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Abstract. We determine the group of invariants with values in Galois cohomology with
coefficients Z/2Z of central simple algebras of degree at most 8 and exponent dividing 2.

0. Introduction

Let F be a field and let A be an “algebraic structure” over field extensions of F .
More precisely, A is a functor from the category Fields/F of field extensions over
F to the category Sets of sets. For example, the values of A can be the sets of
isomorphism classes of central simple algebras of given degree n, quadratic forms
of dimension n, étale algebras of rank n, etc. As defined in [7], an invariant of a
functor A with values in a cohomology theory H (also viewed as a functor from
Fields/F to Sets) is a morphism of functors A → H . All the invariants of A with
values in H form a group Inv(A, H).

An interesting functor TorsG can be associated to an algebraic group G defined
over F as follows. For a field extension L/F , TorsG(L) is the set of isomorphism
classes of G-torsors over Spec L . All examples of the functors A listed above are
isomorphic to the functors TorsG for certain groups G (cf. [7, §3]). For example,
TorsG(L) for the projective linear group G = PGLn is naturally bijective to the
set of isomorphism classes of central simple L-algebras of degree n.

The structure of the group Inv(A, H) was determined for various functors A
in [7]. The case A = TorsG for G = PGLn , i.e., the problem of classification of
invariants of central simple algebras of degree n, is still wide open. In the pres-
ent paper we determine the group of invariants with values in Galois cohomology
with coefficients Z/2Z of central simple algebras of degree at most 8 and exponent
dividing 2, i.e., determine invariants of TorsG for G = GLn /µ2 with n dividing 8.

In the present paper, the word “variety” over a field F means a separated integral
scheme of finite type over F .
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1. Invariants

1.1. Cohomology theories, residues and values

Let F be a field and let C be a Galois module for F such that nC = 0 for some n not
divisible by char F . We define a graded cohomology theory H over F as follows.
For any field extension L/F , we write

H(L) :=
∐

r≥0

Hr (L ,C(r)) ,

where C(r) is the Tate twist of C [7, 7.8]. Note that H(L) is a (left) module over
the cohomology ring

∐

r≥0

Hr (L , (Z/nZ)(r))

with respect to the cup-product. We shall write (x) for the element of

H1 (L , (Z/nZ)(1)) = H1(L , µn) � L×/L×n

corresponding to the coset x L×n .
Let L be a field extension of F with a discrete valuation v trivial on F and

residue field F(v). There is the residue map of degree −1 [7, §7.13]:

∂v : Hr (L) → Hr−1 (F(v)) .

An element h ∈ Hr (L) is called unramified at v if ∂v(h) = 0.
Let π ∈ L be a prime element. The graded map

sπ : Hr (L) → Hr (F(v)) , sπ (h) = ∂v ((−π) ∪ h)

is called a specialization map [15, §1]. If h ∈ Hr (L) is unramified at v, then the
element sπ (h) does not depend on the choice of π and is called the value of h at v,
denoted h(v).

1.2. The group A0(X, Hr )

Let X be a variety over F and let H be a cohomology theory over F . Recall that
for any point x ∈ X of codimension 1 we have the residue map

∂x : Hr (F(X)) → Hr−1 (F(x))

defined as follows [15, §2]:

∂x =
∑

corF(v)/F(x) ◦∂v,
where the sum is taken over all (finitely many) discrete valuations of F(X) over
F dominating x , and ∂v : Hr (F(X)) → Hr−1 (F(v)) is the residue map for the
discrete valuation v. We write

A0(X, Hr ) :=
⋂

Ker(∂x ) ⊂ Hr (F(X)) ,

where the intersection is taken over all points x ∈ X of codimension 1.
Let K/F be a field extension, p ∈ X (K ) a point and α ∈ A0(X, Hr ) an arbi-

trary element. We say that p is nonsingular if the image of p : Spec K → X is a
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nonsingular point of X . If p is nonsingular, the value α(p) of α at p is the image
of α under the pull-back map [15, §12]:

A0(X, Hr ) → A0(Spec K , Hr ) = Hr (K ).

1.3. Values of invariants

We view the homogeneous components Hr of the cohomology theory H as functors
from the category Fields/F of field extensions over F and field homomorphisms
over F to the category Sets of sets. Let S : Fields/F → Sets be another func-
tor. An H-invariant of S of degree r is a morphism of functors q : S → Hr

[7, Def. 1.1]. We write Inv(S, Hr ) for the group of H -invariant of S of degree r
and Inv(S, H) for the graded group

∐
r≥0 Inv(S, Hr ).

Let G be an algebraic group defined over a field F . Let TorsG : Fields/F →
Sets be the functor taking a field extension K/F to the set of isomorphism classes
of G-torsors over Spec K . We have TorsG(K ) � H1(K ,G) [11, Ch. VII]. We
simply write Inv(G, Hr ) for the group Inv(TorsG, Hr ).

Example 1.1. Let n > 0 be an integer and k > 0 a divisor of n. We view the group
µk of kth roots of unity as a subgroup of GLn via the embeddings µk ⊂ Gm ⊂ GLn

and set G = GLn /µk . By [11, Cor. 28.6], the exact sequence

1 → Gm
α−→ G

β−→ PGLn → 1,

where α is the composition

Gm
∼→ Gm /µk → GLn /µk = G

and β is the natural epimorphism, and Hilbert Theorem 90 yield a bijection between
H1(F,G) and the kernel of the connecting map

δ : H1(F,PGLn) → H2(F,Gm) = Br(F).

The set H1(F,PGLn) is bijective to the set of isomorphism classes of central simple
F-algebras A of degree n and the map δ takes the class of A to k[A]. Therefore, there
is a natural bijection between TorsG(F) = H1(F,G) and the set of isomorphism
classes of central simple F-algebras of degree n and exponent dividing k.

We shall need the following statement:

Proposition 1.2. [7, Th. 11.7] Let G be an algebraic group over F and q ∈
Inv(G, Hr ). Let R be a discrete valuation ring containing F with quotient field
L and residue field K . Then for any G-torsor E over Spec R, we have:
(1) The residue of q(EL) at v is zero, i.e., q(EL) is unramified at v.
(2) The value q(EL)(v) of q(EL) at v is q(EK ).

Let X be a variety over F and E → X a G-torsor. For a field extension K/F and
a point p ∈ X (K ), we write E p → Spec K for the pull-back of the torsor E with
respect to p : Spec K → X . Thus, we have a morphism of functors X → TorsG
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taking a point p to E p. We also write Egen for the generic fiber of E → X . It is a
G-torsor over Spec F(X).

Theorem 1.3. Let G be an algebraic group over F, X a variety over F. Let E → X
be a G-torsor and q ∈ Inv(G, Hr ). Then

(1) q(Egen) ∈ A0(X, Hr ).
(2) Let K/F be a field extension and let p ∈ X (K ) be a nonsingular point. Then

q(E p) is equal to the value of q(Egen) at p.
(3) Let X be smooth and let f : Y → X be a morphism of varieties over F. Then

f ∗ (
q(Egen)

) = q( f ∗(E)gen)

in A0(Y, Hr ), where f ∗ : A0(X, Hr ) → A0(Y, Hr ) is the pull-back homo-
morphism.

Proof. (1) and (2) follow from Proposition 1.2 and [15, Cor. 12.4].
(3): By (2), the pull-back homomorphism for the composition Spec F(Y ) →

Y → X is equal to q( f ∗(E)gen). The pull-back homomorphism for the first mor-
phism Spec F(Y ) → Y is the inclusion of A0(Y, Hr ) into Hr (F(Y )). 
�

It follows from Theorem 1.3(1) that a G-torsor E → X gives rise to a group
homomorphism

ϕE : Inv(G, Hr ) → A0(X, Hr ), q �→ q(Egen).

1.4. Classifying torsors

A G-torsor E → X over F is called classifying if X is smooth and the correspond-
ing morphism of functors X → TorsG is surjective, i.e., for any field extension
K/F and any G-torsor E ′ → Spec K , there is a point p ∈ X (K ) such that E ′ � E p.

Remark 1.4. We do not require the density condition as in [7, Def. 5.1].

Theorem 1.5. Let E → X be a classifying G-torsor over F. Then the map
ϕE : Inv(G, Hr ) → A0(X, Hr ) is injective.

Proof. Let q ∈ Ker(ϕE ), i.e., q(Egen) = 0. Let K/F be a field extension and let
E ′ → Spec K be a G-torsor. Choose a point p ∈ X (K ) such that E ′ � E p. By
Theorem 1.3(2), q(E p) is the value of q(Egen) at p. Hence q(E ′) = 0. 
�

2. Invariants of algebras of degree 8

In this section we assume that char(F) �= 2.

2.1. The functors Algn and Decn

For a commutative F-algebra R and a, b ∈ R× we write (a, b) = (a, b)R for
the quaternion algebra R ⊕ Ri ⊕ R j ⊕ Rk with the multiplication table i2 = a,
j2 = b, k = i j = − j i . The class of (a, b)R in the Brauer group Br(R) will be
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denoted by [a, b] = [a, b]R . We write Quat(R) for the set of isomorphism classes
of quaternion algebras over R.

Let a ∈ R× and S = R[√a] := R[t]/(t2 − a) the quadratic extension of R.
We write NR(a) for the subgroup of R× of all element of the form x2 − ay2 with
x, y ∈ R, i.e., NR(a) is the image of the norm homomorphism NS/R : S× → R×.
If b ∈ NR(a), then the quaternion algebra (a, b)R is isomorphic to the matrix
algebra M2(R) by [10, Th. 6].

For every n ≥ 1, Algn(F) denotes the set of isomorphism classes of central
simple F-algebras of degree 2n and exponent dividing 2. We can identify Algn(F)
with the subset of Br(F) of classes of algebras of degree dividing 2n . In particular,
we have that

Alg1(F) ⊂ Alg2(F) ⊂ Alg3(F) ⊂ · · · ⊂ Br2(F).

The isomorphism class of an algebra A in Algn(F) is called decomposable if A
is isomorphic to the tensor product of n quaternion algebras over F . The subset
of all decomposable classes in Algn(F) is denoted by Decn(F). The union of all
Decn(F) coincides with Br2(F).

We view Algn and Decn as functors Fields/F → Sets . By Example 1.1, the
functor Algn is isomorphic to the functor TorsG for G = GL2n /µ2.

Obviously, Alg1(F) = Dec1(F) = Quat(F). By Albert’s theorem [12, Prop.
5.2], Alg2(F) = Dec2(F).

The case n = 3 is more complicated. It is shown in [1] that Alg3(F) �= Dec3(F)
in general. On the other hand, Tignol proved in [18] that Alg3(F) ⊂ Dec4(F) as
the subsets of Br2(F).

2.2. Tignol’s construction

We recall Tignol’s argument given in [18]. Let A be a central simple F-algebra in
Alg3(F). By [16], there is a triquadratic splitting extension F(

√
a,

√
b,

√
c)/F of

A with a, b, c ∈ F×. Let L = F(
√

a). By Albert’s Theorem, we have

[A]L = [b, s] + [c, t] (1)

in Br(L) for some s, t ∈ L×.
Taking the corestriction for the extension L/F in (1), we get

0 = 2 [A] = [
b, NL/F (s)

] + [
c, NL/F (t)

]

in Br(F), hence
[
b, NL/F (s)

] = [
c, NL/F (t)

]
. By the Common Slot Lemma

[2, Lemma 1.7], we have
[
b, NL/F (s)

] = [
d, NL/F (s)

] = [
d, NL/F (t)

] = [
c, NL/F (t)

]

in Br(F) for some d ∈ F×. It follows that the classes
[
bd, NL/F (s)

]
,
[
cd, NL/F (t)

]

and
[
d, NL/F (st)

]
are trivial. By [4, Lemma 2.3] (see also Lemma 2.2 below),

[bd, s] = [bd, k] ,

[cd, t] = [cd, l] ,

[d, st] = [d,m] .



414 S. Baek, A. S. Merkurjev

in Br(L) for some k, l,m ∈ F×. It follows from (1) that

[A]L = [bd, k]L + [cd, l]L + [d,m]L

in Br(L). Hence

[A] = [a, e]+ [bd, k]+ [cd, l]+ [d,m] = [a, e]+ [b, k]+ [c, l]+ [d, klm] (2)

in Br(F) for some e ∈ F×. We shall also need the following well known statements:

Lemma 2.1. Let K be a field and let A be a central simple K -algebra such that
[A] ∈ Br2(K ) and let L/K be a quadratic field extension such that [A]L =
[b, s] + [c, t] for some b, c ∈ K × and s, t ∈ L×. Suppose that one of the classes[
b, NL/K (s)

]
and

[
c, NL/K (t)

]
is zero in Br(K ). Then A ∈ Dec3(K ).

Proof. Suppose that
[
b, NL/K (s)

] = 0. Taking the corestriction we get

0 = 2[A] = [
b, NL/K (s)

] + [
c, NL/K (t)

] = [
c, NL/K (t)

]
.

By [4, Lemma 2.3], there are u, v ∈ K × such that [b, s] = [b, u]L and [c, t] =
[c, v]L . It follows that the class [A]− [b, u] − [c, v] is split by L , hence is the class
of a quaternion algebra. Thus, A ∈ Dec3(K ). 
�
Lemma 2.2. Let R be a commutative F-algebra, a, b ∈ R×, T = R[√a] and
x + y

√
a ∈ T × such that x2 − ay2 = u2 − bv2 for some u, v ∈ R. If x + u ∈ R×,

then 2(x + u)(x + y
√

a) ∈ NT (b). In particular,
[
b, x + y

√
a
]

T = [b, 2(x + u)]T .

Proof. We have the equality

(x + y
√

a + u)2 − bv2 = (x + y
√

a)(x + y
√

a + 2u)+ (u2 − bv2)

= (x + y
√

a)(x + y
√

a + 2u)+ (x + y
√

a)(x − y
√

a)

= (x + y
√

a)(2x + 2u).


�

2.3. The Azumaya algebra A

Consider the affine space A8
F with coordinates a, e,u, v,w, x, y, z and define the

rational functions:

f = xy + az,

g = y + xz,

d = w2 − f2 + ag2,

b = (u2 − x2 + a)d−1,

c = (v2 − y2 + az2)d−1,

p = (u + x)(v + y)(w + f).
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Let X be the open subscheme of A8
F given by

q := adep(u2 − x2 + a)(v2 − y2 + az2)(x2 − a)(y2 − az2)(f2 − ag2) �= 0,

i.e., X =Spec(R)with R = F[a, e,u, v,w, x, y, z,q−1]. Let S = R[√a,
√

b,
√

c].
Consider the Azumaya R-algebra

A′ = (a, e)R ⊗ (b, 2(u + x))R ⊗ (c, 2(v + y))R ⊗ (d, 2p)R . (3)

We view S as a subring of A′. Moreover, (d, 2p)S := (d, 2p)⊗R S ⊂ A′.
Let T = R[√a]. It follows from Lemma 2.2 that

2(u + x)(x + √
a) ∈ NT (bd) ⊂ NS(d),

2(v + y)(y + z
√

a) ∈ NT (cd) ⊂ NS(d),

2(w + f)(x + √
a)(y + z

√
a) ∈ NT (d) ⊂ NS(d).

It follows from (3) that

[A′]
T = [

b, x + √
a
] + [

c, y + z
√

a
]

(4)

in Br(T ).
Moreover, we have 2p = 2(u + x)(v + y)(w + f) ∈ NS(d), therefore, (d, 2p)S

is isomorphic to the matrix algebra M2(S). In particular,

M2(R) ⊂ M2(S) � (d, 2p)S ⊂ A′

and hence A′ � M2(A) for the centralizer A of M2(R) in A′ by the proof of
[8, Th. 4.4.2]. Then A is an Azumaya R-algebra of degree 8 that is Brauer equiva-
lent to A′ by [17, Th. 3.10].

Proposition 2.3. The Azumaya algebra A is classifying for Alg3, i.e, the corre-
sponding GL8 /µ2-torsor over X is classifying.

Proof. Let A ∈ Alg3(K ), where K is a field extension of F . We shall find a point
p ∈ X (K ) such that A � A(p).

We follow Tignol’s construction. There is a triquadratic splitting extension
K (

√
a,

√
b,

√
c)/K of A with a, b, c ∈ K ×. Let L = K (

√
a), so

[A]L = [b, s] + [c, t]

in Br(L) for some s = x + x ′√a, and t = y + z
√

a ∈ L×. Modifying s by a
norm for the extension L(

√
b)/L , we may assume that x ′ �= 0. Similarly, we may

assume that z �= 0. Moreover, replacing a by ax ′2, we may assume that x ′ = 1.
We have

[
b, x2 − a

]
=

[
d, x2 − a

]
=

[
d, y2 − az2

]
=

[
c, y2 − az2

]
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in Br(K ) for some d ∈ K ×, so the classes
[
bd, x2 − a

]
,

[
cd, y2 − az2

]
and[

d, (x2 − a)(y2 − az2)
]

are trivial. Hence

bd = u2 − (x2 − a)u′2,
cd = v2 − (y2 − az2)v′2,
d = w2 − (x2 − a)(y2 − az2)w′2

for some u, u′, v, v′, w,w′ in K . Moreover, we may assume that u′ �= 0. Replacing
b and u by bu′2 and uu′ respectively, we may assume that u′ = 1. Similarly, we
may assume v′ = w′ = 1.

Replacing u by −u if necessary, we may assume that u + x �= 0 and similarly
v + y �= 0 and w + s �= 0, where s = xy + az. It follows from Lemma 2.2 that

[
b, x + √

a
] = [b, 2(u + x)]L ,[

c, y + z
√

a
] = [c, 2(v + y)]L ,[

d, (x + √
a)(y + z

√
a)

] = [d, 2(w + s)]L

in Br(L). Hence

[A] = [a, e] + [b, 2(u + x)] + [c, 2(v + y)] + [d, 2(u + x)(v + y)(w + s)]

in Br(K ) for some e ∈ K ×.
Let p be the point (a, e, u, v, w, x, y, z) in X (K ). We have [A(p)] = [A] and

hence A(p) � A as A(p) and A have the same dimension. 
�
Proposition 2.4. Let K be the quotient field of the ring R = F[X ]. Let K̂ be the
completion of K with respect to the discrete valuation associated with one of the
irreducible polynomials a,u2 − x2 + a, v2 − y2 + az2,d, x2 − a, y2 − az2, f2 −
ag2,u + x, v + y and w + f . Then AK̂ ∈ Dec3(K̂ ).

Proof. First assume that the valuation v = va is associated with a. By Hensel’s
Lemma, x2 − a ∈ K̂ ×2. It follows that

[
b, x2 − a

]
K̂ = 0. By Lemma 2.1, applied

to (4), AK̂ ∈ Dec3(K̂ ).
Let v = vu2−x2+a. In the residue field, ū2 − x̄2 + ā = 0̄, hence x̄2 − ā is a

square. By Hensel’s Lemma, x2 − a ∈ K̂ ×2. Therefore, AK̂ ∈ Dec3(K̂ ) as in the
previous case.

The case v = vv2−y2+az2 is similar.
Let v = vd. In the residue field, w̄2 − f̄2 + āḡ2 = 0̄, hence f̄2 − āḡ2 is a square.

By Hensel’s Lemma, f2 − ag2 ∈ K̂ ×2, hence
[
b, f2 − ag2

]
K̂ = 0. It follows from

(4) that

[A]T = [
b, x + √

a
] + [

c, y + z
√

a
] = [

b, f + g
√

a
] + [

bc, y + z
√

a
]
.

By Lemma 2.1, AK̂ ∈ Dec3(K̂ ).
Let v = vx2−a. In the residue field, b̄d̄ = ū2 is a square. By Hensel’s Lemma,

bd ∈ K̂ ×2. It follows from (3) that AK̂ ∈ Dec3(K̂ ).
The cases v = vy2−az2 and v = vf2−ag2 are similar.
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Let v = vu+x. In the residue field, b̄d̄ = ā. By Hensel’s Lemma, abd ∈ K̂ ×2.
It follows again from (3) that AK̂ ∈ Dec3(K̂ ).

The cases v = vv+y and v = vw+f are similar. 
�
From now on we consider the cohomology theory with values in the Galois

module Z/2Z, i.e., H(L) = H(L ,Z/2Z) for any field extension of F . Note that
H(L) has structure of a commutative ring.

Proposition 2.5. The restriction homomorphism

Inv(Alg3, Hr ) → Inv(Dec3, Hr )

is injective.

Proof. Let q be an invariant of Alg3 of degree r and let K be the quotient field
of the ring R, i.e., K = F(X). By Theorem 1.3, we have q(AK ) ∈ A0(X, Hr ).
Let X ′ be the open subscheme of A8

F given by e �= 0, so X ⊂ X ′ ⊂ A8
F and

X ′ � A7
F × Gm. Note that

A0(X ′, Hr ) = A0(Gm, Hr ) = Hr (F)⊕ (e) ∪ Hr−1(F)

by [15, Prop. 2.2 and Prop. 8.6].
Suppose that the restriction of q on Dec3 is zero. By Proposition 2.4, AK̂ ∈

Dec3(K̂ ), where K̂ is the completion of K with respect to every divisor x of
X ′ in X ′\X . Hence q(AK̂ ) = 0 for all such K̂ . The residue homomorphism
∂x : Hr (K ) → Hr−1 (F(x)) factors through the group Hr (K̂ ). It follows that
∂x (q(AK )) = 0 and therefore,

q(AK ) ∈ A0(X ′, Hr ) = Hr (F)⊕ (e) ∪ Hr−1(F),

i.e., q(AK ) = hK + (e)∪ h′
K for some h ∈ Hr (F) and h′ ∈ Hr−1(F). Consider a

point p ∈ X (E) with E = F(e) such that e(p) = e and b(p) = 1. It follows from
(3) that A(p) ∈ Dec3(E). Hence by Theorem 1.3(2),

0 = q (A(p)) = hE + (e) ∪ h′
E ,

therefore, h = h′ = 0 and q(AK ) = 0. By Proposition 2.3 and Theorem 1.5,
q = 0. 
�

2.4. Invariants of Decn

From now on we assume that −1 ∈ F×2.
Let K∗(F) denote the Milnor ring of a field F and set k∗(F) = K∗(F)/2K∗(F).

For every n ≥ 0, let γn denote the divided power operation [9,19]:

k2(F) → k2m(F)

defined by

γn

(
r∑

i=1

αi

)
=

∑

1≤i1≤···≤im≤n

αi1 · · · · · αim ,
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where the αi are symbols. In particular, γ0 = 1 ∈ k0(F) = Z/2Z and γ1 is the
identity.

We identify k2(F) with Br2(F) via the norm residue isomorphism. Restrict-
ing γm to Decn and composing with the norm residue homomorphism k2m(F) →
H2m(F), we can view the divided power operations (still denoted by γm) as invari-
ants of Decn with values in H , so γm ∈ Inv(Decn, H2m) for all n. Clearly, γm = 0
if m > n.

Theorem 2.6. The H(F)-module Inv(Decn, H) is free with basis {1 = γ0, γ1,

. . . , γn}.
Proof. The case n = 1, when Dec1 = Quat is proven in [7, Th. 18.1]. By [7, Ex.
16.5], the natural map

Inv(Quat, H)⊗n → Inv(Quat×n, H)

is an isomorphism. It follows that Inv(Quat×n, H) is a free H(F)-module with
basis of all monomials δε1

1 δ
ε2
2 . . . δ

εn
n , where ε1 = 0 or 1 and the invariant δi is

defined by δi (α1, . . . , αn) = αi .
The natural morphism of functors

Quat×n → Decn (5)

given by the tensor product is surjective. It follows that the map

Inv(Decn, H) → Inv(Quat×n, H)

is injective. The image of this map is element-wise invariant under the natural action
of the symmetric group Sn and hence is contained in the free H(F)-submodule gen-
erated by the standard symmetric functions γm on the δ1, . . . , δn that are precisely
the divided powers. 
�
Remark 2.7. Vial has computed all invariants of kn in [19].

Restricting the divided powers on the subfunctors Algn ⊂ Br2 we view the γm

as invariants on Algn .

Theorem 2.8. If n ≤ 3, then the H(F)-module Inv(Algn, H) is free with basis
{1 = γ0, γ1, . . . , γn}.
Proof. If n ≤ 2, then Algn = Decn and the statement follows from Theorem 2.6.
The case n = 3 is implied by Proposition 2.5 and Theorem 2.6. 
�

2.5. Reduced trace form

Let A be a central simple algebra over a field F . Denote by qA the quadratic form
on A defined by qA(a) = TrdA(a2) for a ∈ A, where TrdA is the reduced trace
form for A. If A and A′ are two central simple algebras over F , then

qA⊗A′ � qA ⊗ qA′ .
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Example 2.9. Let A be a quaternion algebra over a field F . Then qA is the 2-fold
Pfister form 〈〈a, b〉〉, where a, b ∈ F× such that [A] = [a, b] in Br(F).

It follows from Example 2.9 that for any A ∈ Decn(F) the form qA is a 2n-fold
Pfister form. Moreover, the invariant e2n(qA) in H2n(F) (cf. [6, §16]) coincides
with the divided power γn(A).

Theorem 2.10. If n ≤ 3, then for any A ∈ Algn(F), the form qA is a 2n-fold Pfister
form such that e2n(qA) = γn(A).

Proof. If n ≤ 2, then Algn = Decn and the statement follows.
Consider the case n = 3. Let A ∈ Alg3(F). Choose a splitting field F(

√
a,

√
b,√

c) and set L = F(
√

a). We write a �→ ā for the nontrivial automorphism of L
over F . Let B be the centralizer of L in A. By Skolem–Noether Theorem [11, Th.
1.4], there is an s ∈ A such that sxs−1 = x̄ for all x in L . Note that s2 commutes
with all elements in L , hence s2 ∈ B.

Letψ : B → B be an automorphism defined by y �→ sys−1. Then A = B⊕Bs
with sy = ψ(y)s for all y ∈ B. Since TrdA(yzs) = TrdA(

√
ayzs(

√
a)−1) =

− TrdA(yzs), we have TrdA(yzs) = 0 for any y and z in B. Moreover, TrdA(y) =
TrL/F (TrdB(y)) for any y ∈ B by [5, §22, Cor. 5]. Therefore, for the trace forms
we have

qA = TrL/F (qB) ⊥ TrL/F (q
′
B),

where q ′
B(x) = TrdB

(
(xs)2

)
.

Let t ∈ F× and At the F-algebra with presentation At = B ⊕ By and yby−1 =
sbs−1 for all b ∈ B and y2 = ts2. By Proposition [11, Th. 13.41],

[At ] = [a, t] + [A].
Moreover,

qAt = TrL/F (qB) ⊥ t TrL/F (q
′
B),

hence, by Lemma 2.11 below, in the Witt ring of F , we have

qA − tqAt = 〈〈t〉〉 · TrL/F (qB) ∈ I 6(F).

By (2), we can choose t such that At is decomposable, hence qAt ∈ I 6(F) and
therefore, qA ∈ I 6(F). As dim(qA) = 64, the form qA is a 6-fold Pfister form.

It follows that e6(qA) is a well-defined invariant of Alg3 that agrees with γ3 on
Dec3. By Proposition 2.5, e6(qA) = γ3 on Alg3. 
�
Lemma 2.11. In the notation above, TrL/F (qB) ∈ I 5(F).

Proof. In Tignol’s construction (see (1) and (2)),

[A]L = [b, s] + [c, t] = [a, e] + [b, k] + [c, l] + [d, klm]

in Br(L). Let

p := 〈〈a, e〉〉 + 〈〈b, k〉〉 + 〈〈c, l〉〉 + 〈〈d, klm〉〉 ∈ I 2(F). (6)
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It follows that

pL ≡ 〈〈b, s〉〉 + 〈〈c, t〉〉 mod I 3(L),

so B � (b, s)⊗L (c, t). We have in W (L):

qB = 〈〈b, s〉〉 · 〈〈c, t〉〉 ≡ 〈〈b, s〉〉 · pL − 〈〈b, s〉〉 = 〈〈b, s〉〉 · pL mod I 5(L)

since 〈〈b, b〉〉 = 0. By the projection formula and [6, Cor. 34.19],

TrL/F (qB) ≡ TrL/F (〈〈b, s〉〉) · p ≡ 〈〈b, NL/F (s)〉〉 · p mod I 5(F). (7)

We have 〈〈b, NL/F (s)〉〉 � 〈〈c, NL/F (t)〉〉 � 〈〈d, NL/F (t)〉〉. It follows that 〈〈b,
NL/F (s)〉〉 annihilates all four summands in the right hand side of (6), hence
〈〈b, NL/F (s)〉〉 · p = 0. By (7), TrL/F (qB) ∈ I 5(F). 
�

2.6. Essential dimension of Decn and Alg3

Let S : Fields/F → Sets be a functor, E ∈ Fields/F and K ⊂ E a subfield over
F . An element α ∈ S(E) is said to be defined over K (and K is called a field of
definition of α) if there exists an element β ∈ S(K ) such that α is the image of
β under the map S(K ) → S(E). The essential dimension of α, denoted ed(α), is
the least transcendence degree tr. degF (K ) over all fields of definition K of α. The
essential dimension of the functor S is

ed(S) = sup{ed(α)},
where the supremum is taken over fields E ∈ Fields/F and all α ∈ S(E) (cf.
[3, Def. 1.2]).

The highest invariant γn of Algn and Decn of degree 2n is nontrivial, hence
ed

(
Algn

) ≥ 2n and ed (Decn) ≥ 2n by [3, Cor. 3.6]. On the other hand, using the
surjection (5), we get

ed (Decn) ≤ ed
(
Quat×n) ≤ n · ed (Quat) = 2n.

Thus, ed (Decn) = 2n.
It is proved in [13, Cor. 3.10] and [14, Th. 8.6] that ed

(
Alg3

) ≤ 17.

Theorem 2.12. 6 ≤ ed
(
Alg3

) ≤ 8.

Proof. By Proposition 2.3, there is a surjective morphism of functors X → Alg3,
where X is a variety defined in Sect. 2. By [3, Cor. 1.19], ed

(
Alg3

) ≤ dim(X) = 8.

�

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.
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