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ABSTRACT OF THE THESIS 

 

Incorporating flash adjacency into the classifier                                                                                    

for a language model-based P300 Speller 

 

by 

 

Tianze Ma 

 

Master of Science in Electrical and Computer Engineering                                                        

University of California, Los Angeles, 2023                                                                                    

Professor Jonathan Chau-Yan Kao, Chair 

 

The P300 speller is a common brain–computer interface (BCI) application designed to allow 

patients with neuromuscular disorders such as amyotrophic lateral sclerosis (ALS) produce text 

output through the detection of P300 signals in their electroencephalogram (EEG) signals. The 

standard P300 speller relies on the detection of signals evoked by visual stimuli, usually 

consisting of rows and columns highlighted in a grid of characters. Since the visual field is 

substantially larger than these stimuli, adjacent flashes to the attend characters may cause false 

positive signals and lead to erroneous output. While previous work has tried to address this 

issue by limiting the number of adjacent stimuli, no attempts have been made to account for 
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these adjacency false positives in the classifier or utilize information from adjacent flashes to 

optimize the system. In this study we added a bias to the target character detection based on 

adjacent flashes and created a new probability model to improve the accuracy and speed of 

classification. We tested our adjacency classifier in both the standard P300 paradigm (we call it 

SWLDA method in the following content) and in conjunction with natural language processing. 

The new algorithm was evaluated offline on a dataset of 69 healthy subjects, which showed 

increases in speed and accuracy when compared to standard classification methods. On 

population level, LDA classifier shows a significant improvement, but the improvement for NLP 

is not significant. However, for some subjects in both algorithms the enhancement of information 

transfer rate is substantial. As for LDA classifier, 57.4% subjects’ peak ITR increases of more 

than 5 bits per minute, 30.9% subjects’ peak ITR increases more than 10 bits per minutes, and 

8.8% subjects’ peak ITR increases more than 15 bits per minutes. As for NLP, of the subjects, 

21.7% had peak ITR increases of more than 5 bits per minute, 10.1% subjects’ peak ITR 

increased more than 10 bits per minutes, and 5.8% subjects’ peak ITR increased more than 15 

bits per minutes. Therefore, incorporating adjacent fleshes can potentially provide a better 

communication system for some users. 
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1. INTRODUCTION 

A person’s ability to communicate can be impaired by the interruption of the signal transmission 

from the central nervous system to effector muscles. High brain stem injuries and motor neuron 

diseases such as amyotrophic lateral sclerosis (ALS) can cause such neural disorder. By 

detecting electrical signals from the brain and translating them into computer commands, Brain–

computer interfaces (BCI) can restore some of this ability and provide a possible way for 

patients to communicate with the external world. With P300 speller, patients with motor neuron 

diseases are able to communicate with care workers and put forward their need in a timely 

manner, which can substantially enhance their life quality.  

The P300 speller is an electroencephalogram (EEG)-based BCI device that uses 

electroencephalogram (EEG) signals to simulate keyboard input [1]. It can utilize P300 signal, 

which is a characteristic positive potential after a 300-millisecond delay from stimulus 

presentation[2]. When the experiment starts, a matrix composed of alphanumeric characters will 

be presented by the system. The user is asked to attend one character on the matrix and 

meanwhile the letters on the matrix flash randomly. According to the “oddball” paradigm, 

attending to the target character on the matrix will elicit the P300, given that the target character 

flashes relatively infrequently in the repeated stimuli. Then the traditional classification algorithm 

would take the brain response recorded by EEG as input and classify them into attended, and 

non-attended. Finally based on the classifier, the system will detect which character on the 

matrix was selected. 

Traditionally, enhancing specific components of the P300 speller apparatus is the focus of the 

system optimization studies. For example, Allison et al. modified the matrix size, demonstrating 

that increasing the size of matrix improves the amplitude of the P300 signal [3]. Lu et al. 

evaluated the inter-stimulus-interval (ISI), suggesting a longer ISI translates to both a higher 
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online accuracy and higher characters per minute (CPM) rate [4]. Both Townsend et al. and Jin 

et al. developed novel flashing patterns, demonstrating significant improvements in bit rate and 

practical bit rate compared to the traditional row column paradigm (RCP) [5], [6]. In addition, 

Speier et al took advantage of exciting knowledge about the language domain to enhance the 

probability model and further enhance the decoding accuracy and speed [7]. 

While the P300 speller is designed to provide a means for communication, most attempts at 

system optimization have not considered the effect of adjacent flashes. Townsend’s paper 

points out , “errors arise when flashes of non-target rows or columns that are adjacent to the 

target, attract the participant’s attention, thereby producing P300 responses.”[5] Participant’s 

attention is attracted to adjacent flashes that appear in their peripheral vision. Given such 

phonemes, we predict that adjacent flashes will elicit brain signals which can be distinguished 

from P300 signal and non-P300 signal. However, existing analyses only classifies EEG 

responses into attended and non-attended, and therefore the false positive caused by flashes of 

adjacent rows and columns finally leads to the misdetection of the target letter. 

To address the problem of false positive classification caused by adjacent flashes, we try to 

utilize the information from peripheral vision. We accomplished this task by creating a new 

class, adjacent, into the classification algorithm. Furthermore, we add a bias to the target 

character detection based on adjacent flashes and hypothesize that both system speed and 

accuracy can be improved. 

 

2. Materials and Methods 

2.1 Subjects and Data Collection  
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Data for offline analyses were obtained from 78 healthy volunteers with normal or corrected to 

normal vision between the ages of 20 and 50. G.usb amplifiers, active EEG electrodes, and 

electrode cap (Guger Technologies, Graz, Austria) were used to acquire data; the sampling rate 

was 256 Hz, the reference was the left ear; the ground was AFZ; and a bandpass filter of 0.1–

60 Hz was used. A previously published configuration was used to set the electrode which 

consisted of 32 channels.[8] The system used a 36-character set, row and column flashes. The 

stimulus duration was 100 ms and the interstimulus interval was 25 ms. The stimulus onset 

asynchrony time was 125 ms. 

All subjects were asked to spell twenty characters, “JUMP OVER “and “BROWN FOX ”. For 

each subject, EEG signals corresponding to the first 10 characters were the test set and the rest 

would be the training set.  For each character we recorded 120 stimulus, and our dynamic 

stopping algorithm would determine how many flashes we used to decode the character. 

 

2.2 Incorporating Adjacency into P300 Classification 

The standard P300 classification uses two classes: target and non-target, however it has been 

shown that stimuli adjacent to the target can also elicit event-related potentials (ERP) through 

peripheral vision. For example, if the target character is “P”, any flash of row or column 

containing “I”, ”J”, “K”, ”O”, “Q”, ”U”, “V”, ”W” can also elicit ERP (Figure 1). One approach to 

address this problem has been to try to minimize adjacent stimuli, but it is impossible to avoid 

completely. The reason is that it is  impossible to distinguish between characters without 

providing differential stimuli (i.e., flashing one and not the other), so adjacent characters must 
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be flashed in order to be possible outputs. 

 

Figure 1： Example to illustrate the adjacent letters and adjacent stimulus. 

Stimulus responses show a clear difference between target and non-target, which is the basis 

for p300 classification. Similarly, when looking at adjacent stimuli, they also demonstrate a 

different distribution from either of the two traditional classes. Figure 2 shows the histogram of 

the three classes when we feed stimulus responses into linear discriminant analysis. We want to 

utilize this fact in our classification.  
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Figure 2： The histogram of the three classes when we feed stimulus responses into linear 

discriminant analysis. 

We create a 3-class classification task to represent this underlying representation and expect 

that doing so can mitigate the effect of false positives from adjacent flashes and lead to better 

classification performance.  

 

2.3 Dynamic Method with SWLDA Classifier  

Stepwise Linear Discriminant Analysis (SWLDA)  is a classification algorithm that selects a set 

of signal features to include in a discriminant function [9]. The signals in the training set are then 

assigned labels based on stimulus type. There are three classes: those corresponding to 

flashes containing the attended character, those without the attended character and not 

adjacent to the attended character, and those adjacent to the attended character. The traditional 

method does not distinguish between the second and the third class, and only classifies the 
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signal into two classes. The new method, however, has three classes. We feed training data 

with its corresponding labels into SWLDA, and after fitting with the training data set, SWLDA will 

generate a weight vector w. The score for the ith flash for character t in the sequence in the 

training data set is computed as the dot product of the feature weight vector. 

 

𝑌௧௜
௧௥௔௜௡௜௡௚

= 𝑤. 𝑍௧௜
௧௥௔௜௡௜௡௚ 

After computing the scores for each flash in the training set, we make an assumption of the 

scores’ distribution. In our study, we tested on 3-d Gaussian model, 2-d Gaussian model and 1-

d Gaussian model.  Among these assumptions, 1-d gaussian distribution performed the best.  

The scores for ith flash for character t in the sequence in the test set, 𝑌௧௜
௧௘௦௧௜௡௚, was then 

computed as the dot product of the feature weight vector, w, with the features from that trial’s 

signal, zit. 

𝑌௧௜
௧௘௦

= 𝑤. 𝑍௧௜
௧௘௦௧௜௡௚ 

For one dimensional gaussian distribution model, the probability density function, 𝑓(𝑥௧), for the 

likelihood probability can then be computed,  

𝑓൫𝑌௧௜
௧௘௦௧௜௡௚

ห𝑥௧൯ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ଵ

ටଶగఙబ
మ

𝑒
భ

మ഑బ
మ(௒೟೔

೟೐ೞ೟೔೙೒
ିఓబ)మ

, 𝑖𝑓 𝑥௧  𝜖𝐴௧௜  

ଵ

ටଶగఙభ
మ

𝑒
భ

మ഑భ
మ(௒೟೔

೟೐ೞ೟೔೙೒
ିఓభ)మ

, 𝑖𝑓 𝑥௧  𝜖𝐴𝑑𝑗௧௜

ଵ

ටଶగఙభ
మ

𝑒
భ

మ഑భ
మ(௒೟೔

೟೐ೞ೟೔೙೒
ିఓభ)మ

, 𝑖𝑓 𝑥௧  ∉ 𝐴௧௜ 𝑎𝑛𝑑 𝑥௧  ∉ 𝐴𝑑𝑗௧௜

                                          (1) 

 

, where 𝐴௧௜ is set of characters illuminated for the ith flash for character t in the sequence 
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𝐴𝑑𝑗௧௜ is set of characters adjacent to the illuminated characters for the ith flash for character t in 

the sequence 

For the traditional method, 𝜇଴, 𝜎଴, 𝜇ଵand 𝜎ଵ,   n are the means and standard deviations of the 

distributions for the attended and unattended flashes, respectively. 

For the new method, 𝜇଴, 𝜎଴, 𝜇ଵ, 𝜎ଵ,  𝜇ଶ, and 𝜎ଶ,   n are the means and standard deviations of the 

distributions for the attended, adjacent and unattended  flashes, respectively. 

As for multivariate gaussian model: 

 

𝑓൫𝑌௧௜
௧௘௦௧௜௡௚

ห𝑥௧൯ =

⎩
⎪
⎨

⎪
⎧ (2𝜋)ି

ೖ

మdet (Σ଴)ି
భ

మexp (−
ଵ

ଶ
(𝑥 − 𝜇଴)்Σ଴

ିଵ(𝑥 − 𝜇଴)), 𝑖𝑓 𝑥௧  𝜖𝐴௧௜  

(2𝜋)ି
ೖ

మdet (Σଵ)ି
భ

మexp (−
ଵ

ଶ
(𝑥 − 𝜇ଵ)்Σଵ

ିଵ(𝑥 − 𝜇ଵ)), 𝑖𝑓 𝑥௧  𝜖𝐴𝑑𝑗௧௜

(2𝜋)ି
ೖ

మdet (Σଶ)ି
భ

మexp (−
ଵ

ଶ
(𝑥 − 𝜇ଶ)்Σଶ

ିଵ(𝑥 − 𝜇ଶ)), 𝑖𝑓 𝑥௧  ∉ 𝐴௧௜ 𝑎𝑛𝑑 𝑥௧  ∉ 𝐴𝑑𝑗௧௜

 (2) 

For the traditional method, 𝜇଴, 𝛴଴, 𝜇ଵand 𝛴ଵ  are the means and covariance matrices of the 

distributions for the attended and unattended flashes, respectively. K is the dimensional of the 

gaussian model. 

For the new method, 𝜇଴, 𝛴଴, 𝜇ଵ, 𝛴ଵ,  𝜇ଶ, and 𝛴ଶ,  are the means and covariance matrices of the 

distributions for the attended, adjacent and unattended flashes, respectively. K is the 

dimensional of the gaussian model. 

 

Although it has been shown that consecutive flashes are correlated [10], we assume that each 

flash’s score was drawn independently from one of these distributions. Then we created two 

vectors, row probability and column probability, to record the accumulated probability from 
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flashes. The row probability and column probability are both initialize as [1,1,1,1,1,1], and are 

updated according to the following algorithm for each flash:  

1.The probability of containing the attended character will be multiplied into the corresponding 

row or column.  

2.For the new method, the probability of adjacent to the attended character will be multiplied into 

adjacent row or column.  For the traditional method, The probability of those without the 

attended character and not adjacent to the attended character will be multiplied into adjacent 

row or column. 

3. The probability of those without the attended character and not adjacent to the attended 

character will be multiplied into the rest rows or columns.  

4. Normalize the row probability and column probability. 

Given an example for the traditional algorithm, if the classification probability of a row 2 flash is 

attended: 80%, non-attend:20%. Then the row probability would be updated as 

[20%,80%,20%,20%,20%,20%]. After normalization, the probability array would be updated as 

[11.1%,44.4%,11.1%,11.1%,11.1%]. 

Given an example for the new algorithm, if the classification probability of a row 2 flash is 

attended: 80%, non-attend:15% and adjacent:5%. Then the row probability would be updated as 

[5%,80%,5%,15%,15%,15%]. After normalization, the probability array would be updated as 

[3.70%,59.26%,3.70%,1.11%,1.11%]. 

 

The probability of each character is computed as the product of corresponding normalized row 

and normalized column probability. A threshold probability, PThresh, is then set to determine 

when a decision should be made. The program will keep take new flashes to update probability 
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matrix until either max(P (xt|yt, xt−1,...,x0) )> Pthresh or the number of sets of flashes reaches 

120(number of total flashes for one character). The number of flashes used and the decoding 

accuracies achieved are recorded for values of Pthresh from 0 to 1. 

 

 

2.4 NLP Method 

We incorporate language models into the P300 speller using particle filtering (PF). The idea is 

from Speier et. [7] The particle filter classifies P300 signals using a Bayesian process model. 

From a probabilistic graph, the prior probabilities are determined, and progression through the 

model is estimated using Sequential importance resampling (SIR).  

2.4.1 Language Corpus 

Language models are built based on text representing the target output domain. Generally, 

large corpora of documents are used to avoid specificity. In this study, we used the Brown 

English corpus.[11] The Brown corpus consists of documents that contain a total of 1,014,312 

words and it is a sufficient representation of the language for our purposes. However, it is not 

necessary and any other corpus that large enough can be used to build the language model as 

well. To simplify the corpus, we preprocess it by removing punctuation and stemming before we 

build the language model. In addition, in the language model, case is not distinguished. 

2.4.2 Probabilistic Graph Language Model 

A probability graph was created to model the English language by creating states for every 

substring that starts a word. For example, the word “for” would result in three states: ‘f,’ ‘fo,’ and 

‘for’. The root node, 𝑥଴, is the start state, which corresponds to a blank string. Each state links to 
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all states that appends one more character than itself. For example, “f” links to “fa”, “fe”, “fo” etc. 

For each word, we use an “_” to denote the word ends 

States which represent completed words contain links back to 𝑥଴, and a new word will begin 

afterwards. The state ‘for,’ for instance, links to the terminal state ‘for_’ which includes the valid 

English word ‘for’ and a space indicating the intent to start a new word. The state ‘for’ also 

contains links to nonterminal states such as ‘fort’ because it begins other English words in 

addition to being a complete word.  

The transition probabilities are determined by the relative frequencies of words starting with the 

states’ substrings in our language corpus. [11]  

                               P (𝑥଴:௧|𝑥଴:௧ିଵ)=
௖(௫భ,௫మ…,௫೟షభ,௫೟)

௖(௫భ,௫మ…,௫೟షభ)
,                                                           (3) 

where c (𝑥ଵ, 𝑥ଶ) denotes the number of occurrences of a word that starts with the string ‘𝑥ଵ𝑥ଶ’ in 

the corpus. p(𝑥଴:௧|𝑥଴:௧ିଵ)is the fraction of words, 𝑥଴:௧, in the copus that begin with character 

‘𝑥଴:௧ିଵ’.  Given an example in the above content, P ("𝑓𝑜𝑟"|"𝑓𝑜") equals to the number of 

occurrences of a word that starts with the string ‘𝑓𝑜𝑟’ in the corpus divided by the number of 

occurrences of a word that starts with the string ‘𝑓𝑜’ in the corpus. 

Similarly, the probability that a word ends and the model transitions back to the root, 𝑥଴, is the 

ratio of the number of occurrences of complete words consisting of a string to the total number 

of occurrences of words beginning with that string 

                    P (𝑥଴:௧|𝑥଴:௧ିଵ)=
௖(௫భ,௫మ…,௫೟షభ,‘_’)

௖(௫భ,௫మ…,௫೟షభ)
,                                                   (4) 

Where c (𝑥ଵ, 𝑥ଶ, ‘_’) denotes is the number of occurrences of the complete word ‘𝑥ଵ𝑥ଶ’ in the 

corpus. In the example above, c (‘f’, ′𝑜′, ′𝑟′, ‘_’) denotes the number of occurrences of the 

complete word ‘for’ in the corpus.  
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2.4.3 Particle Filter 

The Particle filter method estimates the probability distribution over possible output strings  by 

sampling a batch of possible realizations of the model called particles. Each of these particles 

moves through the language model graph independently, based on the probabilities of 

transition. Realizations with low probability are removed and replaced by more likely realizations 

when resampling the particles based on weights derived from the analysis of  EEG signals. The 

probability distribution of the possible output strings is estimated by computing a distribution of 

the particles after they have moved through the model graph. [7] 

The algorithm is initialized by instantiating a set of J distinct particles and our study set J equals 

to 1,000 (Figure 3).   

 

Figure 3： Demonstration of the step of initialization of a set of particles in particle filtering. 
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Each particle j has three attributes: history, node, and weight. History, 𝑥଴:௧
(௝),  is the string 

consisting of the particle’s state history. Node, 𝑛௝, is the particle’s current state. Weight, 𝑤௝ is the 

particle's probability weight. When the system begins, a set of particles is generated and each is 

associated with the root node, 𝑥଴, with an empty history and a weight equal to 1. At the start of a 

new character t, all particles would be projected to one of all the linked states based on the 

distribution defined by the language model’s transition probabilities from the particle’s 

history 𝑥଴:௧ିଵ
(௝) . 

                              𝑥௝
଴:௧ ~  p (𝑥଴:௧|𝑥଴:௧ିଵ

(௝) ),                                                                                (5) 

where p (𝑥଴:௧|𝑥଴:௧ିଵ
(௝) ) is provided by the language model (equation (4)).  

 

Figure 4： Demonstration of the step of particle projection in particle filtering. 
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After the projection (Figure 4), the state that the particle is projected to would be append to the 

attribute history, 𝑥௝
଴:௧ , and the node would be changed to 𝑥௧

(௝). After each stimulus response, the 

probability weight is computed for each of the particles. 

   𝑤௝ ∝ 𝑝 ቀ 𝑥௧
(௝)

ቁ ∝ Π௞𝑓(𝑥௧), k is iterated through all flashes.  

where 𝑓(𝑥௧) is computed as in equation (1) or (2) based on the distribution model. The weights 

are then normalized, and the probability of the current character is found by summing the 

weights of all particles that end in that character.  For each time the weight is updated, the 

summation of weight of all the particles in the same state would be computed. (Figure 5) 

 

Figure 5: Demonstration of the step of reweight in particle filtering. 
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If the maximum summation in one state is above a threshold, the particle with the maximum 

weight is selected and its history is used as the output text. Once the threshold is achieved, all 

particles would be resampled. A multinomial distribution is created over the set of particles 

where each particle’s probability is proportional to its weight. A new set of J particles is then 

sampled from this distribution with replacement. This set of particles is then used in the next 

time step. (Figure 6) 

 

Figure 6: Demonstration of the step of resample in particle filtering. 

After the resample is finished, we will start to repeat the decoding process of the next character 

by projecting all particles again.  

3. Evaluation 

We take two factors into account when evaluating the BCI system: the capability of the system 

to achieve the desired result and the amount of time required to achieve that result. The efficacy 
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of the system can be measured as the accuracy of selection, which we defined as the 

percentage of decoded characters that matched the target string. The speed of the system was 

measured by how many flashes on average were presented by the system before it returns the 

output characters. Under the premise that other conditions remain unchanged, the used flashes 

are less, the speed of the system is higher. In order to consider the factors of speed and 

accuracy, we compute information transfer rate (ITR) for each method.  

𝐼𝑇𝑅 =  
𝐵

𝑇
 , 𝐵 = log 𝑁 + 𝑃 𝑙𝑜𝑔𝑃 + (1 − 𝑃)𝑙𝑜𝑔

1 − 𝑃

𝑁 − 1
                               (6) 

 

, where B is the information transferred in bites per trial, N is the number of targets, P is the 

classification accuracy. In our study, N = 36  

To evaluate if the enhancement between traditional method and our method is statistically 

significant, we run the Wilcoxon signed-rank test across the whole subject set and the alpha 

value of 0.05 is used.               

4. RESULTS 

4.1 Traditional SWLDA Classifier vs. SWLDA classifier with adjacent flash results for accuracy 

vs. time 
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Figure 7 Average accuracy across all subjects for the classifier using Dynamic stopping without 

adjacent flashes. Dotted lines correspond to the average +/- variance. 

From 

 



17 
 

Figure 8: Average accuracy across all subjects for the classifier using Dynamic stopping using 

adjacent flashes. Dotted lines correspond to the average +/- variance. 

 

The curves in Figure 7 and Figure 8 are in the same shape. At the beginning, the accuracy 

increases as the time used per character increases. It achieves an asymptotic maximum value 

at some point. As for the traditional SWLDA method, the asymptotic maximum value is achieved 

when time equals to 9 and as for the SWLDA method, the asymptotic maximum value is 

achieved when time equals to 10. In addition, the asymptotic maximum values for the two 

method are almost the same (96.9%). 

 

 

Figure 9: Average accuracy across all subjects for the classifier using Dynamic stopping using 

vs. not using adjacent flashes in the same figure. 
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From Figure 9, across all the time given, the accuracy of LDA using adjacent flashes is always 

higher than the accuracy of traditional methods. 

ITR over different thresholds 

 

 

Figure 10: Boxplot of ITR across all subject set using traditional LDA classifier. 
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Figure 11: Boxplot of ITR across all subject set using LDA classifier using adjacent flashes. 

From the box plot of ITR (Figure 10 and Figure 11), LDA using adjacent flashes has higher 

Peak (𝑃𝑒𝑎𝑘௧௥௔ௗ௜௧௜௢௡௔௟ = 43.74, 𝑃𝑒𝑎𝑘௔ௗ௝௔௖௘௡௧ = 47.76). In addition, the difference of maximum ITR 

across all the subject set is statistically significant. (P value for the t test: 𝑃௚௟௢௕௔௟ = 2.94𝑒 −

4, 𝑃௜௡ௗ௜௩௜ௗ௨௔௟ = 3.66𝑒 − 13). 
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Figure 12: Histogram of difference of peak ITR across all subjects between the traditional 

method and the new method. 

Figure 12 gives a histogram which shows a larger population who has positive difference of ITR 

than the negative. There are some subjects whose peak ITR increase and almost same amount 

of subjects whose ITR decrease. Of the subjects, 57.4% had peak ITR increases of more than 5 

bits per minute, 30.9% subjects’ peak ITR increases more than 10 bits per minutes, and 8.8% 

subjects’ peak ITR increases more than 15 bits per minutes. 

 

4.2 Traditional NLP Model vs. NLP Model Using Adjacent Flashes. 

results for accuracy vs. time 
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Figure 13: Average accuracy across all subjects for the NLP method using Dynamic stopping 

without adjacent flashes. Dotted lines correspond to the average +/- variance. 
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Figure 14: Average accuracy across all subjects for the NLP method using Dynamic stopping 

using adjacent flashes. Dotted lines correspond to the average +/- variance. 

 

The curves in Figure 13, Figure 14 are in the same shape. At the beginning, the accuracy 

increases as the time used per character increases. It achieves an asymptotic maximum value 

at some point. The asymptotic maximum value is achieved at almost the time for the both 

method (9.5). In addition, the asymptotic maximum values for the two methods are also almost 

the same (94.9%). 
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Figure 15: Average accuracy across all subjects for the classifier using Dynamic stopping using 

vs. not using adjacent flashes in the same figure. 

From Figure 15, Across all the time given, the accuracy of LDA using adjacent flashes is not 

significantly higher than the accuracy of traditional method and the two curves with their +/- 

variance is almost overlapped.  
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Figure 16: Boxplot of ITR across all subject set using traditional NLP method. 

 

 

Figure 17: Boxplot of ITR across all subject set using NLP method with adjacent flashes. 
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From the box plot of ITR (Figure 16 and Figure 17), traditional LDA has higher Peak ITR for 

NLP model(𝑃𝑒𝑎𝑘௧௥௔ௗ௜௧௜௢௡௔௟ = 49.67, 𝑃𝑒𝑎𝑘௔ௗ௝௔௖௘௡௧ = 48.79). In addition, the difference of 

maximum ITR across all the subject set is not statistically significant. (P value for the t test: 

𝑃௚௟௢௕௔௟ = 0.876, 𝑃௜௡ௗ௜௩௜ௗ௨௔௟ = 0.0822). 

 

Figure 18: Histogram of difference of peak ITR across all subjects between the traditional 

method and the new method using NLP method. 

Figure 18 gives a roughly symmetrical histogram. There are some subjects whose peak ITR 

increase and almost same amount of subjects whose ITR decrease. Of the subjects, 21.7% had 

peak ITR increases of more than 5 bits per minute, 10.1% subjects’ peak ITR increased more 

than 10 bits per minutes, and 5.8% subjects’ peak ITR increased more than 15 bits per minutes. 

 

5. DISCUSSION 
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Our results show that adjacent flashes can improve the performance of P300 speller from the 

perspective of the whole data set. The median ITR is enhanced from 43.74 bit per minute to 47.76 

bit per minute. Of the subjects, 57.4% had peak ITR increases of more than 5 bits per minute, 

30.9% subjects’ peak ITR increases more than 10 bits per minutes, and 8.8% subjects’ peak ITR 

increases more than 15 bits per minutes. The results of NLP model are different from the results 

of SWLDA. We do not see a significant enhancement after incorporating adjacent flashes. In 

addition, the peak median ITR for the two algorithms are also very close to each 

other (𝑃𝑒𝑎𝑘௧௥௔ௗ௜௧௜௢௡௔௟ = 49.67, 𝑃𝑒𝑎𝑘௔ௗ௝௔௖௘௡௧ = 48.79) . Of the subjects, 21.7% had peak ITR 

increases of more than 5 bits per minute, 10.1% subjects’ peak ITR increased more than 10 bits 

per minutes, and 5.8% subjects’ peak ITR increased more than 15 bits per minutes. 

Adjacent flashes incorporate additional information from stimulus in peripheral vision and enable 

the speller to make faster decisions with higher accuracy. However, the enhancement for different 

subject varies. One potential reason is how easily the user is disturbed by the adjacent flashes. If 

the user is hardly disturbed by the adjacent flashes, the feature of neural response to adjacent 

flashes is close to non-attended flashes. Because of that, misclassification between adjacent and 

non-attend flashes happens. Though the algorithm to compute probability for character we 

designed in this study will not be harmed by this kind of misclassification, distinguishing adjacent 

flashes will not provide significant enhancements to the accuracy of the system in this case. 

However, as for NLP model method, the reason why we do not see much improvement of the 

new methods might because the Prior probability given by the NLP model already bias the 

probability distribution of all letters enough, and the difference made by adjacent flashes is very 

limited.  

While the results of our study may not be practically significant for all the subjects, it shows that 

8.8% of the subjects’ peak ITR increases more than 15 bits per minutes for LDA dynamic method 
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and 5.8% of the subject’s’ peak ITR increases more than 15 bits per minutes for method with NLP 

model. For these subjects, the enhancement is significant in practice. Therefore, we think it is 

worthwhile to determine what kind of subject can be significantly benefited. Our lab is working 

with ALS patients who cannot move their eyes easily and therefore it is hard for them to 

concentrate on the letter on the screen. We hypothesize that the system using adjacent flashes 

will benefit ALS patient’s more than healthy subjects, and the enhancement can be practically 

significant. 

 

There is another problem, we find in PF algorithm, words with a small probability are likely to be 

mis-decoded. For example, “fox” is likely to be decoded as “for”. In addition, since the PF 

algorithm is not able to make all corrections automatically one mistake would cause sequential 

errors. For instance, after the “x” in “foxes” is decoded as “r”, the whole word “foxes” would likely 

be decoded as “force”. Another solution is to build a Customized language model for each 

individual subject. We can record a subject’s daily language and build a language model which 

has probability bias based on it. It can enhance the accuracy of the common word the subject 

uses, and therefore enhance the accuracy of the system overall. 

Our research is all based on retrospective experiments so we cannot let the users offer their 

feedback. One future direction is to transform the decoding algorithm to online setting and let the 

user give feedback on time to correct the mis-decoded characters when using NLP model. It 

would slow the process down but can mitigate sequential errors. 

In conclusion, incorporating adjacent flashes can enhance the performance of P300 speller for 

some subjects. The enhancement is more significant when not using NLP model. In addition, 

the enhancement for different subjects varies, and it is worth to determine which subject can be 

benefitted from this new method in the future research. For example, ALS patients are one 
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potential beneficiary group. Overall, P300 speller with adjacent flashes can provide better 

communication options for affected populations. 
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