. Parallel robots, volume 128. Springer Science & Business Media,
2006.

[54] Luis Angel Castañeda, Alberto Luviano-Juárez, and Isaac Chairez. Robust trajectory
tracking of a delta robot through adaptive active disturbance rejection control. IEEE
Transactions on Control Systems Technology, 23(4):1387–1398, 2015.

[55] Fathi H Ghorbel, Olivier Chételat, Ruvinda Gunawardana, and Roland Longchamp.
Modeling and set point control of closed-chain mechanisms: Theory and experiment.
IEEE Transactions on Control Systems Technology, 8(5):801–815, 2000.

[56] Jens Wittenburg. Dynamics of systems of rigid bodies, volume 33. Springer-Verlag,
2013.

[57] John J Uicker. Dynamic behavior of spatial linkages: Part 1exact equations of mo-
tion, part 2small oscillations about equilibrium. Journal of Engineering for Industry,
91(1):251–265, 1969.

[58] John J Murray and Gilbert H Lovell. Dynamic modeling of closed-chain robotic ma-
nipulators and implications for trajectory control. IEEE Transactions on Robotics and
Automation, 5(4):522–528, 1989.

[59] Lorenzo Sciavicco and Bruno Siciliano. Modelling and control of robot manipulators.
Springer Science & Business Media, 2012.

[60] H Mayeda, K Osuka, and A Kangawa. A new identification method for serial manipu-
lator arms. IFAC Proceedings Volumes, 17(2):2429–2434, 1984.

[61] B Till. Dynamical model of a three-link remotelydriven vacuum robot. In Proceedings
of the 2010 Applied Materials ET Conference, 2010.

[62] Brian Armstrong. On finding exciting trajectories for identification experiments involv-
ing systems with nonlinear dynamics. The International journal of robotics research,
8(6):28–48, 1989.

[63] Hongmei Chi, Peter Beerli, Deidre W Evans, and Michael Mascagni. On the scrambled
soból sequence. In International Conference on Computational Science, pages 775–782.
Springer, 2005.

