Lawrence Berkeley National Laboratory

Recent Work

Title

NEW SPECTROSCOPIC MEASUREMENTS VIA EXOTIC NUCLEAR REARRANGEMENT: THE 26Mg(7Li,8B)25Ne REACTION.

Permalink https://escholarship.org/uc/item/0gm620kg

Authors

Wilcox, K.H. Jelley, N.A. Wozniak, G.J. <u>et al.</u>

Publication Date

1973-02-01

Submitted to Physical Review Letters LBL-1644 Preprint ?/

NEW SPECTROSCOPIC MEASUREMENTS VIA EXOTIC NUCLEAR REARRANGEMENT: THE ²⁶Mg(⁷Li, ⁸B)²⁵Ne REACTION

· · / / .

K. H. Wilcox, N. A. Jelley, G. J. Wozniak, R. B. Weisenmiller, H. L. Harney, and Joseph Cerny

February 1973

Prepared for the U.S. Atomic Energy Commission State V 20 under Contract W-7405-ENG-48

CLEWICS AND DODUMENTS SECTION

For Reference

Not to be taken from this room

LBL-1644 م

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

0 0 0 0 0 9 0 - 2 9 6

LBL-1644

NEW SPECTROSCOPIC MEASUREMENTS VIA EXOTIC NUCLEAR REARRANGEMENT: THE ²⁶Mg(⁷Li,⁸B)²⁵Ne REACTION *

K. H. Wilcox, N. A. Jelley, G. J. Wozniak, R. B. Weisenmiller, H. L. Harney[†], and Joseph Cerny

> Lawrence Berkeley Laboratory and Department of Chemistry University of California Berkeley, California 94720

> > February 1973

Abstract:

U

A 79 MeV ⁷Li beam and counter telescope techniques were employed to observe the ${}^{26}Mg({}^{7}Li, {}^{8}B){}^{25}Ne$ reaction. The cross-section to the ground state was ~ 350 nb/sr at forward angles and its Q-value was -22.05±0.10 MeV, corresponding to a ${}^{25}Ne$ mass excess of -2.18±0.10 MeV. Five excited states were also observed at 1.65±0.05, 2.03±0.05, 3.25±0.08, 4.05±0.08, and 4.7±0.1 MeV.

Although all of the $T_z = (N-Z)/2 = 5/2$ nuclei from ¹¹Li to ³⁵P (except ¹³Be) are known to be particle stable, many of their masses are not yet accurately known and no data on the positions of their excited states are available.¹ Knowledge of their masses and energy levels is important because it permits the testing of systematic mass relations and the comparison of experimental with theoretical level schemes for nuclei in a region far from stability. Spectroscopic information on such neutron-excess nuclei has been difficult to obtain via "in-beam" reactions since a large isospin transfer is required in the production process. Unusual heavy-ion rearrangement

LBL-1644

(J)

reactions may then be an excellent means of overcoming this restriction. In this spirit, we have investigated the feasibility of using the $({^7}\text{Li}, {^8}\text{B})$ reaction $(|\Delta T_{_{7}}| = 3/2)$ as a prototype for such studies.

By bombarding ²⁶Mg with a 79 MeV ⁷Li²⁺ beam from the Lawrence Berkeley Laboratory 88-inch cyclotron, we have successfully detected ⁸B nuclei from the ²⁶Mg(⁷Li,⁸B)²⁵Ne reaction (Q = ~ -22 MeV), determining the mass of ²⁵Ne and, for the first time, the level structure of a T_z = 5/2 nucleus in the very light elements. Reactions yielding ⁸B nuclei are particularly suitable for the study of neutron-excess isotopes for several reasons. Proton-rich ⁸B is the lightest, particle-stable T_z = -1 nuclide and the fact that both ⁷B and ⁹B are proton-unbound simplifies its identification. Further, since all excited states of ⁸B particle decay, any possible "shadow peak" problems are eliminated.

This reaction was studied utilizing a lithium beam produced with a PIG-type internal ion source.² Cathode buttons were employed which consisted of a mixture of 20% LiF and 80% tungsten pressed into a tantalum shell under very high pressure. Erosion of the buttons by the arc maintained a partial pressure of lithium in the source. Additional lithium was supplied by a perforated cylindrical tantalum sleeve loaded with fused LiF which was inserted in the anode. Maximum long-term beam intensities of approximately 200 nA (3+) on target were obtained with a low arc power which slowly vaporized the LiF over a period of ~ 4 hours.

The maximum energy ⁷Li²⁺ beam (78.9 MeV) was used to bombard a 99.4% isotopically enriched, self-supporting ²⁶Mg target of thickness 150 μ g/cm². The energy of the beam was determined using a high-precision analyzing magnet.³

-2-

0.00000000000

LBL-1644

Outgoing ⁸B particles were detected in two counter telescopes, each subtending a solid angle of 0.43 msr, located on opposite sides of the beam. These telescopes consisted of two ΔE detectors (denoted $\Delta E2$ and $\Delta E1$) 15 μ and 11 μ thick, respectively, a 200 μ E detector and a 500 μ reject detector. After a fast coincidence among the first three detectors restricted the origin of all allowed events to a single beam burst, two particle identifications (P.I.) were performed and compared using the signals from the successive ΔE detectors and the E detector. ⁴ Events in each system with an acceptable ratio of identifications (a stringent comparison eliminated ~ 50%) were sent via an analog-to-digital converter and multiplexer system to an on-line PDP-5 computer. Four parameters for each event ($\Delta E2$, $\Delta E1$, the total E signal, and a P.I. acquired using the summed ΔE pulses) were recorded on magnetic tape for later detailed analysis, and were also sorted on-line to give ⁸B and ¹⁰B energy spectra.

Figure 1 presents a particle identification spectrum showing good separation in the region of the boron isotopes. (This figure also indicates that a few ¹⁰C particles were identified. However, the yield and selectivity of the ²⁶Mg(⁷Li, ¹⁰C)²³F reaction were such that no information on ²³F could be obtained in these experiments.) To further reduce possible background in the ⁸B region, a two-dimensional Δ E2 and Δ E1 versus total energy analysis was done off-line. A small percentage of additional events could be eliminated in this manner.

An energy calibration for the ⁸B data was acquired by concurrently observing ¹⁰B particles at $\theta_{lab} = 10^{\circ}$, 15°, and 20° from the ²⁶Mg(⁷Li, ¹⁰B)²³Ne reaction. Periodic stability checks of the electronics were obtained and linearity was established by utilizing a high-precision pulser, which had been calibrated by alpha-particles from a ²¹²Pb source. In the off-line analysis,

LBL-1644

()

corrections were made to individual ${}^{8}_{B}$ events to allow for slight gain changes and beam energy shifts. Reactions yielding ${}^{8}_{B}$ nuclei from possible 12 C and 16 O contaminants were not seen. Kinematic shifts (from 10° to 15°) of all the observed peaks were only consistent with reactions induced on ${}^{26}_{Mg}$.

Two independent investigations of the ${}^{26}\text{Mg}({}^7\text{Li}, {}^8\text{B})^{25}\text{Ne}$ reaction were made. The ${}^8\text{B}$ data collected at $\theta_{1ab} = 10^\circ$ during run 2 are shown in Fig. 2a. Figure 2b is a composite spectrum of these same data plus $\theta_{1ab} = 15^\circ$ data taken during both runs 1 and 2 and kinematically corrected to 10° . The crosssections for population of the ground state at 10° and 15° were similar and were about 350 nb/sr. In addition to the ground state, five excited states of ${}^{25}\text{Ne}$ can be seen at excitation energies of 1.65 ± 0.05 , 2.03 ± 0.05 , 3.25 ± 0.08 , 4.05 ± 0.08 , and 4.7 ± 0.1 MeV. Counts on the high energy shoulder of the 3.25 MeV peak are inconsistent with the observed ${}^{10}\text{B}$ resolution of ~ 200 keV and are inconclusive evidence for an additional excited state.

Unfortunately, no calculations are available on the level scheme of 25 Ne. From simple particle-hole theorems and the spherical shell model one might expect 25 Ne to possess a low-lying level structure similar to that of 27 Mg (J^T g.s. = 1/2⁺), whose first two excited states⁵ lie at 0.98 MeV (3/2⁺) and 1.70 MeV (5/2⁺). However, even for low excitations, the configuration space needed to describe 27 Mg adequately is probably larger than $(\pi d_{5/2})^{-2}(vs_{1/2})^{-1}$, as is indicated by some success⁵ in applying the Nilsson model to 27 Mg. There is, though, a marked similarity⁶ between the level spectra of 24 Ne and 18 O [hence 18 Ne] below ~ 4 MeV, which would support describing the lowest levels of 25 Ne by the $(\pi d_{5/2})^2(vs_{1/2})^1$ configuration. Using the matrix elements of Kuo and Brown, 7 a 1/2⁺ ground state; a 1.3 MeV, 5/2⁺ level; and a 2.1 MeV, $^{3/2^+}$ level are expected. The calculated ground state spin of $1/2^+$ agrees with that preferred by Goosman et al.⁸ in studies of the

-4-

0 0 0 0 0 0 9 0 1 2 9 8

LBL-1644

 β -decay of ²⁵Ne. The significance of the agreement with the observed excitation energies must await more detailed calculations, though one can conclude that the ground state of ²⁵Ne is likely to be well separated from excited states, as observed.

-5-

From the energy of the ⁸B ground state peak, the Q-value for the ${}^{26}Mg({}^{7}Li, {}^{8}B){}^{25}Ne$ reaction is found to be -22.05 ± 0.10 MeV, corresponding to a mass excess for ${}^{25}Ne$ of -2.18 ± 0.10 MeV. This is in good agreement with the two previous experimental results of -1.96 ± 0.30 MeV by Goosman <u>et al.</u>⁸ and -2.2 ± 0.3 MeV by Kabachenko <u>et al.</u>⁹ (see discussion in Ref. 8), both from β endpoint measurements arising in the decay of ${}^{25}Ne$.

Thibault and Klapisch,¹⁰ using the method of Garvey <u>et al</u>.¹¹ but with more recent data, predict a mass excess for ²⁵Ne of -1.28 MeV. By applying the "transverse" mass relation of Garvey and Kelson (Eq. (1) of Ref. 11) specifically, one obtains:¹²

 ${}^{25}\text{Ne} = {}^{24}\text{Ne} + ({}^{26}\text{Na} - {}^{24}\text{Na}) - ({}^{26}\text{Mg} - {}^{25}\text{Mg}) = -1.36 \text{ MeV}$. This discrepancy of ~ 800 keV is unusually large;¹¹ however, in this case it is not clear from a spherical shell model description of the nuclei involved that closer agreement should be expected. Among these nuclei, two of which are odd-odd, differing configurations arise for which the requisite cancellation of the two-body interactions is not obvious. A similar discrepancy appears in the "longitudinal" prediction (Eq. (2) of Ref. 11) for the mass excess of ${}^{24}\text{Ne}$: ${}^{24}\text{Ne} = {}^{23}\text{Ne} + ({}^{26}\text{Na} - {}^{24}\text{Na}) - ({}^{27}\text{Mg} - {}^{26}\text{Mg}) = -5.22 \text{ MeV},$ while experimentally ${}^{24}\text{Ne} = -5.95 \text{ MeV}.$

Recently the mass excess of 27 Na has been measured 13 (-5.88±0.14 MeV), enabling the longitudinal relation: 25 Ne = 24 Ne + (27 Na - 25 Na) - (28 Mg - 27 Mg) to be used to predict -2.04 MeV for the mass excess of 25 Ne. In this instance, this relation also arises from a simple shell model description of these nuclei in terms of $(\pi d_{5/2})^m (\nu s_{1/2})^n$ configurations.^{11,14} In order to investigate the approximations in this description, one can evaluate¹⁵ two further equivalent predictions, which employ the remaining appropriate known mass differences:¹⁴

25
Ne = 24 Ne + (27 Na - 25 Na) - (29 Al - 27 Al) + (29 Si - 28 Si) = -1.86 MeV, and
 25 Ne = 24 Ne + (28 Mg - 26 Mg) - (30 Si - 29 Si) = -2.21 MeV.

There is thus good agreement for the mass excess of 25 Ne between the values obtained from a shell model description (-2.04, -1.86 and -2.21 MeV) and the experimental result of -2.18 MeV. Comparison of a large-basis shell model calculation of the expected level scheme of 25 Ne with our experimental values therefore may be of particular interest.

-6-

LBL-1644

LBL-1644

FOOTNOTES AND REFERENCES

-7-

Work performed under the auspices of the U. S. Atomic Energy Commission.
[†]Present address: Max-Planck Institut für Kernphysik, Heidelberg, Germany.
1. See, for example, D. R. Goosman and D. E. Alburger and references therein, Brookhaven National Laboratory Report (on ³¹Al), submitted to Phys. Rev. C.

- D. J. Clark, J. Steyaert, J. Bowen, A. Carneiro, and D. Morris, Sixth International Cyclotron Conference, U. of B. C., July 1972, Lawrence Berkeley Laboratory Report LBL-644.
- 3. R. E. Hintz, F. B. Selph, W. S. Flood, B. G. Harvey, F. G. Resmini, and E. A. McClatchie, Nucl. Instr. Methods <u>72</u>, 61 (1969).
- 4. G. W. Butler, J. Cerny, S. W. Cosper, and R. L. McGrath, Phys. Rev. <u>166</u>, 1096 (1968).
- 5. G. Costa and F. A. Beck, Nucl. Phys. <u>A181</u>, 132 (1972), and references therein.
- A. J. Howard, R. G. Hirko, D. A. Bromley, K. Bethge, and J. W. Olness, Phys. Rev. <u>C1</u>, 1446 (1970).
- 7. T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).
- 8. D. R. Goosman, D. E. Alburger, and J. C. Hardy, Phys. Rev. <u>C7</u>, (1973), in press.
- A. P. Kabachenko, I. B. Kyznetzov, K. Sivek-Vilchinka, E. A. Skakun, and
 N. I. Tarantin, Joint Institute for Nuclear Science, Dubna Report D7-5769, 204 (1971).
- 10. C. Thibault and R. Klapisch, Phys. Rev. <u>C6</u>, 1509 (1972).

÷.

t,I

- 11. G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi, and I. Kelson, Rev. Mod. Phys. Suppl. <u>41</u>, S1 (1969).
- 12. Mass excesses from A. H. Wapstra and N. B. Gove, Nucl. Data Tables <u>9</u>, 265 (1971), except ²⁶Na mass excess from G. C. Ball, W. G. Davies, J. S. Forster, and J. C. Hardy, Phys. Rev. Letters <u>28</u>, 1069 (1972).

15

- R. Klapisch, R. Prieels, C. Thibault, A. M. Poskanzer, C. Rigaud, and E. Roeckl, Phys. Rev. Letters (in press).
- 14. A. de-Shalit and I. Talmi, <u>Nuclear Shell Theory</u> (Academic Press Inc., New York, 1963).
- 15. These shell model relationships can also be used to predict other mass differences involving unknown neutron-excess isotopes of 0, F and Ne.

FIGURE CAPTIONS

-9-

Fig. 1. A particle identification spectrum resulting from bombardment of 26 Mg by 7 Li.

Fig. 2. (a) ⁸B energy spectrum from run 2A at $\theta_{lab} = 10^{\circ}$.

-)

(b) Composite ⁸B energy spectrum including data of part (a) plus data taken at $\theta_{lab} = 15^{\circ}$ from runs 1 and 2, kinematically corrected to $\theta_{lab} = 10^{\circ}$.

1

-10-

LBL-1644

-11-

V

γ٨,

 $\mathbf{\hat{V}}$

Fig. 2

-LEGAL NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720 .

1