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1. Abstract

Title: Migration Phases of Icelandic Capelin

Author: Ilianna Richards

In this paper, we will build mathematical pelagic fish migration models and in-

spect simulations to discover the behavior for motion amongst a school. I focus on

the Icelandic Capelin, and explore all possible migration patterns and their limitations

as governed by mathematical equations and not biological observations. We develop

a system of ordinary di↵erential equations from a discrete system for the most general

motion. First, we will perturb the system to develop a system of stochastic di↵eren-

tial equations to study the unique behavior under naturally occurring external forces

such as currents or reefs. Then, we will categorize the found transitory and long term

behavior of these systems and compare them to the unperturbed solutions. Finally,

we will prove that the system exhibits a subcritical pitchfork bifurcation.
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2. Introduction

Climate change and growing global

temperatures are a↵ecting the Arctic

Ocean currents and, more specifically,

the migration patterns of the Capelin

(Mallotus villosus), a species of pelagic

fish in the sub-arctic seas. The diagram

to the right represents the annual migra-

tion pattern (Vilhjalmsson, 111). Begin-

ning on the northern side of Iceland, the

mature fish swim up the coast of Green-

land to Jan Mayen, an island about 600 km north of Iceland, to feed on the zooplank-

ton in early summer. After feeding here, the mature Capelin (2-3 years old) return to

the north and northwest of the island to then start their spawning migration to the

south of the and western coasts, travelling clockwise most often and with some groups

travelling counterclockwise. The majority of the stock spawn in February and March

and then dies. The larva drift from the spawning ground and the young Capelin

mature o↵ the north-west coast to repeat the process (Einarsson, 5). Although these

are the natural migration patterns, there are a number of factors that can a↵ect the

specific pathway of the Capelin, including: currents, water temperatures, obstacles,

and school speeds.

There have been a number of e↵orts to model fish school formation and migration.

Original models used transitions matrices for prediction and accuracy, while others

utilize a biological lens which emphasizes ecological patterns (as in Barbaro, 2). A

third approach utilizes transport-di↵usion equations to model spatial distribution as

v



a continuum. The model I investigate is an extension of this model and presents a

system dependent on the tendency of fish to match direction and speed.

As the fish migrate, they prefer to swim through colder currents. But when the

Capelin spawn, they swim through warm water and their roe production increases,

and change their speeds and directions in response. It is important that our model

captures this change (perturbation) in motion, so we can that we can predict Capelin

movement on the feeding ground. I will use an order parameter, that is the signature

of the phase of the whole school, to determine how this perturbed system relates to

the non perturbed. Then, I will determine, classify, and compare the characteristics

of both. I will demonstrate both stable and unstable, migratory solutions, as well

as their ordered and disordered phases to prove this system exhibits a subcritical

pitchfork bifurcation.
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3. Chapter 1: Phases of Order and Disorder

The discrete model we use presents a system that is dependent on the tendency of

fish to match direction and speed. In our model, the fish travel in a plane with their

own self-propelling force. Consider any j
th fish with some speed vj and some initial

direction �j . Then for any time t and time step �t, we can calculate the position of

t+�t for any j
th fish by

0

@xj(t+�t)

yj(t+�t)

1

A =

0

@xj(t)

yj(t)

1

A+ vj(t)

0

@cos�j(t)

sin�j(t)

1

A�t

When N fish interact, � and v are updated as follows.

cos(�j(t+�t)) =
1

N
⌃N

k=1 cos(�k(t))

sin(�j(t+�t)) =
1

N
⌃N

k=1 sin(�k(t))

vj(t+�t) =
1

N
⌃N

k=1vk(t)

This model, referred to as the fish model, is an extension of one originally introduced

by Vicsek in 1995 (Vicsek, 12). In the original model, this di↵erence is that Vicsek

fixed speed for all molecules. In this model, we allow speed to vary. In this model,

the only variables to a↵ect the interaction between these fish are the normalized di-

rectional headings, �, and the speed, v. The directional headings and speeds are then

averaged across all particles from the previous time step to calculate the directional

heading and speed of the next time step.

3.1. Explain ODE. This system can be transformed into a system of ordinary dif-

ferential equations by taking the limit as �t ! 0+. This develops the system of
1



ODE’s (Birnir, 3)

0

@ẋj(t)

ẏj(t)

1

A =
1

N2
⌃N

l=1vl(t) ⌃
N
k=1

0

@cos�k(t)

sin�k(t)

1

A

Or in polar coordinates, these equations can be rewritten as

żj =
1

N2
⌃N

l=1vl(t) ⌃
N
k=1e

i�k

Now, suppose that ↵ > 0 is the turning rate of how each fish responds to the

conditions of surrounding fish, and ↵�1
z̈j is the inertia of our school of fish. Then our

ODE becomes

z̈j + ↵żj =
↵

N2
⌃N

l=1vl(t) ⌃
N
k=1e

i�k

Then, by the substitution of zk = vje
i�k , we can turn this equation into a system

of equations for its velocity and directional angle. Thus we now have that

v̇j =
↵

N2
⌃N

l=1vl(t) ⌃
N
k=1 cos(�k � �j)� ↵vj(1)

and

vj�̇j =
↵

N2
⌃N

l=1vl(t) ⌃
N
k=1 sin(�k � �j)(2)

These are basic di↵erential equations without perturbation.

By similar computations from the polar coordinates of this system, we see

ṙj = vj cos(�j � ✓j)

and

rj ✓̇j = vj sin(�j � ✓j)

These two equations govern the positions of the particles in polar coordinates,if

given initial conditions rk(0) and ✓k(0). We can relate these polar coordinates to

2



Cartesian coordinates for graphing. We get the system

xj = rj cos(✓j)

yj = rj sin(✓j)

Let v̄ := 1
N⌃N

i=1vi be the average velocity of our system.

It can be obtained by straightforward computations that

1

N
⌃N

k=1 cos(�k � �j) = rcos( � �j)

As our system tends progresses, it is expected that all of our fish will tend toward

the same direction with matching speeds. Thus our system will only be completely

ordered if and only if �j =  for t > T for some positive time T . Thus, when observing

a system of fish interacting, it becomes natural to measure the system based on how

much ”order” it has.

To get an idea of how the system orders itself, we can determine the average

direction  and radius r, such that

re
i =

1

N
⌃N

j=1e
i(�j)

This is called the Kuramoto Order Parameter (Birnir, 3)

For any particular time, t, we can evaluate the order of the system from using the

direction headings of all fish, so at each time step, we can compute the appropriate  2

[�⇡, ⇡], average angle at that timestep. Then, from the Kuramoto order parameter

re
i :=

1

N
⌃N

j=1e
i�j

We get that

r =
1

N
⌃N

j=1 cos(�j �  )

3



Clearly, we have that r 2 [0, 1]. As more of the �j approach  , then we have that

more of the cos(�j �  ) are approaching 1. The average will approach 1 as more fish

align with each other. It is expected that for small perturbation, our systems will

approach a migratory solution, and r ! 1. The order parameter becomes exactly 1

if and only if every �j =  .

Taking the derivative, we create the ordinary di↵erential equation

ṙ + ri ̇ =
1

N
⌃N

j=1i�̇je
i(�j� )

we can solve for a system of two ordinary di↵erential equations’

ṙ = ↵v̄r
1

N
⌃N

j=1

1

vj
sin2( � �j)(3)

 ̇ = ↵v̄
1

N
⌃N

j=1

1

2vk
sin(2( � �j))(4)

From all of these equations, it is clear that each fish has an individual directional

angle that tends towards the average  . This would be what we call the ”migratory

solution” of the school of fish. In reality, however, it is highly unlikely that each of

the thousands of fish are travelling at exactly the same direction and speed. Thus we

can add perturbation terms into our equations to represent this.

3.2. Perturb ODE’s. There are many external factors which could a↵ect a migra-

tory solution, such as currents, food, or turbulence. Thus it becomes natural to

question how the system behaves under perturbations. There are two di↵erent per-

turbations possible: deterministic (randomly chosen) angles or white noise (Birnir, 3).

The first, deterministic perturbation, is representative of the fish lacking the ability

to interpret and match speed and direction of other fish. The second, white noise,

represents the environmental factors that could inhibit the fish from being able to

align as desired.
4



3.2.1. Add Deterministic Perturbations. We can determine which solutions lie close

to stationary solutions by considering a driven version of our system. If we add a

driving term to each equation, we can take our system from having a stationary

solution to having a migratory solution. Thus, the system will not get stuck at the

origin. Let’s call these driving terms ⌫ and !. Then, our system becomes

v̇j =
↵

N2
⌃N

l=1vl(t) ⌃
N
k=1 cos(�k � �j)� ↵vj + ⌫

vj�̇j =
↵

N2
⌃N

l=1vl(t) ⌃
N
k=1 sin(�k � �j) + !

for small ⌫ and !. If ⌫ = ! = 0, we will have an asymptotic stationary solution. See

Alethea’s paper for further survey of this system (Barbaro, 1).

3.2.2. Add White Noise. Let ! = 0 and ⌫ be fixed. We set ! = 0 so that we can see

how the system acts with out a driving term forcing the fish to circle. We fix ⌫ so

that we can see migratory solutions in addition to stationary solutions.

Consider the two main dynamics equations of v̇ and v�̇. We are curious to examine

the dynamics of the system under some perturbations. We can add a deterministic

noise to the right hand side of the velocity equation to represent the di↵erent rates

at which the fish could readjust their velocities to match the school. Similarly, we

can add a deterministic noise to the right hand side of the directional equation to

represent the external factors that inhibit the fish from matching directions exactly.

We shall call these noise parameters �v and �� , respectively.

This gives us a stochastic system as follows:

v̇j =
↵

N2
⌃N

l=1vl(t) ⌃
N
k=1 cos(�k � �j)� ↵vj + ⌫ + �vḂ

j
t

vj�̇j =
↵

N2
⌃N

l=1vl(t) ⌃
N
k=1 sin(�k � �j) + ��Ḃ

j
t

0

5



where Ḃ
j
t 6= Ḃ

j
t

0
is our Brownian motion.

Let v̄ := 1
N⌃N

i=1vi be the average velocity of our system.

Then we have that these equations become

v̇j = ↵v̄r cos( � �j)� ↵vj + ⌫ + �vḂ
j
t

vj�̇j = ↵v̄r sin( � �j) + ��Ḃ
j
t

0

Now, assuming that vj is nonzero, we can divide through the previous equation by

it and see that

�̇j = ↵
v̄

vj
r sin( � �j) +

��

vj
Ḃ

j
t

0

Recall again that

re
i =

1

N
⌃N

j=1e
i(�j)

Thus we have the di↵erential equation

ṙ + ri ̇ =
1

N
⌃N

j=1i�̇je
i(�j� )

Thus we have that

ṙ + ri ̇ =
1

N
⌃N

j=1i�̇je
i(�j� )

=
1

N
⌃N

j=1[↵
v̄

vj
r sin( � �j) +

��

vj
Ḃ

j
t

0
ie

i(�j� )

=
1

N
⌃N

j=1[↵
v̄

vj
r sin( � �j) +

��

vj
Ḃ

j
t

0
][i cos(�j �  )� sin(�j �  )]

Expanding this, and then splitting into the real an imaginary parts we see that

6



For r and  , these perturbations amount to

ṙ =
↵v̄r

N
⌃N

j=1

1

vj
sin2( � �j) +

1

N
⌃N

j=1

��

vj
Ḃ

j
t

0
sin( � �j)

r ̇ = ↵v̄r
1

N
⌃N

j=1

1

2vj
sin(2( � �j)) +

1

N
⌃N

j=1

��

vj
Ḃ

j
t

0
cos( � �j)

Thus far, we have been talking about the deterministic equations of r, ,�, and v

and adding the derivatives of the noise that in reality do not exist. Now we will copy

those below instead as stochastic ordinary di↵erential equations, where the noise

terms can be properly defined, (1), (2), (3), and (4) become

dvj = (↵v̄r cos( � �j)� ↵vj)dt+ ⌫ + �vdB
j
t(5)

d�j = (↵
v̄

vj
r sin( � �j))dt+

��

vj
dB

j
t
0

(6)

dr = (↵v̄r
1

N
⌃N

j=1

1

vj
sin2( � �j))dt+

��

N
⌃N

j=1

1

vj
dB

j
t
0
sin( � �j)(7)

d = (↵v̄
1

N
⌃N

j=1

1

2vj
sin(2( � �j)))dt+

��

rN
⌃N

j=1

1

vj
dB

j
t
0
cos( � �j)(8)

This is the complete system of four equations with noise.

3.3. Definition, Lemmas, and Theorems. Before performing analysis on this sys-

tem, we first begin by defining the important terms we will evaluate and presenting

simple theorems and lemmas to be used. Some definitions and lemmas I use are

with Partial Di↵erential Equations. We can do this because we consider the system

of ODEs to be the spatial discretization of a PDE. We pull these definitions and

theorems from (Kloeden, 7 and Platen) (Strikwerda, 9)

Definition 3.1. Stability A finite di↵erence scheme Pk,hu
n
j = 0 for a first order PDE

is stable in stability region ⇤ if there exists an integer N such that for any positive
7



time T, there is a constant CT such that

h⌃1
�1|un

j |2  CTh⌃
N
m=0⌃

1
�1|um

j |2.

The stability region ⇤ is a region in the h � k plane, defined by a relationship

between h and k.

Definition 3.2. Consistency A system is consistent if the errors are of first order

or higher in k and h. Moreover, it is consistent specifically of order p if the local

truncation error is of O(hp).

Definition 3.3. Convergence A one step finite di↵erence scheme approximating the

solution to a PDE is a convergent scheme if for any solution to the finite di↵erence

scheme u
n
j , such that u0

j converges to u0(x, t) as jh converges to x, then u
n
j converges

to u(x, t), as (jh, hk) converges to (x,t), for k and h converging to 0.

Theorem 3.1. Lax�Richtmyer Equivalence Theorem

Fundamental Theorem of Numerical Analysis

Given a well-posed linear initial value problem, the finite di↵erence method for the

numerical solution of a partial di↵erential equation is consistent and stable if and

only if it is convergent.

For a statement and proof see Strikwerda (9).

Lemma 3.1. Let (Bt)t�0 be a 1�dimensional Brownian motion and let

(Xt)t�0

be an Ito process

dXs = b(s)ds+ �(s)dBs

. Then we have that
8



(1) (dBt)2 = dt

(2) (dt)2 = 0

(3) dBt ⇤ dt = 0

Definition 3.4. Euler
0
s Method Euler’s Method, otherwise known as forward Eu-

ler’s method is an explicit first-order numerical process to solve for an ordinary dif-

ferential equation with some initial value. Since it is first order, the local error is pro-

portional to the step size. It computes the next step of a discretized scheme based on

the previous step, step size, and rate of change of the previous step (Euler-Maruyama

Method, 6).

Definition 3.5. Euler Maruyama Method Euler-Maruyama method is a numer-

ical procedure to solve a stochastic di↵erential equation. It becomes an extension of

Euler’s method for ODE’s by introducing a perturbation parameter and Brownian

motion to make it a SDE. In our case, our perurbation parameters are �� and �v.

Lemma 3.2. For all Euler’s methods, a solution is said to be consistent if it is of

order 1 or higher.

Definition 3.6. Variance V [y] = E[y2]� E[y]2

3.4. Stability and Consistency for Euler-Maruyama. For analysis, we will go

back and consider the coupled equations of

v̇j =
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj + �vḂ
j
t

vj�̇j =
↵v̄

N
⌃N

k=1 sin(�k � �j) + ��Ḃ
j
t

0

It is easier for us to analyze the system from these equations since we would only

have to do analysis of 2 equations with 2 parameters, instead of 4 equations with

4 parameters. The remaining two equations are simply deterministic slaves to the
9



two equations above, and do not introduce additional instabilities, so we only need

to work for the equations for vj and �j, j = 1, · · · , N. The analysis of the r and  

equations is similar and simpler.

First, to evaluate stability, we will perform a Von Neumann stability Analysis on

the Euler Maruyama Method for solving Stochastic di↵erential equation with noise.

In our setting, it is important to establish a distinction between dynamical stability

and numerical stability. Dynamical stability is one such that if, for example, we

perturb a fish direction by a small enough amount, it will eventually tend back towards

its original equilibrium solution. In our system, when we have a disordered state

of stationary solutions, it is dynamically unstable, but when we have an ordered

migratory solution, it is dynamically stable. Thus if we are given a school with

any nonzero random velocity and small perturbations, our scheme will eventually be

completely ordered and the direction or each fish will be exactly that of the average

(ie all the same).

We are more interested in numerical stability. A partial di↵erential equation is

considered stable if the total variation of the expected numerical solution at any fixed

time is bounded as the step size tends towards 0. Thus we will aim to calculate the the

expected value of the first and second moment of these equations to then determine

both the mean and the variance.

Note that our system has two perturbed equations, so we can apply Euler Maruyama’s

method to solve it. First, we will illustrate the stability analysis by applying it to

a simple stochastic ODE. This will make the application to the more complicated

system (5)-(8) easier to follow.

Consider the first order stochastic di↵erential equation

dyt = ✓(µ� yt)dt+ �dBt +O(dt)2

10



This basic form of the Euler Maruyama method can be found at (6).

If we discretize this system, we can compute any step based on the previous step.

Since our equation above is of first order, there will be some sort of error between our

discretized system and the true solution of second order. Thus we get the system as

follows:

yi+1 = yi + ✓(µ� yi)�t+ ��Bi +O(�t)2

= yi + ✓(µ� yi)�t+ �(Bi+1 � Bi) +O(�t)2

= yi + ✓(µ� yi)�t+ �Bi+1 � �Bi +O(�t)2

To perform the Von Neumann analysis, we want to compute the expectation of the

system and ensure that it’s amplification factor is bounded or decreasing, or in other

words, we want to show that the error between our expected value and discretized

system is  1 +O(�t).

In most cases, I will prove that the amplification factor is  1. This is obviously

less than 1 +O(�t), so that still proves stability.

3.4.1. Stability and Consistency of the scheme for E[yi+1]. To take the expectation,

recall that the expected value of brownian motion is 0, so those two terms disappear

when taking the expectation of both sides of the equation above. Thus we have that

E[yi+1] = E[yi] + ✓(µ� E[yi])�t+O(�t)2

To evaluate our consistency, we again want to ensure that our expected value and

variance have order of 1 or higher. Since we are using a version of Euler’s method,

this ensures that we can use varying time steps, but our system will still evaluate to

approximately the solution.
11



Let us compute the consistency of the expected value now. From the above equa-

tion, subtracting both sides by E[yi] and then dividing by �t, we get

dE[y]

dt
+O(�t) = ✓(µ� E[yi]) +O(�t)

Thus we have the error between any two steps of the expected value of y is of order

of �t. Hence by lemma 3.2, our expected value of our second moment of our solution

is consistent. For stability: For simplicity, let ⇠i = E[yi]. Thus we have that

⇠
i+1 = ⇠

i + ✓(µ� ⇠
i)�t+O(�t)2

= (1� ✓µ�t)⇠i + ✓µ�t+O(�t)2

Note that the ✓µ�t is our driving term, but has no ⇠i, thus it does not a↵ect the

amplification factor, so we can ignore it. Thus, consider

⇠
i+1 = (1� ✓µ�t)⇠i

We can easily compute the amplification factor by dividing o↵ both sides by ⇠i. We

now have, if our conditions on ✓ µ and �t well posed, that

⇠ = (1� ✓µ�t)

 1

Thus we have that the expectation of our system is bounded. Now, if our variation

as well meets this condition, then our system will be stable.

The expectation of the exact solution of yt is graphed in comparison to 5 runs of

this di↵erential equation and their average. It is expected that as we increase the

number of runs, our average will approach the true solution. The conditions on our

12



parameters are µ = 1.5, ✓ = 0.7, and � = 1.

3.4.2. Stability and Consistency of the scheme for E[y2i+1]. Note that the definition

of variance uses the expectation of both the first and second moments of y. We have

already proved conditions of E[yi+1], so we want to compute E[y2i+1].

Since y can only be computed if we know �y, let’s begin there. Consider

dy = ✓(µ� y)dt+ �dBt +O(dt)2

Then we can compute the square such that

(�y)2 = (✓(µ� y)�t+ ��Bt)
2 +O(�t)3

= ✓
2(µ� y)2(�t)2 + 2�(µ� y)�t�Bt + �

2(�Bt)
2 +O(�t)3

Recall that E[�Bt] = 0 and E[�B
2
t ] = �t. Thus we have that

E[(�y)2] = E[✓2(µ� y)2(�t)2 + 2�(µ� y)�t�Bt + �
2(�Bt)

2] +O(�t)3

= ✓
2(µ� E[y])2(�t)2 + �

2(�t) +O(�t)3

But since �y = yi+1 � yi, we get that �y
2 = y

2
i+1 � 2yi+1yi + y

2
i .

13



Hence we have that

E[y2i+1 � 2yi+1yi + y
2
i ] = E[y2i+1]� 2E[yi+1]E[yi] + E[y2i ]

= �
2�t+ ✓

2(µ� E[yi])
2(�t)2 +O(�t)3

Thus we can rewrite this to solve for E[y2i+1] such that

E[y2i+1] = 2E[yi+1]E[yi]� E[y2i ] + �
2�t+ ✓

2(µ� E[yi])
2(�t)2 +O(�t)3

Substitution in our equation for E[yi+1], we get

E[y2i+1] = 2(E[yi] + ✓(µ� E[yi])�t)E[yi]� E[y2i ] + �
2�t+ ✓

2(µ� E[yi])
2(�t)2 +O(�t)3

= �E[y2i ] + 2(E[yi] + ✓(µ� E[yi])�t)E[yi] + �
2�t+ ✓

2(µ2 � 2µE[yi] + E[yi]
2)(�t)2 +O(�t)3

= �E[y2i ] + 2E[yi]
2 + 2✓E[yi](µ� E[yi]) + �

2)�t+ ✓
2(µ2 � 2µE[yi] + E[yi]

2)(�t)2 +O(�t)3

Hence we have

(9)

E[y2i+1] = �E[y2i ]+2E[yi]
2+2✓E[yi](µ�E[yi])+�

2)�t+✓2(µ2�2µE[yi]+E[yi]
2)(�t)2+O(�t)3

Since the error is of first order and since E[yi] is consistent, then we have that the

scheme for E[y2i ] is consistent.

For stability, consider equation (4) again. Since E[yi] is stable, so is E[yi]2. Further,

constants are stable. Recall that smaller order terms do not a↵ect stability. Thus we

can ignore the ladder terms since they will not a↵ect the stability of E[y2i+1]. Hence

we have that

E[y2i+1] = �E[y2i ]
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Hence we can divide both sides by E[y2i ] and take the absolute value to see that our

amplification factor, namely ⇠, is

⇠ = �1

|⇠|  1

Thus the scheme for E[y2i+1] is stable.

The variation of the exact solution of yt is dependent on the expectation of the

exact solution of y2t . This is graphed in comparison to 5 runs computing a specific

y
2
t and their average.

The conditions on our parameters are µ = 1.5, ✓ = 0.7, and � = 0.06.

3.4.3. Stability and Consistency of V [yi+1]. Now, to show stability and consistency,

note, from above, Var[yi+1] = E[y2i+1]� E[yi+1]2

Since the variance is merely the composition of two consistent systems, then the

variance is consistent.

This gives us the linear composition of two stable terms. Thus the variance of yi+1

must also be stable, but let’s still prove it using Von Nuemanns Analysis.
15



Recall, we have that E[yi+1] = E[yi] + ✓(µ� E[yi])�t. This implies that

E[yi+1]
2 = E[yi]

2 + 2E[yi]✓(µ� E[yi])�t+ ✓
2(µ� E[yi])

2(�t)2

Additionally

E[y2i+1] = 2E[yi]
2�E[y2i ]+[2✓(µ�E[yi])E[yi]+�

2]�t+[✓2(µ�E[yi])
2](�t)2+O(�t)3

Then we have that

V [yi+1] = E[y2i+1]� E[yi+1]
2

= 2E[yi]
2 � E[y2i ] + [2✓(µ� E[yi])E[yi] + �

2]�t+ [✓2(µ� E[yi])
2](�t)2 +O(�t)3

� (E[yi]
2 + 2E[yi]✓(µ� E[yi])�t+ ✓

2(µ� E[yi])
2(�t)2) +O(�t)3

= 2E[yi]
2 � E[y2i ]� E[yi]

2 + [2✓(µ� E[yi])E[yi] + �
2 � 2E[yi]✓(µ� E[yi])]�t

+ [✓2(µ� E[yi])
2 � ✓

2(µ� E[yi])
2](�t)2 +O(�t)3

= E[yi]
2 � E[y2i ] + [�2]�t+ [0](�t)2 +O(�t)3

= �(E[y2i ]� E[yi]
2) + [�2]�t+O(�t)3

= �V [yi] + [�2]�t+O(�t)3

Thus we have that

(10) V [yi+1] = �V [yi] + [�2]�t+O(�t)3

Note that [�2]�t + O(�t)3 are our driving terms, and have no V [yi], thus is does

not a↵ect the stability of the system. So we can ignore those terms and do analysis

on

V [yi+1] = �V [yi]

16



Diving both sides by V [yi] and take the absolute value to see that our amplification

factor, namely ⇠, is

⇠ = �1

|⇠|  1

Thus the scheme for V [yi+1] is stable. Hence, by Von Neumann analysis, we have

that the variance is stable.

The variation on several runs is now plotted in comparison to the average and the

exact expected variation.

The conditions on our parameters are µ = 1.5, ✓ = 0.7, and � = 0.06.

17



Now we use smaller � = 0.0001.

Now, we use � = 0.0001, but lengthen the domain to ensure it settles down.

3.4.4. Convergence. By the stability and consistency argument above, by theorem

3.1, our numerical solution is convergent.

3.5. Results. We now apply the above analysis to the system (5)-(8), describing the

fish dynamics.
18



3.5.1. Stability and Convergence Applied to Our System. Consider the original main

equations determining the dynamics of our system.

v̇j =
↵v̄

N
⌃N

k=1 cos( � �j)� ↵vj + ⌫ + �vḂj

vj�̇j =
↵v̄

N
⌃N

k=1 sin( � �j) + ��Ḃj0

Similar to above, we want to determine the expectation and variance of this system

and determine that they are both stable and consistent.

3.5.2. Stability and Expectation of v. Beginning with our equation for velocity, we

will change it from its deterministic di↵erential equation into its stochastic di↵erential

equation. This give us that

dvj = (
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj)dt+ �vdBj +O(dt)2

Taking the expectation of both sides, we get that

E[�vj] = E[(
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj)�t+ �v�Bj] +O(�t)2

= E[(
↵v̄

N
⌃N

k=1 cos(�k � �j))�t]� E[(↵vj)�t] + E[�v�Bj] + �vdBjO(�t)2

=
↵v̄

N
⌃N

k=1E[cos(�k � �j)]�t� ↵E[vj]�t+ �vE[�Bj] +O(�t)2

 ↵v̄

N
⌃N

k=11�t� ↵E[vj]�t+ 0 +O(�t)2

=
↵v̄

N
N1�t� ↵E[vj]�t+O(�t)2

= ↵v̄�t� ↵E[vj]�t+O(�t)2

Then we can rewrite �vj = vj+1 � vj. Thus we get

E[�vj+1]� E[�vj]  ↵v̄�t� ↵E[vj]�t+O(�t)2
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Hence this becomes

E[�vj+1]  E[�vj] + ↵v̄�t� ↵E[vj]�t+O(�t)2

= E[vj](1� ↵�t) + ↵v̄�t+O(�t)2

E[�vj+1]  E[�vj] + ↵v̄�t� ↵E[vj]�t

= E[vj]� ↵�tE[vj] + ↵v̄�t+O(�t)2

= E[vj] + ↵�t(v̄ � E[vj]) +O(�t)2

Thus our equation is

(11) E[�vj+1]  E[vj] + ↵�t(v̄ � E[vj]) +O(�t)2

For consistency, we get that

dE[vj]

dt
 ↵(v̄ � E[vj]) +O(�t)

Since this is first order, it is consistent.

For stability, again consider (6). We can ignore the ladder terms and begin with

E[�vj+1]  E[vj](1� ↵�t)

This gives us an amplification factor

⇠  1� ↵�t  1
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Next, lets calculate the expectation of the second moment for variance purposes.

Again, consider

dvj = (
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj)dt+ �vdBj +O(dt)2

Then we have,

E[(�vj)
2] = E[((

↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj)�t+ �v�Bj)
2] +O(�t)3

= E[(
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj)
2(�t)2 + (

↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj)�v�t�Bj + �
2
v(�Bj)

2] +O(�t)3

 E[(
↵v̄

N
⇥N ⇥ 1� ↵vj)

2](�t)2E[(
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj)�v�t�Bj] + E[�2
v�t]] +O(�t)3

= E[(↵v̄ � ↵vj)
2](�t)2 + 0 + �

2
v�t+O(�t)3

= �
2
v�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

Thus we have that

E[(�vj)
2]  �

2
v�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

Since �vj = vj+1 � vj, we have that (�vj)2 = v
2
j+1 � 2vj+1vj + v

2
j .

By substitution, this equation becomes

E[v2j+1 � 2vj+1vj + v
2
j ]  �

2
v�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

Note that

E[vj+1] = E[vj + (
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj)dt+ �vdBj]  E[vj + ↵(v̄ � vj)�t]
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Thus, solve for E[v2j+1] by moving over some terms and substituting, such that

E[v2j+1]  E[2vj+1vj]� E[v2j ] + �
2
v�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

 2E[(vj + ↵(v̄ � vj)�t)vj]� E[v2j ] + �
2
v�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

= 2E[v2j + ↵vj(v̄ � vj)�t)]� E[v2j ] + �
2
v�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

= 2E[v2j ] + E[↵vj(v̄ � vj)�t)]� E[v2j ] + �
2
v�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

= E[v2j ] + (↵E[vj(v̄ � vj)] + �
2
v)�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

(12) E[v2j+1]  E[v2j ] + ↵E[vj(v̄ � vj) + �
2
v ]�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

For consistency, we have

dE[vj]

dt
 ↵E[vj(v̄ � vj)] + �

2
v + ↵

2
E[(v̄ � vj)

2](�t) +O(�t)2

This is of second order so we are consistent!

For stability, we can expand this to compute the amplification. We get

E[v2j+1]  E[v2j ] + (↵E[vj(v̄ � vj)] + �
2
v)�t+ ↵

2
E[(v̄ � vj)

2](�t)2 +O(�t)3

= E[v2j ](1� ↵�t+ ↵
2(�t)2) + (↵v̄ + �

2
v)�t+ (↵2

v̄ � 2↵v̄E[vj])(�t)2 +O(�t)3.

Since E[vj] is stable, it doesn’t a↵ect our stability, so we can ignore that term and

the rest.

Thus we get that the amplification factor

⇠  1� ↵�t+ ↵
2(�t)3  1

Hence E[v2j ] is stable.

22



To solve for variance, consider the definition 3.6.

Then we get

V [vj+1] = E[v2j+1]� E[vj+1]
2

 E[v2j ] + (↵E[vj(v̄ � vj)] + �
2
v)�t+ ↵

2
E[(v̄ � vj)

2](�t)2 � (E[vj](1� ↵�t))2 +O(�t)3

= E[v2j ] + (↵v̄E[vj] + �
2
v)�t� ↵E[v2j ]�t+ ↵

2
E[v̄2 � 2v̄vj + v

2
j ](�t)2 +O(�t)3

� (E[vj] + E[vj]↵�t�O(�t)2)2

= E[v2j ] + (↵v̄E[vj] + �
2
v)�t� ↵E[v2j ]�t+ ↵

2
v̄
2(�t)2 � 2↵2

v̄E[vj](�t)2 + ↵
2
E[v2j ](�t)2 +O(�t)3

� E[vj]
2 + 2↵E[vj]

2�t� E[vj]
2
↵
2(�t)2

= E[v2j ]� E[vj]
2 + (↵v̄E[vj]� ↵E[v2j ] + 2↵E[vj]

2 + �
2
v)�t

+ (↵2
v̄
2 � 2↵2

v̄E[vj] + ↵
2
E[v2j ]� ↵

2
E[vj]

2)(�t)2 +O(�t)3

= V [vj] + (↵v̄E[vj]� ↵E[v2j ] + 2↵E[vj]
2 + �

2
v)�t+ (↵2

v̄
2 � 2↵2

v̄E[vj] + ↵
2
V [vj])(�t)2 +O(�t)3

Hence we have that

(13)

V [vj+1] = V [vj]+(↵v̄E[vj]�↵E[v2j ]+2↵E[vj]
2+�2

v)�t+(↵2
v̄
2�2↵2

v̄E[vj]+↵
2
V [vj])(�t)2

For consistency, note that

V [vj+1]� V [vj]

�t
= (↵v̄E[vj]�↵E[v2j ]+2↵E[vj]

2+�2
v)+(↵2

v̄
2�2↵2

v̄E[vj]+↵
2
V [vj])(�t)+O(�t)2

Since this is of second order, we are good to go, variance is consistent!

For stability, ignore all terms but the ones with variance. Further, note that higher

order terms of �t are less that the first order of �t. So we get that

V [vj+1] = V [vj] + ↵
2(�t)2V [vj]
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This gives us that our amplification factor

⇠ = 1 + ↵
2(�t)2  1 +O(�t)

Hence we have that V [vj] is stable.

3.5.3. Stability and Expectation of v�̇. Beginning with our equation for velocity, we

will change it from its deterministic di↵erential equation into its stochastic di↵erential

equation. This give us that

vjd�j =
↵v̄

N
⌃N

k=1 sin(�k � �j)dt+ ��dBj +O(dt)2

Then we can take the expectation of both sides and see that

E[vj��j] = E[
↵v̄

N
⌃N

k=1 sin(�k � �j)�t+ ���Bj] +O(�t)2

 ↵v̄

N
E[⌃N

k=11]�t+ ��E[�Bj] +O(�t)2

= ↵v̄�t+O(�t)2

Hence we have that

E[vj��j]  ↵v̄�t+O(�t)2

Since �� = �j+1 � �j, we have that

(14) E[vj�j+1]  E[vj�j] + ↵v̄�t+O(�t)2

For consistency, we get that

dE

dt
 ↵v̄ +O(�t)

Since this is of first order, we are consistent!
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For stability, this gives us that the amplification factor is

⇠  1

Thus E[vj�j+1]is stable.

Now, lets compute the second moment of vd�.

Given that E[vj��j]  E[↵v̄�t+ ���Bj], we have that

E[(vj��j)
2]  E[(↵v̄)2(�t)2 + ↵v̄�t���Bj + �

2
�(�Bj)

2]

Given that vj��j = ↵v̄
N ⌃N

k=1 sin(�k � �j)�t + ���Bj, we have that (vj��j)2 =

(↵v̄N )2 ⌃N
k=1 sin(�k��j)⌃N

k=1 sin(�k��j)(�t)2+���Bj+
↵v̄
N ⌃N

k=1 sin(�k��j)�t��Bj+

�
2
��Bj

2

Taking the expecation of both sides, we see that

E[(vj��j)
2]  E[

(↵v̄)2

N2
⇥N ⇥N ⇥ (�t)2] + E[

↵v̄

N
⇥N ⇥�t���Bj] + E[�2

�(�Bj)
2]

= �
2
��t+ (↵v̄)2(�t)2

Since �� = �j+1 � �j, we have that (vj(��))2 = v
2
j�

2
j+1 � 2vj�j+1vj�j + v

2
j�

2
j .

Further, note that

E[vj�j+1] = E[vj�j + vjd�j]

= E[vj�j +
↵v̄

N
⌃N

k=1 sin(�k � �j)dt+ ���Bj]

 E[vj�j + ↵v̄�t+ ���Bj]

= E[vj�j + ↵v̄�t]
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Rearranging some expectation terms and substituting this value in, we get that

E[v2j�
2
j+1]  E[2vj�j+1vj�j]� E[v2j�

2
j ] + �

2
��t+ (↵v̄)2(�t)2

 2E[vj�j + ↵v̄�t]E[vj�j]� E[v2j�
2
j ] + �

2
��t+ (↵v̄)2(�t)2

= 2(E[vj�j] + ↵v̄�t)E[vj�j]� E[v2j�
2
j ] + �

2
��t+ (↵v̄)2(�t)2

= 2E[vj�j]
2 + 2↵v̄�tE[vj�j]� E[v2j�

2
j ] + �

2
��t+ (↵v̄)2(�t)2

Hence we have that

E[v2j�
2
j+1]  �E[v2j�

2
j ] + 2E[vj�j]

2 + (2↵v̄E[vj�j] + �
2
�)�t+ (↵v̄)2(�t)2 +O(�t)3

Since the error is of first order and since E[vi�i+1] is consistent, then we have that

the scheme for E[(vi�i+1)2] is consistent.

For stability, note none of the ladder terms a↵ect stability, so we have an amplifi-

cation factor

⇠  �1

|⇠|  1

Now onto variance!

Recall

E[vj�j+1]  E[vj�j] + ↵v̄�t+O(�t)2

and that

E[v2j�
2
j+1]  �E[v2j�

2
j ] + 2E[vj�j]

2 + (2↵v̄E[vj�j] + �
2
�)�t+ (↵v̄)2(�t)2 +O(�t)3
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Hence, from definition 3.6, we get that

V [vj�j+1] = E[(vj�j)
2]� E[vj�j]

2

 �E[v2j�
2
j ] + 2E[vj�j]

2 + (2↵v̄E[vj�j] + �
2
�)�t+ (↵v̄)2(�t)2

� (E[vj�j] + ↵v̄�t)2 +O(�t)3

= �E[v2j�
2
j ] + 2E[vj�j]

2 + (2↵v̄E[vj�j] + �
2
�)�t+ (↵v̄)2(�t)2

� E[vj�j]
2 � 2E[vj�j]↵v̄�t� ↵

2
v̄
2�t

2 +O(�t)3

= �E[v2j�
2
j ] + E[vj�j]

2 + (2↵v̄E[vj�j] + �
2
� � 2E[vj�j]↵v̄)�t+ ((↵v̄)2 � ↵

2
v̄
2)(�t)2 +O(�t)3

= �V [vj�j] + (�2
�)�t+O(�t)3

Thus we get that

(15) V [vj�j+1] = �V [v2j�
2
j ] + (�2

�)�t+O(�t)3

Since the variance is merely the composition of two consistent systems, then the

variance is consistent.

For stability, we have the amplification factor

⇠ = �1

and so

|⇠|  1

Thus our scheme is stable !

Thus we have proved that our scheme is stable regardless of the perturbation pa-

rameter.
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Now we see clearly that the perturbation coe�cient does not a↵ect the stability of

the equation. Thus, we have the perturbed equation for vj�j+1 is also stable.

Now we have proved that our system of two equations is stable and consistent.

Since our system of four equations is derived by these, this implies that our complete

system of four equations is also stable and consistent. Thus, by lemma 3.2, our system

(5)-(8) is convergent.

3.5.4. Motion and tendencies without perturbation. What we call amigratory solution

is one such that all the fish will be attracted to each other and then travel in the same

direction. Regardless of time step size, our finite di↵erence method will eventually

converge to the exact solution u(x, t) as time tends upward.

First, let’s look at the system where there is no perturbation in speed. Thus �v = 0.

(a) �� = 0.20 (b) �� = 0.60 (c) �� = 0.70

In the first image, the perturbation in our system, �� = 0.20 is rather small. Since

�� was minimal, we approach a true solution rather quickly and directly. But what

happens as �� grows to 1? When �� = 0.6, we see that the system is taking a lot

longer to approach a solution, and the curve does not grow as close to 1, but it

does eventually tend towards it. In this case, the perturbation becomes too large

for the system to completely align as it could before, however it does still have some

order. To contrast, for �� = 0.7, the system cannot order itself. Thus we expect that

between 0.6 and 0.7 is a bifurcation taking the system from order to disorder. Thus

we have now determined their are both ordered an disordered phases, and as our ��
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gets larger, it becomes more di�cult for each fish to try to match other directions.

We will study exactly where this bifurcation from order to disorder occurs later in

this chapter.

We have already described that an ordered solution is one where all the fish travel

with the same speed and in the same direction. What does a disordered phase look

like? After the bifurcation point, �� becomes large enough that the fish cannot

orient together. Here, the fish form separate independently circling families. In these

independently circling families, the fish on the edges of the groups may get close

enough to another circling solution to then go o↵ and try to match with di↵erent fish.

Since all of these fish are circling, there comes an infinite sequence of fish being passed

o↵ between smaller schools, with each oscillating at di↵erent positions, causing our

system to have very low order. These circles the fish travel in are the reason that we

see oscillations in our images.

3.6. Bifurcation of the System. As

our equations depend on a �� and �v

adding a small amount of noise to the

system, we can explore where our system

bifurcates from order to disorder. To be-

gin, let �v = 0. Thus, we will obtain a bi-

furcation in order parameter by varying

�� 2 [0, 1]. As demonstrated in Birnir

et. al (3), if the variance of the noise ex-

ceeds a certain boundary, our system will go from order to disorder. Hence, if our

�� parameter is over a certain number, we do not expect our system to be able to

synchronize or be ordered.
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To the right is an image of the bifurcation of the order parameter of the system

for �� from 0 to 1. This image demonstrates a bifurcation around 0.75. However,

depending on the initial conditions our bifurcation point will shift between 0.65 and

0.75, most commonly occurring around �� = 0.69.

3.6.1. Internal Turning Rates Characteristics. Now, let’s investigate how the internal

turning rate ↵ a↵ect their ability to migrate through di↵erent values of ��.

(a) ↵ = 0 (b) ↵ = 0.5 (c) ↵ = 1

The internal turning rate, ↵, is the parameter that controls how each fish turns to

match the average direction within the system. For internal turning rate constant

↵ = 0, ↵ = 0.5, and ↵ = 1.0, we have a bifurcations above. In the first case, since

our turning rate here is zero, it is expected that the fish will not try to line up at all.

This is demonstrated through the first plot, since each �� step represents an average

order of approximately 0.05, which is approaching maximum disorder.

For ↵  0.2, the rate is not quite strong enough to cause the system to eventually

align over time. However, when ↵ � 0.3, we have a better bifurcation. Once ↵ reaches

0.3, the turning rate is strong enough, that fish can push through minor perturbation

to align. For example, when ↵ = 0.5 we have a nice bifurcation around �� = 0.95.

Through calculating generating various plots of alpha varying from 0 to 1, we see

that the stronger the turning rate, the more noise the system can be perturbed by

while still maintaining order. Thus, we see that our ↵ parameter a↵ects how much
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perturbation a system can take before it becomes disordered. For consistency, we will

continue to work under the condition that ↵ = 0.5

3.6.2. Distributions of Internal Turning Rates. For our survey, we will investigate

three di↵erent distributions of internal turning rates. The first distribution, we will

call the ’zero’ distribution. Under this distribution, the internal turning rate ↵, of

all 1000 fish are exactly ↵. Thus far, we have studied the system where the fish have

the same internal turning rate. Thus, if ↵ = 0.5, then all 1000 fish have an internal

turning rate of exactly ↵ = 0.5. Thus the fish will be more likely to travel in a straight

line.

In the next chapter, we will begin to study this system where the particles (fish)

have a di↵erent internal turning rates. This brings us to the next two ways we can

distribute the internal turning rates: a uniform or Cauchy distribution

If the distribution is uniform, then

the fish turning rates, ↵ have a uniform

distribution between (↵�⌘,↵+⌘) for a

particular value of ⌘. In our numerical

simulation, ⌘ = ⇡/16. This means that

if ↵ = 0.5, we have that each 1000 of

has an equal chance of having an inter-

nal turning rate being placed anywhere

in the interval for ↵ 2 [8�⇡16 ,
8+⇡
16 ].

If it is a Cauchy distribution, otherwise known as the Lorentzian distribution when

� = 0.5, then the fish have individual internal turning rates close to each other

determined by a mean, and width �. In our numerical simulation, the mean is 0.5

and � = 0.05. This means that out of the 1000 fish, most of fish are expected to be

close to 0.5, with less fish having a turning rate father away from 0.5.
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We will refer to these three case as ’zero distribution’, ’uniform distribution’, and

’Cauchy distribution’. The probability density functions of these distributions are

above to the right.

3.6.3. Bifurcation of Complete Perturbed System. Now, let’s investigate the complete

perturbed system. To get an idea of how the movement changes over di↵erent values

of �v and ��, we have the bifurcations below. Let’s fix �� and find the bifurcation in

the order parameter for varying �v.

For the next computations, we run our program with 200 fish. We set ↵ = 0.5 and

⌫ = 0.0.

(a) �� = 0 (b) �v = 0 (c) �v = ��

Figure 3. Bifurcations for various fixed Parameters

Note again that these bifurcations are from the Kuramoto order parameter, and so

r =
1

N
⌃N

j=1 cos(�j �  )

Clearly, this is only a function of direction, and not speed, thus we can expect

perturbation is direction to a↵ect our order more than perturbation in speed.

The first of the three images above represents a bifurcation of �v when �� = 0. In

this case, when �v < 0.4, the system can still completely order itself. When �v > 0.4,

we can see that our system is semi ordered. For semi ordered motion, the school will

still migrate as a whole and tends in an average direction. This average direction,

does not stay the same or change as expected when �v is large. The fish are all
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moving together, but there is a lot of chaos within the system. Instead of holding

their general position relative to the neighboring fish, perturbations in speed cause

the fish to travel independently amongst the school. This randomness in how the fish

travel in the school causes the center of mass for the school to travel more randomly

then before. However, since the the fish are still travelling together in a group, they

maintain semi order. It looks like a school of disordered fish from above, but it is also

travelling.

The second of the three images represents a bifurcation of �� when �v = 0. This

case is the one demonstrated above. Since our order parameter is calculated from �,

significant perturbations in � will lead to lower order since � would be farther from

its average angle  . Thus, it is understandable that as �� gets larger, the distance

between  and � increase, so r decreases.

The third of the three images represents a bifurcation of order when �� = �v.

Since each sigma parameter individually attributes to some amount of disorder, the

concatenation of the two cause disorder from small �, �  0.1. Once � � 0.1, there

is too much perturbation for the system to be ordered.

If ↵ were to be larger, these boundaries and approximate values where there is

shifts from order to disorder will also get larger.

Lets look closer at the above of sigma

parameter of �� = 0.70.

It is interesting to find that to begin,

the fish are unable to order themselves.

This is understandable since, in chap-

ter 1, we determined that approximately

�� = 0.70 will be where the system be-

comes disordered when there was no per-

turbation in speed. Now that there is
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some perturbation in speed, we see that actually helps the group align, and in fact,

for 0.1 < �v < 0.25, our system has some order and structure. Then, after that cuto↵

point, the perturbations become too large, and again, the system becomes disordered.

What is most interesting here is that although the group has some direction and

order, the fish spread out more with time, as similar to the disorder demonstrated

with only a large �� and no perturbation in speed.

The disorder in these images is similar to the disorder demonstrated with only

a large �� and no perturbation in speed. We can see that over time, the group is

spreading out. There is a chaotic behavior of each fish here, as many fish are circling

around each other and crossing paths.

Originally, the fish try, and successfully match direction and travel, with some

perturbation, and travel in one direction. But very quickly the noise becomes to

large and then the system becomes disordered. At this point, the center of mass is

moving around with the chaos of the system, so it is di�cult to predict where the

fish will go. This means that as � gets larger, there will not always necessarily be less

order.
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4. Chapter 2: Phases of Movement in Schools of Fish

We aim to classify all the di↵erent phases of movement that schools of fish can

take determined by the system of equations above. There are several di↵erent fac-

tors a↵ecting the overall migration pattern of the system: perturbations in direction

or speed, and the initial distribution of the position, speed, direction, and internal

turning rate of the fish.

4.1. Non Perturbed System. To begin, let’s look at the case where there is no

perturbation in speed or direction. Then we have the unperturbed system as follows:

v̇j =
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj

vj�̇j =
↵v̄

N
⌃N

k=1 sin(�k � �j)

For this theoretical system, we have a migratory solution. For however the fish

are distributed, the system will start to align either by spreading the fish out if they

are too close together, or they will attract towards each other if they are too far

apart. Once they are all in a group, they will migrate in the average direction. The

movement is pictured below for when the distribution is ’zero’.

(a) t = t0 (b) t = t1 (c) t = t2

Figure 4. Three images demonstrating migratory solution
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This is the most basic migratory solution. The fish tend towards an average direc-

tion that stays constant and continues infinitely in that direction. Since we are not

perturbing the system in direction or speed, this the most simple solution.

Now, we are curious to investigate the motion when not all fish have the same

internal turning rate. First, let’s look at when the system’s internal turning rate has

a uniform distribution.

(a) t = t0 (b) t = t1 (c) t = t2

(d) t = t3 (e) t = t4 (f) t = t5

Figure 5. Six images demonstrating migration solution when uniform

With this distribution, the fish will form an arc, similar to that of a flock of birds

flying, where the fish travel in the average direction that is changing periodically.

Once they hit a certain distance from the origin point, the group slows, and reverses.

Then, it starts travelling with the same shape, but opposite direction, shrinking back

down to the origin. Over time, this center of mass will move away from the origin in

an arc over an ellipse over a period of ⇡, and then shrink along the other half of the
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ellipse as it shrinks back to the origin. This process repeats for as many timesteps as

we have, tracing the same path.

Now, what is the motion when the system’s internal turning rate has a cauchy

distribution? Then, we have the next motion.

(a) t = t0 (b) t = t1 (c) t = t2

(d) t = t3 (e) t = t4 (f) t = t5

Figure 6. Six images demonstrating migration solution when cauchy

This motion of center of mass is similar as uniform, except instead of just and arc,

the group tends to travel as a normally weighted circle of N many particles. The

growing and shrinking from the origin is similar.
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We can demonstrate the center of mass and variation from the center of mass over

time.

(a) Zero (b) Uniform (c) Cauchy

Figure 7. Center of mass demonstrating 3 migratory solutions

(a) Zero (b) Uniform (c) Cauchy

Figure 8. Variation from Center of mass demonstrating 3 migratory
solutions

These three center o↵ masses represent the three di↵erent distributions with no

perturbations. For all perturbed solutions with some order, they maintain these

general shapes with some variation. Recall that we demonstrated in the previous

chapter that that we can understand the system through the expected value (center

of mass) and the variation (variation from center of mass).

For ’zero’ distribution, we have that the center of mass is going in a straight line as

demonstrated above. We also see that our variation is increasing linearly, this means

that our fish are spreading out a constant rate.

For ’uniform’ distribution, we have a periodic orbit where the fish circle through

the origin. The variation is also periodic due to the growing and shrinking motion

demonstrated above.
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For ’Cauchy’ distribution, we have a quasi periodic orbit since the fish are traveling

in a circle for the center of mass. However, since our variation has two circles with

origins near (0, 0), we know that our system is following a trajectory along a torus.

But since a torus is three dimensional, and we are plotting on a two dimensional

plane, the paths appear as two circles. The fish follow through these paths infinitely,

alternating between the two.

All in all, these results depict the maximum of a linear bound necessary to demon-

strate the convergence proved above.

4.1.1. Past Research. These migratory phases described are not new. Carolina Tre-

nado found these periodic and quasiperiodic phases discovered. Carolina Trenado

found these phases by introducing contrary fish into the system. This is di↵erent

from our system because we get these phases by perturbing both our speed and di-

rection. See [Yuste, 12] for analysis.

These three migrations are all general solutions to the Stochastic di↵erential equa-

tions under particular conditions. However, it is important to highlight all possible

solutions. These three above solutions are non stationary solutions, but there is also

a stationary solution as described as follows.
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4.1.2. Stationary Solution. Suppose we have N many fish. Then, set the position of

each fish to be the N roots of unity on the unit circle. Set the direction of each fish

to be tangent to the circle in the same orientation (clockwise or counterclockwise)

for all N fish. Then we have the special stationary solution as demonstrated below.

The particles in our case are circling counterclockwise around the origin (0, 0), and

spreading out slowly over time (4, Birnir).

(a) t = t0 (b) t = t1 (c) t = t2 (d) t = t3

Figure 9. Four images demonstrating migration pattern for roots of
unity

Then, the center of mass is interesting,

because the average of the group isn’t

moving anywhere, since the fish move

equally away from the origin in all di-

rections with each step. Thus we have

that the center of mass is a single fixed

point. If there is a sigma perturbation,

the small perturbation pushes the system

o↵ of equilibrium, and the stationary so-

lution becomes a migratory solution as defined above. If there is a �v perturbation,

the solution is still a stationary solution. See for further analysis of this solution (1,

Barbaro)
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4.2. Complete Perturbed System. Next, we want to introduce perturbation into

our speed as well as our direction. Let ⌫ = 0.2 be a small acceleration, �v, and ��

be our noise parameter for velocity and direction, respectively. Then we have the

stochastic system as follows:

v̇j =
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj + ⌫ + �vḂj

vj�̇j =
↵v̄

N
⌃N

k=1 sin(�k � �j) + ��Ḃj0

where Ḃj 6= Ḃj0 is our Brownian motion.

4.2.1. Motion of Completely Perturbed System. The way the school of fish migrates

changes depending on the initial distribution of the internal turning of the school.

We have already determined this is true if we have an unperturbed system. Let

⌫ = 0.2 �v = 0.40 and �� = 0.40 The motion following demonstrates the system these

perturbations over the three di↵erent distributions of internal turning rates (zero,

uniform, cauchy).

If have a ’zero’ distribution, then we have a migratory similar to before, but spread-

ing.

(a) t = t0 (b) t = t1 (c) t = t2 (d) t = t3

Figure 10. Migratory solution from zero distribution
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If we are in the uniform case, then we have the motion below:

(a) t = t0 (b) t = t1 (c) t = t2 (d) t = t3

(e) t = t4 (f) t = t5 (g) t = t6 (h) t = t7

Figure 11. Migratory solution from Uniform Distribution

This solution maintains the same motion as the non perturbed system, but with

some error, since the group is spreading over time.
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This is similar for when our internal turning rate has a Cauchy distribution.

(a) t = t0 (b) t = t1 (c) t = t2 (d) t = t3

(e) t = t4 (f) t = t5 (g) t = t6 (h) t = t7

Figure 12. Migratory solution from Cauchy Distribution

We see through these images the same scattering of fish over time, even though

they are still travelling as a group.
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4.3. Expectation and Variation. In Chapter 1, we proved theoretically that our

system of two stochastic di↵erential equations is stable and consistent due to both

the expected value and variation being bounded. In this section, I demonstrate how

perturbations in these systems a↵ect the expected value and variations and maintain

this condition.

Now that we have demonstrated the particular motion of each distribution, we

can compute the expected value by plotting the center of mass of the system. Set

�� = 0.20 and �v = 0.20.

(a) zero (b) uniform (c) cauchy

Figure 13. Center of mass for �v = 0.20 and �� = 0.20

We can see that these expected values maintain the same general shape as those

non perturbed systems above, but with some variation from the exact shape. The

center of mass starts at (0, 0). When there is zero distribution, we can see that the

migration is not a straight migrating path as before, but is slightly curving. For the

uniform and Cauchy distributions, the fish circle around, but do not pass exactly by

the same spot again as when there is no perturbation.

Let’s turn down the perturbations to �� = 0.001 and �v = 0.001 The center of

mass and variation from mass is plotted below for three di↵erent distributions.

Now we can see that our center of mass is a lot closer to the non perturbed motion.

In ’zero’, the small perturbation causes the fish to spread over time. Thus, even

though the fish are maintaining a migratory pattern and traveling as a group, the
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(a) zero (b) uniform (c) cauchy

Figure 14. Center of mass for �v = 0.001 and �� = 0.001

(a) zero (b) uniform (c) cauchy

Figure 15. Variation from Center of mass for �v = 0.001 and �� =
0.001

group is still spreading out, and so the variation of each fish from the expectation of

the group is getting larger over time.

Further, for a uniform or Cauchy distribution we can see that our variation is

periodic or quasi periodic as well. So in the beginning, the variation is 0 in both the x

and y direction, but as time goes on, it gets slightly larger in both directions, until it

hits the maximum variation. This is the point where the group has migrated as far as

it will from the origin before returning and shrinking back towards the origin. With

this shrinking motion, the variation will proceed to go back down in a way exact and

opposite to how the variation got larger, thus we see the ellipse of the variation going

back toward a small variation. This pattern repeats over time.

When there is a uniform distribution, this motion forms an ellipse. When the

distribution is Cauchy, the motion can follow an ellipse as before, or it can travel

along a pathway on a torus. The elliptic paths are very narrow for very small �v.
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Figure 16. One Variation from Center of
Mass for Uniform Distributions

This example to the right is a variation

from the center of mass for the uniform

distribution under these same conditions

(The center of mass is as expected). The

interesting caveat here is that although

we use the same distribution, we some-

times see a solution which travels along

a torus, like in the Cauchy distribution.

Since the uniform distribution presents

us with many di↵erent phases, the solu-

tion seems to be unstable. We will explore this more later in this chapter.

4.3.1. Heteroclincial Phase. There is also a special heteroclinical phase in which the

fish can maintain order for some time, and start to migrate together. The fish travel in

a scattered way, but the disorder eventually overcomes the migration and the system

becomes disordered.

(a) �� = �v = 0.60 (b) �� = �v = 0.70 (c) �� = �v = 0.90

Figure 17. Center of Mass for Heteroclinical Phase when Zero Dist.

We see the fish will travel, and eventually hit a point where it becomes disordered.

It is believed that the fish are travelling along a stable manifold towards a fixed point,

and once they hit the fixed point, they start travelling along the unstable manifold.
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When there is no perturbation, the center of mass will move in a straight line. When

perturbed by a small amount, the center of mass moves in particular trajectories:

elliptic, on a torus, or straight. When largely perturbed, the center of mass moves in

a seemingly random motion around the plane.

Now that have reviewed the motion of both a nonperturbed system and complete

perturbed system, we will investigate to see if any special phases occur when there

are only perturbations in either speed or direction. We will demonstrate that when

we drive �, only the migratory solution and disordered solution persist. But when we

drive only v, then we get special cases around our bifurcation point.

4.4. System with perturbation only in Sigma. To begin, set �v = 0. Perturb

the system in the direction as in the chapter above by introducing Brownian motion

and a perturbation parameter, ��, in the directional equation. This gives us the

stochastic system as follows:

v̇j =
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj + ⌫

vj�̇j =
↵v̄

N
⌃N

k=1 sin(�k � �j) + ��Ḃj

Recall that this system has both an ordered, migrating solution, and disordered,

scattered solution. For small sigma, we have a migrating solution as one of the three

above. As sigma increases, there is more variation in how each individual fish travels.

To see what a disordered solution looks like, set �� = 1. As we saw previously, this

will cause to much perturbation in the system, the system is not able to synchronize.

This is be disordered. Here is the motion. It begins with 200 fish distributed normally

on some small square. With the fish heading direction being perturbed by some large

amount, the fish become spread out more and more over time, but they still try to

maintain together, so they still have a center of mass very close to where they started.
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(a) t = t0 (b) t = t1 (c) t = t2

Figure 18. Three images demonstrating disordered solution

If the internal distribution is zero, then we have a migratory solution for ��  0.70

and a disordered solution for �� � 0.70. Note that this cut o↵ value is approximate,

and changes depending on the particular parameters and initial values of the system.

If the internal distribution is uniform, we have the migratory solution as with the

uniform system above for ��  0.55. When �� � 0.55, we have a disordered solution.

If the internal distribution is Cauchy, we have the migratory solution as with the

Cauchy system above for ��  0.70. When �� � 0.70, we have a disordered solution.

4.5. System with perturbation only in Speed. Now, suppose there is no per-

turbation is direction, or that �� = 0. We can perturb the system in velocity only by

adding a perturbation parameter, ⌫ = 0.2 and �v, and Brownian motion in the speed

equation. This gives us the stochastic system as follows:

v̇j =
↵v̄

N
⌃N

k=1 cos(�k � �j)� ↵vj + ⌫ + �vḂj

vj�̇j =
↵v̄

N
⌃N

k=1 sin(�k � �j)

We evaluate this system for various values of �v. When we have zero omega distri-

bution, the system will always approach the migratory solution for values 0  �v  1.

Regardless of how fast the fish are swimming, by re averaging speed every step, system

attempts to bring the fish back toward the center of the group.
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When the system is has an omega distri-

bution that is a uniform distribution, then,

for 0  �v  0.75, the system approaches a

migratory solution. This has the same ”cir-

cling” motion as the system without pertur-

bation having a uniform distribution. How-

ever, as �v increases, the tendency of fish to

match the speed of it’s neighbors is inhib-

ited.The larger the value of �⌫ is, the more the system will spread as it migrates over

time. For values of 0.75  �v  1, then we have a heteroclinical solution, meaning

that the system begins migrating initially, but then pauses and becomes disordered.

An example of the heteroclinical solutions’ center of mass is to the right.

When the system has a Cauchy distribution, the system approaches a migratory

solution for values of 0  �v  0.75. For values of �v � 0.75 but very close to it,

there are some interesting behaviors displayed below. Both demonstrate how the

system switches between di↵erent phases throughout its migration. To the left, the

system begins by traveling in a straight line, circling, then traveling in a straight line

again. To the right, the system is quasi periodic, meaning that it switches between

two di↵erent periods.

(a) �v = 0.75 (b) �v = 0.77
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4.6. Pitchfork Bifurcation. A pitch-

fork bifurcation is a particular local bi-

furcation where the system transitions

from one fixed point to three fixed points.

In the supercritical case, the system

transitions from one fixed point to three,

whereas in the subcritical case, the tran-

sition is vice versa (8, ’pitchfork bifur-

cation’). The three fixed points has the

requirement that one is stable and two

are unstable or vise versa. An example

of our pitchfork is to the right.

In our case, I believe we have a subcritical pitchfork, since all three di↵erent phases

end with the same disordered phase. Thus far, we have ran individual simulations

solving for the order parameter for particular distribution. But we want to be able to

compare all these distributions under a particular set of conditions so we can figure

out stability, so let’s fix the initial conditions and see how each distribution behaves.

(a) ⌫ = 0 (b) ⌫ = 0.2
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We see through these images that the addition of a driving ⌫ term is necessary.

If ⌫ = 0, all of our di↵erent distributions behave similarly, ie they are ordered and

disordered at the same values of ��. Thus we have a degenerate solution. However,

for larger ⌫, this driving term causes instability in the case of the uniform distribution

while the other two cases are still stable. Thus we know we have a subcritical bifurca-

tion of one unstable branch and two stable branches. Since it is always the case that

our zero distribution case has higher order than the case with a Cauchy distribution,

then our pitchfork has the case of zero distribution on the top stable branch, Cauchy

distribution on the bottom stable branch, and the uniform distribution on the middle

unstable branch.
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5. Conclusion

Throughout this paper, we have developed a system of stochastic di↵erential equa-

tions, and proved that, regardless of initial conditions, any solutions are numerically

stable and consistent, and thus convergent. There are many initial conditions that af-

fect the motion and long term trajectory of each solution, including: position, speed,

direction, turning rate, and perturbation. We proved there exist stable and unstable

migratory and stationary solutions. We find all of these solutions by introducing per-

turbation into our speed and direction, allowing our speeds to vary, and allowing for

di↵erent internal turning rates. Reviewing these solutions, we establish numerically

that our system exhibits a subcritical bifurcation with two stable and one unstable

branch. This resolves numerically a question that has been open for almost thirty

years.
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