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Spatial and temporal variability of dissolved organic matter molecular composition in
a stratified eutrophic lake
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Running Head: 

DOM composition in a stratified, eutrophic lake

Key Points:
 O:C increases temporally in a eutrophic lake as a result of photochemical reactions in the 

epilimnion.

 DOM composition varies as a function of depth only when the lake is stratified with 
higher O:C observed near the bottom of the lake.

 DOM composition varies more temporally than it does spatially within the water column.
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Abstract

Dissolved organic matter (DOM) is an intermediate between organic carbon formed by primary

producers and CO2 produced through respiration, making it a key component of the carbon cycle

in aquatic ecosystems. Its composition determines the routes of  ultimate mineralization. Here we

evaluate  DOM  composition  as  a  function  of  time  and  depth  in  Lake  Mendota,  a  highly

productive, eutrophic lake that stratifies in warm months and is located in Madison, Wisconsin,

USA.  Dissolved  organic  carbon  concentrations  and  optical  properties  are  presented  for  73

samples collected at a single location at varying depths within the water column from June to

November. A subset of samples are analyzed by Fourier transform-ion cyclotron resonance mass

spectrometry (FT-ICR MS) to investigate DOM composition at the molecular level. Temporally,

increases in more oxidized formulas are observed in both the epilimnion and hypolimnion. At the

surface  correlations  between  DOM  formulas  and  both  chlorophyll  concentrations  and  light

intensity show that photochemical reactions contribute to DOM oxidation. In the hypolimnion,

redox  conditions  and  interactions  with  sediments  likely  influence  temporal  compositional

change.  Our  results  show  DOM  composition  varies  with  depth  with  more  highly  oxidized

formulas  identified  deeper  in  the  water  column.  However,  DOM  composition  varies  more

temporally than by location within the water column. This work has implications for climate

change  as  DOM  photooxidation  in  lakes  represents  an  understudied  flux  of  CO2 to  the

atmosphere. Additionally, lake eutrophication is increasing due to warming temperatures and this

data set yields detailed molecular information about DOM composition and processing in such

lakes. 

2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41



JGR: Biogeosciences

Plain Language Summary

Dissolved forms of carbon in lakes represent a significant portion of the global carbon pool.

Excess phosphorus inputs to lakes cause severe algae blooms which alter other aspects of the

lake  such  as  mixing  and  redox  conditions.  Lake  Mendota,  located  in  Madison,  Wisconsin,

experiences severe algae blooms in the warm months which cause oxygen depletion deep in the

lake.  In  this  study,  we considered  how changing redox conditions  affect  the  composition  of

dissolved organic matter (DOM) within the lake. Samples were collected at the surface of the

lake and at specific depths between June and November in 2017. Overall,  we observed both

spatial and temporal variability in DOM composition. Molecular formulas which higher numbers

of oxygen atoms were enriched over our sampling period and with depth when the lake was

stratified.  No  changes  in  DOM  composition  could  be  observed  when  the  lake  was  mixed.

Temporal variation was much greater than the spatial variability observed. At the surface, this

variability is attributed to reactions occurring due to an input of sunlight.  
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1. Introduction
Dissolved organic matter (DOM) is a ubiquitous, naturally occurring substance derived

from plant and microbial residues that makes up a significant portion of all organic carbon on the

globe  [Buffam et al.,  2011]. DOM participates in many reactions in aquatic  ecosystems. For

example,  DOM  absorbs  and  blocks  ultraviolet  light  in  surface  waters  [Boyle  et  al.,  2009],

forming reactive species that can react with dissolved contaminants [Berg et al., 2019; Boreen et

al., 2003; Remucal, 2014], viruses [Silverman et al., 2013], or the DOM pool itself [Gonsior et

al., 2009]. The presence of DOM also alters the solubility and availability of potentially harmful

species,  including  toxic  metals  [Graham  et  al.,  2013;  Zhou  et  al.,  2020].  Importantly,  the

composition of DOM controls its reactivity in all of these processes.

DOM composition  is  driven by differences  in  source  and in  extent  of  environmental

processing. However, differentiating between transformation processes is challenging because

different processes may yield similar apparent trends and may occur simultaneously. Lakes are

an ideal site to differentiate between DOM transformation and source because residence times

can be  quite  long in  large  lakes,  thus  allowing ample  time for  transformation  to  take  place

relative to fresh allochthonous inputs. Multiple processes known to alter DOM composition in

lakes  include microbial  transformation  [Hertkorn  et  al.,  2002],  photochemical  transformation

[Gonsior  et  al.,  2009] and other  physical  processes  including  sorption  and dissolution  from

sediments or particulate phases [Dadi et al., 2017]. Properties specific to particular lakes, such as

trophic status, extent of stratification, redox state, and other geochemical parameters, likely also

affect  composition,  although  these  topics  are  relatively  understudied  in  DOM  composition

literature.
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Here we analyze DOM composition via both ultraviolet-visible (UV-vis) spectroscopy

and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) in eutrophic

Lake  Mendota,  which  is  located  in  Madison,  Wisconsin,  USA.  UV-vis  spectroscopy  is

commonly used to determine bulk properties including the ratio of absorbances at 250 nm to 365

nm (E2:E3) and the specific ultraviolet absorbance at 254 nm (SUVA254) [De Haan and De Boer,

1987; Weishaar et al., 2003]. This method is simple and inexpensive, enabling analysis of a large

number of samples. FT-ICR MS is a much more time- and resource-intensive approach which

allows for molecular-level characterization including weighted averages of H to C (H:Cw), O to

C (O:Cw), and double bond equivalents (DBEw). These results are typically visualized on van

Krevelen diagrams which give information about types of compound classes in samples [Kim et

al., 2003]. Additionally, the presence of nitrogen and sulfur-containing formulas provide insight

into the presence of heteroatoms in DOM [Hertkorn et al., 2008]. Like other methods, FT-ICR

MS has some limitations. Specifically, only molecules that are readily ionized can be considered.

The  thermal  stratification  Lake  Mendota  experiences  in  the  summer  and fall  months

allows for the distinct analysis of processes governing DOM transformation near the lake surface

and near the bottom. Dissolved oxygen depletion in the bottom layer (i.e., hypolimnion) is driven

by eutrophication due to excess nutrients originating mainly from agricultural runoff  [Lathrop

and  Carpenter,  2014].  Dense  and  frequent  cyanobacterial  blooms  ultimately  deliver  organic

matter to the hypolimnion, creating strong biochemical oxygen demand. When oxygen becomes

depleted  at  depth,  often  early  in  the summer,  additional  terminal  electron  acceptors  become

reduced  causing  build-up  of  products  such  as  Mn(II),  Fe(II),  and  sulfide.  The  associated

reduction processes are carried out by diverse microbes using DOM as a carbon and energy
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source [Linz et al., 2018]. Thus, hypolimnetic anoxia is expected to lead to temporal changes in

DOM composition.

To investigate the transformation of DOM composition in lakes across space and time,

we sample a highly eutrophic temperate lake at the surface and as a function of depth from June

to  November  in  2017.  Physical  and  chemical  properties  of  the  lake  are  collected  including

temperature and concentrations of dissolved oxygen, manganese, iron, and sulfide to thoroughly

describe extent of stratification and redox state. DOM is evaluated by its concentration, optical

properties, and molecular structure. This unique data set allows for the investigation into in-lake

DOM  transformation  processes  throughout  the  water  column  during  open  water  conditions.

Simultaneous relationships to photo- and biotransformation markers are employed to enable a

direct comparison between two key transformation mechanisms at the surface [Herzsprung et al.,

2020]. We hypothesized that DOM transformation at the surface of the lake results would result

primarily from photochemical reactions that lead to overall oxidation, while variation in DOM

composition with depth in the water column would depend on stratification status of the lake.

2. Materials and Methods

2.1 Sample Collection

All samples were collected from Lake Mendota (Madison, Wisconsin, USA), which is a

highly eutrophic,  temperate lake.  This study site  was chosen because it  is  part  of the North

Temperate Lakes Long-Term Ecological Research (NTL-LTER) program and therefore has a

rich set of physical, chemical, and biological data publicly available [Carpenter et al., 2007]. The

dominant water source is from the Yahara River and the lake has a mean hydraulic residence
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time of 4.3 years [Hoffman et al., 2013; Lathrop and Carpenter, 2014]. Surrounding landcover is

dominated by cropland and urban land (46.5% and 26.7%, respectively) [Chen et al., 2019]. 

All  samples  were  collected  near  the  NTL-LTER buoy (GPS coordinates:  43.09885,  

-89.40545), which is near the deepest location in the lake (https://lter.limnology.wisc.edu/data).

Surface samples (n = 28) were taken as a composite of the top 12 m of the lake. The top 12 m

can generally be considered as the epilimnion, but the location of the thermocline does vary

throughout the sampling period (Figure S1). Surface samples were collected approximately 1-2

times per week from June 2nd through November 3rd in 2017. Depth-discrete samples (n = 45)

were  collected  1-2  times  per  month  at  the  exact  depth  listed  as  measured  by  a  YSI  Exo2

multiparameter  sonde  (YSI  Incorporated,  Yellow  Springs,  OH).  All  water  samples  were

immediately filtered through a 0.22 µm pore-size PES filter and stored in glass bottles in the dark

at °4 C. When necessary for analysis, dilutions were made using ultrapure water (18.2 MΩ cm)

obtained from a Milli-Q water purification system. A visual representation of a sample inventory

for this study is provided in Figure 1.  

2.2 Water Characterization

Geochemical measurements were performed on days when depth-discrete samples were

taken and include temperature and concentrations of dissolved oxygen (DO), iron, manganese,

and sulfide. Temperature and DO were measured using the YSI sonde. Dissolved concentrations

(i.e., able to pass through a 0.45 µm filter) of iron and manganese were quantified by inductively

coupled plasma-optical emission spectroscopy (ICP-OES) on a Varian Vista-MPX CCD ICP-

OES.  Sulfide  was  quantified  spectrophotometrically  using  the  Cline  method  [Cline,  1969].
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Concentrations of chlorophyll,  temperature,  and DO on dates without sample collection were

taken from a water quality buoy logging high-frequency measurements that are archived in the

NTL-LTER database  [Magnuson et al., 2021b]. Chlorophyll concentrations were estimated by

relative fluorescent units. 

Bulk  DOM  analyses,  including  measurements  of  concentration  of  dissolved  organic

carbon ([DOC]) and ultraviolet visible (UV-vis) spectra, were recorded for all surface and depth-

discrete samples. [DOC] was measured on a Shimadzu total organic carbon analyzer, which was

calibrated  using  known concentrations  of  potassium hydrogen phthalate  as  a  standard  (ACS

grade) purchased from Fisher Scientific. Historical [DOC] measurements were obtained from the

NTL-LTER database [Magnuson et al., 2021a]. For a more accurate comparison to our surface

samples, any historical measurements that are made above 12 m on a single day were averaged

together. The average [DOC] for each day occurring within the window of time included in our

2017 samples (87 - 241 days after ice-off) were plotted versus days since ice off of the given

year. Slope directions were evaluated using Kendall rank correlations with a 95% confidence

interval. Historical sampling frequency depended on the year but was approximately monthly. 

UV-vis spectra  were collected  via a Shimadzu 2401PC Recording Spectrophotometer

with 1 nm intervals between 200 – 800 nm. All spectra were collected in 1 cm cuvettes, blank

subtracted to Milli-Q water, and the average absorbance from 700 - 800 nm was also subtracted

to correct for any light scattering. The optical property E2:E3 was calculated as the ratio of the

absorbance at 250 nm to 365 nm and specific ultraviolet absorbance at 254 nm (SUVA254) as the

absorbance at 254 nm divided by [DOC] [De Haan and De Boer, 1987; Weishaar et al., 2003].

2.3 Mass Spectrometry Analysis
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A subset of the depth-discrete samples was analyzed via Fourier transform-ion cyclotron

resonance mass spectrometry. Sixteen samples were selected to span a variety of dates, depths,

and observations of optical properties since previous work has demonstrated that changes in FT-

ICR MS spectra  correlate  with optical  parameters  [Berg  et  al.,  2019;  Remucal  et  al.,  2020;

Maizel  et  al.,  2017c]. DOM was extracted using solid phase extraction and diluted in 50:50

acetonitrile:water using methods described elsewhere [Dittmar et al., 2008]. Mass spectra were

collected  using  a  SolariX  XR  12T  FT-ICR  mass  spectrometer  (Bruker)  with  a  Triversa

NanoMate  sample  delivery  system  (Advion)  operating  in  negative  mode  with  electrospray

ionization. m/z values ranging form 200 – 600 were considered. All  m/z peaks with signal to

noise > 3 were exported and considered for matching. Some results of this type of analysis are

particularly sensitive to the instrument and instrumental parameters [Hawkes et. al, 2020]. We

combat  this  issue  by  analyzing  all  samples  back  to  back  on  the  same  day  using  the  same

instrumental parameters. 

Raw data were linearly calibrated using 10  known formulas ranging from 224. 03209 –

600.205424  and  commonly  found  in  DOM  as  described  previously  [Maizel  et  al.,  2017b].

Potential formula masses considered included 12C1-100
13C0-1H1-100O0-80N0-2S0-1P0-1.  Combinations of

heteroatoms allowed included N1S0P0, N2S0P0, N1S1P0, N2S1P0, N0S1P0, and N0S0P1 to limit the

potential  mass  list  while  maximizing  the  number  of  formulas  reliably  matched.  Identified

formulas were required to have < 0.2 ppm error between the detected mass and the actual mass

of the formulas.  Additionally,  identified formulas were required to be part  of a homologous

series (+ CH2 or CH4 vs. O) with at least three members [Koch et al., 2007]. Overall in the data

set, 6358 unique formulas were identified. Weighted averages for bulk properties (i.e., H:Cw and

O:Cw) were calculated by summing values for individual formulas multiplied by their weighted
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intensities. Spearman rank analyses were used to compare relative formula intensities to location

within the water  column and other  parameters.  For correlations  to  depth,  the formulas  were

required to be identified in at least 15 of the samples. Prior to calculation of the correlations for

chlorophyll  and  light  intensity,  the  data  set  was  subset  to  only  include  formulas  that  were

commonly identified across the group. Furthermore, the preparatory step of intersample ranking

was performed where each formula within a sample is given a rank based on its relative intensity

compared to the relative intensities of the other formulas identified in the sample. 

2.4 Solar Radiation Modelling

The “Simple Model of the Atmospheric Radiative Transfer of Sunshine” (SMARTS) was

used to estimate irradiation at in Madison, WI (43.1097º N, 89.4206º W) at noon on August 11 th,

September 8th, September 21st, October 4th, and November 3rd of 2017. Intensities were summed

from 280 – 500 nm [McConville et al., 2017; Remucal and McNeill, 2011].

3. Results and Discussion

3.1 Lake Overview

In 2017, ice-off (i.e., the first date open water is observed on the lake) was declared for

Lake Mendota on March 8th. Our first surface sample was collected on June 2nd, 87 days after ice-

off. The lake is already thermally stratified by the date of our first depth-discrete sample (June

29th) and mixes before the last depth-discrete sampling date (November 3rd; Figures 1 and S1).

[DOC] ranges from 4.12 – 7.07 mg-C L-1 in all samples collected during this study (Table S7),

which is  within the range observed in  the historical  NTL-LTER database  [Magnuson et  al.,

2021a]. The optical properties SUVA254 and E2:E3 range from 1.33 – 2.14 L mg-C-1 m-1 and 7.86
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– 10.18 L mg-C-1 m-1, respectively (Table S7). The relatively low SUVA254 and high E2:E3 values

are indicative of DOM from autochthonous sources or allochthonous DOM that has undergone

extensive environmental processing  [Bai et al.,  2017a; Berg et al.,  2019; Brown et al.,  2004;

Gonsior et al., 2009; Maizel et al., 2017a].

 

3.2 Temporal Variation at the Surface

The variation in DOM concentration and composition in the upper mixed layer of Lake

Mendota provide insight into the dominant mechanisms responsible for shaping the DOM pool

across an ice-free season. Since both microbial processing and photochemical reactions occur

simultaneously, considering each process individually is an oversimplification. However, we can

make inferences about which mechanism is most likely responsible for the observed changes

based on correlations to other variables that change on a seasonal scale.

Integrated surface samples show DOM concentration and especially DOM composition

vary over the sampling period. Although the temporal variation in [DOC] is not significant (p =

0.30; Figure 2a; Table S7), a negative slope with time is observed. Decreasing [DOC] has also

been observed historically in Lake Mendota over the same dates for 14 of the past 22 years

between 1996 and 2017 but similarly without significant correlation (Table S8). We observe a

significant decrease in A254 over the sampling period (p = 7.11 x 10-3; Figure 2b; Table S7). This

trend means that the relative amount of light absorbing moieties in DOM decrease over time, but

that this is not solely attributable to overall  decreases in [DOC]. This inferred shift  in DOM

composition is supported by the significant increase in E2:E3 (p = 2.13 x 10-8; Figure 2d; Table

S7),  corresponding to a decrease in DOM apparent molecular weight. However, no temporal

trend is detected for SUVA254 likely because decreases in absorbance are cancelled out by [DOC]
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variability (Figure 2c; Table S7). Other studies show similar seasonal increases in E2:E3 as well

as decreases in SUVA254 in a eutrophic lake in Sweden [Müller et al., 2014] and in freshwaters in

China [Song et al., 2013].

The increase in E2:E3 with time is  consistent  with both photooxidation  and microbial

alteration of DOM [Helms et al., 2008; Larson et al., 2007; Sharpless et al., 2014]. Autotrophic

organisms living near the surface of the lake produce DOM molecules that are relatively simple

and do not absorb light at long wavelengths (e.g., carboxylic acids, amino acids, and peptides)

[Hertkorn et  al.,  2002;  Kamjunke et  al.,  2017; Valle  et  al.,  2018].  For example,  incubations

isolating DOM produced by phytoplankton show that the DOM is especially small in size [Zhang

et al.,  2013] and readily available to heterotrophic microbes  [Bertilsson and Jones, 2003]. In

Lake Mendota, this DOM is unlikely to contribute to measured [DOC] because it is so rapidly

consumed.  Alternatively,  photochemical  reactions  can  break  down  chromophoric  DOM,

particularly  of  allochthonous  origin,  directly  or  form  photochemically  produced  reactive

intermediates  (PPRI)  that  degrade DOM into  smaller  DOM molecules  that  absorb less  light

[Bade et al., 2007; Bittar et al., 2015; Brinkmann et al., 2003; Helms et al., 2008, 2013, 2014;

Kujawinski et al., 2004; Lønborg et al., 2016; Spencer et al., 2009]. Photooxidation can occur

both  completely  to  form carbonate  species  or  incompletely  to  form more  oxidized  DOM; a

combination of both is consistent with our observations. Both photochemical processes could

result in increased E2:E3 and decreased A254 [Bittar et al., 2015; Brinkmann et al., 2003; Cory and

Kling, 2018; Helms et al., 2008, 2013, 2014; Hur et al., 2011; Kujawinski et al., 2004; Lønborg

et  al.,  2016;  Sharpless  et  al.,  2014;  Spencer  et  al.,  2009],  however  only  complete  oxidation

results  in  [DOC]  decreases.  Since  significant  changes  in  [DOC]  are  not  observed,  neither
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autotrophic inputs nor complete oxidation to CO2 are likely driving the observed differences in

DOM  composition  over  the  summer.  Instead,  incomplete  oxidation  is  likely  the  dominant

mechanism if  photochemical  reactions  are  responsible  for  the  change  in  DOM composition

observed in Lake Mendota. It is possible that DOM sinks are equal to DOM sources, but is not

possible to test this hypothesis with bulk analyses alone. 

A subset of the depth-discrete samples collected from the epilimnion (n = 5) are analyzed

by FT-ICR MS and can be used to evaluate changes in the molecular composition of DOM at the

lake surface, providing more detailed information than bulk UV-vis spectroscopy measurements

(Figures S5, S8, S10, S12, and S16). H:Cw values of identified formulas range from 1.17 – 1.24

and decrease significantly over the course of the summer (p = 1.56 x 10 -2; Figure 2e; Table S4).

This increase in aromaticity is accompanied by an increase in O:Cw (range = 0.49 – 0.55; p =

3.06 x 10-3;  Figure 2f). These ranges in weighted averages derived from FT-ICR MS data are

consistent  with  DOM  that  is  largely  microbially-derived  and/or  has  undergone  extensive

environmental processing [Brown et al., 2004; Hawkes et al., 2020]. The large variation in these

parameters, and particularly in O:Cw, is especially noteworthy given that the samples were taken

from the same location in a single lake. In fact, the range in O:Cw in this study is approximately

the same range observed across the entire St. Louis River and Estuary which includes upstream

samples dominated by terrestrial inputs and water from oligotrophic Lake Superior [Berg et al.,

2019]. DBEw and % CHO appear to increase while % N-containing and % S-containing formulas

appear to decrease over the sampling period, but no significant trends are observed for the five

samples (p = 0.161, 0.168, 0.111, and 0.157, respectively; Figure S18). 
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Molecular  data  make  it  possible  to  track  temporal  changes  of  individual  identified

formulas. Lipid- and protein-like compounds show a relative decrease over the course of the

summer indicating their consumption rates are greater than production rates (Figure 3a). This

results in the overall decrease in H:Cw  observed at the surface (Figure 2e). Formulas with high

O:C and a range of H:C become more intense relative to other formulas over our sampling period

(Figure 3b); these aromatic, tannin-like formulas cause an increase in O:Cw (Figure 2f). 

The changes in DOM composition in the surface of Lake Mendota could be attributable

to microbial processing. We use the term “microbial” in this context to refer to both autotrophs

and heterotrophs, meaning that DOM can be created through primary production but can also be

processed through respiratory mineralization and release of dead cell components. Phytoplankton

are known to produce relatively simple molecules such as peptides and small carboxylic acids

[Meon and Kirchman, 2001]. Although these small  molecules are outside the 200 – 800  m/z

range of our FT-ICR MS instrument, high-resolution mass spectrometry has been used to study

other larger phytoplankton-derived DOM and shows that products that are detected are most

similar to protein- and lipid-like compounds [Mangal et al., 2016]. Many of these formulas are

especially bioavailable for consumption by heterotrophic microbes [D’Andrilli et al., 2015] and

thought to undergo phototransformation into refractory proteinaceous compounds  [Goldberg et

al., 2015]. While the formulas that are degraded most quickly might never be detected because of

rapid  turnover  and/or  analytical  limitations,  the  net  decrease  in  highly  saturated  formulas  is

consistent with net consumption of these types of formulas (Figure 3a) and overall enrichment

in more biologically recalcitrant, low molecular weight compounds. This argument is in line with
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the microbial carbon pump framework used to explain recalcitrant DOM accumulation in the

ocean [Jiao et al., 2010; Zhang et al., 2018]. 

Our observations may also be explained by photochemical oxidation. DOM photolysis

produces PPRI including singlet oxygen (1O2) and hydroxyl radical (OH) that may react with

phytoplankton-derived DOM via incomplete pathways that generate oxidized DOM [Ward and

Cory, 2016]. 1O2 is a selective oxidant that preferentially oxidizes nucleophilic compounds and

can be quenched by DOM [Hessler et al., 1996; Yang et al., 2013]. OH also reacts quickly with

aromatic rings via oxygen addition to generate more oxidized products, which is consistent with

the  observed increases  in  O:Cw (Figure 2f)  and the  shift  toward  more  oxidized  lignin-  and

tannin-like formulas (Figure 3b) [Remucal et al., 2020]. Thus, the observed changes in weighted

averages derived from FT-ICR MS data could be attributed either microbial or photochemical

processing.

It  is  important  to  recognize  that  microbial  and  photochemical  processing  occur

simultaneously in the surface of the lake and that changes in DOM composition due to one

process could impact the other process. For example, both increases and decreases in bacterial

growth have been observed as a result of photochemical alteration of DOM  [Cory and Kling,

2018; Tranvik and Bertilsson, 2001]. While these divergent trends may be attributable to the

original source of the DOM [Tranvik and Bertilsson, 2001], they also may be an artifact of the

length of the experiment and whether or not microbial communities have been allowed time to

adapt  to  the  photoproduced DOM  [Cory and Kling,  2018].  In  Lake Mendota,  the  microbial

community composition has been shown to change on daily to weekly time scales during the

summer [Kara et al., 2013; Shade et al., 2007], but the effects of this change on DOM cycling
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have  not  been  studied.  In  less  productive  arctic  systems,  shifts  in  heterotrophic  community

composition precede increases in DOM degradation rates [Cory and Kling 2018], underscoring

the tight integration of DOM production, photodegradation, and biological transformations. 

To differentiate between these two transformation mechanisms (i.e., microbial processing

versus photo-altered DOM), we use an approach originally described in Herzprung et al. [2020]

to determine formulas produced and consumed by microbial and photochemical processes based

on correlations with chlorophyll and solar radiation, respectively (Figure 4;  Table S3). Only

formulas identified in all surface samples are considered for this analysis and rho correlations are

only included for those with p < 0.05 for correlations with either chlorophyll or light intensity.

Chlorophyll and light intensity values on our sampling dates are listed in Table S3. Formulas are

classified into five reaction types including photodegraded compounds (negative correlation with

radiation,  n  = 75),  photoproducts  (positive  correlation  with  radiation,  n  = 494),  microbially

degraded  compounds  (negative  correlation  with  chlorophyll,  n  =  88),  microbially  derived

products  (positive  correlation  with  chlorophyll,  n  =  14),  and  nonreactive  (no  significant

correlation with either parameter, n = 1060;  Figures 4 and S20). No formulas have significant

correlations with both parameters. Thus, formulas that decrease in their relative abundance are

classified  as  “degraded”,  while  the  formulas  that  increase  in  their  relative  abundance  are

classified as “products”. 

Classified  formulas  fall  within  distinct  regions  of  the  van  Krevelen  diagram.

Photodegraded compounds (Figure 4a) are depleted in O and are highly saturated. The large

number of formulas classified as photoproducts have relatively high O:C ratios and fall within

the tannin- and lignin-like regions of the diagram (Figure 4b), which supports the hypothesis
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that  partial  photochemical  reactions  drive  DOM  composition  changes  at  the  surface.  The

accumulation of these formulas is noteworthy because they are also efficient at photochemically

producing OH, but not other PPRI like 3DOM and 1O2 [Berg, et al., 2019], suggesting that the

photochemical reactivity of DOM likely changes over the summer. 

In contrast to photochemical reactivity, a relatively small number of formulas detected by

FT-ICR MS are susceptible to biotransformation based on correlations with chlorophyll (Figure

4c; Figure S20).  However,  we recognize that  our sampling approach likely misses the most

labile formulas which are consumed as quickly as they are produced and not part of the more

recalcitrant DOM pool measured here. The formulas that are classified as microbially degraded

(Figure  4c)  are  generally  the  same types  that  are  classified  as  photodegraded  (Figure  4a).

Therefore, in Lake Mendota, photochemical reactions would likely make DOM less bioavailable,

consistent with incubation studies [Cory and Kling, 2018; D’Andrilli et al., 2015]. Collectively,

these data suggest that the DOM in Lake Mendota is mostly phytoplankton-derived and/or highly

processed (i.e., refractory) based on low SUVA254 and high E2:E3 and H:Cw values, but that the

DOM detected by FT-ICR MS is produced or altered mainly through photochemical reactions

over the course of our sampling period.

3.3 Variation with Depth

Geochemical  and  physiochemical  parameters  measured  in  the  depth-discrete  samples

show that redox conditions are altered as Lake Mendota undergoes stratification. Temperature

and  DO  data  indicate  that  Lake  Mendota  is  stratified  on  every  depth-discrete  date  except

November 3rd  (Figures 5  and Figures S21-S26). Once stabilized, the thermocline is observed

around  10  –  15  m  into  the  water  column  (Figure  S1).  Anoxia,  as  determined  by  DO
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measurements, is observed in the hypolimnion by the beginning of June and remains until the

lake mixed in late October (Figure 1). The presence of reduced forms of iron and manganese, as

well as sulfide, indicate that alternative electron acceptors are used when DO is depleted (Figure

S21-S26;  Table  S2).  Dissolved  iron  (11.4  –  114  g  L-1)  is  detected  in  all  samples  in  the

hypolimnion  except  samples  collected  on  November  3rd after  the  lake  mixes.  Dissolved

manganese concentrations range from 0 – 263  g L-1. Later in the season, Mn(II) is observed at

more shallow depths likely due to anoxic conditions existing near the thermocline.  Sulfide is

only detected when DO is depleted and concentrations increase later in the summer due to the

consumption of other more thermodynamically favorable electron acceptors. Up to 5.4 mg L-1 of

sulfide is  measured (Table S2).  Once the lake is  mixed in late  October,  Fe(II),  Mn(II),  and

sulfide are not present above detection limits  likely due to oxidation by O2  and resorption to

sediments [Krueger et al., 2020].

[DOC] varies within the water column when the lake is stratified but does not change

consistently as a function of depth (Figures 5c and Figures S21-S26). Sharp changes in [DOC],

including decreases of around 2 mg-C L-1 over a meter, are observed around the thermocline

when the lake is stratified. This is noteworthy because the lowest [DOC] is observed right around

the thermocline, which is where redox conditions change most rapidly with depth and microbial

activity is usually high [Peterson et al., 2020]. DOM may also co-precipitate with redox active

metals, likely manganese, to form particulates and thus carbon in the dissolved phase decreases.

In fact, spikes in particulate Mn are observed around the thermocline in this lake in the same year

[Peterson et al., 2020]. Changes in concentrations of DOM and metals due to complexation and

precipitation  reactions  have  been  observed  in  other  systems  such  as  a  creek  bank65 and  an
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experimental  drinking  water  treatment  system.66 In  contrast,  in  November  when  the  lake  is

mixed, [DOC] is constant with depth, as expected (Figure 5c).

Bulk  DOM composition,  as  determined  using optical  measurements,  also  varies  with

depth during stratification. SUVA254 is consistently lower and E2:E3 is consistently higher in the

epilimnion compared to the hypolimnion when the lake is stratified (Figures 5 and  S21-S26).

Similar evidence of DOM that is relatively more aromatic and higher in molecular weight being

enriched in the hypolimnion has been observed and attributed to decreasing aromaticity due to

photobleaching at the surface of the artificial Lake Salto [Bracchini et al., 2006]. No variability

in optical properties are observed after the lake mixes (Figures 5d-5f). Interestingly, once the

lake mixes, values for SUVA254 are in the middle of the range observed over the summer (Figure

5d). In contrast, values for E2:E3 are the highest of the season after the lake mixes (Figure 5e).

This agrees with the observations made at the surface of the lake that E2:E3 increases over the

sampling period but SUVA254 is constant (Figure 2). 

Relative amounts of heteroatoms also varies with depth both when the lake is stratified

and when it is mixed (Figures 6a-6c; Tables S5-S6). Ranges of % CHO, % N-containing, and %

S-containing  formulas  vary  from  38.7  –  49.9%.  The  percentage  of  CHO-only  containing

formulas decreases in the hypolimnion on each of the five days considered (Figure 6a), while the

percentages of N- and S-containing formulas increase (Figures 6b-6c). The difference between

heteroatom-containing formulas and CHO-only formulas is largest in the samples taken later in

the  season  (i.e.,  October  4th and  November  3rd),  which  suggests  that  the  distribution  of

heteroatom-containing  DOM  does  not  depend  on  stratification  since  the  lake  mixed  before

November 3rd. 
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The decrease in percentage of CHO-only formulas at the bottom of the lake is due to

increases in heteroatom-containing formulas since the total number of formulas identified does

not account for these differences (Figure 6a; Table S6). Increases in S-containing formulas may

be due to nucleophilic attack by sulfide on DOM  [Sleighter et al.,  2014; Poulin et al.,  2017;

Schmidt et al., 2017; Vairavamurthy and Mopper, 1987]. The buildup of sulfide under anoxic

conditions (Table S2) creates greater opportunity for this type of reaction. Linear correlations

between concentrations of sulfide and % S-containing formulas have been reported previously

[Poulin et al., 2017]. Here, the highest % S-containing formulas are observed when higher sulfide

concentrations  are detected,  but  the  trend is  not  linear  (Figure S27).  However,  nucleophilic

attack cannot be the only formation mechanism since a range of % S-containing formulas is

observed even when sulfide is not detected, particularly at the lake surface. Additionally, the S-

containing formulas observed in this data set preferentially fall within relatively saturated regions

of the van Krevelen diagram which could be evidence of a biological pathway for their formation

(Figures  S3-S17)  [Sleighter  et  al.,  2014].  In  contrast,  N-containing  formulas  make  up

approximately the same space on the van Krevelen diagrams as the DOM pool as a whole at all

depths and therefore may be formed via abiotic addition of N-containing nucleophiles (Figures

S3-S17) [Sleighter et al., 2014].

Changes in DOM molecular composition on individual days can be used to investigate

how composition varies temporally and by depth when the lake is stratified and mixed. H:Cw and

O:Cw vary by date much more than they vary with depth, with H:Cw values decreasing and O:Cw

values increasing over the sampling period (Figures 6d-6e; Table S4). On each individual day

when the lake is stratified, H:Cw is higher in the epilimnion (p = 0.049) and O:Cw appears higher
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in  the  hypolimnion  although the  relationship  is  not  statistically  significant  (p  = 0.096).  The

opposite trend is observed on November 3rd when the lake is mixed. This observation was also

made after a mixing event in a boreal lake in Sweden [Gonsior et al., 2013]. DBEw also appears

to vary more temporally than spatially although less consistently than H:Cw or O:Cw (Figure 6f). 

Like  the  optical  properties,  changes  in  molecular  composition  are  observed  at  the

thermocline. Four samples collected on August 11th are analyzed by FT-ICR MS, including one

sample above the thermocline (i.e., 11.5 m) and the sample immediately below the thermocline

(i.e., 13.2 m). On this day, DOM sampled just below the thermocline has lower H:Cw and higher

O:Cw and DBEw  than at any other location in the water column. In terms of heteroatoms, the

percentages of % CHO-only and % N-containing formulas increase while the percent of % S-

containing formulas decreases (Figure 6) near the thermocline. If co-precipitation of DOM with

metals  in  the thermocline is  responsible for loss of [DOC] as discussed above, these results

suggest preferential removal of aromatic and S-containing DOM. Subsequent dissolution below

the thermocline would result in the increase of O:Cw and decrease in H:Cw at 12 m where [DO] is

depleted, which matches our observations. While this observation is only based on one sampling

date, preferential removal of highly oxidized DOM has been reported with other metal oxides in

a lake and in a water treatment system [Barazesh et al., 2018; Riedel et al., 2013].

Specific formulas identified within DOM by FT-ICR MS can be correlated to location

within  the  water  column  and  with  bulk  optical  properties.  These  analyses  are  especially

informative because they allow for probing which individual molecular formulas are responsible

for the trends in weighted averages described above. Correlating relative intensities of formulas

commonly identified in the depth-discrete samples shows that, in general, formulas with higher
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O:C ratios are enriched in the hypolimnion (Figure 7). There is also a slight dependence on the

H:C ratio, with more aliphatic formulas enriched near the surface of the lake. The same general

pattern  of  correlations  is  observed  for  relative  intensities  correlated  to  DO  (Figure  S19).

However, it is important to note that there is only one sampling day where DO is not dependent

on depth (i.e., in November when the lake is mixed), so it is unclear whether or not this single

day is enough to disrupt the overall trend. 

O:Cw ratios increase with depth while the lake is stratified, as well as temporally over our

sampling period at all depths (Figures 6e and 7b). While increases in oxygenated formulas at the

surface are likely attributable to photochemical reactions (Figure 4), other processes must be at

play  in  the  hypolimnion  since  light  is  fully  attenuated  higher  in  the  water  column.  Highly

oxygenated  formulas  that  are  likely  polyphenolic-  and  tannin-like  are  enriched  in  the

hypolimnion of other lakes including a mesotrophic pre-dam reservoir [Dadi et al., 2017] and a

stratified, humic lake in Sweden [Gonsior et al., 2013]. These types of formulas have been found

in sediments and could be enriched by desorption at the bottom of lakes  [Dadi et al.,  2017;

Gonsior et al., 2013; Herzsprung et al., 2017; Sleighter et al., 2014; Riedel et al., 2013; Schmidt

et al., 2011, 2017; Valle et al., 2020; Yang et al., 2014]. In fact, highly oxygenated formulas are

preferentially  incorporated  into  redox active  metal  oxides,  which then  dissolve more  readily

under anoxic conditions [Barazesh et al., 2018; Linkhorst et al., 2017; Lv et al., 2016; Riedel et

al., 2013; L. Yang et al., 2014]. This phenomenon may explain why O:C ratios increase at the

bottom of  Lake  Mendota  temporally  as  more  minerals  undergo  reductive  dissolution  in  the

anoxic conditions. Alternatively,  heterotrophic metabolism may consume the smaller,  simpler
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DOM  leaving  the  larger,  more  oxidized  material  left  in  solution.  More  work  is  needed  to

distinguish between these two processes.

4. Conclusions and Implications

By focusing on a single location in a single lake, we are able to concurrently investigate

how a combination of photochemical, biological, geochemical, and physical processing impacts

DOM composition. At the surface of the lake, A254  decreases and E2:E3  increases, indicating a

shift to DOM that is smaller in molecular weight and a decrease in light absorbance by DOM

which  is  not  attributable  to  decreases  in  [DOC]  alone.  While  these  observations  could  be

consistent with either microbial or photochemical processing, our molecular level analysis allows

for the conclusion that DOM transformation at the surface of Lake Mendota is primarily driven

by photochemical processes.

DOM  composition  also  varies  by  depth  within  the  water  column  with  larger,  more

aromatic DOM enriched at the anoxic bottom of the lake during stratification. After lake mixing,

[DOC] and optical properties can no longer be used to differentiate between DOM collected at

different depths. However, differences in heteroatom content of the DOM are still observed via

molecular level analysis. Combined, these results show that single grab samples taken from a

dynamic lake such as Lake Mendota should not be considered representative of all seasons nor

all locations within the water column. 

While variability both temporally and spatially within the water column was observed,

the  temporal  variation  was  much  greater.  This  has  implications  for  researchers  designing

sampling campaigns in this lake and likely other stratified lakes. Given these results, it would be
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a much better use of time and resources to sample with more temporal resolution than it would

be to sample at multiple depths within the lake if researchers are interested in the DOM.  

The effect of eutrophication on DOM composition is vital to understanding DOM in our

changing  climate.  Eutrophication  will  affect  an  increasing  number  of  water  bodies  as

temperatures increase and more runoff makes its way into the surface water [Sinha et al., 2017].

Understanding  overall  water  quality  including  DOM  composition  is  important  to  mitigate

adverse effects of eutrophication including the production of cyanotoxins and hypoxia in water

bodies  [Hao et al., 2020; Song et al., 2012]. Increases in [DOC], also referred to as browning

waters,  is  commonly  reported,  particularly  in  European  freshwaters,  and  while  the  exact

mechanisms are still being debated, most link to a changing climate [Evans et al., 2006; Freeman

et al., 2004; Worrall et al., 2004]. Interestingly, this phenomenon is not observed in all lakes

including  other  NTL-LTER  lakes  in  Wisconsin  [Jane  et  al.,  2017].  Both  browning  and

eutrophication are expected to alter photochemistry in natural systems and may cause shifts in

DOM composition that are difficult to predict [Vione and Scozzaro, 2019]. 

The  distribution  of  DOM with  varying  composition  throughout  the  water  column  is

significant for many reasons. DOM composition is highly linked to bioactivity, and therefore any

chemical or physical processes that affect DOM are also likely to affect microbial populations

and vice versa [Bowen et al., 2020; Guerrero-Feijóo et al., 2017; Lønborg et al., 2016; Ward et

al., 2017]. The relationship between photochemistry and microbial metabolism is complicated,

however,  and both increases  and decreases  in bioavailability  have been reported after  DOM

irradiation [Ward et al., 2017]. While not explicitly tested here, the fact that the same types of

formulas are classified as photodegraded and microbially degraded suggests competition between

photo- and biotransformation likely exist. The effect of stratification on DOM composition could
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also have important  implications  for greenhouse gas fluxes,  particularly  after  the lake mixes

when DOM not yet exposed to sunlight reaches the surface. For example, fresher, less processed

DOM from thawing arctic permafrost layers has been shown to be particularly photo- and bio-

labile [Ward et al., 2017]. Thus, the effects of lake stratification on DOM composition may have

important implications for climate change.
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Figure Captions

Figure 1. Dissolved oxygen (DO) profile heatmap for Lake Mendota for June – November 2017
based on DO measurements taken by the NTL-LTER research buoy. Points indicate sampling
dates and depths of samples collected for DOM analysis.

Figure 2. a) [DOC], b) SUVA254, c) E2:E3, and d) A254  for integrated epilimnion samples and e)
H:Cw and f) O:Cw of identified formulas detected by FT-ICR MS in the surface depth-discrete
samples. 

Figure 3. Formulas identified in at least four epilimnion samples that a) decrease (rho < 0) or b)
increase (rho > 0) with time as determined by Spearman rank analysis. Boxes correspond to 1)
protein-, 2) lignin- ,and 3) tannin-like formulas [Minor et al., 2014].

Figure 4.  Identified formulas classified as a) photodegraded, b) photoproducts, c) microbially-
degraded, and d) nonreactive based on correlations to chlorophyll and light intensity [Herzsprung
et  al.,  2020].  Only  formulas  identified  in  all  five  surface  samples  are  considered.  Boxes
correspond to 1) protein-, 2) lignin-, and 3) tannin-like formulas [Minor et al., 2014].

Figure 5. a) Temperature, b) [DO], c) [DOC], d) SUVA254, e) E2:E3, and f) A254 measured during
summer  stratification  (August  11th)  and  after  fall  turnover  (November  3rd)  at  depth-discrete
intervals. Analogous data for other sampling dates is provided in Figures S21 – S26.

Figure 6. Variations in a) % CHO, b) % N-containing, c) % S-containing, d) H:Cw, e) O:Cw, and
f) DBEw of formulas identified by FT-ICR MS with depth.  Only dates which have a sample
collected from above and below the thermocline are included in this plot. 

Figure 7. Identified formulas that a) decrease (rho < 0) or b) increase (rho > 0) with depth in the
depth-discrete samples analyzed with FT-ICR MS. Only those formulas detected in at least 15
out of 20 samples are considered in this analysis. Boxes correspond to 1) protein-, 2) lignin- and
3) tannin-like formulas [Minor et al., 2014].
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