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Abstract. We determine the group of invariants with values in Galois cohomology with
coefficients Z/27Z of central simple algebras of degree at most 8 and exponent dividing 2.

0. Introduction

Let F be a field and let A be an “algebraic structure” over field extensions of F.
More precisely, A is a functor from the category Fields/F of field extensions over
F to the category Sets of sets. For example, the values of A can be the sets of
isomorphism classes of central simple algebras of given degree n, quadratic forms
of dimension n, étale algebras of rank n, etc. As defined in [7], an invariant of a
functor A with values in a cohomology theory H (also viewed as a functor from
Fields/F to Sets) is a morphism of functors A — H. All the invariants of A with
values in H form a group Inv(A, H).

An interesting functor Torsg can be associated to an algebraic group G defined
over F as follows. For a field extension L/F, Torsg(L) is the set of isomorphism
classes of G-torsors over Spec L. All examples of the functors A listed above are
isomorphic to the functors Torsg for certain groups G (cf. [7, §3]). For example,
Torsg (L) for the projective linear group G = PGL,, is naturally bijective to the
set of isomorphism classes of central simple L-algebras of degree n.

The structure of the group Inv(A, H) was determined for various functors A
in [7]. The case A = Torsg for G = PGL,, i.e., the problem of classification of
invariants of central simple algebras of degree n, is still wide open. In the pres-
ent paper we determine the group of invariants with values in Galois cohomology
with coefficients Z/2Z of central simple algebras of degree at most 8 and exponent
dividing 2, i.e., determine invariants of Torsg for G = GL, /p, with n dividing 8.

In the present paper, the word “variety” over a field F means a separated integral
scheme of finite type over F.
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1. Invariants
1.1. Cohomology theories, residues and values

Let F be a field and let C be a Galois module for F such that nC = 0 for some » not
divisible by char F'. We define a graded cohomology theory H over F as follows.
For any field extension L/F, we write

H(L):=]]H (L.C(r).
r>0

where C(r) is the Tate twist of C [7, 7.8]. Note that H(L) is a (left) module over
the cohomology ring

[[#" @ @/nz)ir))

r>0
with respect to the cup-product. We shall write (x) for the element of

H' (L. (Z/nZ)(1)) = H' (L, p) = L /L™"

corresponding to the coset x L*".
Let L be a field extension of F with a discrete valuation v trivial on F and
residue field F(v). There is the residue map of degree —1 [7, §7.13]:

3 H' (L) — H Y (F(v)).

An element &7 € H" (L) is called unramified at v if 9,,(h) = 0.
Let 7 € L be a prime element. The graded map

sz H'(L) > H" (F(v)), sz(h) =09, (=m)Uh)

is called a specialization map [15, §1]. If h € H" (L) is unramified at v, then the
element s, (h) does not depend on the choice of 7 and is called the value of h at v,
denoted A (v).

1.2. The group A°(X, H")
Let X be a variety over F and let H be a cohomology theory over F. Recall that
for any point x € X of codimension 1 we have the residue map
oc : H' (F(X)) — H'™! (F(x))
defined as follows [15, §2]:

ax = ZCOYF(U)/F(x) O3v,
where the sum is taken over all (finitely many) discrete valuations of F(X) over
F dominating x, and 9, : H" (F (X)) — H™ 1 (F(v)) is the residue map for the
discrete valuation v. We write

AYX,H") = ﬂKer(ax) C H (F(X)),
where the intersection is taken over all points x € X of codimension 1.

Let K /F be a field extension, p € X (K) a point and @ € A%(X, H") an arbi-
trary element. We say that p is nonsingular if the image of p : Spec K — X is a
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nonsingular point of X. If p is nonsingular, the value a(p) of « at p is the image
of « under the pull-back map [15, §12]:

A%X, H") — A%Spec K, H") = H" (K).

1.3. Values of invariants

We view the homogeneous components H" of the cohomology theory H as functors
from the category Fields/F of field extensions over F and field homomorphisms
over F to the category Sets of sets. Let S : Fields/F — Sets be another func-
tor. An H-invariant of S of degree r is a morphism of functors ¢ : § — H”
[7, Def. 1.1]. We write Inv(S, H") for the group of H-invariant of S of degree r
and Inv(S, H) for the graded group [ [, Inv(S, H").

Let G be an algebraic group defined over a field F. Let Torsg : Fields/F —
Sets be the functor taking a field extension K/ F to the set of isomorphism classes
of G-torsors over Spec K. We have Torsg(K) =~ Hl(K, G) [11, Ch. VII]. We
simply write Inv(G, H") for the group Inv(Torsg, H").

Example 1.1. Let n > 0 be an integer and k > 0 a divisor of n. We view the group
;. of kthroots of unity as a subgroup of GL,, via the embeddings u;, C Gy, C GL,
and set G = GL,, /p;. By [11, Cor. 28.6], the exact sequence

1> Gn3 G5 P6L, > 1,
where « is the composition
Gm = Gm /sty = GLy /py =G

and g is the natural epimorphism, and Hilbert Theorem 90 yield a bijection between
H'(F, G) and the kernel of the connecting map

§: H'(F,PGL,) — H*(F,Gp) = Br(F).

The set H' (F, PGL,) is bijective to the set of isomorphism classes of central simple
F-algebras A of degree n and the map § takes the class of A to k[ A]. Therefore, there
is a natural bijection between Torsg(F) = H I(F, G) and the set of isomorphism
classes of central simple F-algebras of degree n and exponent dividing k.

We shall need the following statement:

Proposition 1.2. [7, Th. 11.7] Let G be an algebraic group over F and q €
Inv(G, H"). Let R be a discrete valuation ring containing F with quotient field
L and residue field K. Then for any G-torsor E over Spec R, we have:

(1) The residue of q(EL) at v is zero, i.e., q(EL) is unramified at v.
(2) Thevalue g(EL)(v) of q(EL) atvis g(Eg).

Let X be a variety over F and E — X a G-torsor. For a field extension K / F and
apoint p € X(K), we write £, — Spec K for the pull-back of the torsor E with
respect to p : Spec K — X. Thus, we have a morphism of functors X — Torsg
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taking a point p to E,. We also write Ege, for the generic fiber of £ — X.Itis a
G-torsor over Spec F(X).

Theorem 1.3. Let G be an algebraic group over F, X avariety over F. Let E — X
be a G-torsor and g € Inv(G, H"). Then

(1) q(Egen) € A%(X, H").
(2) Let K/F be a field extension and let p € X (K) be a nonsingular point. Then
q(Ep) is equal to the value of q(Egen) at p.
(3) Let X be smooth and let f : Y — X be a morphism of varieties over F. Then
f* (Q(Egen)) = Q(f*(E)gen)
in A%(Y, H"), where f* : A°(X, H") — AY, H") is the pull-back homo-

morphism.

Proof. (1) and (2) follow from Proposition 1.2 and [15, Cor. 12.4].

(3): By (2), the pull-back homomorphism for the composition Spec F'(Y) —
Y — X is equal to ¢(f*(E)gen). The pull-back homomorphism for the first mor-
phism Spec F(Y) — Y is the inclusion of A%y, H") into H” (F(Y)). |

It follows from Theorem 1.3(1) that a G-torsor E — X gives rise to a group
homomorphism

g :Iv(G, H") — A%X, H"), q+> q(Egen).

1.4. Classifying torsors

A G-torsor E — X over F is called classifying if X is smooth and the correspond-
ing morphism of functors X — Torsg is surjective, i.e., for any field extension
K /F andany G-torsor E" — Spec K , thereisapoint p € X (K)suchthat E’ >~ E,,.

Remark 1.4. We do not require the density condition as in [7, Def. 5.1].

Theorem 1.5. Let E — X be a classifying G-torsor over F. Then the map
op : Inv(G, H") — AYX, H") is injective.

Proof. Let g € Ker(¢g), i.e., g(Egen) = 0. Let K/F be a field extension and let
E’ — Spec K be a G-torsor. Choose a point p € X (K) such that E’ >~ E,. By
Theorem 1.3(2), ¢(E)) is the value of g(Egen) at p. Hence g(E’) = 0. O

2. Invariants of algebras of degree 8

In this section we assume that char(F) # 2.

2.1. The functors Alg,, and Dec,,

For a commutative F-algebra R and a,b € R* we write (a,b) = (a,b)g for
the quaternion algebra R @ Ri @® Rj @ Rk with the multiplication table i> = a,
j*> = b,k =ij = —ji. The class of (a, b)g in the Brauer group Br(R) will be
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denoted by [a, b] = [a, b] . We write Quat(R) for the set of isomorphism classes
of quaternion algebras over R.

Leta € R* and S = R[\/a] := R[t]/(t2 — a) the quadratic extension of R.
We write Ng(a) for the subgroup of R* of all element of the form x> — ay? with
X,y € R,i.e., Ng(a) is the image of the norm homomorphism Ng/g : $* — R*.
If b € Ng(a), then the quaternion algebra (a, b)p is isomorphic to the matrix
algebra M>(R) by [10, Th. 6].

For every n > 1, Alg, (F) denotes the set of isomorphism classes of central
simple F-algebras of degree 2" and exponent dividing 2. We can identify Alg, (F)
with the subset of Br(F') of classes of algebras of degree dividing 2”. In particular,
we have that

Alg(F) C Alg,(F) C Algz(F) C --- C Bra(F).

The isomorphism class of an algebra A in Alg,(F) is called decomposable if A
is isomorphic to the tensor product of n quaternion algebras over F. The subset
of all decomposable classes in Alg,, (F) is denoted by Dec, (F). The union of all
Dec, (F) coincides with Br (F').

We view Alg, and Dec, as functors Fields/F — Sets. By Example 1.1, the
functor Alg,, is isomorphic to the functor Torsg for G = GLy» /,.

Obviously, Alg;(F) = Deci(F) = Quat(F). By Albert’s theorem [12, Prop.
5.2], Algy(F) = Decy(F).

The case n = 3 is more complicated. Itis shownin [1] that Alg3(F) # Dec3(F)
in general. On the other hand, Tignol proved in [18] that Alg;(F) C Deca(F) as
the subsets of Br, (F).

2.2. Tignol’s construction

We recall Tignol’s argument given in [18]. Let A be a central simple F-algebra in
Algs(F). By [16], there is a triquadratic splitting extension F(y/a, /b, /c)/F of
Awitha, b, c € F*.Let L = F(y/a). By Albert’s Theorem, we have

[AlL = [b,s]+[c, 1] ey

in Br(L) for some s, € L*.
Taking the corestriction for the extension L/F in (1), we get

0=2[A]l=[b, Nr;r()] + [c. No/r(D)]
in Br(F), hence [b, NL/F(S)] = [c, NL/p(t)]. By the Common Slot Lemma
[2, Lemma 1.7], we have
[b.NLjr(s)] =[d. Noyp()] = [d, Noyp(0)] = [e. Noyr(0)]
inBr(F) forsomed € F*.Itfollows that the classes [bd, Np;r(s)], [cd, Npjr(1)]
and [d, N /p(st)] are trivial. By [4, Lemma 2.3] (see also Lemma 2.2 below),
[bd, s] = [bd, k],
cd, t] = [cd, 1],
ld,st] =1[d,m].
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in Br(L) for some k, [, m € F*. It follows from (1) that
[Al, = [bd, k] + [cd, 1] + [d, m],
in Br(L). Hence
[A] = [a, e]l+1bd, k] +[cd,l1+[d, m] = [a, e] + b, k] +[c, l]1+]d, kim] (2)
in Br(F) forsome e € F*. We shall also need the following well known statements:

Lemma 2.1. Let K be a field and let A be a central simple K -algebra such that
[A] € Bro(K) and let L/K be a quadratic field extension such that [A];, =
[b, s]1+ [c, t] for some b,c € K* and s,t € L*. Suppose that one of the classes
[b, NL/K(S)] and [c, Ni/k (t)] is zero in Br(K). Then A € Dec3(K).

Proof. Suppose that [b, Nr, K(s)] = 0. Taking the corestriction we get
0=2[A] = [b, Nk ()] + [c. Nk ()] = [e. Nk (D] .-

By [4, Lemma 2.3], there are u, v € K* such that [b, s] = [b, u]; and [c, t] =
[c, v] . It follows that the class [A] — [b, u] — [c, v] is split by L, hence is the class
of a quaternion algebra. Thus, A € Dec3(K). O

Lemma 2.2. Let R be a commutative F-algebra, a,b € R*, T = R[\/a] and
x + y/a € T* such that x> — ay® = u*> — bv® for some u,v € R. Ifx +u € R*,
then 2(x + u)(x + y+/a) € Nt (b). In particular,

[b.x + ya], =[b.2(x + w7 .
Proof. We have the equality
(x +yva +u)? —bv* = (x + yVa) (x + yva +2u) + u* — bv?)
= (x + yva)(x + yva + 2u) + (x + yJ/a) (x — y/a)
= (x + yv/a)(2x + 2u).

2.3. The Azumaya algebra A

Consider the affine space ASF with coordinates a, e, u, v, W, X, y, z and define the
rational functions:

f =xy+ az,
g=ytxz,
d:wz—fz—i-agz,
b=@—-x*+ayd’,
c= (v2 — y2 + azz)dfl,

p=@+x)(v+y(w+1).
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Let X be the open subscheme of ASF given by
q = adep(u® — x* +a)(v’ — y* + az’) (x> — a)(y* — az’) (1 — ag®) # 0,

i.e., X =Spec(R) with R=Fl[a,e,u,v,w,X,y,z, q '].Let S = R[/a, Vb, J/cl.
Consider the Azumaya R-algebra

A'=@er® b 2u+x)g® (€ 2(V+y)g ®(d 2p)g. 3)

We view S as a subring of A’. Moreover, (d, 2p)g := (d,2p) Qg S C A'.
Let T = R[\/a]. It follows from Lemma 2.2 that

2(u + x)(x + +/a) € Nr(bd) C Ns(d),
2(v+y)(y +zv/a) € Nr(ed) C Ns(d),
2(w + ) (x + +/a)(y +z+/a) € Nr(d) C Ng(d).

It follows from (3) that

[A']; = [b,x+ Va] + [¢, y +2/a] )

in Br(T).
Moreover, we have 2p = 2(u+x)(v+y)(w +f) € Ng(d), therefore, (d, 2p)g
is isomorphic to the matrix algebra M5 (S). In particular,

M>(R) C Ma(S) = (d,2p)g C A’

and hence A" >~ M, (A) for the centralizer A of M>(R) in A’ by the proof of
[8, Th. 4.4.2]. Then A is an Azumaya R-algebra of degree 8 that is Brauer equiva-
lent to A’ by [17, Th. 3.10].

Proposition 2.3. The Azumaya algebra A is classifying for Algs, i.e, the corre-
sponding GLg / y-torsor over X is classifying.

Proof. Let A € Algs(K), where K is a field extension of F'. We shall find a point
p € X(K) such that A >~ A(p).

We follow Tignol’s construction. There is a triquadratic splitting extension
K (Ja, /b, Jc)/K of Awitha,b,c e K*.Let L = K(/a), so

[AlL = [b,s] + [c. 1]
in Br(L) for some s = x + x'\/a, and 1 = y + z4/a € L*. Modifying s by a
norm for the extension L (+/b)/L, we may assume that x’ # 0. Similarly, we may

assume that z # 0. Moreover, replacing a by ax’”, we may assume that x’ = 1.
We have

[b,x2 — a] = [d, x2 - a] = [d, y2 — aZZ] = [c, y2 — az2]
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in Br(K) for some d € K*, so the classes [bd, x> —a], [cd, y* — az?] and
[d, x2—a)(y* — azz)] are trivial. Hence

bd = u® — (x* — a)u'’?,

cd =v* — (y? — azz)v/27

d=w?— (% —a)? —aPH)w”?

for some u, u’, v, v, w, w’ in K. Moreover, we may assume that u’ # 0. Replacing
b and u by bu'* and uu’ respectively, we may assume that u’ = 1. Similarly, we
may assume v’ = w’ = 1.

Replacing u by —u if necessary, we may assume that # + x # 0 and similarly
v+ 7y #0and w+ s # 0, where s = xy 4 az. It follows from Lemma 2.2 that

[b,x + Va] = b, 2+ )],
[c.y+zva] =Tc.2(0+ )],
[d, (x + Va)(y + zv/a)] = [d, 2(w + 9)],.

in Br(L). Hence
[Al =l[a,e]l +[b,2(u 4+ x)] + [c,2(v + V)] + [d, 2(u + x)(v + y)(w + 5)]

in Br(K) for some e € K*.
Let p be the point (a, e, u, v, w, x, y, z) in X (K). We have [A(p)] = [A] and
hence A(p) ~ A as A(p) and A have the same dimension. O

Proposition 2.4. Let K be the quotient field of the ring R = F[X]. Let K be the
completion of K with respect to the discrete valuation associated with one of the
irreducible polynomials a, w—x2+a,v:— y2 +az?, d,x? —a, y2 —az? 2 —
ag>, u+x,v+yandw+f. Then Ag € Decs(K).

Proof. First assume that the valuation v = v, is associated with a. By Hensel’s
Lemma, x> — a € K *2. Tt follows that [b, x> — a]l? = 0. By Lemma 2.1, applied
to (4), Az € Decs(K).

Let v = vy2_y2.,. In the residue field, > —x>+a=0,hence X’ —aisa
square. By Hensel’s Lemma, x> — a € K *2. Therefore, Ag € Decs(K) as in the
previous case.

The case v = vy2_y2_ 4,2 is similar.

2

Let v = vgq. In the residue ﬁeld/,\v"v2 —f2 +ag? = 0, hence f> — ag? is a square.
By Hensel’s Lemma, f> — ag® € K *2, hence [b, f> — agz]l? = 0. It follows from
(4) that

[Alr = [b.x+ Va] + [e,y + zv/a] = [b. f + g/a] + [be, y + zv/a].

By Lemma 2.1, Ap € Dec3(K). -
LeL v = vy2_,. In the residue field, bd = a2 l§ a square. By Hensel’s Lemma,
bd € K*2. Tt follows from (3) that Az € Dec3(K).

The cases v = vy2_,,2 and v = vp2_,,2 are similar.

y —ag
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Let v = vy4x. In the residue field, bd = a. By Hensel’s Lemma, abd € K2,
It follows again from (3) that Az € Dec3(K).
The cases v = vVy4y and v = vyt are similar. O

From now on we consider the cohomology theory with values in the Galois
module Z/27Z, i.e., H(L) = H(L, Z/2Z) for any field extension of F. Note that
H (L) has structure of a commutative ring.

Proposition 2.5. The restriction homomorphism
Inv(Algs, H") — Inv(Decs, H")
is injective.

Proof. Let g be an invariant of Alg; of degree r and let K be the quotient field
of the ring R, i.e., K = F(X). By Theorem 1.3, we have q(Ag) € A%X, H").
Let X’ be the open subscheme of A% givenby e # 0,50 X C X' C A% and
X' ~ A%, x Gp,. Note that

A'X',H") = A% G, H') = H' (F) ® (e) U H ™' (F)

by [15, Prop. 2.2 and Prop. 8.6].
Suppose that the restriction of ¢ on Decs is zero. By Proposition 2.4, Ag €

Deq(l? ), where K is the completion of K with respect to every divisor x of
X’ in X’\X. Hence gq(Ag) = 0 for all such K. The residue homomorphism
8, : H'(K) — H"™!(F(x)) factors through the group H’(f(\). It follows that
9y (¢(Ak)) = 0 and therefore,

q(Ag) € A%X', H") = H'(F) @ (e) U H'~'(F),

ie,q(Ax) =hg + () Uhy forsomeh € H"(F)and h' € H'"~Y(F). Consider a
point p € X(E) with E = F(e) such that e(p) = e and b(p) = 1. It follows from
(3) that A(p) € Dec3(E). Hence by Theorem 1.3(2),

0=q(A(p) =hg+ (e) UhY,

therefore, h = h’ = 0 and ¢(Ag) = 0. By Proposition 2.3 and Theorem 1.5,
q=0. ]

2.4. Invariants of Dec,

From now on we assume that —1 € F*2.
Let K (F) denote the Milnor ring of afield F and set k. (F) = K (F)/2K.(F).
For every n > 0, let y,, denote the divided power operation [9,19]:

ko(F) — kom (F)
defined by

,
Vn(zai)z Z (0 PR 0
i=1

1<ij < <im=n
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where the «; are symbols. In particular, yo = 1 € ko(F) = Z/2Z and y; is the
identity.

We identify ko (F) with Bry(F) via the norm residue isomorphism. Restrict-
ing y;, to Dec,, and composing with the norm residue homomorphism &y, (F) —
H?>"(F), we can view the divided power operations (still denoted by y;,,) as invari-
ants of Dec,, with values in H, 50 y,, € Inv(Dec,,, H*") for all n. Clearly, y,, = 0
ifm > n.

Theorem 2.6. The H (F)-module Inv(Dec,, H) is free with basis {1 = yy, y1,
ey Vn )

Proof. The case n = 1, when Dec; = Quat is proven in [7, Th. 18.1]. By [7, Ex.
16.5], the natural map

Inv(Quat, H)®" — Inv(Quat™", H)

is an isomorphism. It follows that Inv(Quat™", H) is a free H (F)-module with
basis of all monomials 8?'8;2 ...85", where &y = 0 or 1 and the invariant &; is
defined by §; (aq, ..., o) = «;.

The natural morphism of functors

Quat™" — Dec, 5)
given by the tensor product is surjective. It follows that the map
Inv(Dec,, H) — Inv(Quat™", H)

is injective. The image of this map is element-wise invariant under the natural action
of the symmetric group S, and hence is contained in the free H (F')-submodule gen-
erated by the standard symmetric functions y,, on the 81, ..., 8, that are precisely
the divided powers. O

Remark 2.7. Vial has computed all invariants of k,, in [19].

Restricting the divided powers on the subfunctors Alg,, C Bra we view the y,
as invariants on Alg,,.

Theorem 2.8. If n < 3, then the H(F)-module Inv(Alg,, H) is free with basis
{1 = V(), yla ce ey ]/n}~

Proof. If n <2, then Alg, = Dec, and the statement follows from Theorem 2.6.
The case n = 3 is implied by Proposition 2.5 and Theorem 2.6. O

2.5. Reduced trace form

Let A be a central simple algebra over a field F. Denote by g4 the quadratic form
on A defined by ga(a) = Trda (az) for a € A, where Trd4 is the reduced trace
form for A. If A and A’ are two central simple algebras over F, then

daA = ga®qa-
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Example 2.9. Let A be a quaternion algebra over a field F. Then g4 is the 2-fold
Pfister form ((a, b)), where a, b € F* such that [A] = [a, b] in Br(F).

It follows from Example 2.9 that for any A € Dec,, (F) the form g 4 is a 2n-fold
Pfister form. Moreover, the invariant e>,(g4) in H 20 (Fy (cf. [6, §16]) coincides
with the divided power y,,(A).

Theorem 2.10. Ifn < 3, then forany A € Alg, (F), the form q4 is a 2n-fold Pfister
Sform such that e2,,(qa) = yn(A).

Proof. If n < 2, then Alg,, = Dec, and the statement follows.

Consider the case n = 3. Let A € Alg;(F). Choose a splitting field F (\/a, v/b,
J/c¢) and set L = F(y/a). We write a — a for the nontrivial automorphism of L
over F. Let B be the centralizer of L in A. By Skolem—Noether Theorem [11, Th.
1.4], there is an s € A such that sxs~! = % for all x in L. Note that s commutes
with all elements in L, hence s% € B.

Lety : B — B bean automorphism defined by y > sys~!. Then A = B@® Bs
with sy = ¥ (y)s for all y € B. Since Trds(yzs) = Trds(Vayzs(Va)™ ") =
—Trda(yzs), we have Trd4 (yzs) = O for any y and z in B. Moreover, Trd4 (y) =
Try/r(Trdg(y)) for any y € B by [5, §22, Cor. 5]. Therefore, for the trace forms
we have

ga =Trr/r(gp) L Trr r(qp),

where g (x) = Trdp ((xs)?).
Letr € F* and A, the F-algebra with presentation A, = B@ By and yby™! =
sbs~! forall b € B and y*> = ts2. By Proposition [11, Th. 13.41],

[A/] = [a, 1]+ [A]
Moreover,
qa, =Trryr(gp) Lt Trr r(qp).
hence, by Lemma 2.11 below, in the Witt ring of F', we have
qa —1qa, = (1)) - Tre r(gp) € I°(F).

By (2), we can choose ¢ such that A; is decomposable, hence g4, € I°(F) and
therefore, g4 € I°(F). As dim(gs) = 64, the form g, is a 6-fold Pfister form.

It follows that eg(g4) is a well-defined invariant of Alg5 that agrees with y3 on
Decs. By Proposition 2.5, eg(ga) = y3 on Algs. O

Lemma 2.11. In the notation above, Try/r(qp) € 1°(F).
Proof. Tn Tignol’s construction (see (1) and (2)),
[AlL = [b,s]+[c, 1] = [a, e] + [b, k] + [c, 1+ [d, kim]
in Br(L). Let
p = {(a, &) + ((b,k)) + ({c, 1)) + ((d, kim)) € I*(F). (6)
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It follows that

pL=((b,s)) + ({c,1)) mod I*(L),

so B~ (b,s) ®r. (c,t). We have in W(L):

g = ((b,$)) - {(c, 1)) = (b, )} - pL — (b, 5)) = ((b,$)) - pr  mod I°(L)

since ((b, b)) = 0. By the projection formula and [6, Cor. 34.19],

Trr/r(qp) = Troyr (b, $))) - p = ((b, NLye(s)) - p - mod I°(F).  (7)

We have ((b, Np/r(s))) > ({c, NLyr(1))) > ((d, Npyr(t))). It follows that ({(b,
Np,r(s))) annihilates all four summands in the right hand side of (6), hence
((b, NLjF(5))) - p = 0.By (7), Trp r(qp) € I°(F). o

2.6. Essential dimension of Dec,, and Alg;

Let S : Fields/F — Sets be a functor, E € Fields/F and K C E a subfield over
F. An element o € S(E) is said to be defined over K (and K is called a field of
definition of «) if there exists an element § € S(K) such that « is the image of
B under the map S(K) — S(E). The essential dimension of o, denoted ed(«), is
the least transcendence degree tr. deg - (K) over all fields of definition K of «. The
essential dimension of the functor S is

ed(S) = supfed(a)},

where the supremum is taken over fields £ € Fields/F and all « € S(E) (cf.
[3, Def. 1.2]).

The highest invariant y,, of Alg, and Dec, of degree 2n is nontrivial, hence
ed (Alg,) > 2n and ed (Dec,) > 2n by [3, Cor. 3.6]. On the other hand, using the
surjection (5), we get

ed (Decy) < ed (Quat™") < n -ed (Quat) = 2n.

Thus, ed (Dec,)) = 2n.
It is proved in [13, Cor. 3.10] and [14, Th. 8.6] that ed (A/g3) <17.

Theorem 2.12. 6 < ed (Alg;) < 8.

Proof. By Proposition 2.3, there is a surjective morphism of functors X — Algs,
where X is a variety defined in Sect. 2. By [3, Cor. 1.19], ed (Alg3) < dim(X) = 8.
O

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
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