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Abstract 

Child-directed speech (CDS) is a talking style adopted by 

caregivers when they talk to toddlers (Snow, 1995). We 

consider the role of distributional semantic features of CDS 

in language acquisition. We view semantic structure as a 

manifold on which words lie. We compare the semantic 

structure of verbs in CDS to the semantic structure of child 

speech (CS) and adult-directed speech (ADS) by measuring 

how easy it is to align the manifolds. We find that it is easier 

to align verbs in CS to CDS than to align CS to ADS, 

suggesting that the semantic structure of CDS is reflected in 

child productions. We also find, by measuring verbs vertex 

degrees in a semantic graph, that a mixed initialized set of 

verbs with high degrees and medium degrees has the best 

performance among all alignments, suggesting that both 

semantic generality and diversity may be important for 

developing semantic representations.  

Keywords: child-directed speech; lexical development; 
manifold learning; distributional semantics; graph theory 

Introduction 

One of the biggest puzzles in cognitive science is how 

children learn language from language input, namely child-

directed speech. Child-directed speech is characterized by 

simplified sentence structures, restricted vocabulary, 

exaggerated intonation, and hyperarticulation, and previous 

work has proposed that these features facilitate language 

acquisition (Golinkoff and Alioto, 1995; Snow, 1995; 

Thiessen, Hill, and Saffran, 2005). Here, we compare the 

semantic spaces of child speech, child-directed speech and 

adult-directed speech, spanned by verbs, using state-of-the-

art computational tools.  

The contributions of this paper are both theoretical and 

methodological. Theoretically, we explore various proposals 

about roles of verbs meanings in CDS, represented using a 

state-of-the-art distributional semantics approach. 

Distributional methods map each word to a point in high-

dimensional space so that words with similar meanings are 

near each other. We view the semantic structure of the 

vocabulary as a high-dimensional surface in this space, called 

a manifold, and compare manifolds estimated from CDS to 

manifolds estimated from child speech (CS) and adult-

directed speech (ADS). Young children often broaden the use 

of nouns and verbs and we model such differences in word 

meaning as a mismatch of data points in a semantic space.  

Methodologically, we adapt a novel semi-supervised 

manifold alignment algorithm to compare semantic spaces 

(Ham et al, 2005), which maps two manifolds into a common 

subspace to measure the similarity of these manifolds. This 

algorithm takes as input a subset of initial points that must be 

aligned (i.e., pairs of points, one on each manifold, that 

correspond to the same verb), and produces an alignment for 

the rest of the verbs. We then measure the similarity of the 

manifolds in terms of the accuracy of the alignment: how 

often a verb is mapped to the same region of the common 

subspace. 

We find that alignment between the CS and CDS is more 

accurate than the alignment between CS and ADS. 

Additionally, we obtain more accurate alignments when 

using verbs with many nearest neighbors (which have 

broader meanings) as the initial points than verbs with few 

near neighbors. Together, these results indicate that the 

semantic structure of CS reflects the semantic structure of 

CDS, and verbs with broad meanings may provide useful 

cues to children in acquiring the overall semantic structure of 

verbs. On the one hand, what children can learn from CDS 

deviates semantically from unfamiliar conversations in ADS, 

which suggests that further learning is required. On the other 

hand, caregivers might align their semantic spaces to 

children’s semantic spaces, which lies within the general 

framework of conversational alignment (Pickering & Garod, 

2004). 

Model Setting 

We combine models from two different traditions into a 

general framework of semantic representation. To compare 

the semantic spaces of CS, CDS and ADS, we use a manifold-

based algorithm. The similarities between semantic spaces 

are measured by how easy it is to map one semantic space to 

another. We represent the meaning of each verb by using the 

global vector model (Pennington, Socher & Manning, 2014) 

to embed words into a 50-dimensional space, which we call 

a semantic space. . Following the associationist tradition in 

psychology (Anderson, 1973), we represent the meaning 

structure of the verbal lexicon as a whole by considering how 

a collection of verbs is situated in this space, as expressed by 

a neighborhood graph (Steyvers & Tenenbaum, 2005). 
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Estimating verb meanings from different datasets produces 

different semantic spaces, and we compare the spaces using 

a semisupervised manifold alignment algorithm (Ham et al., 

2005). This algorithm maps verbal semantic graphs into a 

common semantic space and discovers the data point 

correspondences by finding pairs of points with the smallest 

Euclidean distances.  

Lexical Semantic Representation 

The past three decades saw efforts to model the mental 

representation of concepts (Launder & Dumais, 1997). The 

inspiration for recent computational work on lexical 

semantics dates back to Harris’s (1954) hypothesis that 

synonymous words appear in similar contexts.  

One of the most successful semantic representation models 

is proposed by Launder & Dumais (1997), known as Latent 

Semantic Analysis (LSA), which uses word-context co-

occurrence matrices  to produce a low-dimensional 

representation by singular value decomposition. The lexical 

semantic representation model used in this paper is based on 

a state-of-the-art algorithm, GloVe (Pennington, Socher & 

Manning, 2014), which is an extension of LSA. Instead of 

explicitly decomposing a word-context co-occurrence 

matrix, GloVe implicitly decomposes a word-context log-

frequency matrix. GloVe uses a weighted regression 

objective function to reconstruct a log word-context count 

matrix log( X ) with bias terms, as shown in Equation (1), 

where w and b are bias vectors,  X is the co-occurrence matrix 

and f is a heuristic weighting function. The optimization 

problem is iteratively solved using AdaGrad (Duchi, Hazan 

& Singer, 2011). 

 

𝐽 =  ∑ 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇�̃�𝑗 + 𝑏𝑖 + �̃�𝑗 − log𝑋𝑖𝑗)2𝑉

𝑖,𝑗=1      (1) 
 

Even though GloVe has better performance than traditional 

singular-value-decomposition-based LSA, careful analysis of 

the objective function suggests that GloVe is fundamentally 

probabilistic matrix factorizations (Levy & Goldberg, 2014).  

Semantic Graphs 

The manifold alignment algorithm we use approximates the 

underlying manifold by constructing a similarity graph G = 

(V, E), where the vertex set V is the set of verbs and the edge 

set E is a set of pairs of verbs that are near to each other. The 

weight of an edge is set to the cosine similarity between the 

verbs associated by the edge. The degree of a vertex is the 

sum of weights of all the edges linking to the vertex. In 

semantic networks, vertex degrees can be interpreted as 

contextual diversity. There are several ways to build such a 

similarity graph. Ozaki et al (2011) found that undirected 

mutual k nearest neighbor (mkNN) graphs give good 

performance for alignment of natural language data, so we 

use mkNN graphs. An mkNN graph has an edge (𝑣1 , 𝑣2 ) if 

either 𝑣1 or 𝑣2 is within the k nearest neighbors of the other. 

We set k to 15 for the first experiment. In the second 

experiment, we increase k to 20 to better investigate the 

degree effects. The unnormalized graph Laplacian (L) of 

graph W is defined in Equation (2). D is the degree matrix, a 

diagonal matrix with vertex degrees on the diagonal. 
 

𝐿 = 𝑊 − 𝐷 (2) 
 

We use a symmetric graph Laplacian normalized by vertex 

degree (Shi & Malik, 2000), as 
 

𝐿𝑠𝑦𝑚 = 𝐷−1 2⁄ 𝐿𝐷−1 2⁄ = 𝐼 − 𝐷−1 2⁄ 𝑊𝐷1 2⁄     (3) 

Aligning Semantic Spaces 

We compare the semantic spaces of CS, CDS and ADS using 

the semisupervised manifold alignment algorithm. A 

manifold is defined as a topological structure with every local 

point with a neighborhood similar to a Euclidean space. The 

goal of the manifold alignment algorithm is to pair up data 

points from two high-dimensional data sets. For example, the 

algorithm aims to match give in CS to give in CDS. A 

semisupervised algorithm, using both labeled and unlabeled 

data as input, combines the strength of supervised and 

unsupervised learning. The general goal of manifold 

alignment is to map two high-dimensional data sets to a 

common low-dimensional space simultaneously (Ham et al., 

2005), which essentially is an extension of manifold-based 

nonlinear dimensionality reduction (Belkin & Niyogi, 2003). 

Manifold-based methods are based on the geometric 

assumption that data in high dimensional space lie in low-

dimension manifolds.  

Ham et al.'s algorithm defines a function f that maps the first 

manifold to a common space, and a function g that maps the 

second manifold to a common subspace. These functions 

strike a tradeoff between mapping labeled pairs to the same 

point in the common space, and respecting local structure on 

the original manifolds as expressed by the graph 

Laplacian Lx for the first space and Ly for the second space. 

As we have both labeled (l) and unlabeled (u) 

points, Lx and Ly are block matrices: 

 

𝐿𝑥 = [
𝐿𝑙𝑢

𝑥 𝐿𝑢𝑙
𝑥

𝐿𝑙𝑢
𝑥 𝐿𝑢𝑢

𝑥 ]         (4) 

 

The cost of the mapping is then: 

 

�̃�(𝒇, 𝒈) =
𝐶(𝒇,𝒈)

𝒇𝑇𝒇+ 𝒈𝑇𝒈
         (5) 

 

where μ expresses the tradeoff between mapping points 

exactly and preserving local structure on the original 

manifolds. The first term is the sum of distances between 

paired data points in the common space, and the second two 

terms represent faithfulness to the graph Laplacian. Ham et 

al. point out that Equation 4 is unsuitable for optimization, 

since it ignores simultaneous scaling of f and g, and so 

instead minimize the Rayleigh quotient: 
 

𝐶(𝒇, 𝒈) = μ ∑ |𝑓𝑖 − 𝑔𝑖|2
𝑖 + 𝒇𝑇𝐿𝑥𝒇 + 𝒈𝑇𝐿𝑦𝒈    (6) 

 

We set μ to positive infinity to impose a hard constraint 

for labeled pairs to be mapped directly on top of each other. 
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The analytic solution to the optimization is then given by the 

generalized graph Laplacian Lz in Equation 7. 

 

𝐿𝑧 = [

𝐿𝑙𝑙
𝑥 + 𝐿𝑙𝑙

𝑦
𝐿𝑙𝑢

𝑥 𝐿𝑙𝑢
𝑦

𝐿𝑢𝑙
𝑥 𝐿𝑢𝑢

𝑥 0

𝐿𝑢𝑙
𝑦

0 𝐿𝑢𝑢
𝑦

]         (7) 

 
The semisupervised manifold alignment algorithm adopted 

from Ham et al. 2005 is described in Algorithm 1.  

 

Algorithm 1: Semisupervised Manifold Alignment 

Algorithm (Ham et al., 2005) 

 

Input: data points from two data sets, with N initially 

aligned data point pairs 

Output: a matching of data points 

1. Construct similarity graphs G1, G2, for both data sets 

respectively, using mkNN 

2. Compute the symmetric graph Laplacians of G1 and 

G2, Lx and Ly, using Equation (3) 

3. Compute a graph Laplacian for a joint graph Lz using 

Equations (6) and (7) 

4. Compute the eigenvectors of Lz and take eigenvectors 

corresponding to the smallest non-zero eigenvalues, the 

results of which are the vectors in a lower-dimensional 

space 

5. Find the data points with smallest Euclidean distance 

weighted by the inverse of their respective eigenvalues 

 

Experiment Setup 

Corpora 

The training set for CDS and CS is a combined data set from 

CHILDES (MacWhinney, 2000), which consists of all the 

data on American English-speaking monolingual 3 to 7 year-

old children with typical language and cognitive 

development, excluding diary studies. To simplify data 

collection, only utterances annotated as child are considered 

child speech and only utterances annotated as mother and 

father are considered as child-directed speech. The CS and 

CDS corpora contain 5 million and 9 million word tokens, 

respectively. To prevent the CS from being similar to CDS 

purely due to priming effects, we divided the data into two 

halves so that the CDS and CS data were not drawn from the 

same contexts  

Our ADS data is drawn from the spoken portion of the 

Corpus of Contemporary American English (COCA, Davies, 

2008). Although this data may differ from more casual 

conversations, it provides a large amount of spontaneous 

speech in the form of unscripted conversations from 150 

television and radio programs.  

Materials 

The target words used in this model are all verbs, which are 

understudied in the literature. We included the first 100 

English verbs acquired by infants (Fenson et al., 1994), the 

most frequent 200 English verbs in adult language 

productions (Davies, 2008) and verbs that appear in three 

common constructions (Levin, 1993).  

The classes of verbs are the ones that appear in 3 

constructions: the ditransitive (John gave Mary a book), the 

locative (The man loaded hay onto a truck) and the conative 

(The police shot at the criminal). Since CHILDES suffers 

from data sparcity, verbs missing in either CS or CDS were 

excluded from analysis. We end up with 811 data points for 

CS, CDS and spoken COCA respectively. 

Data Preprocessing 

The adult-directed speech data from spoken COCA and the 

child speech and child-directed speech data from CHILDES 

data were preprocessed using regular expressions. Verbs in 

different inflectional forms were treated as separate verb 

types.  

Model Training 

Global Vector Training We used the implementation of 

GloVe from the Stanford NLP website to train 50-

dimensional vectors for each of our three datasets 

(Pennington, Socher & Manning, 2014). We trained each set 

of vectors for 50 epochs with a context window size of 10, 

used a frequency cut-off of 2 for the CS and CDS datasets 

and a cut-off of 10 for the ADS dataset. 

Similarity Graph Construction We construct mkNN 

graphs consistently throughout this paper. In the first 

simulations, we fix the number of mutual nearest neighbors 

to 15. In the second simulation, we test the effect of vertex 

degrees and we set the number of mutual nearest neighbors 

to 20 to increase the range of vertex degree.  

Manifold Alignment The parameters that we need to 

specify in the manifold alignment module include the initial 

labeled alignments and the dimensionality of the manifold. 

In addition to the number of labeled data, the identity of the 

labeled data can also influence the quality of alignment. The 

dimensionality of the manifold controls the abstraction of 

semantic information contained in the word vectors. The 

lower the dimension, the more abstract the representation.  

Evaluation 

Because the alignment algorithm pairs up labeled data points 

exactly, we only evaluate alignments on unlabeled data. We 

use a random alignment averaged over 5 times as the baseline 

condition. Ideally, corresponding data points from two data 

sets should be mutual nearest neighbor in the lower 

dimensional space. We relax the evaluation requirements by 

giving every alignment a k-nearest neighborhood evaluation 

radius. If one data point is one of the k-nearest neighbors of 

the corresponding point, we take it as a hit. When the 

evaluation neighborhood radius equals 1, the measures 

quantify the exact alignment.  
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Simulation 1: Mapping CS to CDS and COCA 

In this section, we demonstrate that CS-CDS alignment is a 

less demanding task than CS-COCA alignment even when 

potential priming effects from linguistic and non-linguistic 

contexts are removed. We also predict that with the increase 

of labeled data, the alignment accuracy also increases. 

Method 

We performed verb semantic graph alignments of CS to CDS 

and to ADS for alignment spaces of dimensionality from 5 to 

30. The unlabeled precisions are evaluated by the window-

size at 1 and at 20, as demonstrated in the contour heat maps 

in Figure 1. The colors of different areas in the contours 

indicate different levels of unlabeled accuracy and the data 

points with the same unlabeled accuracy are connected by the 

isolines in the maps. 

 

 
Figure 1 Accuracies of mapping CS to CDS and COCA 

Results 

The general trend is that the highest unlabeled precisions are 

found in the upper right corners of the contour maps whereas 

the lowest unlabeled precisions tend to lie close to the x-axis. 

The dimensionality of the embedding space can be 

interpreted as the granularity of children’s representations.  

The result of the alignments is demonstrated graphically in 

Figures 1 and 2. In the alignments from CS to CDS and CS 

to COCA, the CS-COCA alignment achieves only 50% to 

60% of the unlabeled precision of the CS-CDS alignment. 

The unlabeled precision of the CS-CDS alignment is 

consistently higher than the unlabeled precision of the CS-

COCA alignment across all conditions. Both alignments have 

much larger unlabeled accuracy than the random baseline.  

The CS data are aligned to both the spoken COCA and 

CDS corpora. The CS-CDS alignment precision wins over 

the CS-COCA precision across all conditions. In other words, 

child speech is much easier to map to child-directed speech 

than to spoken COCA. This easier alignment can be 

interpreted as similarity in semantic spaces across corpora.  

Since the CS and the CDS word vectors are trained on 

speech data from different experiments, the relative similarity 

between CS and CDS lexical semantics, this similarity does 

not reflect mere priming effects. There are two possible 

interpretations for this result. First, the result can be viewed 

as an imitation effect in which children mirror child-directed 

speech semantically. Second, adult caregivers might adapt 

their mental representations to children’s when they talk to 

children, which sits well with the conversational alignment 

theory (Pickering & Garrod, 2004). The big semantic gap 

between initial language input and adult-to-adult 

conversations on TV shows or radios suggests that learning 

from CDS alone is not sufficient for real world language 

processing. Adapting to TV or radio conversations constitute 

one part of further learning, which supports a continuous 

theory of language development.  

Simulation 2: Semantic generality 

In Simulation 2, we use a fixed list of labeled data to 

investigate the effect of initialization in alignment, instead of 

random initialization. The motivation is that language 

scientists argue for the importance of a few important “path-

breaking” word exemplars in language learning (Ninio, 1999; 

Goldberg, Casenhiser & Sethuraman, 2004). Some words 

attract more vertices than others, which is known as 

preferential attachment in network growth (Steyvers & 

Tenenbaum, 2005). We evaluate the proposal that 

semantically general verbs are better starting points for 

language learning than semantically specific verbs, by 

measuring the vertex degrees.  

 
Figure 2 Unlabeled accuracies of CS-CDS and CS-COCA 

alignments with a random alignment as the baseline 

 

The degree of a vertex measures the association between a 

vertex and its neighboring vertices. The prediction is that 

vertices with large degree are better labeled data than vertices 

with small degree. Cognitively, the verbs with high degree 

are semantically general verbs whereas the verbs with low 

degree are the ones with less general meanings.  

Method 

Verbs are ranked based on their vertex degree in a semantic 

network. As shown in Table 1, what we use as labeled data is 

100 verbs with the largest degrees, 100 with the smallest 

degrees, and medium-degree verbs with degree rank of 201 
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to 300. We also mixed half of high degree verbs with half of 

medium degree verbs in the mixed condition. The baseline 

condition is averaged over 5 random initializations. We set 

the number of mutual nearest neighbors, the evaluation 

radius and the dimensionality all to 20. 

Results 

The alignment precisions shown in Figure 3 show a clear 

advantage of high-degree and medium degree conditions 

over the low degree condition, but both high-degree and low-

degree have below random performances. We can also see an 

advantage of medium degree initialization, which is parallel 

to the basic level categorization theories. When we use a 

mixed set of high-degree and medium-degree verbs, we get 

the best results on all the conditions, which suggests that a 

diverse-degree initialization facilitates semantic space 

alignment.  

 

Table 1: Verbs with the largest, medium and smallest 

vertex degrees in ADS 

 

largest medium smallest 

get 

go 

want 

put 

think 

giving 

tearing 

taken 

poured 

tipping 

tickles 

points 

shooting 

design 

tapping 

General Discussion 

In Simulation 1, we demonstrate that CS has semantic 

properties very similar to CDS in comparison to ADS. This 

result supports a usage-based approach to language 

acquisition: children imitate their caregivers. The results can 

be interpreted in multiple perspectives. First, the result 

suggests that child speech is built upon restricted linguistic 

contexts. One of the biggest characteristics of human memory 

is context-dependency. Early language experience is built 

upon restricted contexts and usages requires further learning 

to achieve the adult form. Second, child-directed speech is 

used in young children’s living environments. Children seem 

to use words highly consistent with their caregivers. Third, 

talking to children in child-directed speech is a double-edged 

sword. On the one hand, children might have an easier time 

initializing their language capacities at an early language 

development stage because their hypothesis space is 

restricted by child-directed speech. On the other hand, the 

mismatch between child-directed speech and adult-directed 

speech requires children to shift their semantic 

representations at later development stages.  

In Simulation 2, we show empirically that semantically 

moderately general verbs are better starting points for 

language development. Our simulations show mixed results 

for the “path-breaking” argument that semantically generic 

verbs are important for language learning (Ninio, 1999). Our 

results suggest that both semantic generality and semantic 

diversity play a role here. Although semantically general 

verbs help in general, verbs that are semantically too general 

may not be that helpful.  

 

 
Figure 3 Unlabeled accuracies of alignments with high-

degree, medium-degree, low degree, mixed-degree and 

random initializations 

Speaker Normalization by Manifold Alignment 

In speech recognition and perception, speaker normalization 

is the task of automatically adjusting to acoustic differences 

between different speakers. Our work is inspired by Plummer 

et al. (2010), who proposed manifold alignment as an account 

for how young children learn to handle phonetic variability 

in vowel production during language acquisition. 

Aside from working with semantic, rather than acoustic, 

representations, our work differs from theirs in two respects. 

First, they used synthesized data as input, while we used 

naturalistic corpus data. Second, since two token 

pronunciations of vowels will never be the same, they 

imposed only a soft alignment constraint that labeled pairs be 

aligned, while we imposed a hard constraint. 

Crosslinguistic Alignment of Polysemous Words 

Youn et al. (2016) investigated semantic universals by 

constructing networks of corresponding polysemous nouns 

from 81 languages sampled from different language families. 

Using an approach reminiscent of thesaurus-based synonym 

induction, they established semantic correspondences 

between nouns using bilingual dictionaries. The target 

polysemous words were selected from the Swadesh 200 basic 

vocabulary list. The procedure described in this paper is 

automatic and takes into consideration the matching of 

semantic spaces in one language, whereas Youn and 

colleagues manually establishes semantic correspondences 

for a few basic words in bilingual data.  

Conclusions 

The contribution of this paper is a novel integrated 

framework that compares semantic spaces of children and 

their caregivers based on naturalistic language productions. 

We combined methods from three traditions, distributed 

semantic representations, graph theory, and manifold 
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alignment, into one framework for approaching the semantic 

structure of the lexicon. We used naturalistic language 

productions from CHILDES to compare the semantic spaces 

spanned by verbs and demonstrated that (i) that CDS is more 

similar to ADS than CS in terms the semantic spaces spanned 

by verbs and that (ii) verbs with relatively large and diverse 

degrees are especially useful for aligning semantic structures.  

While the general computational framework proposed in 

this paper does not provide an account of how children might 

exploit this manifold-based and graph-theoretic information, 

it does suggest that useful information about the structure of 

the adult lexicon is available to children. Even though our 

framework is on the computational level, using Marr’s 

terminology (1982), it is very likely that semantic manifold 

alignment plays a role in children’s semantic development. 

Additionally, this framework may be of use to other fields 

that are interested in the semantic structure of different 

lexicons. For example, this approach may be useful for 

performing semantic comparisons between 

languages or across time over the course of language 

change, and understanding the semantic organization of 

bilingual lexicons. 
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