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Abstract

Fetal alcohol spectrum disorders (FASD) are thought to be the leading cause of developmental 

disabilities worldwide. Accurate estimates of the prevalence of FASD have been lacking. An 

improved estimate of FASD prevalence in the U.S. was recently reported in a study where 

multistage methods of active case ascertainment of first-grade children with FASD were utilized in 

four regions in the U.S. Each method relied on parental consent and therefore had potential non-

response bias. We consider weighted approaches, where the weights were formed using the 

distribution of observed variables in the population from which the samples were drawn. However, 

there are likely other unobserved variables that affect both non-response and FASD outcome. We 

describe sensitivity analyses using methodology developed for causal inference. The results show 

feasible regions of FASD prevalence under certain assumptions, and provide a framework for 

explaining the non-response bias due to the unobserved variables.

Keywords

Causal inference; Feasible lower bound; Inverse probability weighting; Non-response; Sampling 
bias; Unobserved confounding

INTRODUCTION

Fetal alcohol exposure occurs when a woman drinks alcohol while pregnant. Data from 

prenatal clinics and postnatal studies suggest that 20 to 30 percent of women consume 

alcohol at some time during pregnancy (1). Alcohol can negatively influence fetal 
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development at any stage during a pregnancy, including at the earliest stages in gestation, 

often before a woman knows she is pregnant (2). Alcohol consumption during pregnancy 

can affect the developing embryo or fetus, leading to specific facial features, growth 

deficiencies, and a range of characteristic cognitive and behavioral problems that may 

become apparent at any time during childhood. Fetal alcohol spectrum disorders (FASD) is 

the umbrella term for the spectrum of effects of prenatal alcohol exposure, which include 

fetal alcohol syndrome (FAS), partial fetal alcohol syndrome (pFAS), alcohol-related 

neurodevelopmental disorder (ARND), and alcohol-related birth defects (ARBD). The 

estimated lifetime cost (for example, lost productivity, housing, medical services) for one 

individual diagnosed with FAS, the most severe end of the spectrum, is 2.9 billion U.S. 

dollars (3); and the cumulative costs of care for all FAS-affected individuals has been 

estimated at 6 billion U.S. dollars annually (4).

Primary care physicians often lack sufficient training or confidence to ascertain accurate 

prenatal alcohol exposure histories from women or to recognize the clinical features of 

FASD in children. This results in the failure of referral of FASD-affected individuals for 

appropriate evaluation and treatment, and under-reporting of the disorder. The magnitude of 

the potential cost of FASD for affected individuals and families substantiates the critical 

public health significance of the disorder. For these reasons, more accurate U.S. estimates of 

the prevalence of FASD are needed in order to establish a baseline against which to measure 

the effectiveness of prevention and intervention programs. Accurate estimates are also 

needed to better inform the need for specific services and interventions to ultimately 

improve health outcomes for families and children.

The Collaboration on FASD Prevalence (CoFASP) research consortium, funded by the 

National Institute on Alcohol Abuse and Alcoholism (NIAAA) beginning in September 

2010, sought to establish the prevalence of FASD among school-aged children in several 

U.S. communities, using active case ascertainment methodology. The primary findings of 

the CoFASP consortium, recently reported in May et al. (2018) (5), were conservatively 

estimated prevalences of FASD ranging from 1.1-5.0%.

The study design used by CoFASP was an epidemiological survey of children in the first 

grade in school in the general population of each of four U.S. communities, where case 

ascertainment, i.e. classification of FASD, required complex multistage procedures. 

Depending on the site, these steps included: seeking parental permission to contact, consent 

to and completion of screening of children using growth measures and/or a developmental 

questionnaire, and consent to and completion of a comprehensive evaluation for physical 

features of FASD, child neurodevelopment, and a maternal interview to capture prenatal 

exposure to alcohol. Each stage of the procedure reduced the number of children who 

eventually provided sufficient data to be classified as having an FASD or not, leaving the 

remainder as “non-response” with respect to the primary outcome of interest. This non-

response portion ranged from 49 to 81 percent across the eight samples (5).

Weighted approaches are routinely used in public health surveillance, including those 

conducted by the Centers for Disease Control and Prevention (CDC) as well as state health 

departments, to account for stratified design, oversampling, non-response, and non-coverage. 
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Weighting each record appropriately can help to adjust for the differences between the 

sample and the target population. Weighting the observed values by inverse-probabilities of 

selection was initially proposed by Horvitz and Thomas (6) and has since been widely used 

in missing data problems and causal inference (see for example, Robins et al and Hogan et 

al) (7, 8).

Forming weights for estimation of the prevalence of FASD requires that data be available on 

the distribution of the relevant variables in the target population, that is, variables that predict 

non-response as well as FASD outcome; some examples are: specific patterns of alcohol use 

in pregnancy, socioeconomic status, maternal age, parity, and race/ethnicity. However, the 

availability of such a distribution is limited in practice. The implication of such limitations is 

that we are very likely to have uncontrolled “confounding” when using the available 

variables to form weights to estimate FASD prevalence rates, and therefore sensitivity 

analysis is imperative. Here the word “confounding” is borrowed from the causal inference 

literature and we further elaborate this in the Methods Section below.

In this analysis we sought to address the potential non-response bias in the estimation of 

FASD prevalence with weighted approaches and a sensitivity analysis, using as an example 

one of the regions in the CoFASP study to derive a feasible lower bound for the prevalence 

of FASD in that population.

METHODS

Study design and samples

The design of the parent study was described in May et al. (2018).(5) First grade children 

with parental consent were recruited from public and private elementary schools in four 

geographic locations in the United States using a cross-sectional design over two academic 

years. In order to construct the weighted estimates of the FASD prevalence rate, it was 

necessary to have 1) the distribution of selected variables in the target population such as 

maternal alcohol use, and 2) these same variables having been captured in the sample data. 

To illustrate the sensitivity analysis approach, two samples were selected from the CoFASP 

primary outcome dataset: the Pacific Southwestern City site for the 2012-2013 and 

2013-2014 academic years.

Inverse-probability weighting and sensitivity analysis

In the following suppose that we have a random sample of units i = 1, … , N from an infinite 

population. Let Yi be the primary outcome of interest; in our case Yi = 1 or 0 indicating 

diagnosis ‘yes’ or ‘no’ FASD (or sub-categories as appropriate) for child i. Let Ri = 1 or 0 be 

the response indicator of whether a child has received an FASD (or subcategory) diagnosis; 

i.e. whether Yi is observed. In our case only those children who completed the 

comprehensive evaluation and received classification as FASD ‘yes’ (including 

subcategories FAS, pFAS and ARND) or ‘no’ are responders. Let Xi be a vector of observed 

covariates such as race/ethnicity, maternal alcohol use, etc. Our goal is to obtain an 

(asymptotically) unbiased estimate of the population mean E(Y). If we can assume that Yi 

and Ri are conditionally independent given Xi then the response (or equivalently, missing) 
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mechanism is called strong ignorability (9), also referred to as ‘no uncontrolled 

confounding’, which implies that the missing Yi’s are missing at random (MAR) (10). 

Under this assumption, if we can use Xi to predict the probabilities of response, then inverse-

probability weighting (IPW) can be used to provide a consistent estimate of the population 

mean, i.e. prevalence in this case. We note that the MAR assumption cannot be tested using 

the observed data, and we will base our sensitivity analysis on various departures from this 

assumption.

MCAR estimate—The primary finding for the estimates in May et al. (2018)(5) assumed 

that data were missing completely at random (MCAR), that is, children in the eligible 

sample who were not evaluated had the same prevalence of FASD as those who completed 

the evaluation within each subpopulation. This included children not consented or those who 

did not complete all components of the evaluation. The subpopulations were then combined 

using the known weights; see May et al. (2018)(5) for more details.

MAR estimate—This estimate assumes that the outcome is missing at random (MAR). It 

uses IPW with weights based on the propensity of response estimated using X. More 

specifically the MAR estimate is obtained using (∑wiRiYi)/N, where wi = l/P(Ri = 1|Xi). In 

our case since X is categorical (itself can be a combination of several categorical variables 

with all possible interactions, as described below), the propensity of response P(Ri = 1|Xi) is 

estimated by the observed frequency of response within each category of the distribution of 

X; this is equivalent to fitting a so-called saturated parametric propensity model.

For the distribution of X in the target population, maternal race/ethnicity and alcohol use 

was captured from the 2005-2007 California Maternal and Infant Health Assessment 

(MIHA) for the Pacific Southwestern City. The MIHA survey was conducted postnatally 

among recent mothers who were randomly sampled for participation from birth certificates 

in that year (11). More specifically, “Any Alcohol Use” in our CoFASP samples was defined 

as any alcohol consumption reported during pregnancy, and in MIHA was defined as any 

alcohol consumption during the first or third trimester.

Sensitivity analysis—In order to carry out the sensitivity analysis, we followed the setup 

of Shen et al (12) for causal inference of a treatment effect. While we do not have a 

treatment under concern, it is well known that under the potential outcomes framework for 

causal inference, within each treatment group and the corresponding population, the 

observed treatment assignment is equivalent to our response indicator here, and the average 

treatment effect is the difference between the two population means that one needs to 

estimate. The MAR assumption is equivalent to no unobserved confounding.

Following Shen et al (12) sensitivity of the MAR estimate obtained using IPW is affected by 

the unmeasured ‘confounder’ denoted as U. It is assumed that Y and R are conditionally 

independent given X and U. The following parameters enter the sensitivity analysis:

1. τ = 0.1, 0.2, 0.3, and 0.4, which reflects the effect of U on the response indicator 

R, in terms of odds ratio (OR) in a range of roughly 1-3, assuming a probit 

model for the propensity of response.(12) More precisely, assume that
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S∗ = P(R = 1 ∣ X, U) = Φ(g(X) + τU), (1)

where Φ(·) is the cumulative distribution function (CDF) of standard normal, 

g(X) is some function of X, and U ~ N(0,1) is independent of X. Shen et al (12) 

showed that τ values between 0.1 - 0.4 correspond to OR of roughly 1 - 3 for the 

effect of one interquartile range change in U on S* .

2. ρ = Corr(Y, ϵ), where ϵ = S*/S, S* = E(R| X, U) is the true propensity of 

response, and S = E(R| X) is called the pseudo propensity score. In other words ρ 
is the correlation between the outcome Y and the error in (modeling) the 

propensity of response because of the unobserved U. It can be seen as capturing 

the effect of U on Y in addition to its effect on R. We will further explore the 

values of ρ below using simulations.

3. λ which is a nonparametric version of τ, without assuming a probit model for the 

propensity of response. For more details see Shen et al (12).

Sensitivity of the MAR estimates is obtained by solving a quadratic equation (7) of E(Y) in 

Shen et al. (12) for given values of ρ and τ or λ. See Shen et al (12) for more details.

Simulation to determine the range of ρ

While the interpretation of τ and λ is clear from the above as the effect of U on R, the 

meaning of the values of ρ is less clear. This is because while it captures the dependence of 

Y on U, in generating the data it can also depend on the values of τ. To determine a realistic 

range for ρ to be used in practice, we carried out extensive simulation experiments for 

various plausible scenarios including parameter values. The simulation setup is briefly 

described below, with more details provided in the Supplement File.

Since we can choose the distribution of X in simulations, without loss of generality we may 

assume g(·) to be the identity function. From (1) we have (Shen et al.(12)

S = P(R = 1 ∣ X) = Φ X
1 + τ2 . (2)

For given values of τ, X, and U, we can compute ϵ = S*/S, and also generate Y according to

P(Y = 1 ∣ X, U) =
exp(β0 + β1X + β2U)

1 + exp(β0 + β1X + β2U) . (3)

We can then compute the Monte Carlo sample-based correlation coefficient for ρ = Corr(Y, 

ϵ).

We considered various distributions for X including normal, uniform, binary and Poisson. 

Various magnitudes of β1 and β2 in (3) were also considered that reflected the different 
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effects of the unobserved U on Y relative to the effects of the observed X. In addition, during 

an early stage of the CoFASP project we also considered to let X follow the 2012-2013 joint 

distribution of child race/ethnicity and eligibility for free or reduced-price meal plan in the 

Pacific SW City. See the Supplement File for more details.

Imputing predictors of response

There were two ways X values could be missing. In the first, in the CoFASP samples, only 

the children who received an FASD classification yes or no (i.e. responders) had variables 

such as maternal race/ethnicity and alcohol use captured during the comprehensive 

evaluation. These variables were not observed for the remainder of the subjects. For these 

non-responders, we can impute their X values from the distribution below:

P(X = x ∣ R = 0) = P(X = x) − P(X = x ∣ R = 1) ⋅ P(R = 1)
P(R = 0) ,

where P(X = x) is obtained from the population MIHA survey, P(X = x|R = 1) is estimated 

directly from the observed sample data, and P(R = 1) and P(R = 0) are estimated by the 

proportions out of the N children with observed and unobserved FASD outcomes in the 

samples, respectively.

In the second source of missing X values, maternal race/ethnicity and alcohol use data were 

missing for a number of the responders, i.e., children who received the comprehensive 

evaluation and an FASD classification yes or no. These subjects typically had all their other 

maternal characteristic variables missing as well, i.e., had not completed the maternal 

interview. We considered imputation using multivariate imputation by chained equations 

(MICE) (13), using the FASD classification as the predictor.

Multiple imputation (MI) was employed for both types of missing described above. Ten 

imputations were carried out, and the results from each imputation were combined using the 

standard MI approach to obtain the final point estimate and its estimated variance (14).

In addition, for the second type of missing, we also imputed all of the missing values as the 

category with the highest and the lowest FASD prevalence in the sample; for example, all 

missing the variable “Any Alcohol Use” were imputed as ‘yes’ or as ‘no’, respectively.

RESULTS

Simulation results

Simulation results are given in the Supplement File Section 2. Apparently ρ tends to be 

increasingly positive as U increases the odds of Y = 1, and increasingly negative as U 
decreases the odds of Y = 1.

From the extensive simulation results we see that the values of ρ lie between (−0.31, 0.31) 

for all the situations considered, and between (−0.3, 0.3) when both odds ratios (ORs) in the 

tables of the Supplement are within 0.33 and 3. We note that relevant odds ratios between 
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0.33 and 3 are the commonly used to set the sensitivity parameters (15). In the sensitivity 

analysis below (−0.3, 0.3) was the range used for ρ.

CoFASP data results

Table 1 shows the distribution of the variables any alcohol use, and alcohol by race/ethnicity 

among the n = 404 and 483 children classified as FASD yes or no and subcategories in the 

Pacific Southwestern City in the 2012-2013 and 2013-2014 sample years, respectively. It 

also shows the distribution of these variables from the MIHA survey for those years. After 

imputing the missing values as described above, these distributions were then used to 

compute the MAR estimates, which are given in Table 2.

In Table 2, the various estimates were computed for the entire samples of N = 2,238 and 

2,171 eligible first-grade children in the schools selected for participation in those two 

school years. The MCAR estimates were the estimates from May et al. (2018) (5). The 

absolute lower bounds (ALB) were also from May et al. (2018) (5), using the number of 

FASD and subcategory cases divided by the total number (N) of eligible children.

It is seen that different imputation methods for missing covariate information among the n 

children gave different MAR estimates, typically from higher to lower (A – C). The only 

exception is FAS in 2012-2013, where the only case occurred in the “no” category of “any 

alcohol use” and the “no-Latina” category of any alcohol × race/ethnicity.

The sensitivity analysis results are illustrated in Figure 1, for 2012-2013 and using MICE for 

imputation. For each panel within the figure, for example, Total FASD and using “any 

alcohol use” as the weighting variable (first row last panel), the lower right end of the solid 

lines (nonparametric with λ = 0.088 and ρ = 0.3) gives the lowest possible value of the 

estimated Total FASD prevalence among the sensitivity analysis results shown in that panel. 

This value is given as the corresponding feasible lower bound (FLB) in Table 2. The FLB’s 

are guaranteed to be no lower than the ALB’s in its implementation (12). On the other hand, 

the wide vertical ranges of these lines, both solid (for nonparametric approach) and dashed 

(for parametric approach), show the ranges of plausible prevalence values depending on the 

amount and direction of the uncontrolled confounding as discussed earlier. Additional 

sensitivity analysis plots similar to Figure 1 are given in the Supplement.

The overall FLB is the lowest of the six FLB’s among the six combinations using two 

different predictors of response, and three different imputation methods; these are shown in 

bold typeface in Table 2. It is seen, for example, that the overall FLB for Total FASD 

prevalence in 2012-2013 was 3.63 per 100 children, compared to the ALB of 1.88. Similarly, 

in 2013-2014, the overall FLB for Total FASD prevalence was 2.94 per 100 children, 

compared to the ALB of 2.26. Similar comparisons can also be drawn for the subcategories 

of fetal alcohol syndrome (FAS), partial fetal alcohol syndrome (pFAS) and alcohol related 

neurodevelopmental disorder (ARND). An important immediate message is the following: 

by carrying out careful sensitivity analysis, we were able to derive tighter bounds for FASD 

prevalence than previously published.
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DISCUSSION

For epidemiological surveys like the CoFASP, multiple stages of the active case 

ascertainment process can create bias for estimating FASD prevalence that is unknown both 

in direction and in magnitude. This is in contrast to population-based approaches used by the 

CDC for diseases like cancer, although similar issues exist for other conditions like autism 

(16). Weighted estimates have been commonly used for survey data, which is equivalent to 

our MAR estimates. Our sensitivity analysis shows, however, that if uncontrolled 

confounding exists, it can have substantial impacts on the estimated prevalence rates.

The primary finding in May et al (2018) (5) also used weights, but the weights were only 

based on the sampling probabilities of subpopulations, such as screened positive versus 

negative, or being less than 25th percentile on growth etc., while assuming no consent bias or 

any bias from children who did not complete the full evaluation. The weights in the present 

analysis are different in that they make use of predictors of non-response, and coupled with 

sensitivity analysis, they address the consent bias and any other bias resulting from missing 

outcomes.

The sensitivity analysis presented here utilized the nonparametric approach of Shen et al 

(12) so that no specific models were assumed. The actual derivation of the Shen et al (12) 

results is mathematically complex, and is not the focus of our application; we refer 

interested readers to their original work. The setup of Shen et al (12) framework quantifies 

how the unobserved variable U varies its strength of effects on the response indicator R and 

the FASD outcome Y. The two parameters of the analysis control the effects of U on R and 

Y, respectively. While the meaning of λ (τ) is straightforward in terms of the odds ratio of U 
on R, we had to carry out extensive simulation in order to determine the feasible values of ρ. 

Careful selection of these parameter values helps to ensure that the results of the sensitivity 

analysis are useful in practice. In this case, the feasible lower bounds of FASD and 

subcategory prevalence rates were improved compared to the absolute lower bound 

published in May et al. (2018) (5).

In the Methods Section above we have briefly pointed out the connection between 

prevalence estimate in one population and causal inference in two or more populations. The 

latter is more complex as there are distinct issues such as selection bias, unobserved 

confounding, etc. In our simpler one-sample and one-population problem, however, these are 

all equivalent to non-response bias.

In this paper, we have restricted our attention to the methodology of sensitivity analysis of 

the weighted MAR estimate. An additional issue is the handling of missing covariates. 

Multiple imputation assumed that these covariates were missing at random. The additional 

sensitivity to this assumption was not investigated in the current work.

A limitation of this approach was that we selected the variable of “any alcohol use in 

pregnancy” as this was captured in the CoFASP study by maternal interview, and was 

available in the reference population survey through MIHA data. However, low levels of any 

alcohol use in early pregnancy are not clearly associated with risk for FASD. The more 

informative covariate would have been multiple “binge” episodes of multiple drinks per 
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occasion in pregnancy, as this is the pattern of alcohol consumption most predictive of 

FASD. Although the variable of two or more occasions of three or more drinks per occasion 

was used to define risky alcohol exposure in the CoFASP study, a comparable quantity/

frequency measures was not available in the MIHA survey data for the Pacific Southwestern 

city for the relevant years 2005-2007.

A second limitation is that it is unknown to what extent maternal alcohol use was under-

reported or mis-reported in the maternal interviews either in the CoFASP samples, or in the 

MIHA data.

A third limitation is that we have restricted our sensitivity analysis to unobserved 

confounding only. For estimation of prevalence rates, it is common to consider sensitivity to 

the classification criteria. There are a number of different diagnostic schema for FASD 

currently in use, and when these are alternatively applied to the same sample of children, the 

resulting prevalence of FASD varies widely, as recently demonstrated by Coles et al (17). In 

the case of CoFASP, if alternative classification criteria were applied, the absolute lower 

bound prevalence estimates, and therefore the feasible lower bound estimates, would have 

differed.

In summary, in epidemiological survey studies, and in particular in the study of a disorder 

such as FASD, a number of biases may influence the results. Maternal alcohol consumption 

may not be accurately reported, and mothers with affected children may be less (or more) 

likely to participate. Thus, consent bias may substantially impact estimates of prevalence in 

either direction. Sensitivity analyses are needed to better understand the range of potential 

prevalence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Follow-up work to a recent JAMA article that received wide media coverage 

(NYtimes, CNN, etc)

• Sensitivity analyses on estimates of fetal alcohol spectrum disorders (FASD) 

prevalence

• Methodological implications to epidemiological surveys using weights where 

unobserved ‘confounding’ (for non-response) might be present
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Figure 1. 
Sensitivity analysis for FASD and sub-category prevalence for the Pacific Southwestern city 

in 2012-2013. Abbreviations: Fetal Alcohol Syndrome (FAS); partial Fetal Alcohol 

Syndrome (pFAS); Alcohol-Related Neurodevelopmental Disorder (ARND); Fetal Alcohol 

Spectrum Disorder (FASD).
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