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Optimizing Open-Ended Crowdsourcing: The Next Frontier in 
Crowdsourced Data Management

Aditya Parameswaran†, Akash Das Sarma*, and Vipul Venkataraman†

†University of Illinois

*Stanford University

Abstract

Crowdsourcing is the primary means to generate training data at scale, and when combined with 

sophisticated machine learning algorithms, crowdsourcing is an enabler for a variety of emergent 

automated applications impacting all spheres of our lives. This paper surveys the emerging field of 

formally reasoning about and optimizing open-ended crowdsourcing, a popular and crucially 

important, but severely understudied class of crowdsourcing—the next frontier in crowdsourced 

data management. The underlying challenges include distilling the right answer when none of the 

workers agree with each other, teasing apart the various perspectives adopted by workers when 

answering tasks, and effectively selecting between the many open-ended operators appropriate for 

a problem. We describe the approaches that we’ve found to be effective for open-ended 

crowdsourcing, drawing from our experiences in this space.

1 Introduction

We are on the cusp of a new data-enabled era, where machine learning algorithms, trained 

on large volumes of labeled training data, are enabling increasing automation in our daily 

lives—from driving, robotics, and manufacturing, to surveillance, medicine, and science; a 

recent New York Times article calls this “a transformation that many believe will have a 
payoff on the scale of the personal computing industry or the commercial internet” [1]. 

Although considerable effort has gone into the development of machine learning algorithms 

for these applications, the generation of labeled training datasets, done at scale using 

crowdsourcing [2]— while equally important [3, 4]—is often overlooked. Recent work has 

demonstrated that optimizing crowdsourcing can often yield orders of magnitude more high-
quality labeled data at the same cost, spurring the development of increasingly sophisticated 

machine learning algorithms, and providing immediate benefits via substantial increases in 

accuracy for existing algorithms.

From Boolean Crowdsourcing to Open-Ended Crowdsourcing

However, most of the past research on optimizing crowdsourcing has focused on what we 

call boolean crowdsourcing, e.g., [5, 6, 7, 8, 9, 10, 11], where human involvement can be 

abstracted as tasks or operators whose answers come from a small, finite domain, e.g., 

evaluating a predicate, comparing a pair of items, or rating an item on a scale from 1–5. In 

the former two cases, the domain of possible answers is boolean, while in the last case, the 

domain is finite and has cardinality five. Boolean crowdsourcing operators have natural 
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analogs in computer operators, and are easier to reason about and develop algorithms with. 

This research has largely ignored open-ended crowdsourcing, where the answers to the tasks 

have no similar restriction. Anecdotal evidence indicates that open-ended crowdsourcing 

tasks are at least as popular as traditional boolean crowdsourcing tasks on crowdsourcing 

marketplaces. As one data point, an analysis of Mechanical Turk’s log data [12] reported 

that content creation—including open-ended tasks like transcription—was by far the single 

largest category of tasks in the period from 2009–14. As another example, a survey of 

industry users of crowdsourcing reports similar findings [2].

Examples of Open-Ended Crowdsourcing

We now describe some canonical open-ended crowdsourcing problems that we use as 

examples for this paper. One example is transcription: the goal of transcription is to 

transform a piece of audio or video to text. This could be done, for example, using unit tasks 

where we provide workers a portion of the audio or video, along with a text box where they 

can type a sequence of words to match the contents of the portion. Another example is 

clustering: the goal of clustering is to subdivide a collection of items (images, pieces of text) 

into clusters. This could be done, for example, using unit tasks where workers place items 

into an arbitrary number of buckets determined by them. Yet another example is detection: 

the goal of detection is to identify where in an image an object is located. This could be 

done, for example, using unit tasks where workers draw a bounding rectangle or polygon 

around the location of the object of interest.

Open-Ended Crowdsourcing: A Pressing Need

Beyond the popularity, there are several reasons why open-ended crowdsourcing is crucially 

important. First, some tasks are near-impossible with just boolean crowdsourcing. For 

example, using boolean crowdsourcing to locate the position of an object in an image is 

near-impossible. If we use a task like: “is the object in this portion of the image (yes/no)”, 

we may be able to get close to the actual location of the object by repeatedly using this task 

on various portions of the image, but getting an accurate bounding box around the object 

may require hundreds or thousands of such tasks. On the other hand, asking workers to 

simply draw a bounding box is a lot more effective in terms of time, cost, and accuracy. 

Second, open-ended crowdsourcing lets us get more fine-grained data, since workers provide 

answers from a potentially unbounded set. If we were to use an entropy argument, the 

number of bits provided by workers for an open-ended question or task is considerably 

larger than that provided for a boolean question. Third, recent computer vision and text 

processing papers argue that fine-grained training data is essential for developing 

sophisticated machine learning models [13, 14, 15, 16]. Specifically, our best hope for 

improving the accuracy of present machine learning models is by using training data that 

reveals more information about how humans think, as opposed to training data that is more 

akin to how computers operate (i.e., via boolean operations).

Despite these compelling reasons, research on optimizing open-ended crowdsourcing is still 
in its infancy. Open-ended crowdsourcing is presently leveraged in an unoptimized fashion, 
with resources wasted and inaccurate data collected, or even worse, not at all, leading to 

severe impediments to machine learning.
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Challenges

The reason why open-ended crowdsourcing is leveraged in an unoptimized fashion is that 

optimizing open-ended crowdsourcing is substantially harder than optimizing boolean 

crowdsourcing:

1. Hard to aggregate. Due to the many possible answers to open-ended tasks, 

distilling the ‘right’ answer from this set is non-trivial. For example, when 

drawing a box around an object in an image, or transcribing audio into text, no 

two workers will provide the same box or transcription. This is because the 

number of possible answers is very large, and there are many ways of making 

mistakes. In boolean crowdsourcing, we could simply resort to the majority 

opinion, but those techniques do not apply, especially when all of the answers are 

different from each other.

2. Sparsity of quality measurements. In trying to characterize the error rates of 

workers, due to the large number of possible answers, it is hard to get reliable 

estimates of the probability that a worker provides an answer a, when the true 

answer is b. In order to estimate these probabilities, it would take a lot of tasks to 

be issued on crowdsourcing marketplaces to ensure adequate coverage (and 

therefore accurate estimates) for every (a, b) pair.

3. Many right answers. To further complicate matters, open-ended tasks often have 

many ‘right’ answers, due to different underlying perspectives or beliefs, making 

it challenging to distinguish between the case when a worker is making mistakes, 

or the case when the worker is simply adopting a different perspective. For 

instance, when clustering items—say a collection of images of everyday objects, 

workers may use different criteria—size, color, geometric shape—to cluster the 

items, while also inadvertently introducing errors.

4. Multiple scales. While boolean crowdsourcing typically operates on items 

(images, text) as a whole, open-ended crowdsourcing can additionally operate on 

portions of items. For example, when counting objects in an image, we may ask 

workers to count within portions of the image for less error-prone counts. There 

are an unbounded number of such portions that can be counted, making it hard to 

pick between them when selecting tasks to be assigned to workers.

5. Many open-ended operators. Unlike boolean crowdsourcing which is limited to a 

small number of operator types, there is a wide variety of open-ended operators, 

even for the same problem (including boolean ones as a subset). For example, for 

detecting where an object is present in an image, workers could draw a box 

around an object, fix a box, or compare boxes. The large number of alternatives 

makes it hard to design algorithms.

In short, these issues (1–3) lead to an increased complexity in reasoning about the 

underlying algorithms, and (4–5) an overwhelming number of design choices when it comes 

to designing algorithms.
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This Paper

While there has been a large body of work on open-ended crowdsourcing, primarily from the 

HCI (Human-Computer Interaction) community, most of this work has been on creatively 

using open-ended crowdsourcing operators in workflows as opposed to understanding how 

to model and reason about them, and develop optimal algorithms. While there has been a 

deep, interesting, and important body of work from the database community (and to a 

certain extent from the AI and machine learning communities) on optimizing boolean 

crowdsourcing, our hope is to bring open-ended crowdsourcing the same kind of attention, 

especially given its importance as articulated above.

Therefore, in this paper, we aim to outline an emerging body of work in optimizing open-

ended crowdsourcing from us and from other groups by developing a set of design principles 
that we have found to be effective for algorithm development, and by describing how these 

design principles were applied for a few papers that we have been working on in this space. 

Note that our survey of the emergent work on open-ended crowdsourcing will necessarily be 

biased by our own work that we’re most familiar with; this is not to indicate that the other 

work is not as important or as interesting, but merely indicates our lack of familiarity with 

them. We will attempt to categorize all of the open-ended crowdsourcing work from the 

database community that we are aware of, along with work from other communities in 

Section 4.

2 Design Principles for Open-Ended Crowdsourcing

We now describe some approaches that we’ve found to be successful in dealing with the 

increased modeling complexity (issues 1–3 above) and increased number of design choices 

(issues 4–5 above), followed by a solution scaffold or recipe for open-ended crowdsourcing.

2.1 Dealing with the Modeling Complexity

The challenges in modeling worker performance stems from the fact that there are far too 

many possible answers that workers can provide even for a single question or task. This 

means that we do not have a clear mechanism to aggregate worker answers, and nor do we 

have the ability to estimate error rates of the form Pr[worker answers a|true answer is b] for 

all (a, b) pairs. We have identified two ways of dealing with this modeling complexity, both 

of which essentially allow us to transform the worker answer into one or more boolean 

crowdsourcing answers, following which we can apply standard techniques from boolean 

crowdsourcing.

The first approach is to project the answer down to a finite set of choices. For example, if the 

worker provides an answer that is any rational number in a range, we can project this answer 

down to a finite set of integers; yet another way is to project it down into a binary choice: ≤ a 
or > a. Note that this approach is wasteful in that we lose some of the fine-grained 

information that workers are providing, and begs the question of why we didn’t simply ask 

the boolean crowdsourcing question in the first place. Nevertheless, this simple approach is 

commonly used: we provide an example of this approach in Section 3.1.
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The second approach is to decompose the answer down to answers to a collection of boolean 

crowdsourcing questions. As an example, if a worker is providing a transcription to a piece 

of audio, instead of treating the entire transcription as one open-ended crowdsourcing task, 

we can break it down into the sequence of individual words, each of which can be 

considered a response or a non-response to a word transcription task, which is much more 

manageable. By doing so, we can now model and reason about workers making mistakes at 

the level of words, rather than complete transcriptions. In transcription, at least, an additional 

challenge remains, which is to identify which words across workers were meant to be 

provided as output for the same portion of the audio piece. As another example, if a worker 

is providing a bounding box as an answer to a detection task, instead of treating the 

bounding box as a whole, we can decompose it down into boolean crowdsourcing answers 

for individual pixels: where if a pixel is part of the box drawn by a worker, the pixel gets a 

“yes” answer for the corresponding boolean crowdsourcing question, while it gets a “no” 

answer if it is not. This approach has the downside that the answers to the “pixel-level” 

boolean crowdsourcing questions are in fact not independent—if the answer to a specific 

pixel is “yes”, then it is more likely than the answer to a neighboring pixel is “yes” rather 

than no. By decomposing the open-ended crowdsourcing task to boolean crowdsourcing 

ones, we lose this information.

We also employ a third approach which is fundamentally different from the previous two. 

This last way of dealing with open-ended crowdsourcing tasks is a bit more ad-hoc, and 

problem dependent, but does not require us to discard any information. Here, we operate on 

the answers provided to the open-ended crowdsourcing tasks directly. Consider the answers 

to a single open-ended crowdsourcing task. We can represent each of these task answers as 

nodes in a graph, and connect nodes that are similar to each other (on some similarity 

metric, such as overlap) with an edge annotated by the degree of similarity. Once this graph 

of answers is constructed, we can apply standard graph clustering algorithms to identify 

various view-points among the open-ended task answers: the largest cluster or clique may 

represent the “consensus” answer. What can be done with these clusters is dependent on the 

problem. We provide an example of this approach in Section 3.2.

2.2 Dealing with the Increased Design Choices

As described previously, open-ended crowdsourcing brings with it a considerable increase in 

the number of alternative tasks that can be issued at each step. The increase is due to the 

large number of open-ended crowdsourcing task types available, and also because these 

tasks can be applied to portions of items and not just the items directly. We now describe our 

approaches to deal with these increased design choices.

Our first approach is one that has been applied in the past for boolean crowdsourcing, which 

is to estimate the information gain for issuing a specific task: here, an additional challenge is 

that the information gain may be hard to estimate because we do not have a good model to 

reason about worker performance. Nevertheless, we may be able to use proxies for 

information gain, e.g., prioritizing items or portions of items for which we have fewer 

answers than others, or more ambiguity, perhaps measured by projecting or decomposing the 

answer down to boolean tasks (as described in the previous section).
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The second approach is to start at a coarser granularity and then drill-down only when 

needed. For instance, in transcription—we can have workers first transcribe the entire audio 

piece, and then have additional workers transcribe the portions that are were found to be 

ambiguous. We will describe another example of this approach in Section 3.1.

A last approach is to incorporate information from primitive machine learning algorithms to 

“direct” attention to specific items or portions of them. For example, if we know for certain 

that an object does not lie in a given portion of the image, we can remove those portions 

when providing workers the open-ended task where they are asked to draw a bounding box 

about the object of interest. Once again, we describe how this approach is used for counting 

in Section 3.1.

2.3 Solution Scaffold

We have developed an open-ended crowdsourcing problem-solving approach drawing on our 

mechanisms to deal with additional modeling and design choice complexity. While the 

specific instantiation may differ across problems, the overall principles still apply, and the 

insights transfer across. For each problem, we apply MARQED, short for Model-
Aggregate-Reason-Quantify-Estimate-DrillDown: the first three (MAR) are tailored to 

managing modeling complexity, while the last three (QED) are tailored to managing design 

choice complexity.

In particular, MARQED stands for the following: (1) Model the performance of workers on 

open-ended operators; (2) Develop methods to Aggregate across their responses to identify 

one or more ‘right answers’; (3) Identify techniques to Reason about whether the workers 

are generating their answers based on the same or different underlying perspective; (4) 

Develop procedures to Quantify the information gain of different open-ended operators, and 

the same operator operating on different items; (5) Design schemes to incorporate prior 

Estimates from automated algorithms to reduce costs; and (6) Develop Drill-Down 
techniques on the items to enable workers examine an item more closely. Then, we design 
the open-ended crowdsourcing algorithm that can leverage (1–6) (if available)—see Figure 

1; boxes in blue did not exist in boolean crowdsourcing, while boxes in gray are 

substantially different. Note that it is not necessary to develop solutions for all of (2–6) 

before we can reap considerable benefits in practice. In the next section, we describe how we 

applied MARQED in practice.

3 Example Problems in Open-Ended Crowdsourcing

In this section, we describe our results for two problems that we believe are representative of 

the challenges in open-ended crowdsourcing, along with our solution approach, in addition 

to other problems in this space.

3.1 Counting

The goal of counting is to estimate the number of objects of a given type in an image at low 

cost; it is a basic computer vision primitive, with applications in security, medicine, and 

biology. Counting is a hard problem due to occlusion—the partial obscuring of objects 
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behind other objects, with state-of-the-art automated techniques having accuracies less than 

50% [17, 18].

In our paper [19], we develop cost-effective techniques to use crowds to accurately count the 

number of objects in images from two completely different domains—cell colonies in 

microscope photos, and people in Flickr photos. We now describe the various components of 

our solution, drawing parallels to the MARQED methodology.

Model—Our open-ended operator is simple—we display an image or a portion of an image, 

and ask workers to provide the count of the number of objects in that portion. We find that 

workers do not make mistakes in counting when the number of objects in the image is less 

than a certain number k (20 in our experiments); after that, workers start introducing errors, 

with the errors growing superlinearly as the number of objects increases. This may be 

because workers are not able to keep track of the objects they have already counted, or 

because they get fatigued beyond a certain point and start introducing errors. Using this 

insight, we model worker error by projecting down worker answers to boolean ones: if the 

answer is < k, then it is assumed to be correct; if the answer is ≥ k, then it is assumed to be 

incorrect i.e., given a worker provides a count ≥ k, the only information we can deduce is 

that it is ≥ k, but no additional information can be inferred.

While this simple model provides reasonable results, we are indeed wasting information by 

ignoring worker answers if they are ≥ k. Using a more fine-grained error model along with 

maximum-likelihood estimation can help identify a current best estimate for an image or a 

portion of an image, allowing us to “skip ahead” to the portions that need more attention. 

That said, this fine-grained error model requires more expensive training data to estimate 

accurately.

Drill-down—Based on the simple error model, we can already develop a strategy for 

counting objects in images, by repeatedly splitting images and drilling-down. We model this 

process as a segmentation-tree, where the root node represents the original, complete image, 

and children of any node represent the segments obtained by splitting the parent image 

(using some splitting scheme, horizontal or vertical). Figure 2 shows one such example 

segmentation tree where the original image, V0, is split into segments {V1, V2}, which are 

respectively split into {V3, V4} and {V5, V6, V7}.

We refer to any set of mutually exclusive nodes (i.e. image segments) that when put together 

reconstruct the original complete image as a frontier of the segmentation-tree. We start by 

asking workers to count the number of images in the root node (i.e. the complete image). If 

they reply with a count greater than or equal to k, then we traverse down the segmentation 

tree by splitting the image and asking workers to provide the count for the children 

segments. If the count on all segments is smaller than k, then we are done. If not, we again 

split and repeat this process for every segment that still has a count ≥ k, until we reach a 

frontier of image segments such that every one of them has a smaller count than k. This 

simple strategy has optimal competitive ratio for any given segmentation tree, and also 

returns counts with reasonable accuracies of 93% when counting people on a standard 

dataset [20]. This approach does come with one challenge: objects often span multiple 
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sibling segments in the segmentation tree, and therefore have a danger of being double-

counted. In our paper, we take the easy-way-out by asking workers to only count an object if 

more than half of it appears in the image segment. Further improvements may be possible.

Reason and Aggregate—Using our simple error model, reasoning about perspectives, 

and aggregation is not necessary—workers are expected to agree and provide correct 

answers as long as the true count is < k—thus we can simply ask one worker to count each 

image or portion of the image, and additional answers are not necessary. In practice, 

however, we find that sometimes workers may still introduce errors: to handle this, in our 

paper, we take three worker answers per question and take the median—this simple 

aggregation scheme is sufficient to resolve worker differences and obtain high accuracy 

count estimates. Finally, we sum up all the aggregated counts from the different constituent 

image segments to obtain the count for the original, whole image. Changes to the worker 

error model, for instance, using a fine-grained probabilistic model for maximum-likelihood 

count estimation, will open the road to more interesting aggregation challenges.

Quantify—While we did not implement other operators for this problem, there are a 

number of interesting alternatives that yield more information, at the expense of a little extra 

worker effort. For instance, we could ask workers to tag objects that they have already 

counted, say with a dot, to help eliminate double-counting as well as avoid missing objects. 

Tagged objects could serve as references for other workers, who could then mark additional 

objects missed by previous workers, or eliminate redundant instances.

Estimate—Even if the number of objects is in the hundreds, our algorithm on the 

segmentation tree may end up asking several “useless” questions at the higher levels all with 

count ≥ k, while the “useful” questions (whose answers are actually used to compute the 

final count at the root) are at the frontier of the tree where the count is just k. However, it 

may be possible to use feedback from a primitive automatic segmentation algorithm to craft 

a segmentation tree where there are no useless levels, and where objects do not span 

multiple sibling segments. Consider the problem of counting cells in biological images. 

Even though automated counting may be hard due to occlusion, we can partition the image 

into non-overlapping portions using the watershed algorithm [21] and learn prior counts for 

each partition using an SVM [22]. Note that these prior counts may be much smaller than 

expected (due to occlusion), but it suffices as a starting point.

Given these partitions and prior counts, we can construct a segmentation tree that groups 

multiple contiguous partitions together until they hit up to k objects each (based on the prior 

counts, which may be underestimating). This allows us to construct a segmentation tree 

where all levels are “useful” given our prior information. Since merging partitions together 

optimally is NP-HARD via a reduction from planar partitioning [23], we employ other 

heuristic techniques in our paper, such as first-fit [24]. We then traverse the tree asking 

workers as before. By using the prior machine-learned estimates in this fashion, we are able 

to skip several “useless” questions providing a 2x reduction in cost. It should be noted that 

the images of cell colonies are much more amenable to automated prior estimation 

techniques. It is an open challenge to explore whether similar techniques could be applied to 

other kinds of objects, where it is a lot harder to get accurate prior counts.
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3.2 Clustering

Given a collection of items (e.g., images, documents), the goal of clustering, is to organize 

them into coherent groups. Collections of images or documents are commonplace; 

organizing them is essential before one can understand the themes in the collection, or 

improve search or browsing. Clustering embodies all the challenges faced by open-ended 

crowdsourcing: workers can have different perspectives leading to multiple “right” answers 

making worker responses hard to aggregate. The space of possible responses is also 

extremely large, since workers operate on multiple items simultaneously. The open-

endedness of the problem also means that there are a number of different interfaces and 

operators that could conceivably be used. We shall now see how applying the MARQED 
approach allows us to reason about this challenging open problem in a principled fashion.

Model—Prior work has considered crowdsourced clustering, limited to the boolean 

operator where pairs of items are compared [25, 26]—as a result, crowd workers do not have 

any context to compare items. Also, the eventual clusterings end up having “mixed” 

perspectives, resulting in low accuracies. Instead we used a basic open-ended clustering 

operator, where a set of items are provided to workers, and they are asked to group them into 

an arbitrary number of disjoint clusters. Using this operator, we had multiple workers cluster 

a stylized image dataset with each image containing a shape with different sizes and colors, 

as a running example. First, we introduce the notion of concept hierarchies to capture the 

notion of worker cluster perspectives. One concept hierarchy for the concept of shapes, 

could be to have {All Shapes} divided into {Quadrilaterals, non-Quadrilaterals}, the latter of 

which is subdivided into {Triangles, Circular Shapes}. For any given dataset, the concept 

hierarchy need not be unique. For instance, another hierarchy would have {All Shapes} 

divided into {Circular Shapes, Straight-Edged Shapes}. When clustering, each worker 

answer can be seen to draw from one or more inherent concept hierarchies.

Figure 3 shows examples of real worker clusterings on our dataset. While workers 1 and 2 

clustered based on color alone, workers 3, 4 and 5 clustered based on shape. We focus on the 

latter for the time being. One conceptual hierarchy, C, “consistent” with workers 3, 4, and 5 

is {All Shapes} divided into {Quadrilaterals, Triangles, Circular Shapes}, which are 

respectively subdivided into {Squares, Rectangles}, {Scalene Triangles, Equilateral 
Triangles}, and {Circles, Ellipses}. We additionally introduce the notion of frontiers on a 

given concept hierarchy to capture the notion of granularities: a frontier in a hierarchy is a 

set of nodes that do not have any ancestor-descendent relationship between them, and 

together cover all paths to the leaves. Each frontier corresponds to one valid granularity of 

clustering consistent with the concept hierarchy. Representing the concept hierarchy, C, as a 

tree, we have worker 3 operating at the leaf nodes, or at the finest granularity of the tree, 

corresponding to the frontier {Squares, Rectangles, Scalene Triangles, Equilateral Triangles, 
Circles, Ellipses}. Similarly, worker 5 is operating at a depth of one in the tree, which is the 

coarsest non-trivial granularity and corresponds to the frontier {Quadrilaterals, Triangles, 
Circular Shapes}.

Reasoning and Aggregation—From our experiments on the stylized dataset, we make 

the following observations: (a) Workers cluster using different perspectives, e.g., some 
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workers clustered using shape, and others clustered using color. That said, there was a 

dominant, popular clustering perspective, in this case, shape. (b) Even within a perspective, 

workers cluster at various granularities, e.g., some workers clustered shapes into rectangles 

and non-rectangles, while others broke up non-rectangles into fine-grained clusters. (c) 

Sometimes, there are confusing items that end up being placed in different clusters by 

different workers even if they agree on the perspective and the granularity.

To reason about worker’s perspectives, we can develop a notion of consistency: two worker 

clusterings (i.e., a set of clusters formed by each worker) are consistent if for any two pairs 

of clusters C, C′, one from each worker, either C ⊆ C′, C′ ⊆ C, or C ∩ C′ = ∅ i.e., each 

cluster from one worker generalizes, specializes, or does not overlap with another worker’s 

clusters. This definition allows consistent workers to cluster at different granularities.

Given the notion of consistency, we can now directly operate on worker responses to identify 

whether there are any “consensus” clusterings, i.e., consensus concept hierarchies 

(perspectives), and frontiers within them (granularities), that emerge. This allows us to have 

a starting point to cluster the rest of the items. To do this, we generate a clustering graph, 

with one node per worker, with consistent pairs having an edge between them. Figure 4 

shows the clustering graph corresponding to the workers from Figure 3. Workers 1 and 2 

both clustered based on color alone and were consistent with each other, while workers 3, 4, 

and 5 clustered by shape alone with no inconsistencies among themselves. We can show that 

under multinomial worker perspective selection models, the maximum likelihood worker 

perspective is the MAX-CLIQUE in the graph. Despite MAX-CLIQUE being NP-HARD, the 

clustering graph is often not large, making the problem tractable. In our paper, we 

additionally describe how we can incorporate worker error models, which introduce 

additional complexity to the problem.

Quantify and Drill-Down—So far, we have described how to use a single open-ended 

clustering operator and aggregate responses from it for a small number of items. However, if 

we have a large number of items, workers might not be able to cluster all of them in one go. 

This suggests the need for drilling-down, or splitting the set of items, and asking workers to 

cluster the resulting subsets. This raises the challenge of aggregating partial clusterings. For 

this purpose, we maintain a kernel of items across clustering tasks, akin to pivots in 

Polychronopoulos et al. [9], to be able to relate partial clusterings across each other, for 

aggregation. We design techniques to extend the current maximum likelihood hierarchy by 

merging worker responses on new items to the existing hierarchy—we leverage these 

techniques to design a merging algorithm which aggregates clusterings from separate 

subsets together to output a consensus hierarchy on the original, complete set of items.

We additionally incorporate a categorization-based operator, once the consensus clustering is 

identified, to provide additional cost benefits, by categorizing the remaining items into the 

discovered clusters [27]. Instead of having workers repeatedly cluster many items (implicitly 

a many-to-many comparison), they only need to identify which cluster or category is 

appropriate for one item at a time, with the clusters being fixed.
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Overall, our techniques lead to up to 3× better recall and 1.9× better accuracy than boolean 

clustering schemes using pairwise judgments [25, 26] on their datasets, for the same 

crowdsourcing cost.

3.3 Other Problems

We’ve applied the MARQED approach to other open-ended crowdsourcing problems. We 

describe some of these problems briefly here, followed by work done by others.

Extraction—The goal of extraction is to use crowdsourcing to gather entities of a specific 

type [28]. We considered a broad space of open-ended operators for this problem, leveraging 

the attributes of the entity set [29]. For example, musicians in Chicago can be categorized as 

guitarists, drummers, and so on, and may play music of various types. By considering these 

attributes, we can ask workers to answer more fine-grained open-ended questions: e.g., 

provide a jazz drummer in Chicago. This allows us to target the questions at the attribute 

combinations where we lack entities. However, the number of possible open-ended questions 

increases exponentially in the attributes, making the problem challenging. We showed that 

picking the best questions is NP-HARD, and found that a drill-down based technique works 

well, where we ask generic questions first (e.g., provide a musician), and then drill down and 

ask more specific questions later (e.g., provide a drummer in Lincoln Park).

Searching—The goal of crowd-assisted search [30, 31], is to return relevant results from a 

corpus given a search query with embedded images, video, and/or text. Here, we once again 

found that the following open-ended problem solving aspects are helpful: (a) multiple open-

ended operators; (b) starting at a coarser granularity and drilling down into more promising 

candidates; and (c) incorporating prior information – in this case from regular text search 

engines.

Batching—Boolean tasks are typically grouped into batches of 10s to 100s of tasks that are 

attempted by workers together—to reduce cost and effort—making it essentially one large 

open-ended task. However, these tasks are assumed to be answered independently, which is 

not the case. We developed a probabilistic model to reason about the answers incorporating 

two forms of judging: independent, where workers answer each question independently, or 

correlated, where workers implicitly rank the items and then pick the top-k to be positive, 

with the rest negative (i.e., the Plackett Luce model). We found that this model, let to 

substantial accuracy improvements over schemes that ignored these correlations [32].

In addition, there has been work by others on optimizing other open-ended crowdsourcing 

problems. We describe some of them below.

The goal of transcription is to transcribe a sequence of words into text; it is a very 

challenging problem, with automated techniques performing very poorly [33, 34]. By 

decomposing worker answers down into individual words, one can apply standard multiple 

sequence alignment algorithms from the bioinformatics literature to align worker answers 

and identify consensus answers, leading to substantial improvements [34]; other work tries 

combining crowd answers with automated techniques [35, 36]. Some prior work has also 
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looked at the problem of detection — finding the location of objects in images, applying 

computer vision models and human input via a Markov Decision Process [37].

Other open-ended crowdsourcing work exists as well, for various purposes, including 

designing plans [38], rule mining [39], and pattern matching [40].

4 Related Work

The work on open-ended crowdsourcing is related to work in many areas.

Area 1: Optimized Boolean Crowdsourcing

There has been quite a bit of work on optimizing boolean crowdsourcing, targeting basic 

algorithms, including filtering [5, 6, 41], sorting [7], max [42, 43, 11], categorization [27], 

top-K [9, 44, 8], spatial crowdsourcing [45, 46], and entity resolution (ER) [10, 47, 48, 49, 

50, 51, 52, 53, 54].

Area 2: Crowdsourcing Systems and Toolkits

Many groups have been building crowdsourcing systems and toolkits to harness 

crowdsourcing in a “declarative” manner [55, 56, 57, 58], as well as several domain-specific 

toolkits [59, 60, 30, 31]. All these systems and toolkits could benefit from the design of 

optimized algorithms as building blocks.

Area 3: Quality Estimation

A number of papers perform simultaneous worker quality estimation and most accurate 

answer estimation, typically using the EM algorithm, sometimes providing probabilistic or 

partial guarantees, and sometimes modeling difficulty, bias, and adversarial behavior, e.g., 

[61, 62, 63, 64, 65, 66, 67, 68, 69]. To our knowledge, there is no work on applying EM to 

open-ended crowdsourcing tasks.

Area 4: Decision Theory

Recent work has leveraged decision theory for improving cost and quality in simple 

workflows, typically using POMDPs (Partially Observable MDPs), to dynamically choose 

the best decision to make at any step, e.g.. [70, 71]. While some of this work could be 

applicable to some open-ended tasks, there are no optimality guarantees associated with any 

of these techniques.

5 Conclusion

Open ended crowdsourcing is not only challenging and interesting, but also necessary to 

meet the demands of the new generation of data-hungry applications. We hope that the next 

wave of crowdsourcing research from the database community will tackle more problems in 

this space, expanding the frontier of our understanding.
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Figure 1. 
Algorithm Flow: Boxes in blue did not exist in boolean crowdsourcing, while boxes in gray 

are substantially different
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Figure 2. 
Segmentation Tree
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Figure 3. 
Examples of real worker clusterings
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Figure 4. 
Clustering graph
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