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Systems Factorial Analysis of Item and Associative Retrieval
Gregory E. Cox, Amy H. Criss

(gecox100, acriss)@syr.edu
Department of Psychology, 430 Huntington Hall, Syracuse University, Syracuse, NY 13244-2340

Abstract

Using hierarchical Bayesian estimation of RT distributions, we
present a novel application of Systems Factorial Technology
(Townsend & Nozawa, 1995) to the retrieval of item and asso-
ciative information from episodic memory. We find that item
and associative information are retrieved concurrently, with
positive memory evidence arising from a holistic match be-
tween the test pair and the contents of memory, in which both
item and associative matches are pooled together into a sin-
gle source. This retrieval architecture is inconsistent with both
strictly serial processing and independence of item and asso-
ciative information. Pooling of item and associative matches
implies that while item and associative information may be
separable, they are not qualitatively different, nor are quali-
tatively different processes (e.g., familiarity vs. recollection)
used to retrieve these kinds of information.
Keywords: Memory models; associative recognition; systems
factorial technology; Bayesian statistics.

Introduction
Associations have served as important theoretical constructs
throughout the study of cognition. The present work is con-
cerned with the distinction made in memory between memory
for isolated events—which we refer to as “items”—and mem-
ory for combinations of events—which we refer to as “associ-
ations”. Given that myriad phenomena in human learning de-
pend on being able to store and retrieve both of these kinds of
information and a dissociation between item and associative
memory is important for a variety of neurological diagnoses,
it is crucial to understand the representations and processes
behind memory for items and associations. In this paper, we
use qualitative properties of response dynamics to determine
what kind of processing is involved in item and associative
retrieval and how the two could be represented in order to
support such processing.

Various theories posit that item and associative informa-
tion are qualitatively different and are retrieved using inde-
pendent processes. Linearities in receiver-operating charac-
teristic (ROC) functions obtained in associative recognition
have been argued to reflect the operation of an “all-or-none”
recall process for associative information that is indepen-
dent of the continuous-valued familiarity process used to as-
sess item information (Yonelinas, 1997). Unfortunately, be-
yond the difficulty of statistically determining whether a ROC
curve is linear or curvilinear, such functional forms are not,
in fact, diagnostic of the type of processing involved: Curvi-
linear ROCs are consistent with discrete-state processing
(Province & Rouder, 2012) and linear ROCs are consistent
with continuous-valued processes (Wixted, 2007). Process-
dissociation procedures (Jacoby, 1991) have also been used
to assess whether associative information must be retrieved
using a distinct recall process, but such procedures do not

lead to accurate estimates of the contribution of different pro-
cesses even with simulated data (Ratcliff, Van Zandt, & McK-
oon, 1995), nor has any strong evidence been found for the
operation of multiple retrieval processes in item recognition
(Dunn, 2004; Pratte & Rouder, 2012).

While there is little evidence for a qualitative distinction
between item and associative information, there is good ev-
idence for a quantitative difference. Item recognition ac-
curacy decreases faster over time than associative recogni-
tion accuracy (Hockley, 1991, 1992), suggesting that asso-
ciative recognition gives less weight to context (Murdock,
1997) or that it begins from a baseline that is defined by
item information (Humphreys, Bain, & Pike, 1989). A focus
on studying items impairs associative memory, but a focus
on associative study has no negative impact on item mem-
ory (Hockley & Cristi, 1996), and associative recognition de-
pends on the strength of both items and pairs (Buchler, Light,
& Reder, 2008). Studies of retrieval dynamics find that the
ability to discriminate between studied and unstudied items
begins earlier than the ability to distinguish intact from re-
arranged pairs (Gronlund & Ratcliff, 1989; Rotello & Heit,
2000; Nobel & Shiffrin, 2001). While this delay has been at-
tributed to a qualitatively different “recall-to-reject” process
(Rotello & Heit, 2000; Malmberg, 2008), such a process can-
not explain why stronger associations are not retrieved more
quickly (Wickelgren & Corbett, 1977; Dosher, 1984; Nobel
& Shiffrin, 2001) nor why participants do not use partial cues
to aid associative recognition (i.e., using a singly presented
word to retrieve its studied associate; Gronlund & Ratcliff,
1989). Instead, such dynamics are more consistent with the
need to augment an item-only retrieval cue with compound
associative information (Cox & Shiffrin, 2015).

Thus, associative information appears to be at least par-
tially dependent on item information at both storage and re-
trieval, consistent with the fact that associative interference
occurs only among pairs comprised of the same types of items
(Criss & Shiffrin, 2004; Aue, Criss, & Fischetti, 2012). At the
same time, item information is also affected by the presence
of an association such that recognition of intact item groups
is superior to rearranged item groups even when associative
information is irrelevant (Tulving & Thompson, 1973; Clark
& Shiffrin, 1987). Modeling these and other data required
an assumption that presenting a pair/triplet intact at test led
to an enhancement for memory for the component items, and
that a holistic pair/triplet cue was used during tasks requiring
retrieval of associative information (Clark & Shiffrin, 1992).
Priming studies suggest that this holistic cue may be config-
ural in nature, in that it is only effective when all of the com-
ponent items are present and there is no effect of a partial
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overlap between study and test (Dosher & Rosedale, 1989,
1997).

It is clear that, despite attempts to dissociate item and asso-
ciative memory, the two appear to be closely related. Unfortu-
nately, extant empirical and theoretical work is not sufficient
to fully characterize their relationship nor whether the pro-
cesses used to retrieve item and associative information are
in fact separable. The present work is a novel application of
Systems Factorial Technology (SFT; Townsend & Nozawa,
1995) to associative recognition in which we use qualitative
properties of response dynamics to determine what kinds of
processing and interactions are present during the retrieval of
item and associative information from event memory.

Experiment
SFT is a set of experimental and analytical techniques de-
signed to identify the class of model to which an informa-
tion processing system belongs (for an overview, see Houpt,
Blaha, McIntire, Havig, & Townsend, 2014). It does so by
comparing how processing dynamics differ as the presence
and strength of different information sources is varied. To use
SFT to describe item and associative retrieval, we employ an
associative recognition paradigm in which participants study
a list of pairs. After study, participants are presented with
a series of test pairs and must give a positive response only
to test pairs that exactly match one of the studied pairs. We
separately manipulate the strength of the item and associative
information in each test pair, implementing a double factorial
paradigm. This paradigm allows for the computation of sev-
eral key SFT statistics needed to characterize the processes
underlying item and associative retrieval.

Two broad classes of processing architecture are parallel
models, in which both item and associative information are
retrieved simultaneously, and serial models, in which one
type of information is not retrieved until the first retrieval
process is finished. For example, many dual-process theories
assume that associative retrieval does not begin until item re-
trieval has completed, an example of serial processing (Diller,
Nobel, & Shiffrin, 2001; Malmberg, 2008). If either item or
associative information can be used to make a response, the
system is called “self-terminating”. If, however, both types
of information must be retrieved to generate a response, the
system is “exhaustive”.

Item and associative retrieval can also interact. For exam-
ple, if positive evidence from both item and associative re-
trieval is pooled into a single ”match” accumulator, we say
that positive responses are facilitated whereas negative re-
sponses are inhibited, and vice versa. In the extreme case,
both match and mismatch information might be pooled from
both sources, termed “coactive” processing; in this case, item
and associative information are effectively inseparable, since
it is impossible to tell whence a particular bit of informa-
tion arose. Just as interactions blur the line between item
and associative retrieval, they make it impossible to make a
meaningful distinction between serial and parallel processing

Independent serial
Self−terminating

Independent parallel
Self−terminating

Facilitatory
Self−terminating

Inhibitory
Self−terminating Coactive

Independent serial
Exhaustive

Independent parallel
Exhaustive

Facilitatory
Exhaustive

Inhibitory
Exhaustive

Figure 1: Allowed forms of the survivor interaction contrast (SIC) function for each
processing architecture with time along the x-axis and dashed line at zero.

(Townsend, 1976); interactive serial processes are function-
ally equivalent to parallel cascade processing (McClelland,
1979). We refer to interactive processes as parallel, however,
since the defining feature of parallel processing is that the two
processes are able to operate concurrently, which is required
by our notion of interaction.

Two SFT statistics can help us diagnose the architecture
and interactions present in item and associative retrieval. First
is the Survivor Interaction Contrast (SIC) function:

SIC(t) = [SLL(t)−SLH(t)]− [SHL(t)−SHH(t)]

where SLL(t) is the survivor function of the response time dis-
tribution for correct responses to test pairs with low (L) item
strength and low (L) associative strength, and the other terms
are defined similarly. This statistic represents how the pro-
cessing dynamics of one factor (item retrieval) change as the
other factor (associative retrieval) changes, taking particular
forms depending on the architecture of the system. In sit-
uations where the two factors are selectively influenced by
experimental manipulations and accuracy is high, the form
of the SIC function can be found analytically (Townsend &
Nozawa, 1995). However, when item and associative re-
trieval may interact—possibly leading to violations of se-
lective influence—and/or demonstrate low to moderate accu-
racy, the predicted forms of the SIC function can vary. To that
end, we followed Eidels, Houpt, Altieri, Pei, and Townsend
(2011) and Fific, Nosofsky, and Townsend (2008) and ob-
tained SIC predictions for various architectures by simulating
accumulator models with a wide variety of parameter values.
These simulations yielded an allowed set of SIC functions for
each architecture, depicted in Figure 1, which allows models
to be ruled out if the observed SIC is not among the allowed
set.

The other statistic we use to characterize item and associa-
tive retrieval is the capacity function, specifically, the capacity
function adapted to low-accuracy settings given by Equation
2 in Townsend and Altieri (2012). This function compares
processing dynamics when two sources of information are
present (i.e., in an intact pair, there is both an item match and
an associative match) to what would be expected if a parallel
unlimited capacity system processed the two sources sepa-
rately. As shown in Figure 2, this function, termed the ”as-
sessment” function, also takes characteristic forms depend-
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Figure 2: Allowed forms of the OR correct-and-fast assessment function for each pro-
cessing architecture with time along the x-axis and dashed line at one.

Table 1: Design of studied pairs. Numerals denote either the left or right half (at ran-
dom) of a particular image.

Image half A Image half B Item strength Associative strength
1 2 H H
3 4 H L
5 6 H H
7 8 H H
9 10 H L
11 12 H L
13 14 L H
15 16 L L
17 18 L H
19 20 L H
21 22 L L
23 24 L L
25 26 H H
27 28 H L
29 30 L H
31 32 L L

ing on the type of processing architecture. Generally speak-
ing, values of the assessment function greater than one re-
flect facilitation while values less than one indicate inhibi-
tion. Jointly, the SIC and assessment functions characterize
how information is combined between item and associative
retrieval and the manner in which it is processed dynamically.

Method
Participants 135 Syracuse University students took part in
this experiment in exchange for course credit.

Materials Stimuli consisted of indoor and outdoor scene
images, 256×256 pixels in size, chiefly derived from image
sets used by Konkle, Brady, Alvarez, and Oliva (2010). The
images were first screened to remove any legible writing (to
preclude this as a strategy to remember particular images) as
well as people (since these were particularly salient relative
to other scene content). While space constraints prevent de-
scribing the procedure in detail, we used the color histograms
of the images to select a pool of 512 to use in the experi-
ment. Our criteria were designed to simultaneously maximize
within-image symmetry (so the left and right halves would be
similar to each other) and between-image dissimilarity (to re-
duce interference from other items).

Design Each study/test list was comprised of 16 unique
pairs of image halves, divided evenly into four strength condi-
tions, summarized in Table 1: High associative strength/high
item strength (HH), high associative strength/low item
strength (HL), low associative strength/high item strength
(LH), and low associative strength/low item strength (LL).

Table 2: Design of test lists. Numerals refer to the same images in the study design
in Table 1, with apostrophes denoting the unstudied half of the image labeled by the
numeral.

Associative strength
H L NH NL

It
em

st
re

ng
th

H 1, 2 3, 4 5, 8 9, 12
Quadrant 1 Quadrant 2

(Intact pairs) (Rearranged pairs)
L 13, 14 15, 16 17, 20 21, 24

NH 25’, 26’ 27’, 28’ 7’, 6’ 11’, 10’
Quadrant 3 Quadrant 4

(Novel pairs) (Novel rearranged pairs)
NL 29’, 30’ 31’, 32’ 19’, 18’ 23’, 22’

High associative strength pairs were presented 3 times dur-
ing the study list while low associative strength pairs were
presented only once during study. Item strength was manipu-
lated by presenting the two image halves comprising the pair
separately, paired with themselves. The image halves in a
low item strength pair appeared only as part of the study pair.
The image halves in a high item strength pair were shown
during study paired with themselves twice. Thus, in total, the
study list comprised 64 pair presentations: 8 low strength pair
presentations, 24 high strength pair presentations (8 pairs re-
peated 3 times), and 32 self-pairings of an image half (2 pre-
sentations each of the 2 halves of 8 high item strength pairs).

Test lists were comprised of 16 pairs, summarized in Table
2. The 4 pairs in the upper left quadrant are presented in-
tact and should be given a positive response. The remaining
12 pairs in the other 3 quadrants are foils: Rearranged pairs
(quadrant 2) are created by swapping the left and right image
halves of two pairs, as in normal associative recognition stud-
ies. Intact novel pairs (quadrant 3) are created by replacing
each image half in an intact pair with the unstudied half of
the respective images. Rearranged novel pairs (quadrant 4)
apply both of these transformations: A pair is rearranged and
then each of its component image halves is replaced with the
unstudied image half.

Procedure Participants engaged in 10 study/test blocks.
Prior to each study block, participants were told that they
would be shown sets of image pairs and that they should try to
remember which images appeared together. Study pairs were
then presented on a white background for 2 seconds at a time,
with a 0.5 second blank between each pair presentation. Pre-
sentation order was randomized under the constraint that two
successive pairs did not contain any of the same image halves.
The two image halves subtended approximately 3 degrees of
visual angle, with approximately 0.5 degrees of blank space
between them. Although the image pairs were centered hori-
zontally on the screen, the left and right halves were indepen-
dently offset from vertical center by random values sampled
uniformly from [-0.25, 0.25] degrees of visual angle. This
offset served two purposes: first, to emphasize that the two
image halves were not meant to be treated as part of the same
image; second, to avoid confusion between successive pair
presentations.

After presentation of all study pairs, participants were in-
formed that they would be shown another set of image pairs
and should give a positive response only to pairs of images
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Table 3: Observed mean proportion of positive responses and mean of median correct
RTs (in seconds, in parentheses) for each pair type.

Associative strength
H L NH NL

It
em

st
re

ng
th H 0.75 (1.071) 0.54 (1.162) 0.37 (1.216) 0.34 (1.194)

L 0.72 (1.095) 0.46 (1.197) 0.31 (1.209) 0.22 (1.105)

NH 0.26 (1.157) 0.21 (1.111) 0.15 (1.094) 0.16 (1.123)
NL 0.27 (1.151) 0.22 (1.082) 0.14 (1.101) 0.12 (1.060)

that had appeared together at the same time on the most re-
cent list (they were told that each test would only be for the
most recent list). Positive and negative responses were ran-
domly mapped to the “F” or “J” keys for each participant.
Participants were instructed to respond as quickly and accu-
rately as possible. Test instructions appeared on screen for a
minimum of 15 seconds, after which participants could press
“enter” to proceed to the test list. Each test trial began with
a fixation cross centered on the screen for 0.5 seconds fol-
lowed by presentation of the test pair (which followed the
same sizing and random vertical offset procedure used during
study). The test pair remained on screen until a response was
made, after which feedback was given. Participants were told
whether their response was “correct” or “incorrect”, with font
color green if correct and red if incorrect. Regardless of cor-
rectness, if the response was made in under 300 ms, feedback
included a statement to “please take more time to respond”
and if the response was made in over 4 seconds, feedback in-
cluded a statement to “please try to respond more quickly”.
Feedback appeared for a minimum of 1 second, an additional
0.5 seconds if the participant was incorrect, and an additional
3 seconds if the response was too fast. A random time sam-
pled at uniform between 0.25 and 0.75 seconds preceded the
onset of the next test trial.

Results

Prior to analysis, we excluded trials in which the response
time was shorter than 200 ms (47 out of 21,369 trials) or
longer than 5 s (127 trials). Based on the remaining trials,
we excluded participants who failed to give a higher rate of
positive responses to intact pairs than to foils or who did not
give any correct responses in at least one condition. All sub-
sequent analyses were carried out on the remaining 18,760
trials from 118 participants.

Mean proportion of positive responses and median cor-
rect RT for each combination of item and associative
strength are given in Table 3. A 4 (item strength) × 4
(associative strength) within-subjects ANOVA on the pro-
portion of positive responses finds main effects of item
strength (F(3,351) = 298.4, p ∼ 0) and associative strength
(F(3,351) = 238.3, p∼ 0) as well as a significant interaction
(F(9,1053) = 42.4, p∼ 0). Using the same 4×4 ANOVA to
analyze median correct RT, we again find main effects of item
strength (F(3,351) = 10.44, p ∼ 0) and associative strength
(F(3,351) = 3.01, p ≈ 0.03) as well as a significant interac-
tion (F(9,1053) = 8.99, p∼ 0).

Systems Factorial Analysis

Precision terms: τa:b ∼ Γ(1.01,0.01)

Intercept: m0 ∼N (0,0.001)
For each level of item strength i, associative strength j, response r, subject s...

First-order main effects

mi ∼N (0,τ1:1), m j ∼N (0,τ1:2), mr ∼N (0,τ1:3), ms ∼N (0,τ1:4)

Second-order interactions

mi: j ∼N (0,τ2:1), mi:r ∼N (0,τ2:2), mi:s ∼N (0,τ2:3),

m j:r ∼N (0,τ2:4), m j:s ∼N (0,τ2:5), mr:s ∼N (0,τ2:6)

Third-order interactions

mi: j:r ∼N (0,τ3:1), mi: j:s ∼N (0,τ3:2), mi:r:s ∼N (0,τ3:3), m j:r:s ∼N (0,τ3:4)

Fourth-order interaction

mi: j:r:s ∼N (0,τ4)

Linear combination of predictors:
mi, j,r,s = m0 +mi +m j +mr +ms +mi: j +mi:r +mi:s +m j:r +m j:s +mr:s

+mi: j:r +mi: j:s +mi:r:s +m j:r:s +mi: j:r:s

Likelihood, given item strength I[n], associative strength A[n], response R[n], and
subject S[n] on trial n:

RTn ∼ Ex-Gaussian
(
mI[n],A[n],R[n],S[n],sI[n],A[n],R[n],S[n], tI[n],A[n],R[n],S[n]

)
Figure 3: Hierarchical model structure for RT distributions; although the model struc-
ture is depicted for only the m parameter of the Ex-Gaussian, the same structure was ap-
plied to logs and log t, the logarithmic transformation required because the Ex-Gaussian
is defined only for s, t > 0. Group-level RT distributions are obtained by marginalizing
each parameter over subjects, which amounts to excluding terms involving the subject
factor s (all of which have mean 0), e.g., m̄i, j,r =m0 +mi +m j +mr +mi: j +mi:r +m j:r +
mi: j:r .

Hierarchical parametric RT distribution estimation In
contrast to most applications of SFT, we have a large number
of participants but few observations per participant. We there-
fore estimate RT distributions using a hierarchical Bayesian
model (Rouder, Lu, Speckman, Sun, & Jiang, 2005), which
also enables robust statistical tests. We assume that RT distri-
butions have an Ex-Gaussian form, with likelihood

f (x) =
1

t
√

2π
exp

(
s2

2t2 −
x−m

t

)∫ x−m
s −

s
t

−∞

exp
(
−y2

2

)
dy,

where x is the response time and m, s, and t are the parame-
ters of the distribution. The Ex-Gaussian has been found to
provide a good description of RT distributions in recognition
memory (Ratcliff & Murdock, 1976) and can accommodate a
variety of distribution shapes. For each participant, there are
a total of 4×4×2 = 32 RT distributions defined by the fac-
torial combination of item strength, associative strength, and
positive/negative response. We estimate these parameters for
each participant according to the multilevel model described
in Figure 3. We report SFT statistics at the group level, based
on the Ex-Gaussian distributions obtained by marginalizing
the three parameters (m, logs, and log t) for each of the 32
distributions over participants (see caption of Figure 3). The
model was implemented in JAGS (Plummer, 2013), which
was used to obtain 10,000 posterior samples split over 10 par-
allel chains after 2000 iterations of “burn-in” each.

Correct acceptance architecture The SIC function for
correct acceptance of intact pairs (Figure 4, upper left)
demonstrates a credible positive peak (95% credible interval
[CI] of the maximum is [0.024, 0.142]) but no evidence for
any negative deflections (95% CI of the minimum is [-0.013,
0]). We can thus rule out all forms of exhaustive process-
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Figure 4: Posterior distributions over SIC functions for correct responses in each quad-
rant (see Table 2). Solid lines are posterior means while faded lines are posterior sam-
ples.

Figure 5: Posterior distributions over capacity assessment functions for correct re-
sponses. Solid lines are posterior means while faded lines are posterior samples.

ing except facilitatory, since each of these requires either a
flat SIC or one with a credible negative deflection. In ad-
dition, coactive and facilitatory self-terminating processing,
while they allow for SIC’s that are majority positive, require
at least a small early negative deflection; nonetheless, we
withhold ruling these out since this negative deflection may
be too small to detect. The assessment function (Figure 5,
left) is everywhere greater than or equal to one, which is im-
possible under independent serial or parallel self-terminating
processing and implies facilitation of positive responses. In
sum, the SIC and capacity functions for correct acceptance
are most consistent with facilitatory exhaustive and inhibitory
self-terminating processing, but may allow for coactive or fa-
cilitatory self-terminating processing.
Correct rejection architecture While participants should
give a positive response to pairs in the upper left quadrant
of Table 2, they should give negative responses to pairs in
the remaining three quadrants. Within each of these quad-
rants, item and associative strength is still varied but must
be viewed in reverse: a high strength is actually low evi-
dence in favor of the correct (negative) response. For exam-
ple, the SIC for Quadrant 2 is given by [SHNH (t)−SHNL(t)]−
[SLNH (t)−SLNL(t)]. Similarly, whenever positive responses
are self-terminating, negative responses must be exhaustive;
and facilitation of positive responses is inhibition for neg-
ative responses. Therefore, based on the remaining possi-
ble correct acceptance architectures, correct rejections could

arise from inhibitory self-terminating (reverse of facilitatory
exhaustive) or facilitatory exhaustive (reverse of inhibitory
self-terminating) processing, as well as possibly inhibitory
exhaustive or coactive processing.

The SIC’s for the three types of correct rejection (Figure
4) differ quantitatively but are qualitatively similar. None
demonstrate any credible positive deflections (95% CI of the
maximum for quadrant 2 is [0, 0.017], for quadrant 3 is [0,
0.044], and for quadrant 4 is [0, 0.042]), and the SIC for quad-
rant 2—correct rejection of rearranged pairs—demonstrates
a credible negative deflection (95% CI of the minimum is [-
0.146, -0.030]). This pattern rules out facilitatory exhaustive
processing, since this does not allow for any negative deflec-
tions. The assessment function for correct rejections (Figure
5, right) is never greater than one, consistent with the remain-
ing possible architectures and implying inhibition of negative
responses.

Complete picture We have so far examined the SIC and
assessment functions without regard to the task demands,
namely, that correct acceptances by definition require exhaus-
tive processing of both item and associative information—
only correct rejections can be made on the basis of a sin-
gle source. After thus ruling out self-terminating process-
ing for correct acceptances—particularly as facilitatory self-
terminating processing entails a negative SIC deflection that
we did not observe—we are left with two remaining archi-
tectures that can account for the complete qualitative pat-
tern of response dynamics: Parallel facilitatory processing
where positive responses are exhaustive; and fully coactive
processing. In both architectures, positive match information
is pooled between item and associative sources, but in the
case of facilitatory processing, mismatch (negative) informa-
tion arises separately from item and associative retrieval.

Discussion
Based on measures from Systems Factorial Technology
(Townsend & Nozawa, 1995; Townsend & Altieri, 2012),
we found that item and associative information are re-
trieved concurrently, with match information pooled between
both sources. It is also possible that mismatch informa-
tion is pooled, resulting in fully coactive processing, making
item and associative information effectively indistinguish-
able. While our results allow for the possibility that associa-
tive information may be retrieved more slowly than item in-
formation (Gronlund & Ratcliff, 1989), our results are incon-
sistent with strictly serial processing, such as the proposal that
item familiarity is assessed prior to the retrieval of associative
information (e.g., Rotello & Heit, 2000; Malmberg, 2008).
We can also rule out independence of item and associative re-
trieval. The assumption of independence lies at the core of
both the process dissociation procedure (Jacoby, 1991) and
mixture analysis of ROC curves (Yonelinas, 1997). Because
this assumption is violated, any conclusions drawn within
those frameworks are invalid with respect to item and asso-
ciative retrieval (for additional arguments along these lines,
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see Curran & Hintzman, 1995; Hillstrom & Logan, 1997).
Match information—and possibly mismatch information

in the case of coactive processing—was found to be pooled
between item and associative sources, suggesting that pos-
itive memory evidence derives from a holistic match be-
tween the pair and the contents of memory. This is consis-
tent with priming studies that find that multiple memory cues
are combined in an interactive fashion (Ratcliff & McKoon,
1988; Dosher & Rosedale, 1989, 1997). The ability for mis-
match information to arise separately from multiple sources
has previously been implicated in short-term memory search
(Mewhort & Johns, 2000), and may well apply in the con-
text of long-term associative recognition, particularly as some
of the critical mismatch information in Mewhort and Johns
(2000) was relational in nature. Taken together, separate pro-
cessing of mismatch information and pooling of match infor-
mation suggests that while item and associative information
may be separable, they cannot be qualitatively different, oth-
erwise it would not be possible to combine them into a single
holistic match. While this representational schema is not en-
tailed by any extant memory theory, TODAM’s allowance for
separate item and associative traces (Murdock, 1982) allows
that theory the flexibility to construct such a representation.

Our conclusions are based on model-independent quali-
tative properties of response dynamics, demonstrating how
SFT can be applied in situations in which the number of ob-
servations per individual is limited and responses are more
error-prone. By using Bayesian hierarchical estimation of RT
distributions, we can accurately characterize group-level re-
sponse dynamics. We are limited, however, in what we can
say about the degree to which individuals may vary in their
retrieval architectures; we are currently employing quantita-
tive individual RT modeling (e.g., Ratcliff, 1978; Brown &
Heathcote, 2008) to address this issue. Nonetheless, we have
shown how tools from SFT can be used to answer critical
questions in novel domains.
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