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Abstract

We revisit the residual symmetries that survive the orbifold projections, and find addi-
tional transformations that have been overlooked in the past. Some of these transformations
are outer automorphisms of the downstairs continuous symmetry group. Examples for these
transformations include the left–right parity of the Pati–Salam model and its left–right sym-
metric subgroup.
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1 Introduction

Gauge symmetry breaking via orbifolding [1, 2, 3] is a popular alternative to spontaneous break-
down of gauge symmetry in four dimensions. This has many reasons, including the observation
that the infamous doublet–triplet splitting problem has a simple solution [4, 5, 6, 7, 8, 9, 10].
The low–energy continuous gauge symmetry in these models is well studied [2, 9]. The main
purpose of this Letter is to point out that there are additional discrete symmetries that have
not been identified, nor discussed, in this context thus far.

This Letter is organized as follows. In Section 2 we review some basic facts on orbifolding.
In Section 3 we revisit the conditions for residual symmetries and shall show that in the past
some symmetries were missed. We illustrate this important fact by a few examples in Section 4,
i.e. we give one example where a higher–dimensional SO(10) GUT is broken by an orbifold to
Pati–Salam including left–right parity (a.k.a. D–parity). In addition, we present two examples
which could be of relevance for flavor model–building from orbifold GUTs. Finally, Section 5
contains our summary. Some details are deferred to the appendices.

2 Orbifold GUT breaking

Let us collect some basic facts on orbifolding. For the sake of definiteness we consider six–
dimensional settings in which two dimensions get compactified, but our findings do not depend
on the number of dimensions. Consider a six–dimensional Yang–Mills theory with upstairs gauge
group G, where we denote the generators of the Lie algebra in the Cartan–Weyl basis HI and Ew

collectively by T
(CW)
a . In a first step, this theory is compactified on a two–torus 2 defined by

the lattice vectors e1 and e2, see Appendix A for more details. We can choose the torus–lattice
such that it exhibits a N rotational symmetry ϑ with ϑN = , where for N = 3, 4, 6 (i.e. the
allowed orders N ̸= 2 of the wall–paper groups in two dimensions) we set ϑ e1 = e2, while in the
case N = 2 the basis vectors e1 and e2 have to be linear independent. In order to orbifold the
two–torus 2 to a 2/ N orbifold we mod out this N symmetry, i.e. we identify points y on

2 which are related by a (360/N)◦ rotation,

y N"−−−→ ϑ y ∼ y . (1)

Note that under this geometrical action our six–dimensional fields transform as

V µ(x, y) N"−−−→ V µ(x, ϑ−1 y) , and χ(x, y) N"−−−→ exp
(

2πi

N

)

χ(x, ϑ−1 y) , (2)

where the χ fields transform as the internal components of a 6D vector V M (x, y) of six–
dimensional Lorentz symmetry. Moreover, the N orbifold can be extended from its pure
geometric action Equation (1) to include a discrete N transformation from the gauge sym-
metry G, i.e.

T
(CW)
a

orb.
N"−−−−→ P T

(CW)
a P −1 with P N = , (3)

where P ∈ G acts as a discrete gauge transformation1, see Equation (49) with U = P = constant.
Since we restrict ourselves to Abelian orbifolds, we can choose the Cartan generators HI of G

1We ignore the possibility to choose an outer automorphism of G as gauge action [9]. Furthermore, the order
of P can in general differ from the order of ϑ.
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such that P can be expanded as

P = exp (2πi V · H) , (4)

where the vector V is “quantized” such that P N = .

Orbifold conditions. Next, in addition to the torus boundary conditions (48), we impose
orbifold boundary conditions

V µ(x, ϑ y) = P V µ(x, y) P −1 , (5a)

χ(x, ϑ y) = exp
(

2πi

N

)

P χ(x, y) P −1 . (5b)

Using

P HI P −1 = HI and P Ew P −1 = exp (2πi V · w) Ew , (6)

where w denotes the root vector of Ew, we obtain

V µ
I (x, ϑ y) = V µ

I (x, y) , (7a)

V µ
w (x, ϑ y) = exp (2πi V · w) V µ

w (x, y) , (7b)

χI(x, ϑ y) = χI(x, y) , (7c)

χw(x, ϑ y) = exp
(

2πi
(

V · w +
1

N

))

χw(x, y) . (7d)

3 Residual gauge symmetries

We consider the possibility of unbroken discrete symmetries from G. In this case, a symmetry
transformation from G remains unbroken if it commutes with the orbifold boundary condition (5),
i.e.

V µ
a (x, y) T

(CW)
a V µ

a (x, ϑ−1 y) P T
(CW)
a P −1

V µ
a (x, ϑ−1 y) U P T

(CW)
a P −1 U−1

V µ
a (x, y) U T

(CW)
a U−1 V µ

a (x, ϑ−1 y) P U T
(CW)
a U−1 P −1 ,

G

O

G

!=

O

(8)

for a global, unbroken transformation U ∈ G, see Equation (49). Consequently, we obtain the
condition

T
(CW)
a

(

P −1 U−1 P U
)

=
(

P −1 U−1 P U
)

T
(CW)
a . (9)

Due to Schur’s lemma, it follows that P −1 U−1 P U ∝ . Furthermore, P is of order N (i.e.
P N = ) yielding our main condition for unbroken symmetries after orbifolding

P −1U−1P U =: [P, U ] = ωk for k ∈ {0, 1, . . . , N − 1} , (10)
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where ω = e
2πi
N and we use the definition of the (grouptheoretical) commutator of two group

elements (as opposed to Lie algebra elements), [A, B] = A−1B−1A B [11]. Since P, U ∈ G also
[P, U ] must be from G. Moreover, [P, U ] ∝ . Thus, [P, U ] must be from the center of G, i.e.

ωk ∈ Z(G) for some k ∈ {0, 1, . . . , N − 1} . (11)

This constrains the allowed values of k. For example, the center of SU(M) is M , while ω is of
order N . That is, these additional residual symmetries require the order of the orbifold twist
and the dimension of the group center to be not coprime.

3.1 Unbroken continuous gauge symmetries

There are two related ways to identify the unbroken gauge symmetries after orbifolding.
First, as is well known, the unbroken gauge interactions are mediated by the zero–modes of

the gauge bosons. These are the modes with trivial boundary conditions Equation (7). Thus,
the gauge bosons V µ

I (x, y) and V µ
w (x, y), which are associated to the Cartan generators HI and

to those roots w for which V ·w ∈ , have trivial boundary conditions and hence massless modes
in four dimensions.

Second, we can use our main condition (10) to identify the unbroken continuous symmetries
[9]. The unbroken continuous symmetries are continuously connected to the identity U = .

Hence, we have to set k = 0 in Equation (10) and expand U = exp
(

i αa T
(CW)
a

)

≈ +i αa T
(CW)
a .

In this way, Equation (10) yields the condition for a generator of the unbroken gauge symmetry

P −1
(

αa T
(CW)
a

)

P =
(

αa T
(CW)
a

)

. (12)

Since the boundary condition P is expanded in terms of the Cartan generators HI , Equation (4),
we can use Equation (6) to confirm that the Cartan generators HI and the generators Ew with
V · w ∈ satisfy Equation (12), i.e. they remain unbroken after orbifolding.

3.2 Unbroken discrete gauge symmetries

In addition to the unbroken continuous gauge symmetries, our main condition (10) can have
additional solutions which then lead to further discrete remnants from the higher–dimensional
gauge symmetry G. Importantly, these discrete symmetries can originate from our main condi-
tion (10) either for k = 0 (see the example in Section 4.1) or for k ̸= 0 (see the examples in
Section 4.2).

4 Examples and applications

In this section, we illustrate our general findings in a few examples.

4.1 Gauge origin of D–parity and left–right parity

The Pati–Salam model [12]can have, in addition to the continuous gauge group

GPS = SU(4) × SU(2)L × SU(2)R , (13)

a 2 symmetry D that exchanges the SU(2) factors and acts on SU(4) representations as complex
conjugation. This symmetry is part of the SO(10) supergroup containing GPS, and can be
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preserved in 4D models of grand unification if one breaks SO(10) by giving a VEV to a 54–plet
[13, 14]. At the level of the left–right symmetric subgroup of GPS, GLR = SU(3)C × SU(2)L ×
SU(2)R × U(1)B−L, this 2 is the well–known left–right parity [15]. That is, the symmetries of
these settings are

[SU(4) × SU(2)L × SU(2)R] ! 2 or [SU(3)C × SU(2)L × SU(2)R × U(1)B−L] ! 2 . (14)

The purpose of the following discussion is to show that this 2 factor is a residual symmetry of
the corresponding orbifold GUT, which to our knowledge has not been pointed out before.

To this end, consider a theory with SO(10) symmetry in higher dimensions compactified on
a 2 orbifold such as 1/ 2 or 2/ 2. We choose the GUT breaking boundary condition

PPS = diag(− 6; 4) . (15)

As is well known, the continuous low–energy gauge symmetry is GPS [10]. However, there is an
additional 2 symmetry.

In more detail, our main condition (10) yields

[PPS, U(k)] = (−1)k for k ∈ {0, 1} , (16)

and we search for the unbroken elements U(k) ∈ SO(10). For k = 0 condition (16) reads

PPS U(0) = U(0) PPS . (17)

The most general SO(10) matrix satisfying this condition reads

U(0) =

(

O6 0
0 O4

)

∈ SO(10) . (18)

Consequently, we find the conditions

OT
6 O6 = 6 and OT

4 O4 = 4 and det O6 = det O4 = ± 1 . (19)

Hence, U(0) with det O6 = det O4 = +1 yields

O6 ∈ SO(6) ≃ SU(4) and O4 ∈ SO(4) ≃ SU(2)L × SU(2)R , (20)

while U(0) with det O6 = det O4 = −1 can be generated by

O6 = diag(1, 1, 1, 1, 1, −1) O′
6 and O4 = diag(1, 1, 1, −1) O′

4 , (21)

for O′
6 ∈ SO(6) ≃ SU(4) and O′

4 ∈ SO(4) ≃ SU(2)L × SU(2)R.2 Let us remark that setting k = 1
in our main condition (16) does not yield further unbroken symmetries.

Consequently, the 2 orbifold boundary condition PPS breaks SO(10) to

GPS = (SU(4) × SU(2)L × SU(2)R) ! 2 , (22)

where the generator of the additional 2 remnant symmetry can be chosen to be

D = diag(−1, 1, 1, 1, 1, 1; 1, −1, −1, −1) . (23)

2Note that the “≃” means “up to 2 factors”, but these 2’s are different from the one we are going to discuss
next.
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Here, we write D in this suggestive way because this will make it very obvious how this 2 acts.
We could have represented it by any diagonal matrix with entries ±1 subject to the condition
that the number of −1 on either sides of the semicolon is odd.

How does this 2 act on representations? Consider first the SO(4) subblock. There, the
transformation D can be understood by analogy to parity acting on spinors (1/2, 0) ⊕ (0, 1/2)
of SU(2) × SU(2) in 4D Euclidean space–time: parity interchanges the SU(2) representations.
Translated to Pati–Salam, D acts on (rL, rR) of SU(2)L × SU(2)R as

(rL, rR)
D"−−→ (rR, rL) , (24)

see also Appendix B for an explicit computation how D acts on SU(2)L × SU(2)R. Similarly, D
acts on the SO(6) ≃ SU(4) subgroup in analogy to (an Euclidean version of) time reversal, so
for any SU(4) representation r4

r4
D"−−→ r4 . (25)

Altogether a representation (r4, rL, rR) of SU(4) × SU(2)L × SU(2)R transforms under D as

(r4, rL, rR)
D"−−→ (r4, rR, rL) . (26)

So this 2 exchanges (4, 2, 1) and (4, 1, 2), i.e. the left- and right–handed fermions of the stan-
dard model. That is, this simple orbifold GUT gives rise to the well–known left–right parity [15],
where it originates from SO(10) and is hence clearly a discrete gauge symmetry. Ironically, the
representation of its generator (23) supports the naming in [15], where this transformation has
been called parity. Even though it is not the ordinary space–time transformation that gets
broken spontaneously there, as the left–right symmetric model is chiral and even in its unbro-
ken phase does not preserve parity, this transformation does act on the SO(6) ≃ SU(4) and
SO(4) ≃ SU(2)L × SU(2)R representations in an analogous way as space–time parity does.

Altogether we have found that the breaking pattern of the SO(10) orbifold GUT is

SO(10) 2 orbifold−−−−−−−→ [SU(4) × SU(2)L × SU(2)R] ! 2 , (27)

where the 2 corresponds to the left–right parity and is in particular a nontrivial outer automor-
phism of GPS. It is amusing to see that the same mechanism that breaks the gauge symmetry
and provides us with a solution to the doublet–triplet splitting problem automatically leads to
this symmetry.

This parity has a simple geometric interpretation in terms of root lattices, which already
can be obtained from a lower–dimensional example. Consider the breaking of SO(5) to SO(4)
with a twist P5 = diag(1, −1, −1, −1, −1) ∈ SO(5). This breaking removes a simple root from
the root lattice (see Figure 1), and the simple roots of su(2)L ⊕ su(2)R span a sublattice of the
original so(5) lattice. However, the Weyl reflection w.r.t. the plane orthogonal to the “broken”

root αso(5)
(2) is a symmetry of the su(2)L ⊕ su(2)R sublattice, and exchanges (the generators of)

the su(2) algebras.
The analogous statement holds in the full Pati–Salam example, but depicting the transfor-

mation D as a Weyl reflection is more difficult since the rank of so(10) is 5. As we shall see, the
residual transformations in the examples in Section 4.2 can also be related to elements of the
Weyl group.

Discussing the phenomenological implications of this symmetry is beyond the scope of this
work, we only note the revived interest in this transformation in [16] and references therein.
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(1) DDDDDDDDDDDDDDDDD

so(4) = su(2)L ⊕ su(2)R

Figure 1: Root lattices of so(5) and its so(4) = su(2)L ⊕ su(2)R subalgebra. The roots of the respective
algebra are depicted by filled circles and the simple roots are given by arrows. A Weyl reflection

w.r.t. the plane perpendicular to αso(5)
(2) exchanges the generators of the two su(2) algebras.

Hence, the outer automorphism D of su(2)L ⊕ su(2)R is generated by the Weyl reflection at

the broken root αso(5)
(2) of so(5).

4.2 Non–Abelian residual symmetries

In what follows, we present two examples in which the higher–dimensional gauge group gets
broken by the orbifold to a semi–direct product of an Abelian gauge symmetry with a discrete

N factor. Such symmetries naturally contain non–Abelian discrete groups that can be used as
flavor symmetries.

4.2.1 2/ 4 Orbifold GUT

We choose a six–dimensional gauge symmetry G = SU(2) and |e1| = |e2| with e1 · e2 = 0. This
lattice has a 4 rotational symmetry ϑ that we divide out in order to construct a 2/ 4 orbifold.
The associated gauge embedding P is chosen as

P =

(

i 0
0 −i

)

∈ SU(2) where P 4 = . (28)

Then, the unbroken symmetry is given by those U(k) ∈ SU(2) that satisfy

[P, U(k)] = exp
(

2πi k

4

)

where k ∈ {0, 1, 2, 3} . (29)

Since P, U(k) ∈ SU(2), the right-hand side of Equation (29) has to be an element of SU(2),
too. Moreover [P, U(k)] ∝ , thus, it has to be from the center Z(SU(2)) = 2. Consequently,
Equation (29) can only have solutions for k ∈ {0, 2}.

To find all solutions of Equation (29) we parameterize a general element U(k) ∈ SU(2) using
p, q ∈ as

U(k) =

(

p q
−q̄ p̄

)

∈ SU(2) where det(U(k)) = |p|2 + |q|2 = 1 . (30)

Then, Equation (29) reads

[P, U(k)] =

(

|p|2 − |q|2 2p̄q
−2pq̄ |p|2 − |q|2

)

!
= exp

(

2πi k

4

)

, (31)
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which is equivalent to

|p|2 − |q|2 !
= exp

(

2πi k

4

)

and p̄q
!

= 0 . (32)

Now, since |p|2 − |q|2 ∈ we see explicitly that Equation (31) has no solutions for k ∈ {1, 3}.
Setting k = 0 in Equation (32) we find the unbroken gauge symmetry given by |p|2 = 1

(hence, p = eiα) and q = 0, i.e.

U(0) = U(0)(α) =

(

eiα 0
0 e−iα

)

∈ SU(2) , (33)

where α ∈ [0, 2π). This yields an unbroken U(1) gauge symmetry. On the other hand, setting
k = 2 in Equation (32) yields p = 0 and |q|2 = 1 (thus, q = ieiα, where the additional factor i
has been introduced for later convenience), i.e.

U(2) =

(

0 ieiα

ie−iα 0

)

=

(

eiα 0
0 e−iα

) (

0 i
i 0

)

∈ SU(2) , (34)

where α ∈ [0, 2π).
Consequently, the unbroken symmetry of SU(2) is generated by a U(1) and a 4, i.e.

U(0)(α) =

(

eiα 0
0 e−iα

)

and U(2) =

(

0 i
i 0

)

, (35)

where (U(2))
2 = − = U(0)(π) ∈ U(1). The 4 transformation U(2) acts on the gauge bosons as

2, i.e.

V µ
a (x, y) T

(CW)
a "→ V µ

a (x, y) U(2) T
(CW)
a U−1

(2) , (36)

see the diagram (8). By explicitly choosing the Cartan–Weyl basis H = 1√
2
σ3 and E± =

1
2 (σ1 ± iσ2), one verifies that U(2) in Equation (36) can be understood as the action of the
unbroken element w of the Weyl group of su(2), i.e.

w :

⎛

⎜

⎝

H
E+

E−

⎞

⎟

⎠
"→

⎛

⎜

⎝

−H
E−
E+

⎞

⎟

⎠
. (37)

In summary, the six–dimensional SU(2) gauge symmetry is broken by this 4 orbifold according
to

SU(2)
orb.
4−−−−→ (U(1) ! 4) / 2 . (38)

Let us remark that this unbroken symmetry after orbifolding contains, for example, the binary
dihedral groups QN with N = even as subgroups [17], including the quaternion group for N = 4.

4.2.2 2/ 3 Orbifold GUT

Next, we choose a six–dimensional gauge symmetry G = SU(3) and |e1| = |e2| with e1 · e2 =
−|e1|2/2. This lattice has a 3 rotational symmetry ϑ that we divide out in order to construct a

2/ 3 orbifold. The associated gauge embedding P is chosen as

P =

⎛

⎜

⎝

ω 0 0
0 ω2 0
0 0 1

⎞

⎟

⎠
∈ SU(3) where P 3 = , (39)
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where ω = exp 2πi/3. Then, the unbroken symmetry is given by those U(k) ∈ SU(3) that satisfy

[P, U(k)] = exp
(

2πi k

3

)

where k ∈ {0, 1, 2} . (40)

Since P, U(k) ∈ SU(3), the right-hand side of Equation (40) has to be an element of SU(3),
too. Moreover [P, U(k)] ∝ , thus, it has to be from the center Z(SU(3)) = 3. Consequently,
Equation (40) can have solutions for all cases k ∈ {0, 1, 2}.

The unbroken symmetry can be generated by two U(1) factors

U(0) =

⎛

⎜

⎝

ei(α+β) 0 0
0 ei(α−β) 0
0 0 e−2iα

⎞

⎟

⎠
∈ SU(3) (41)

and two discrete transformations

U(1) =

⎛

⎜

⎝

0 0 1
1 0 0
0 1 0

⎞

⎟

⎠
∈ SU(3) , U(2) =

⎛

⎜

⎝

0 1 0
0 0 1
1 0 0

⎞

⎟

⎠
∈ SU(3) , (42)

where U(2) = (U(1))
2. Since (U(1))

3 = , U(1) generates an unbroken 3. Consequently, the
six–dimensional SU(3) gauge symmetry is broken by the 3 orbifold according to (cf. [18, 19])

SU(3)
orb.
3−−−−→

[

U(1) × U(1)
]

! 3 . (43)

Again, the 3 can be understood as a remnant of the Weyl group: if we denote the Weyl reflection
w.r.t. the root α by wα, conjugating with U(1) has the same action on the generators as the Weyl
transformation wα(1)

wα(2)
, where α(I), I = 1, 2, denote the simple roots of SU(3). The U(1)

factors emerge from the standard gauge symmetry breaking by orbifold boundary conditions to
the commuting subgroup, see for example [9, Equation (6)]. However, to our knowledge, there
is no systematic way in the previous literature how to derive the (non–commuting) 3 factor.
We also note that if one breaks the U(1) factors down to 3 symmetries, this leaves us with
( 3 × 3) ! 3, which is known as ∆(27) and has been proposed as a flavor symmetry.

5 Summary

We discussed how gauged discrete symmetries emerge from orbifolds. Although we used the
field–theoretic constructions the discussion is purely group–theoretical and applies to string–
derived orbifolds as well. We identify residual discrete symmetries. These include the so–called
left–right parity of the Pati–Salam model or its left–right symmetric subgroup, which, to the
best of our knowledge, have been overlooked in the literature so far. These symmetries are inner
automorphisms of the upstairs symmetry group but outer automorphisms of the orbifolded setup.
Notably, we find that these symmetries do not have to commute with the orbifold twist. Rather,
the transformations U have to fulfill the weaker condition

P −1U−1P U = ωk ∈ Z(G) , (44)

where P is the orbifold twist and Z(G) the center of the group G. In accordance with the usual
expectations, all these symmetries are gauged, i.e. local.
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A Torus compactification and symmetries

In six–dimensions we assume a Yang–Mills theory with upstairs gauge group G. Then, the
standard Lagrangean for the associated gauge bosons V M (x, y), M = 0, . . . , 5, reads

L = −
1

2
tr
(

FMN F MN
)

, (45)

where FMN denotes the field strength tensor. We expand V M (x, y) in terms of the generators
of the Lie algebra of G in the Cartan–Weyl basis, i.e.

V M (x, y) =
∑

I

V M
I (x, y) HI +

∑

w∈W

V M
w (x, y) Ew =

∑

a

V M
a (x, y) T

(CW)
a , (46)

where the index I runs over all Cartan generators HI , W denotes the set of non–trivial roots of

G and we denote all Cartan–Weyl generators collectively by T
(CW)
a .

An orbifold compactification of this model can be thought of as two steps: first we compactify
two dimensions on a two–torus 2 with coordinates y = (y1, y2)T and then (as described in
Section 2) on a 2/ N orbifold. To do so, we split the gauge fields V M (x, y) into components
with index M = µ in Minkowski space–time and with index M = 4, 5 in the internal two–torus.
From a four–dimensional perspective, the fields

V µ and χ =
1√
2

(

V 4 + i V 5
)

(47)

give rise to the gauge bosons of G and complex scalars, respectively, both transforming in the
adjoint of G.

Torus compactification. We impose boundary conditions on the fields V µ
a (x, y) and χa(x, y)

compactified on a two–torus 2. To do so, we choose two linearly independent lattice vectors
e1 and e2 that span the torus–lattice. Depending on the orbifold, we will choose different torus
metrics Gij = ei · ej . We take a general, integral linear combination niei for ni ∈ , where
summation over i = 1, 2 is implied. Torus periodicity implies that for all ni ∈

V µ
a (x, y + niei) = V µ

a (x, y) , (48a)

χa(x, y + niei) = χa(x, y) . (48b)

This choice of boundary conditions corresponds to the case of a torus with trivial gauge back-
ground fields (i.e. without Wilson lines). Since they are periodic in y, the usual Kaluza–Klein
reduction yields massless modes for both V µ

a (x, y) and χa(x, y) from the four–dimensional point
of view. Consequently, the upstairs gauge symmetry G remains unbroken after torus compacti-
fication, i.e.

V µ G"−−→ U V µ U−1 −
i

g
(∂µ U) U−1 , (49a)

χ
G"−−→ U χ U−1 , (49b)

with U = U(x) in the fundamental representation of G and g denoting the associated gauge
coupling.
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B D–parity in Pati–Salam from orbifolding

In this appendix, we give an explicit example how one can compute the action of a residual
symmetry transformation on the unbroken gauge symmetry. To do so, we consider D–parity
from the Pati-Salam example Section 4.1 and work out the consequences of this 2 on SO(4).
The so(4) algebra is generated by six antisymmetric matrices that fulfill

[Mi, Mj ] = i εijk Mk , [Ni, Nj ] = i εijk Mk , [Mi, Nj ] = i εijk Nk . (50)

An explicit representation can be chosen as

M1 =

⎛

⎜

⎜

⎜

⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎠

, M2 =

⎛

⎜

⎜

⎜

⎝

0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎠

, M3 =

⎛

⎜

⎜

⎜

⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎠

, (51a)

N1 =

⎛

⎜

⎜

⎜

⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞

⎟

⎟

⎟

⎠

, N2 =

⎛

⎜

⎜

⎜

⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞

⎟

⎟

⎟

⎠

, N3 =

⎛

⎜

⎜

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞

⎟

⎟

⎟

⎠

. (51b)

These generators can be “disentangled” by making a basis change W ±
i := 1

2 (Mi ± Ni), for
i = 1, 2, 3, such that we arrive at the relations

[

W +
i , W +

j

]

= i εijk W +
k ,

[

W −
i , W −

j

]

= i εijk W −
k ,

[

W +
i , W −

j

]

= 0 . (52)

Hence, we have separated the so(4) into su(2)L ⊕ su(2)R. Now, we take U 2 = diag(1, 1, 1, −1),
see Equation (21). Following the diagram (8), an explicit calculation reveals that a discrete
gauge transformation with U 2 acts as

W +
i "→ U 2 W +

i U−1
2

= W −
i , W −

i "→ U 2 W −
i U−1

2
= W +

i . (53)

Hence, we see explicitly that U 2 interchanges su(2)L and su(2)R.
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