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ABSTRACT

Simulations in stellar astrophysics involve the coupling of hydrodynamics and nuclear
reactions under a wide variety of conditions, from simmering convective flows to explo-
sive nucleosynthesis. Numerical techniques such as operator splitting (most notably Strang
splitting) are usually employed to couple the physical processes, but this can affect the ac-
curacy of the simulation, particularly when the burning is vigorous. Furthermore, Strang
splitting does not have a straightforward extension to higher-order integration in time. We
present a new temporal integration strategy based on spectral deferred corrections and de-
scribe the second- and fourth-order implementations in the open-source, finite-volume,
compressible hydrodynamics code Castro. One notable advantage to these schemes is
that they combine standard low-order discretizations for individual physical processes in
a way that achieves an arbitrarily high order of accuracy. We demonstrate the improved
accuracy of the new methods on several test problems of increasing complexity.

Keywords: Hydrodynamics, Computational methods, Nuclear astrophysics, Nucleosynthe-
sis, Stellar nucleosynthesis

1. INTRODUCTION
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Stellar astrophysical flows involve the delicate coupling of hydrodynamics, reactions,
and other physics (gravity, radiation, magnetic fields, etc.). Whether modeling convective
or explosive burning, reacting flows present temporal challenges to traditional algorithms
used in stellar / nuclear astrophysics. Reaction network ODE systems are often stiff1, con-
taining timescales that are much smaller than hydrodynamic timescales. For this reason,
astrophysical hydrodynamics codes often employ operator splitting to couple the reactions
and hydrodynamics, treating the reactive portion of the evolution implicitly and the hydro-
dynamics explicitly, and allowing each to take their preferred internal timesteps. Strang-
splitting (Strang 1968) is a widely used technique for coupling in astrophysical systems
(e.g., used in Castro, Almgren et al. 2010, Maestro, Nonaka et al. 2010, Flash, Fryxell
et al. 2000, Chimera, Bruenn et al. 2018, PROMPI, Meakin & Arnett 2007, and many
others), but it can break down in regions where energy is released faster than the hydrody-
namics can respond. Traditional Strang splitting is also limited to second-order accuracy
in time, although higher-order variants are possible.

As astrophysical hydrodynamics codes push to higher-order spatial accuracy (see, e.g.,
Wongwathanarat et al. 2016; Felker & Stone 2018; Most et al. 2019), new time-integration
schemes are needed to realize the potential of high-order methods. Here we look at alter-
nate ways to couple hydrodynamics and reactions, in particular, spectral deferred correction
(SDC) methods. We describe a fully fourth-order method in space and time for coupling
hydrodynamics and reactions in the open source, finite-volume, compressible Castro code.
One notable advantage of SDC schemes is that they combine standard low-order discretiza-
tions for individual physical processes in a way that achieves an arbitrarily high order of
accuracy. Here we evaluate these methods on a suite of test problems with the ultimate goal
of modeling thermonuclear flame propagation in X-ray bursts, as we described in Zingale
et al. (2019). In X-ray bursts, the range of lengthscales and tight hydrostatic equilibrium of
the atmosphere make models that capture the burning, flame scale, and global scales of the
neutron star challenging. This problem is an ideal candidate for higher-order methods.

The presentation in this paper is described as follows. In § 2 we describe the model
equations of interest. In § 3 we present an overview of the Strang splitting methods and the
second- and fourth-order SDC approaches. In § 4 we present the complete details of our
SDC approach. In § 5 we demonstrate the accuracy of the new schemes on several different
test problems, and in § 6 we discuss the strengths and weaknesses of the new scheme and
future plans for extending the methods for more complex equations of interest.

2. MODEL EQUATIONS

The governing equations of interest in this work are based on the fully compressible Euler
equations, including thermal diffusion. Since our focus is on time-integration, we restrict
the presentation to 1- and 2-d problems in this paper, but the method is straightforward to

1 See Byrne & Hindmarsh 1987 for some definitions of stiffness.
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extend to 3-d. In conservation-law form, the 2-d system can be written

U t + [F(x)(U)]x + [F(y)(U)]y = S(U), (1)

where U = (ρ, (ρXk), (ρU), (ρE), (ρe))ᵀ is the vector of conserved quantities, F(x) and
F(y) are the fluxes in the x- and y-directions, and S are source terms. Here, ρ is the mass
density, U is the velocity vector with components u and v, E is the specific total energy,
related to the specific internal energy, e, as

E = e+ |U|2/2 (2)

and Xk are the mass fractions of the reacting species, constrained such that
∑

kXk = 1.
The use of both E and e is overdetermined; this is done for cases where calculating e via
E − |U|2/2 yields an unreliable internal energy. One example is roundoff error in regions
of high Mach number flows (Bryan et al. 1995). The general stellar equation of state we
use here, with weak temperature-dependency in e for highly-degenerate gases also benefits
from the dual-energy approach. The use of both ρX and ρ is also overdetermined, however
we integrate both to numerically ensure that we conserve total mass.

The fluxes are

F(x)(U) =



ρu

ρXku

ρuu+ p

ρvu

ρuE + up

ρue


, F(y)(U) =



ρv

ρXkv

ρuv

ρvv + p

ρvE + vp

ρve


, (3)

Here the pressure, p, enters, and is found via the equation of state,

p = p(ρ,Xk, e) (4)

Finally, the source terms for our system typically include gravity, thermal diffusion, and
reactive terms. For computational efficiency, it is advantageous to treat the reactive terms
separately from the other hydrodynamics source terms, so we split this into two compo-
nents, H, the hydrodynamic source, and R, the reactive source. We note that since the (ρe)

equation is not conservative, we include the “pdV ” work term, p∇·U, as a source term for
that component.

S(U) =



0

ρω̇k

ρg · ex
ρg · ey

ρU · g + ρṠ +∇ · kth∇T
−p∇ ·U + ρṠ +∇ · kth∇T


=



0

0

ρg · ex
ρg · ey

ρU · g +∇ · kth∇T
−p∇ ·U +∇ · kth∇T


︸ ︷︷ ︸

H(U)

+



0

ρω̇k

0

0

ρṠ

ρṠ


︸ ︷︷ ︸

R(U)

(5)
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Here, the species are characterized by mass fractions, Xk, and change via their creation
rates, ω̇k, and the energy has a corresponding specific energy generation rate, Ṡ. The
gravitational acceleration, g, is found either by solving the Poisson equation,

∇2Φ = 4πGρ (6)

for the potential, Φ, and then g = −∇Φ, or by externally specifying g, with the Cartesian
unit vectors denoted ex and ey. For the present work, we consider only constant gravity
(appropriate for our target XRB problem). Since the reactions and diffusion term depend
on temperature, to close the system of equations our equation of state also needs to return
temperature, T ,

T = T (ρ,Xk, e) (7)

The thermal conductivity, kth, is likewise a function of the thermodynamic state:

kth = kth(ρ,Xk, T ) (8)

We note that the thermal diffusion term could instead be included in the definition of the
fluxes, since it is represented as the divergence of the diffusive flux. We use this later in the
construction of a fourth-order approximation to thermal diffusion.

We rewrite our system as:
U t = A (U) + R (U) (9)

where we define the advective term, A (U) to include the hydrodynamic source terms:

A (U) ≡ −[F(x)(U)]x − [F(y)(U)]y + H(U) (10)

We denote the discretized advective source with a cell subscript, as [A (U)]i,j .

3. ALGORITHMIC OVERVIEW

3.1. Strang Split Method

A Strang-split integration method (Strang 1968) is an operator splitting technique that
alternates reactions and hydrodynamics, with each indirectly seeing the effects of the other.
No direct coupling is provided, but by staggering the operations, second-order accuracy is
achieved. The basic algorithm to advance the solution over a time step δt proceeds as:

• Integrate the reactive portion of the system through δt/2: We solve

dU i,j

dt
= R (U i,j) (11)

starting with Un, yielding the solution U?. This is actually an ODE system, so we
can use any implicit ODE integration scheme for this. This evolution only sees the
effects of reactions, not advection. The species portion of the system has the form:

dXk

dt
= ω̇k(ρ, T,Xk) (12)
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Accurate rate evaluation implies we need accurate temperature and density approx-
imations, which suggests we should evolve the energy equation together with the
species (Müller 1986). We can cast this in terms of temperature,

ρcx
dT

dt
= ρṠ (13)

where cx is the specific heat. This form is missing the “pdV ” work term p∇ · U,
since we are splitting the advective portion out of the reactive system. For a constant
volume burn, cx = cv is usually taken, while for a constant pressure burn, cx = cp
is taken (see, e.g., Almgren et al. 2008). Again, if we were not splitting, then this
choice would not matter, since the correct form of the work term would also appear.
Both Eqs. 12 and 13 are also missing the advective terms as well, so the extent to
which the flow can transport fuel in and out of a cell is not accounted for during the
burn.

• Advance the advective part through δt: We solve

∂ U i,j

∂t
= [A (U)]i,j (14)

integrating through the full δt, starting with U? to get the state Un+1,?. No reaction
sources are explicitly included, but since the first step integrated the effects of reac-
tions to δt/2, the state that we build the advection from, U?, is already time-centered
with the effects of reactions, allowing us to be second-order in time (see Strang 1968
for a more formal discussion).

• Integrate the second half of reactions, through δt/2: We again solve

dU i,j

dt
= R (U i,j) (15)

starting with Un+1,?, yielding the final solution Un+1.

With Strang splitting, there is no mechanism for the total density to evolve during re-
actions (since that evolves solely through the advective terms), so the burning is done at
constant density. Additionally, for stellar material, the specific heat can be a strong func-
tion of temperature, so we should allow the specific heat to evolve with the other variables,
which means augmenting the evolution of our system with an equation of state call to keep
the specific heat consistent. This is sometimes neglected.

In Zingale et al. (2019), the authors examine the numerical representation of the solution
over a time step for flow behind a detonation, comparing Strang splitting to a simplified-
SDC method. This comparison shows that the Strang react-advect-react sequence has
strong departures from equilibrium over the course of a step as compared to the simplified-
SDC method. The latter approach leads to a smooth representation of the solution over a
time step due to improved advection/reaction coupling. The consequence of Strang split-
ting is that the departure from equilibrium requires much more computational work in the
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reaction steps due to the stiff transients present as the system returns to equilibrium. For
astrophysical reacting flow computations, the burning and EOS components can require
more computational effort than the hydrodynamic components, so temporal methods that
can reduce the number of right-hand side calls in the reaction steps by staying closer to
equilibrium are advantageous.

We make one final note: the ODE system in the react step is done with a specified numer-
ical tolerance. Tightening the tolerance means solving the reacting system more accurately,
but since we are neglecting the hydrodynamics, we are in essence solving the wrong equa-
tions very accurately. So simply increasing the tolerances does not necessarily lead to a
more accurate solution, nor does it help improve the coupling with hydrodynamics.

3.2. Method-of-Lines Integration

Instead of splitting, we could discretize the entire system in space and then use an ODE
integrator to handle the time evolution, a technique called method-of-lines integration. This
would give us an ordinary differential equations system to integrate of the form:

dU i,j

dt
= [A (U)]i,j + R (U i,j) (16)

In an explicit MOL approach, both the advective and reactive terms are evaluated with the
same state in constructing the right-hand side. The difficulty here arises if the reaction
sources are stiff. We need to use the same timestep for both the reactions and hydrodynam-
ics, and if we want to treat the system explicitly (as we would like for hydrodynamics),
then we are constrained to evolve the entire system at the restrictive timestep dictated by
the reactions. This can be computationally infeasible. Implicit and semi-implicit MOL ap-
proaches (e.g., IMEX/Runge-Kutta approaches) suffer from other maladies including the
need to solve expensive coupled nonlinear equations, difficulty in generalizing to very high
orders of accuracy, and difficulty in adding additional physical processes (Dutt et al. 2000;
Minion 2003). With these limitations in mind, here we explore the SDC approach.

3.3. General SDC Algorithm

Generally, SDC algorithms are a class of numerical methods that represent the solution as
an integral in time and iteratively solve a series of correction equations designed to reduce
both the integration and splitting error. The correction equations are typically formed using
a low-order time-integration scheme (e.g., forward or backward Euler), but are applied
iteratively to construct schemes of arbitrarily high accuracy. In practice, the time step is
divided into a series of sub steps separated by nodes, and the solution at these nodes is
iteratively improved by utilizing high-order integral representations of the solution from
the previous iteration as a source term in the temporal integration.

The original SDC approach was introduced by Dutt et al. (2000) for ODEs where the
integration of the ODE, as well as the associated correction equations, is performed us-
ing forward or backward Euler discretizations. Minion (2003) introduced a semi-implicit
version (SISDC) for ODEs with stiff and non-stiff processes. The correction equations for
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the non-stiff terms are discretized explicitly, whereas the stiff term corrections are treated
implicitly. While these works describe the solution of ODEs, they can be applied to PDEs
discretizing in space and applying the method of lines. Others have adapted this approach
for multiphysics PDE simulation in a variety of contexts (3 time scales with substepping; fi-
nite volume/finite difference; compressible/incompressible and/or low Mach number react-
ing flow) to very high orders of accuracy (up to eighth-order); see Bourlioux et al. (2003);
Almgren et al. (2013); Emmett et al. (2014); Pazner et al. (2016); Emmett et al. (2019).
Here we leverage these ideas to develop a finite-volume, fourth-order spatio-temporal inte-
grator for compressible astrophysical flow that couples reactions and hydrodynamics in a
semi-implicit manner.

The basic idea of SDC is to write the solution of a system of ODEs

dU
dt

= f(t, U(t)), t ∈ [tn, tn + δt], U(tn) ≡ Un, (17)

in the equivalent Picard integral form,

U(t) = Un +

∫ t

tn
f(U)dτ, (18)

where we suppress explicit dependence of f and U on t for notational simplicity. Given an
approximation U (k)(t) to U(t), the SDC correction equation is constructed by discretizing

U (k+1)(t) = Un +

∫ t

tn

[
f(U (k+1))− f(U (k))

]
dτ +

∫ t

tn
f(U (k))dτ, (19)

where a low-order discretization (e.g., forward or backward Euler) is used for the first
integral and a higher-order quadrature is used to evaluate the second integral. Each iteration
improves the overall order of accuracy of the approximation by one per iteration, up to the
order of accuracy of the underlying quadrature rule used to evaluate the second integral.

Numerically, for a given time step, we define tn+1 = tn + δt, and divide the time step
into M subintervals using M + 1 temporal nodes, so that tn ≡ t0 < t1 < · · · < tM ≡ tn+1

and δtm = tm+1 − tm. For a fourth-order approach, we can use 3-point Gauss-Lobatto
quadrature with nodes located at the beginning, midpoint, and end of the time step. Using
the notation Um,(k) to denote the kth iterate of the solution at node m, we can generalize
(19) to update the solution at a particular node

Um+1,(k+1) = Um,(k+1) +

∫ tm+1

tm

[
f(U (k+1))− f(U (k))

]
dτ +

∫ tm+1

tm
f(U (k))dτ (20)

Thus, a pure forward-Euler discretization of the first integral results in the update,

Um+1,(k+1) = Um,(k+1) + δtm

[
f(Um,(k+1))− f(Um,(k))

]
+

∫ tm+1

tm
f(U (k))dτ (21)

Note that overall this is an explicit computation of Um+1,(k+1) since all the terms on the
right-hand side are available via explicit computation.
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Our model contains advection and reaction terms,

Un+1 = Un +

∫
(A (U) + R (U))dt (22)

Stiff terms (e.g. reactions) can be treated implicitly while non-stiff terms (e.g. the hy-
drodynamics) can be treated explicitly. Following Minion (2003), the correction equation
contains an explicit and implicit part:

Um+1,(k+1) = Um,(k+1) +δtm

[
A
(
Um,(k+1)

)
−A

(
Um,(k)

)]
+

+δtm

[
R
(
Um+1,(k+1)

)
−R

(
Um+1,(k)

)]
+

∫ tm+1

tm
A
(
U (k)

)
+ R

(
U (k)

)
dτ. (23)

Now we note that overall this is an implicit equation for reactions solving for Um+1,(k+1);
all terms on the right-hand side except for R(Um+1,(k+1)) are available via explicit compu-
tation. Thus, the update at each node amounts to solving an implicit reaction equation with
explicitly computed source terms from advection, as well as previously computed reaction
terms.

4. ALGORITHMIC DETAILS

Here we describe the fourth-order algorithm in full detail. For proper construction
of fourth-order methods, we need to distinguish between cell-average values and cell-
center values (i.e., point values) in the finite-volume framework. We use angled braces,
e.g. 〈U〉i,j , to denote a cell average and U i,j to denote a cell-center value. For expressions
involving the time-update for a single zone, we will drop the spatial subscripts, i, j. In the
SDC equations, we denote the state with two time superscripts, 〈U〉m,(k), where m repre-
sents the quadrature point in the time-discretization and k represents the iteration number.
A general SDC update for our state 〈U〉 takes the form:

• For all SDC iterations k ∈ [0, K − 1], we initialize the state, advective update, and
reaction source for m = 0 equal to the state at tn (i.e., the state at the m = 0 node
doesn’t change with iteration and is equal to the state at tn);

〈U〉0,(k) = 〈U〉n (24)

〈A (U)〉0,(k) = 〈A (U)〉n (25)

〈R (U)〉0,(k) = 〈R (U)〉n (26)

• We need values of A (U) and R(U) at all time nodes to do the integral over the
iteratively-lagged state in the first iteration. For all temporal nodes m ∈ [1,M ], we
initialize the state, advective update, and reaction source for k = 0 equal to the state
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at tn (i.e., copy the tn state into each temporal node to initialize the time step).

〈U〉m,(0) = 〈U〉n (27)

〈A (U)〉m,(0) = 〈A (U)〉n (28)

〈R (U)〉m,(0) = 〈R (U)〉n (29)

• Loop from k = 0, . . . , K − 1

This is the main iteration loop, and each pass results in an improved value of 〈U〉 at
each of the time nodes.

– Loop over time nodes, from m = 0, . . . ,M − 1

∗ Compute 〈A (U)〉m,(k) from Um,(k)

∗ Solve:

〈U〉m+1,(k+1) = 〈U〉m,(k+1) + δtm

[
〈A (U)〉m,(k+1) − 〈A (U)〉m,(k)

]
+ δtm

[
〈R (U)〉m+1,(k+1) − 〈R (U)〉m+1,(k)

]
+ Im+1

m

(
〈A (U)〉(k) + 〈R (U)〉(k)

)
(30)

where δtm = tm+1 − tm. The last term is an integral:

Im+1
m

(
〈A (U)〉(k) + 〈R (U)〉(k)

)
≈∫ tm+1

tm
dt
(
〈A (U)〉(k) + 〈R (U)〉(k)

)
(31)

which we evaluate using an appropriate numerical quadrature rule with our
M+1 integration points, using the right hand side values from the previous
iteration.

We note that Eq. 30 is an implicit nonlinear equation for 〈U〉m+1,(k+1). There are four
terms on the right-hand side. The second term is the increment in advection from one
SDC iteration to the next, written as a forward Euler (explicit) update to the solution from
one time quadrature point to the next. The third term (the increment in the reaction term)
appears as a backwards Euler (implicit) update to the solution. Note the reaction terms here
are the instantaneous rates—there is no ODE integration. If the SDC iterations converge,
then the increment in advection and reactions (the second and third terms) go to zero, and
the SDC substeps tend toward:

〈U〉m+1,(k+1) ≈ 〈U〉m,(k+1) +

∫ tm+1

tm
dt
(
〈A (U)〉(k) + 〈R (U)〉(k)

)
. (32)

Hence the SDC solution converges to that of a fully implicit Gauss-Runge-Kutta (also
referred to as collocation) method (Huang et al. 2006). This implies that the integrals that
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span the full timestep ultimately determine the accuracy of the method, and we pick the
number of quadrature nodes M + 1, to yield the desired time accuracy over the timestep.
Lobatto methods have formal order 2M , hence we use 2 nodes for second-order in time,
and 3 nodes for fourth-order in time. We also see that during the SDC substeps for each
process (advection and reacting), terms coupling other processes are included, giving us
the strong coupling we desire.

Finding the new value of 〈U〉 requires a nonlinear solve of

〈U〉m+1,(k+1) − δtm〈R (U)〉m+1,(k+1) = 〈U〉m,(k+1) + δtm〈C〉 (33)

where the right-hand side is constructed only from known states, and we define 〈C〉 for
convenience as:

〈C〉 =
[
〈A (U)〉m,(k+1) − 〈A (U)〉m,(k)

]
− 〈R (U)〉m+1,(k)

+
1

δtm
Im+1
m

(
〈A (U)〉(k) + 〈R (U)〉(k)

)
(34)

and note that it represents an average over the cell.

4.1. Second-order Algorithm

For second-order, we need only 2 quadrature points (M = 1), m = 0 corresponding to
the old time solution, and m = 1 corresponding to the new time solution. In this case,
the second term in Eq. 30 (the increment in advection terms from one iteration to the next)
cancels, since regardless of the iteration, k, the solution at the old time (m = 0) is the same.
We can approximate our integral using the trapezoid rule, which is second-order accurate.
We drop the m superscript in what follows and simply denote the solution as either at time-
level n or n + 1. Finally, to second-order accuracy in space, we can take the cell-averages
to be cell-centers, and write 〈U〉i,j = U i,j . The overall integration is then:

• Loop from k = 0, . . . , K − 1

– Solve:

Un+1,(k+1) = Un + δt
[
R
(
Un+1,(k+1)

)
−R

(
Un+1,(k)

)]
+
δt

2

[
A (Un) + A

(
Un+1,(k)

)
+ R (Un) + R

(
Un+1,(k)

)]
(35)

We note that this is an implicit nonlinear equation for Un+1,(k+1).

– Using this Un+1,(k+1), compute A(Un+1,(k+1)) and R(Un+1,(k+1)) for use in
the next iteration.

Choosing K = 2 is sufficient for second-order accuracy.
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To construct the advective term, A (U), we use piecewise linear reconstruction with the
slope limiter from Colella (1985). The reconstructed slopes give us the edge states for each
interface and we solve the Riemann problem to get the fluxes through the interface state.

To solve the update to second-order, we can ignore the difference between cell centers
and cell-averages, and simply solve an implicit equation of the form:

Z(Un+1) = Un+1 − δtmR
(
Un+1

)
− Un − δtmC = 0 (36)

(we drop the iteration index, k, on the unknown here, and use the old and new time levels,
n and n+ 1 since there are no intermediate time nodes). This allows the update of a cell to
be independent of other cells.

4.2. Solving the nonlinear system

We use a simple Newton iteration to solve Eq. 36. As we discuss below, an accurate
initial guess may be required for the iteration to converge, especially for complex or very
stiff networks. Given an initial guess for the solution, U0, we seek a correction, δU , as

Z(U0 + δU) = Z(U0) + JδU + . . . ≈ 0 (37)

Here, J is the Jacobian, ∂Z/∂ U . For the reactions, a more natural representation to work
in is w = (ρ,Xk,U, T )ᵀ, as reaction networks typically provide a Jacobian in these terms.
Our full Jacobian is then:

J ≡ ∂Z

∂ U = I− δtm
∂R

∂ U = I− δtm
∂R

∂w

∂w

∂ U (38)

where we can compute ∂w/∂ U as (∂ U/∂w)−1, and the reaction network provides
∂R/∂w.

Solving Eq. 37 requires solving the linear system JδU = −Z(U0). In practice, we only
need to do the implicit solve for U ′ = (ρ, ρXk, ρe)

ᵀ with w′ = (ρ,Xk, T )ᵀ, reducing the
size of the Jacobian, and we can update the momentum, ρU, explicitly. We always compute
∂w/∂ U analytically, but ∂R/∂w is computed either numerically, via differencing, or ana-
lytically, depending on the reaction network. Appendix A gives the form of these matrices.
We solve iteratively, applying the correction δU to our guess U0 until δU satisfies{

1

N + 2

[
|δU(ρ)wρ|2 +

∣∣δU(ρe)w(ρe)

∣∣2 +
N∑
k=1

∣∣δU(ρXk)w(ρXk)

∣∣2]}1/2

< 1, (39)

We specify separate relative tolerances for the density, species, and energy, εrel,ρ, εrel,(ρX),
and εrel,(ρe) respectively, as well as an overall absolute tolerance, εabs, and N is the number
of species in the network. We use a tolerance comparable to what we would use when
integrating a reaction network directly. For each of the state components of U we define a
weight the form:

wρ = [εrel,ρ|U(ρ)|+ εabs]
−1 , (40)

w(ρe) =
[
εrel,(ρe)|U(ρe)|+ εabs

]−1
, (41)

w(ρXk) =
[
εrel,(ρX)|U(ρXk)|+ εabs|U(ρ)|

]−1
. (42)
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This is inspired by the convergence measure used by VODE (Brown et al. 1989). Note that
for the mass fractions, we scale the absolute tolerance, εabs, by the density, since we evolve
partial densities. The absolute tolerance is critical to ensuring that our solve does not stall
due to trace species in the network. For the other quantities, the only purpose of εabs is to
prevent a division by zero. While not strictly necessary, we re-evaluate the reaction source
with the solution after the Newton solve, Um+1,(k+1),?, to get the final update:

Um+1,(k+1) = Um,(k+1) + δtmR
(
Um+1,(k+1),?

)
+ δtmC (43)

4.3. Initial guess for the nonlinear system

A simple initial guess can be made by extrapolating in time for the first SDC iteration and
using the result from the previous iteration for the new time node during later iterations:

U0 =

Um,(0) + δtm

[
A
(
Um,(0)

)
+ R

(
Um,(0)

)]
if k = 0

Um+1,(k) if k > 0
(44)

If a single Newton step does not converge, we subdivide the interval [0, δtm] into a num-
ber of substeps (starting with 2, and continuing to double the number of substeps until
convergence or we reach a specific limit—we use 64) and do a backwards difference up-
date for each substep, each of which would take the form of the simple Newton iteration
described above.

For very stiff problems, Newton iterations may fail to converge. Emmett et al. (2019)
casts Equation 36 as an ODE, since it is essentially a backwards difference update for U ,
writing it as:

dU
dt
≈ Um+1 − Um

δtm
= R (U) + C (45)

and uses a stiff ODE solver (like VODE, Brown et al. 1989) to integrate it from one time
node to the next for the first iteration. The initial condition for the integration is Um,(k). A
stiff ODE solver requires the Jacobian corresponding to the right-hand side of the system,
which is simply

J =
∂R

∂ U =
∂R

∂w

∂w

∂ U (46)

We would still provide VODE with the same set of tolerances defined above, εrel,ρ, εrel,(ρX),
and εrel,(ρe), as well as an absolute tolerance for the species, εabsρ

m,(k). The solution from
VODE is then used in Eq. 36. This method converges well but is not needed for the prob-
lems presented here. We will explore it further in subsequent studies.

4.4. Fourth-order Algorithm

To construct a fourth-order temporal discretization, we use three-point Gauss-Lobatto
quadrature in time that introduces a quadrature node at the midpoint. We consider the time
at tm, where m = 0, 1, 2, and m = 0 corresponds to the start time, tn, m = 1 corresponds
to the midpoint, tn+1/2, and m = 2 corresponds to tn+1, the new-time solution. We also
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take K = 4. For the integral, Im+1
m , we use Simpson’s rule by deriving the weights for a

parabola passing through the points at t0, t1, and t2, and then constructing the integral over
the desired sub-interval. This derivation is presented in the supplemental Jupyter notebook,
and results in:

I1
0 =

∫ t1

t0
φ(t)dt =

δt

24
(5φ0 + 8φ1 − φ2) , (47)

and

I2
1 =

∫ t2

t1
φ(t)dt =

δt

24
(−φ0 + 8φ1 + 5φ2) , (48)

where φm ≡ φ(tm).

4.4.1. Spatial Discretization

To construct a fourth-order accurate finite-volume discretization, the difference between
cell-centers and cell-averages is important. We can find a relation between the two by
starting with the definition of a cell average of a function f(x), which in 1-d is

〈f〉i =
1

h

∫ xi+h/2

xi−h/2
f(x)dx (49)

where h is the width of the cell. Taylor expanding f(x) about the cell-center, xi, as:

f(x) =
∞∑
n=0

f (n)(xi)

n!
(x− xi)n (50)

The odd terms integrate to zero, and to fourth order we have:

〈f〉i = f(xi) +
h2

24

d2f

dx2

∣∣∣∣
xi

+O(h4) (51)

In the multi-dimensional extension, the second derivative becomes a Laplacian. A similar
construction can be used to convert a face-centered quantity to a face-averaged quantity.
These ideas were used in McCorquodale & Colella (2011) to construct a fourth-order ac-
curate finite volume method for compressible hydrodynamics. We briefly summarize their
reconstruction here:

1. Compute a cell-average primitive variable state 〈q〉i,j from the conserved cell-
average state, 〈U〉i,j .

2. Reconstruct the cell-average state 〈q〉i,j to edges to define a face-average interface
state, 〈q〉i+1/2,j . Note that if limiting is done in the reconstruction, then a Riemann
problem is solved here to find the unique interface state.

3. Compute a face-centered interface state, qi+1/2,j , from the face-averaged interface
state, 〈q〉i+1/2,j ,

qi+1/2,j = 〈q〉i+1/2,j −
h2

24
∆(2,f)〈q〉i+1/2,j (52)
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where ∆(2,f) is the Laplacian only in the transverse direction (within the plane of the
face).

4. Evaluate the fluxes using both the face-average state, F(〈q〉i+1/2,j), and the face-
center state, F(qi+1/2,j) and compute the final face-average flux, 〈F〉i+1/2,j:

〈F〉i+1/2,j = F(qi+1/2,j) +
h2

24
∆(2,f)F(〈q〉i+1/2,j) (53)

Here we adopt the notation of McCorquodale & Colella (2011), and use ∆(2) to mean
a second-order accurate discrete approximation to the Laplacian operator. The advection
term is then

[A (U)]i,j = −
〈F〉(x)

i+i/2,j − 〈F〉
(x)
i−1/2,j

h
−
〈F〉(y)

i,j+1/2 − 〈F〉
(y)
i,j−1/2

h
+ 〈H(U)〉i,j. (54)

We implement the spatial reconstruction as described there, including flattening and artifi-
cial viscosity. For the Riemann problem, we use the two-shock solver that is the default in
Castro (see Almgren et al. 2010). Instead of the Runge-Kutta method used in McCorquo-
dale & Colella (2011), we instead use the SDC algorithm described above.

For physical boundaries, we follow the prescription in McCorquodale & Colella (2011)
to use one-sided stencils for the initial reconstruction of the interface states to avoid need-
ing information from outside the domain. We enforce reflecting boundary conditions on
the interface states at the boundary by reflecting the interior edge state across the domain
boundary (changing the sign of the normal velocity). This forces the Riemann problem
to give zero flux through the interface. For the Laplacian used in the transformation be-
tween cell-centers and averages and face-centers and averages, we differ slightly from their
prescription, opting instead to use one-sided second-order accurate differences for any di-
rection in the Laplacian that would reach across the domain boundary.

There are a few changes to support a general EOS and reactions to fourth-order in space,
which we summarize here:

• Treatment of Γ1:

The Riemann problem uses the speed of sound, c, computed as

c =

(
Γ1p

ρ

)1/2

(55)

for the left and right state as part of its solution. This means that we need an inter-
face value of Γ1 = d log p/d log ρ|s. The fourth-order solver does a single Riemann
solve to get the state on the interfaces, starting with the interface states constructed
from the cell-averages—we think of this as a face-average. We perform the same
reconstruction on Γ1 and treat it as part of the interface state for this Riemann solve.
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• Hydrodynamic source terms: For general (non-reacting) source terms, we first con-
vert the state variables to cell-centers,

U i,j = 〈U〉i,j −
h2

24
∆(2)〈U〉i,j (56)

We then evaluate the source terms point-wise using this:

Hi,j = H(U i,j) (57)

and finally convert the sources to cell-averages:

〈H〉i,j = Hi,j +
h2

24
∆(2)Hi,j. (58)

We only need 〈H〉i,j in for the interior cells.

The first explicit source we consider here comes from the dual-energy formulation
where we carry an internal energy evolution equation. The internal energy evolution
follows:

∂(ρe)

∂t
+∇ · (ρeU) + p∇ ·U = ∇ · kth∇T (59)

The term, p∇ · U, is not in conservative form, so we cannot construct it to fourth
order following the same procedure as we do with the fluxes. Instead, we add this
term to the hydrodynamic sources and treat it as described above. The constant
gravity source is treated the same way.

We note that for the SDC integration, we do not include the thermal diffusion term
in the source terms H, but instead add them to the flux directly, as described below.

• Deriving temperature / resetting e with a real EOS: Astrophysical equations of state
are often posed with density and temperature as inputs, so the process of obtain-
ing the temperature given density and specific internal energy requires an inversion,
usually using Newton-Raphson iteration. This results in a state that is thermodynam-
ically consistent to some tolerance (we use a tolerance of 10−8). It is important to
leave the input e unchanged after the EOS call, even though it may not be consistent
with the EOS for the T obtained via the Newton-Raphson iterations because of the
tolerance used. We consider the internal energy from its separate evolution here as
well, and whether it should reset the internal energy derived from the total energy.

The overall procedure we use is:

1. Convert the cell-average conserved state to cell centers as:

U i,j = 〈U〉i,j −
h2

24
∆(2)〈U〉i,j (60)

2. Consider ei,j as obtained from the separate internal energy evolution and if
needed, reset the total energy to Ei,j = ei,j + |Ui,j|2/2, according to the proce-
dure described in Katz et al. (2016).
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3. Compute the temperature from U i,j .

4. Convert back to cell-averages (we only need to do this for T and (ρe)) as:

〈U〉i,j = U i,j +
h2

24
∆(2)〈U〉i,j (61)

Note: we use exactly the same Laplacian term here as in step 1 above—this
is essential, since if the internal energy reset does nothing, this leaves the en-
ergy unchanged to roundoff error. If we instead constructed the Laplacian as
∆(2) U i,j , it would not cancel out the previous Laplacian term, leading to an
error at truncation level that builds up over the simulation.

• Thermal diffusion. We include the diffusive flux in the energy flux, rewriting them
as:

F(x)(ρE) = ρuE + up− kth
∂T

∂x
(62)

F(x)(ρe) = ρue− kth
∂T

∂x
(63)

and similarly for the (ρE) and (ρe) components of F(y). Consider the x-direction.
We need to add this diffusive term to both F(x)(qi+1/2,j) and F(x)(〈q〉i+1/2,j) before
they are combined to make the final face-average flux,

〈
F(x)

〉
i+1/2,j

as in Eq. 53. We
compute these terms using the following discretizations:

1. Flux from face-center state. Since we are computing the flux from the face-
center quantity, we want to compute ∂T/∂x using cell-center values of the
temperature, Ti,j . A fourth-order accurate discretization of the first derivative,
evaluated on the interface is

∂T

∂x

∣∣∣∣
i+1/2,j

=
−Ti+2,j + 27Ti+1,j − 27Ti,j + Ti−1,j

24h
(64)

The thermal conductivity is simply evaluated from the face-center primitive
variable state resulting from the Riemann solver, giving the diffusive flux:

F
(x)
diffusive((ρe)i+1/2,j) = −kth(qi+1/2,j)

∂T

∂x

∣∣∣∣
i+1/2,j

(65)

2. Flux from face-average state. We need to compute the face-average tempera-
ture gradient from the cell-average temperatures. This is done by constructing a
cubic conservative interpolant, differentiating it, and evaluating it at the desired
interface, giving:

∂〈T 〉
∂x

∣∣∣∣
i+1/2,j

=
−〈T 〉i+2,j + 15〈T 〉i+1,j − 15〈T 〉i,j + 〈T 〉i−1,j

12h
(66)
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We note this same expression appears in Kadioglu et al. (2008) and other
sources. We use the face-average primitive variable state to evaluate the thermal
conductivity, giving:

F
(x)
diffusive(〈ρe〉i+1/2,j) = −kth(〈q〉i+1/2,j)

∂〈T 〉
∂x

∣∣∣∣
i+1/2,j

(67)

These derivatives are derived in the supplemental Jupyter notebook.

4.4.2. Solving the reactive system

To fourth-order, we need to concern ourselves with the difference between cell centers
and averages. We want to solve Eq. 33 for the updated cell-average state, 〈U〉m+1,(k), but
we note that 〈R(U)〉 6= R(〈U〉) to fourth-order, so we can’t solve this the same way we
do for the second-order method. Our approach is to instead solve a cell-center version first,
and then use this to find the cell-average update.

To start, we compute C at cell centers from the approximation

Ci,j = 〈C〉i,j −
h2

24
∆(2)〈C〉i,j. (68)

Then we solve

Um+1,(k+1)
i,j − δtmR

(
Um+1,(k+1)
i,j

)
= Um,(k+1)

i,j + δtmCi,j (69)

using the same techniques described above for second-order. It is tempting to then construct
the final 〈U〉i,j by converting U i,j to averages using the Laplacian, but this would break
conservation, since the advective flux difference is buried in Ci,j . Instead, we use the U i,j

to evaluate the instantaneous reaction rates one more time, to construct R(U i,j), and then
construct the average reactive source as:

〈R (U)〉i,j = R (U i,j) +
h2

24
∆(2)R (U i,j) (70)

and finally, use this 〈R(U)〉i,j in Eq. 33 to get the final 〈U〉i,j , as:

〈U〉m+1,(k+1)
i,j = 〈U〉m,(k+1)

i,j + δtm〈R (U)〉m+1,(k+1)
i,j + δtm〈C〉i,j (71)

4.4.3. Pure Hydrodynamics

To test the integration scheme without reactions, there is no nonlinear solve needed, and
our system update is purely explicit:

〈U〉m+1,(k+1)
i,j = 〈U〉m+1,(k)

i,j + δtm

[
〈A (U)〉m,(k+1)

i,j − 〈A (U)〉m,(k)
i,j

]
+ Im+1

m

(
〈A (U)〉(k)

i,j

)
(72)

This is straightforward to solve and is used to test our method. By measuring the conver-
gence of pure hydrodynamics problems, we can assess whether our scheme gets fourth-
order accuracy.
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5. NUMERICAL EXPERIMENTS

We consider a number of different test problems here to assess the behavior of the new
SDC integration scheme. We use 3 different solvers: the default corner transport upwind
(CTU) piecewise parabolic method (PPM) solver (Colella 1990; Miller & Colella 2002) in
Castro with Strang split reactions (we refer to this as Strang CTU), the second-order SDC
method with piecewise linear slope reconstruction in space (SDC-2), and the fourth-order
SDC method (SDC-4). For the pure hydrodynamics problems, our focus is on demonstrat-
ing that the overall fourth-order SDC algorithm converges as expected, so we focus only on
that solver. We conclude by demonstrating the SDC-4 method on two science problems: a
burning buoyant bubble and a flame.

Tradiationally with Strang-splitting, we would instruct the ODE solver that evolves the
reactions to use a relatively tight tolerance, resulting in many substeps for the integration of
the reaction terms over δt. With the SDC implementation, we are using a fixed number of
temporal nodes, evaluating the reactions with our hydrodynamics in a coupled integration.
So while the Strang-split case uses a much tighter tolerance in integration the reactions,
it is solving the wrong equations very accurately (i.e., the uncoupled system), while the
SDC method solves the correct, coupled equations with fixed integration points (and po-
tentially less accurately). We explore the solution of several hydrodynamics and reactive
flow problems here to understand how the different approaches perform.

When setting the initial conditions for the fourth-order tests, we first initialize the cell-
centers, U i,j , to the analytic initial conditions and then convert from cell-centers to aver-
ages as

〈U〉i,j = U i,j +
h2

24
∆(2) U i,j (73)

We also note that all runs use slope limiters, which can impact the ability to get ideal
convergence behavior near discontinuities, but we choose this approach since this is how
the method would be run in scientific simulations.

Finally, for the SDC methods, the timestep is limited by

δt ≤ Cmin
i,j


[

D∑
d=1

|Ui,j · ed|+ ci,j
∆xd

]−1
 (74)

where D is the number of dimensions. This is more restrictive in multi-dimensions than
the timestep constraint for CTU (Colella 1990). The dimensionless CFL number, C is
kept less than 1 in our simulations, although we note that for Runge-Kutta integration,
McCorquodale & Colella (2011) suggest it can be as high as 1.4.

5.1. Gamma-Law Acoustic Pulse

The gamma-law acoustic pulse problem is a pure hydrodynamics test. We use the ini-
tial conditions from McCorquodale & Colella (2011)2. This problem sets up a pressure

2 This problem setup is available in Castro as Exec/hydro_tests/acoustic_pulse. The runs for the
convergence test can be run using the convergence_sdc4.sh script there.
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Figure 1. Pressure and velocity magnitude at t = 0.24 s for the acoustic pulse problem run with
SDC-4 using 1282 cells.

perturbation in a 2D square domain in a constant entropy background and watches the
propagation of a sound wave (as a ring) move outward from the perturbation. The gamma-
law equation of state needs a composition to define the temperature (via the ideal gas law),
so we choose the composition to be pure 1H. We take γ = 1.4. This test serves as a
comparison to the method in McCorquodale & Colella (2011)—we use the same fourth-
order spatial reconstruction, but use the SDC integration update instead of the Runge-Kutta
method used therein. We run for 0.24 s using a fixed timestep,

δt = 3× 10−3

(
64

nzones

)
s (75)

on a domain [0, 1]2 with periodic boundary conditions. Figure 1 shows the state at the end
of the simulation.

We approximate the convergence rate by defining the error as the norm over cells of the
difference between a fine and coarse calculation, differing by a factor of two3. We run
with 642, 1282, 2562 and 5122 cells, so ε64→128 is the error between the 642 and 1282 cell
calculations. We then estimate the convergence rate, r, from two pairs of simulations,
e.g., r = log2(ε64→128/ε128→256). Table 1 shows the results in the L1 norm, including
the measured convergence rate. We see fourth-order convergence in all of the conserved
variables and also in temperature. This convergence agrees well with that presented in
McCorquodale & Colella (2011). We note this same test problem was also used with SDC
in Emmett et al. (2019).

5.2. Real Gas Acoustic Pulse

To assess the performance with a real stellar EOS, we create a generalized version of
the acoustic pulse problem. We use the Helmholtz free energy based equation of state of

3 We use the AMReX RichardsonConvergenceTest tool to compute the convergence rate (located in
amrex/Tools/C_util/Convergence).
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Table 1. Convergence (L1 norm) for the γ-law EOS acoustic pulse prob-
lem using the SDC-4 solver.

field ε64→128 rate ε128→256 rate ε256→512

ρ 3.625× 10−6 3.980 2.297× 10−7 3.995 1.441× 10−8

ρu 2.087× 10−6 3.969 1.332× 10−7 3.992 8.371× 10−9

ρv 2.087× 10−6 3.969 1.332× 10−7 3.992 8.371× 10−9

ρE 9.143× 10−6 3.980 5.794× 10−7 3.995 3.634× 10−8

ρe 9.093× 10−6 3.980 5.763× 10−7 3.995 3.614× 10−8

T 8.855× 10−15 3.979 5.614× 10−16 3.995 3.521× 10−17

Timmes & Swesty (2000), including degenerate/relativistic electrons, ideal gas ions, and
radiation. Our initial conditions are:

p =

p0

[
1 + fp e

−(r/δr)2 cos6(πr/Lx)
]

r < Lx/2

p0 r ≥ Lx/2
(76)

and
s = s0 (77)

where p0 and s0 are the ambient pressure and specific entropy, δr is the width of the pertu-
bation, fp is the factor by which pressure increases above ambient, Lx is the physical width
of the domain in the x-direction, and r is the distance from the center of the domain. We
can then find the density and internal energy from the equation of state4. Our equation of
state requires a composition—we make all of the material hydrogen (A = Z = 1). We
specify p0 and s0 in terms of ρ0 and T0 using the equation of state, p0 = p(ρ0, T0) and
s0 = s(ρ0, T0). We run on a domain [0, Lx]

2, with periodic boundaries, to a time of 0.02 s
and use a fixed timestep, scaled with resolution, nzones, as

δt = 2× 10−4

(
64

nzones

)
s (78)

Our choice of parameters is given in Table 2. These initial conditions were picked to give
a reasonable range of Γ1 on the grid (it spans 1.48–1.57 initially). We run this test for 642,
1282, 2562, and 5122 cells (in each direction). We note that the amplitude of our pressure
perturbation is a bit large, and we have a Mach number of 0.6 at the end of the simulation—
this suggests that the limiters may have an effect here. Figure 2 shows the state after 0.02 s
of evolution for the 1282 SDC-4 simulation. Table 3 shows the convergence. We again see
nearly fourth-order convergence for all flow variables.

5.3. Real Gas Shock Tubes

4 This problem setup is available in Castro as Exec/hydro_tests/acoustic_pulse_general.
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Figure 2. Pressure, velocity magnitude, Γ1, and temperature at t = 0.02 s for the general EOS
acoustic pulse problem run with SDC-4 using 1282 cells.

Table 2. Stellar EOS acoustic
pulse parameters.

parameter value

ρ0 5× 105 g cm−3

T0 107 K

fp 15

δr 2× 107 cm

Lx 108 cm

In Zingale & Katz (2015), we examine exact solutions to shock tube problems with the
stellar equation of state to be used as test problems for hydrodynamics schemes. Here we
run these same problems with the Strang CTU and SDC-4 solvers. We do not attempt to
measure convergence here, since these problems feature discontinuities, but instead run
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Table 3. Convergence (L1 norm) for the real EOS acoustic pulse
problem using the SDC-4 solver.

field ε64→128 rate ε128→256 rate ε256→512

ρ 1.935× 1017 3.939 1.262× 1016 3.981 7.988× 1014

ρu 3.842× 1025 3.907 2.562× 1024 3.972 1.633× 1023

ρv 3.842× 1025 3.907 2.562× 1024 3.972 1.633× 1023

ρE 4.079× 1034 3.939 2.659× 1033 3.981 1.684× 1032

ρe 3.526× 1034 3.949 2.283× 1033 3.982 1.444× 1032

T 5.657× 1019 3.955 3.648× 1018 3.991 2.295× 1017

these to demonstrate that we can recover the correct behavior for nonsmooth flows with a
general equation of state with the new fourth-order accurate solver.

The first problem is a Sod-like problem (Figure 3), featuring a rightward moving shock
and contact and a leftward moving rarefaction. The Strang CTU and SDC-4 solutions
are shown together with the exact solution. We see that both solvers have trouble with the
temperature at the contact discontinuity (Strang CTU undershoots while SDC-4 oscillates a
bit), but otherwise the agreement is quite good. The second problem is a double rarefaction
(Figure 4). The initial thermodynamic state is constant but with outward directed velocities
at the interface. A vacuum region forms inbetween two rarefactions. Both the Strang CTU
and SDC-4 method have difficultly with the temperature at the very center (where both
p and ρ are going to zero), but otherwise agree nicely with the analytic solution. The
final problem is a strong shock (Figure 5). Again both methods have difficulty with the
temperature at the contact discontinuity with the SDC-4 solution undershooting a bit more
than the Strang CTU solution. Overall, these tests show that for problems involving shocks,
our fourth-order scheme is working as expected.

5.4. Thermal diffusion test

The standard test problem for thermal diffusion is to diffuse a Gaussian temperature pro-
file with a constant diffusion coefficient, which remains Gaussian but with a lower ampli-
tude and greater width as time evolves. However, we want to ensure we converge properly
for a state-dependent conductivity. To test this, we use a simple powerlaw thermal conduc-
tivity:

kth = kth0T
ν (79)

We adopt kth0 = 1 and ν = 2. We still begin with a Gaussian profile of the form:

T (r) = T1 + (T2 − T1)e−r
2/(4Dt0) (80)

where r is the distance from the center of the domain, D is the thermal diffusivity,

D =
kth

ρcv
(81)
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Figure 3. The stellar EOS Sod-like problem (test 1) from Zingale & Katz (2015).

and t0 has units of time and serves to control the initial width of the Gaussian. We take
t0 = 10−3 s here, and turn off hydrodynamics, so only the temperature and internal energy
evolve in this test. We use a gamma-law equation of state and a pure hydrogen composition
(with γ = 5/3), so the specific heat is just

cv =
3

2

kB
mu

(82)
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where kB is Boltzmann’s constant and mu is the atomic mass unit. We choose the constant
density in the domain, ρ0, so that the thermal diffusivity in the center is D(r = 0) = 1.
This gives:

ρ0 =
kth(T2)

cv(T2)
(83)
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Finally, we use the standard explicit diffusion timestep limiter, of the form:

δtdiff =
C
2

min

{
∆x2

D

}
(84)

where we use the same CFL factor as with hydrodynamics to reduce the timestep.
We run in 1-d on a domain [0, 1], with 64, 128, 256, and 512 cells for 10−3 s, with C = 0.5.

Figure 6 shows the temperature profile at various times. Table 4 shows the convergence for
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Table 4. Convergence (L1 norm) for the 1-d and 2-d thermal diffusion test
with fourth-order SDC.

field ε64→128 rate ε128→256 rate ε256→512

1-d test

ρe 1.112× 10−5 3.949 7.198× 10−7 3.987 4.539× 10−8

T 1.063× 10−5 3.953 6.867× 10−7 3.975 4.368× 10−8

2-d test

ρe 1.902× 10−6 3.958 1.224× 10−7 3.987 7.719× 10−9

T 1.770× 10−6 3.966 1.133× 10−7 3.991 7.127× 10−9

the test in 1-d—we see nearly perfect fourth-order convergence. We also run in 2-d on
[0, 1]2 with 642, 1282, 2562, and 5122 cells for the same time. In 2-d, we exercise the face-
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Table 5. Convergence (L1 norm) for the reacting convergence problem with the
Strang CTU solver.

field ε64→128 rate ε128→256 rate ε256→512

ρ 2.780× 1018 2.051 6.706× 1017 2.580 1.121× 1017

ρu 6.780× 1026 2.446 1.245× 1026 2.907 1.659× 1025

ρv 6.780× 1026 2.446 1.245× 1026 2.907 1.659× 1025

ρE 2.465× 1035 2.333 4.893× 1034 2.650 7.797× 1033

ρe 2.268× 1035 2.298 4.611× 1034 2.721 6.991× 1033

T 2.245× 1021 1.682 6.995× 1020 2.439 1.290× 1020

ρX(4He) 2.861× 1018 2.027 7.018× 1017 2.553 1.195× 1017

ρX(12C) 1.717× 1017 1.945 4.458× 1016 2.194 9.745× 1015

ρX(16O) 1.717× 1014 1.648 5.479× 1013 1.898 1.471× 1013

ρX(56Fe) 2.780× 10−12 2.051 6.706× 10−13 2.580 1.121× 10−13

averaging of the diffusive fluxes. The same table shows the convergence for 2-d, and again
we see nearly perfect fourth-order convergence.

5.5. Reacting Hydrodynamics Test

Next we adapt the general EOS acoustic pulse problem from section 5.2 to include reac-
tions, which enables us to test the convergence rate of the coupled hydrodynamics and reac-
tions update. The problem setup is the same, but we now initialize the material to be com-
pletely 4He and we use a simple reaction network with the triple-alpha and 12C(α, γ)16O

reactions5, using rates from Caughlan & Fowler (1988) along with screening from Gra-
boske et al. (1973); Alastuey & Jancovici (1978); Itoh et al. (1979). The network also
contains 56Fe, which is not linked to any other nuclei via reactions (it is used as an in-
ert marker). This network is available as part of the StarKiller microphysics project (the
StarKiller Microphysics Development Team et al. 2019). Since we start out as 4He, any
12C or 16O in the final output is created via the nucleosynthesis, so these species can help
understand the convergence of the reactions.

For all the SDC runs, we use the simple Newton solve, the analytic estimate of the Jaco-
bian, solve for (ρe) in the update, and set the tolerances as εrel,ρ = 10−10, εrel,(ρX) = 10−10,
εrel,(ρe) = 10−5, and εabs = 10−10.

We run with the same timestep as the non-reacting version to a stop time of 0.06 s. Here
we compute the convergence rate for the Strang CTU, SDC-2, and SDC-4 solvers. All
simulations are run in 2-d.

Figure 7 shows the thermodynamic, dynamic, and nuclear state for the 1282 SDC-4 simu-
lation at 0.06 s. We run with 642, 1282, 2562, and 5122 cells and compute the error between
successive resolutions and measure the convergence rate. Tables 5, 6, and 7 show the con-
vergence. We see that the Strang CTU algorithm achieves second order for most variables

5 This problem setup is available in Castro as Exec/reacting_tests/reacting_convergence
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Figure 7. Thermodynamic, dynamic, and nuclear state at t = 0.06 s for the reacting hydrodynamics
test run with SDC-4 using 1282 cells.

(as expected), with some quantities converging almost third order (for smooth flows, the
PPM algorithm approaches third order accuracy in space), while having difficulty with
16O. For SDC-2, we see second-order convergence in all the variables, including 16O. Fi-
nally, for SDC-4, all of the variables converge at rates of ∼ 3.8–3.9, demonstrating the
fourth-order accuracy expected for the method. This test shows that the SDC algorithm can
achieve fourth-order convergence for reactive hydrodynamics problems with astrophysical
networks.

5.6. Burning Buoyant Bubble
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Table 6. Convergence (L1 norm) for the reacting convergence problem with the
SDC-2 solver.

field ε64→128 rate ε128→256 rate ε256→512

ρ 2.024× 1018 2.011 5.022× 1017 2.021 1.238× 1017

ρu 3.720× 1026 2.063 8.901× 1025 2.030 2.180× 1025

ρv 3.720× 1026 2.063 8.901× 1025 2.030 2.180× 1025

ρE 2.302× 1035 2.030 5.635× 1034 2.014 1.395× 1034

ρe 2.053× 1035 2.025 5.043× 1034 2.013 1.249× 1034

T 1.643× 1021 2.060 3.939× 1020 2.026 9.676× 1019

ρX(4He) 2.002× 1018 2.015 4.951× 1017 2.027 1.215× 1017

ρX(12C) 1.042× 1017 2.032 2.546× 1016 2.019 6.281× 1015

ρX(16O) 1.564× 1014 1.935 4.090× 1013 2.003 1.020× 1013

ρX(56Fe) 2.024× 10−12 2.011 5.022× 10−13 2.021 1.238× 10−13

Table 7. Convergence (L1 norm) for the reacting convergence problem with the
SDC-4 solver.

field ε64→128 rate ε128→256 rate ε256→512

ρ 2.127× 1017 3.855 1.470× 1016 3.972 9.369× 1014

ρu 3.401× 1025 3.856 2.349× 1024 3.958 1.511× 1023

ρv 3.401× 1025 3.856 2.349× 1024 3.958 1.511× 1023

ρE 1.945× 1034 3.891 1.311× 1033 3.953 8.463× 1031

ρe 1.672× 1034 3.899 1.120× 1033 3.955 7.223× 1031

T 1.236× 1020 3.708 9.463× 1018 3.949 6.125× 1017

ρX(4He) 2.147× 1017 3.858 1.481× 1016 3.969 9.458× 1014

ρX(12C) 8.789× 1015 3.798 6.319× 1014 3.911 4.201× 1013

ρX(16O) 1.294× 1013 3.765 9.518× 1011 3.872 6.501× 1010

ρX(56Fe) 2.127× 10−13 3.855 1.470× 10−14 3.972 9.369× 10−16

Our final convergence test problem considers a hydrostatic atmosphere with a temperature
perturbuation6. Buoyancy causes the perturbation to rise (and eventually roll up in the
nonlinear phase). The presence of reactions prevents the bubble from fizzling out, keeping
it buoyant via the heat deposition. In addition to looking at the convergence rate of the
numerical solutions, we also consider how well we maintain hydrostatic equilibrium in an
undisturbed hydrostatic atmosphere.

6 This problem setup is available in Castro as Exec/reacting_tests/bubble_convergence.
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Table 8. Hydrostatic atmosphere initial
condition parameters.

parameter value

ρbase 107 g cm−3

Tbase 108 K

g 1010 cm s−2

Lx = Ly (domain size) 7.68× 106 cm

σ 2.56× 105 cm

We create an initial atmospheric model that is isentropic and in hydrostatic equilibrium
by integrating the system:

dp

dy
= −ρ(p, s)g (85)

ds

dy
= 0 (86)

where the relation ρ(p, s) is provided by our equation of state. We take gravity, g, to be
constant and the composition to be uniform throughout the atmosphere (pure helium, with
the other nuclei mass fractions set to the small value 10−8). To integrate this system, we
specify the conditions at the base of the atmosphere, which we take to be the lower domain
boundary (not the center of the bottommost cell). We specify ρbase, and Tbase and get
pbase and sbase through the general stellar equation of state. We integrate this system using
fourth-order Runge-Kutta, using a step size of ∆x/2 to get from the bottom of the domain
to the first cell-center, and then a step size of ∆x to integrate to each of the remaining
cell-centers vertically in the domain. The initial conditions are then converted to cell-
averages using the same transformation discussed earlier in the paper. Note: the hydrostatic
model is generated specifically for the resolution of the problem, and as such, the initial
atmosphere converges with fourth-order accuracy. For the boundary conditions, we use
periodic conditions on the sides and reflecting boundary conditions at the top and bottom.
Table 8 lists the problem setup parameters.

To test this initial setup, we evolve just the hydrostatic atmosphere on our 2-d grid. An-
alytically, the velocity should remain zero, if hydrostatic equilibrium cancellation were
perfect. Due to truncation error, a velocity does build up over time, so we use the maxi-
mum of the velocity magnitude, |U|, as the measure of the error. Table 9 lists this error
for several resolutions. We note that the velocity magnitudes are quite small, and we also
see fourth-order convergence as we increase the resolution. This suggests that with the
fourth-order method, we can accurately maintain an atmosphere in HSE without the need
for well-balanced schemes (Zingale et al. 2002; Käppeli & Mishra 2016).
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Table 9. Convergence of max{|U|} for an unperturbed hydro-
static atmosphere with fourth-order SDC.

642 rate 1282 rate 2562

1.884× 10−2 3.987 1.188× 10−3 3.825 8.383× 10−5

Next we add a perturbation and enable reactions, using the same 3-α + 12C(α, γ)16O

network described above. To perturb the atmosphere, we modify the temperature as:

T (x, y) = T0(y)

{
1 +

3

5
[1 + tanh(4− r)]

}
(87)

where T0 is the temperature of the initial hydrostatic atmosphere at the height y, and r is
the distance from the center of the domain. The amplitude of the perturbation was chosen
to give a reasonable amount of burning to 12C while keeping the Mach number below 0.1,
while the shape was chosen to give a flat central region. We then recompute the pressure at
each point in the atmosphere through the equation of state, constraining it to the hydrostatic
pressure at the altitude, p(y):

ρ(x, y) = ρ(T (x, y), p(y)) (88)

This reduces the density, creating the initial buoyancy. We run on domains 642, 1282, 2562,
and 5122, to 0.1 s using a fixed timestep:

δt = 1.5× 10−4

(
64

nzones

)
s. (89)

This is a difficult test problem because of the extreme nonlinearily of the dynamics. The
end time is picked so we measure convergence before the bubble begins to roll-up in a
strongly nonlinear fashion. If we ran longer, the strong temperature dependence of the 3-
α burning would give strong nonlinear energy generation from local hot spots, making a
convergence test difficult for the lowest resolution simulations we consider here.

Figure 8 shows the state of the bubble at the end point. Table 10 shows the convergence
across these problem sizes. At the lowest resolution, we barely resolve the burning region,
which affects the convergence, but we see nearly fourth-order convergence for the higher
resolution simulations. Again, this test demonstrates our SDC-4 method works as expected.

5.7. Proof-of-concept: Helium deflagration

To demonstrate that the SDC methods work with more extensive networks, we run a 1-d
helium deflagration with a 13 isotope alpha network, using conditions that are appropriate
to an sub-Chandra model of Type Ia supernovae7. We do not try to assess convergence of

7 This problem setup is available in Castro as Exec/science/flame.
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Figure 8. Final state of the burning buoyant bubble problem for the 1282 simulation.

Table 10. Convergence (L1 norm) for the burning buoyant bubble problem
using the SDC-4 solver.

field ε64→128 rate ε128→256 rate ε256→512

ρ 3.591× 1015 3.263 3.739× 1014 3.713 2.852× 1013

ρu 1.120× 1024 3.794 8.072× 1022 3.930 5.296× 1021

ρv 1.314× 1024 3.544 1.127× 1023 3.838 7.879× 1021

ρE 3.701× 1032 2.946 4.801× 1031 3.647 3.834× 1030

ρe 3.701× 1032 2.946 4.801× 1031 3.646 3.834× 1030

T 1.438× 1018 3.508 1.264× 1017 3.829 8.899× 1015

ρX(4He) 3.589× 1015 3.266 3.732× 1014 3.711 2.850× 1013

ρX(12C) 1.520× 1013 2.544 2.606× 1012 3.797 1.874× 1011

ρX(16O) 3.589× 107 3.262 3.742× 106 3.714 2.851× 105

ρX(56Fe) 3.590× 107 3.263 3.739× 106 3.713 2.852× 105
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Table 11. Helium flame initial
condition parameters.

parameter value

ρfuel 2× 107 g cm−3

Tfuel 5× 107 K

Xfuel(
4He) 1.0

Tash 3.6× 109 K

Xash(56Ni) 1.0
Lx 256 cm

xint 0.4Lx
δblend 0.06Lx

the flame here, because of the large number of timesteps (∼ 106) needed to get ignition and
the extreme nonlinearity of the burning. Instead, we wish to demonstrate that the SDC-4
method can evolve a flame using only the simple Newton iterations for the solution instead
of needing to solve an ODE system as we do with Strang-split methods.

We start by defining a fuel state in terms of density, temperature, and composition: ρfuel,
Tfuel, Xfuel. From these conditions, we define an ambient pressure through the equation of
state:

pambient = p(ρfuel, Tfuel, Xfuel) (90)

We keep the pressure constant throughout the domain. We then define an ash temperature
and composition, Tash and Xash, and we smoothly transition from the fuel to ash state as:

T = Tfuel +
1

2
(Tash − Tfuel)

[
1− tanh

(
x− xint

δblend

)]
(91)

Xk = Xfuel,k +
1

2
(Xash,k −Xfuel,k)

[
1− tanh

(
x− xint

δblend

)]
(92)

and find the ash density by constraining the conditions to be isobaric with the fuel through
the equation of state:

ρash = ρ(pambient, Tash, Xash) (93)

Here, xint is the location of the initial transition between ash (on the left) and fuel (on the
right), and δblend is the width of the transition. The remaining thermodynamic quantities
are found via the equation of state. We use a domain [0, Lx] with simple zero-gradient
boundary conditions. The parameters used for our simulation are shown in Table 11.

We use the Newton solver with an analytic Jacobian. We set the tolerances as: εrel,ρ =

10−10, εrel,(ρX) = 10−10, εrel,(ρe) = 10−6, and εabs = 10−10. We run with an advective CFL
number of C = 0.75 and use 256 zones. We also use the diffusion limiter described above
(Eq. 84), and an additional limiter based on the nuclear energy generation rate, which helps
reduce the timestep right as the flame is igniting. This sets the timestep to be:

δtnuc = ζ
e

Ṡ
(94)
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Figure 9. A helium flame run with the SDC-4 algorithm.

The idea is to not let nuclear reactions change a cell’s internal energy, e, by more than a
fraction ζ . We use ζ = 0.25 for these simulations. It is still possible for rapidly increasing
energy generation to violate this limiter, since we use the current timestep’s state to predict
the δtnuc for the next step.

Figure 9 shows the temperature and energy generation rate in flame at several instances
in time, We see that diffusion and reactions slowly increase the temperature at the fuel-ash
interface during the early evolution before the flame rapidly ignites. At the final point in
the evolution, the flame still has not reached a steady state. This problem demonstrates that
the SDC-4 algorithm works well with more extensive networks.
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6. SUMMARY

We showed that spectral deferred corrections can lead to high-order coupling of hydrody-
namics and reactions for astrophysical problems. Aside from the shock tubes and example
flame, we focused on smooth problems so we could measure convergence. We saw that we
can achieve fourth-order convergence in reacting flow problems with stiff reaction sources
using the SDC coupling. This work provides a path for doing multiphysics time evolu-
tion to higher than second-order temporal accuracy. Extensions to this include self-gravity,
including the conservative formulation described in Katz et al. (2016). We would need to
solve the Poisson equation at each time node, for each iteration. Using geometric multigrid,
we would expect the later iterations to converge quickly when we start with the potential
from the previous iteration. There are also extensions to radiation, like that explored to
second-order in Sekora & Stone 2009. Finally, we will expand this methodology adaptive
mesh refinement with subcycling in time.

In a follow-on paper, we will explore burning fronts more thoroughly, including deflagra-
tions and detonations, where it has been shown that resolution is key to avoiding spurious
numerically-seeded detonations (Katz & Zingale 2019), so higher-order methods may help.
We also want to understand how the improved coupling helps with nuclear statistical equi-
librium attained in the ashes. Finally, our main science target is modeling flame spreading
in X-ray bursts, where the wide range of length scales makes resolved simulations chal-
lenging (Zingale et al. 2019), so the push to fourth-order reactive hydrodynamics should
help. We’ve demonstrated that we have the necessary physics to fourth-order accuracy for
our models of X-ray bursts. We focused on Cartesian geometry here. The extension to
axisymmetric flows is straightforward, but requires deriving the fourth-order interpolants
in that geometry. We will consider that in a separate study.

It is straightforward to adapt an existing method-of-lines hydrodynamics code to use this
SDC integration technique. The main piece needed is access to the instantaneous reaction
rates, instead of relying on a network integration package. The methodology presented
here can also be extended to radiation and implicit diffusion to enable higher time-order
and better coupling, and could be useful as well for fully implicit hydrodynamics schemes,
including those used by stellar evolution codes. It can also be easily adapted to cosmo-
logical flows with chemistry. Finally, there are a large number of variations on the SDC
approach shown here. We could use a different quadrature rule for the integral or subcycle
on the reactions, if needed. We will explore variations in future papers.
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APPENDIX

A. JACOBIAN

For solving the nonlinear update of the reacting system, we need to compute the Jacobian,
∂R/∂ U . We do this in two pieces, ∂R/∂w and ∂w/∂ U . We will show two species here,
called Xα and Xβ , so the structure of the matricies is clear when there are multiple species.
We need to compute ∂w/∂ U , with w = (ρ,Xα, Xβ, T )ᵀ. For this transformation, we need
to pick only one of (ρE) or (ρe). We show the Jacobian for both choices, denoting the state
as U (E) when we include (ρE) and as U (e) when we include (ρe),

U (E) =


ρ

ρXα

ρXβ

ρE

 U (e) =


ρ

ρXα

ρXβ

ρe

 (A1)

http://github.com/AMReX-Astro/Castro
https://gcc.gnu.org/
https://www.kernel.org
http://matplotlib.org/
https://www.python.org/
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The Jacobian transformation ∂ U/∂w for each of these conserved state choices can be
written down straightforwardly as:

∂ U (E)

∂w
=


1 0 0 0

Xα ρ 0 0

Xβ 0 ρ 0

ρeρ + e+ 1
2
U2 ρeXα ρeXβ ρeT

 ∂ U (e)

∂w
=


1 0 0 0

Xα ρ 0 0

Xβ 0 ρ 0

ρeρ + e ρeXα ρeXβ ρeT


(A2)

where we use the following notation for compactness:

eρ =
∂e

∂ρ

∣∣∣∣
T,Xk

eT =
∂e

∂T

∣∣∣∣
ρ,Xk

eXk =
∂e

∂Xk

∣∣∣∣
ρ,T,Xj,j 6=k

(A3)

and the inverses (computed via SymPy, see the included Jupyter notebook) are:

∂w

∂ U (E)

=


1 0 0 0

−Xα
ρ

1
ρ

0 0

−Xβ
ρ

0 1
ρ

0

(ρeT )−1 (∑
kXkeXk − ρeρ − e+ 1

2
U2
)
− eXα

ρeT
−
eXβ
ρeT

1
ρeT

 (A4)

and

∂w

∂ U (e)

=


1 0 0 0

−Xα
ρ

1
ρ

0 0

−Xβ
ρ

0 1
ρ

0

(ρeT )−1 (
∑

kXkeXk − ρeρ − e) −
eXα
ρeT
−
eXβ
ρeT

1
ρeT

 (A5)

The reaction vector is the same regardless of the choice of (ρE) or (ρe), as

R =


0

ρω̇α

ρω̇β

ρṠ

 (A6)

and the Jacobian is computed as ∂R/∂w:

∂R

∂w
=


0 0 0 0

ω̇α + ρ∂ω̇α
∂ρ

ρ ∂ω̇α
∂Xα

ρ ∂ω̇α
∂Xβ

ρ∂ω̇α
∂T

ω̇β + ρ
∂ω̇β
∂ρ

ρ
∂ω̇β
∂Xα

ρ
∂ω̇β
∂Xβ

ρ
∂ω̇β
∂T

Ṡ + ρ∂Ṡ
∂ρ

ρ ∂Ṡ
∂Xα

ρ ∂Ṡ
∂Xβ

ρ ∂Ṡ
∂T

 (A7)

The first row of zeros is not as alarming as it looks, since the full Jacobian has the form
J = I− δtm(∂R/∂w)(∂w/∂ U).
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