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Abstract—This paper proposes a new methodology to capture 

the impact of fast moving clouds on utility power demand 

charges observed in microgrids with photovoltaic (PV) arrays, 

generators, and electrochemical energy storage. It consists of a 

statistical approach to introduce sub-hourly events in the hourly 

economic accounting process. The methodology is implemented 

in the Distributed Energy Resources Customer Adoption Model 

(DER-CAM), a state of the art mixed integer linear model used to 

optimally size DER in decentralized energy systems. Results 

suggest that previous iterations of DER-CAM could undersize 

battery capacities. The improved model depicts more accurately 

the economic value of PV as well as the synergistic benefits of 

pairing PV with storage. 

 
Index Terms—Batteries, distributed generation, microgrids, 

mixed integer linear programming (MILP), photovoltaic cells 

I.  INTRODUCTION 

rowing energy demand, environmental concerns, and 

resiliency concerns driven by natural disasters are 

pushing forward the deployment of renewable energy 

technologies, causing the costs of these easily-scalable 

technologies to rapidly decrease. This is drawing attention to 

the concept of microgrids, defined as a group of 

interconnected loads and distributed energy resources (DERs) 

within clearly-defined electrical boundaries that acts as a 

single controllable entity with respect to the grid [1], where a 

potentially cheaper, more reliable, and environmentally 

friendly alternative to traditional centralized grids can be 

offered. DER solutions include conventional (heat and) power 

generation, energy storage, renewables, and load management 

strategies such as demand response and load shifting [2]. 

Generically, microgrids can be categorized in islanded and 

grid-connected, and several research questions arise in the 

context of microgrids, including optimal sizing, siting, and 

operation. This work focusses on the optimal sizing of grid-

connected microgrids, although it should be noted that the 

boundaries between these categories are not strict [3]. Several 

approaches are proposed in the literature to tackle grid-
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connected microgrid sizing problems. Simulation models [3]–

[7], mixed integer linear programming (MILP) models [8]–

[12], and mixed integer non-linear programming (MINLP) 

models [13], [14] are amongst the most common approaches. 

Simulation models have the main advantage of being 

generally straightforward to develop and non-linear behaviors 

can be easily modelled. The main disadvantage is that user 

experience is usually required to build suitable candidate 

solutions, and that different objectives (e.g. cost minimization, 

battery cycling strategies, etc.) require building separate 

dispatch algorithms, where optimality is not guaranteed. 

Specifically, if the number of considered technologies is large 

enough, building the search space can become a critical issue 

and guaranteeing a good or near-optimal solution might not be 

possible. Another potential disadvantage is that the sizing 

relies in building robust dispatch algorithms, and if both 

storage technologies and monthly power demand charges are 

present, finding optimal dispatches with sequential simulation 

algorithms can be very challenging, and lead to errors in the 

final sizing decisions. Examples of commercial software 

belonging to this category are HOMER [5], [6] and 

RETSCREEN [7]. 

 MILP models have the main advantage that an optimum 

solution can be guaranteed provided a convex feasible region 

is created, and that users are not required to manually define 

this region, as this is done by the constrains defined in the 

mathematical formulation. The use of such models is not 

limited by the presence of storage and demand charges, or 

different objectives. The main disadvantage of these models, 

however, is the difficulty to model non-linear effects without 

drastically increasing the computational time required by 

linearization techniques. An example of such type of MILP 

model is DER-CAM [8]–[10]. 

 MILNP models bring an additional level of complexity and 

detail to MILP models, by explicitly considering non-linear 

effects. This has the advantage to more accurately modelling 

the behavior of different technologies, but is followed by the 

disadvantage that finding a solution may not be possible. 

Examples of such models can be found in [13]–[15] . More in-

depth reviews of the different methodologies used for optimal 

microgrid sizing can be found in [16]–[18]. 

Several papers in the literature consider the stochastic 

nature of different elements in a microgrid, and take into 

account their impact on the optimal operation. For instance, 

uncertainty in solar or wind power generation is taken into 

account in [19]–[21], uncertainty in load is addressed in [22], 

the stochastic nature of electrical vehicle driving patterns is 

the focus of [23], and the reliability of storage technologies is 
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addressed in [24]. In the aforementioned examples, a 

stochastic programming methodology is commonly employed. 

 However, these models typically assume that the capacities 

of different DER in the microgrid are known, and focus only 

on optimizing the dispatch of different technologies in the 

presence of uncertainty. This is due to the added complexity of 

simultaneously formulating capacity and dispatch as variables, 

in which case stochasticity may lead to extremely large 

problems where both solvability and runtime become critical. 

Some models found in literature do formulate DER capacity as 

a decision variable, but the majority of such cases address 

microgrid expansion problems, where only the capacity of a 

specific technology, e.g. energy storage systems (ESS), is 

unknown, while all other DER capacities are fixed. This is the 

case in [11], where the optimal size of an ESS is determined 

taking into account uncertainties in the output of PV and wind 

generation, both of known installed capacity.  

In other work, the optimal size of an ESS in a microgrid is 

determined taking into account the intermittency of renewable 

units and the possible outage of conventional units [12]. The 

impact of uncertain EV driving schedules on optimal DER 

investments is presented in [10]. In [15], a model is presented 

to determine the optimal system design of a DC microgrid, 

where uncertainty in PV and wind output is taken into account 

using an optimization technique based on Multi-Objective 

Genetic Algorithm (MOGA). Multiple criteria are considered 

including size, cost, and availability, although the focus of this 

work is on the trade-off of the different objectives, and key 

microgrid economic drivers such as power demand charges 

are disregarded. 

A survey of the existing literature shows that DER sizing 

formulations typically use hourly time steps to limit 

computational time. While this may be a significant benefit for 

usability that in most cases will not take a significant toll on 

the accuracy of the results, it must be noted that the use of 

hourly time steps can lead to inaccurate PV representation. 

Specifically, modeling PV output on an hourly basis may not 

consider short-term irradiance variability caused by fast 

moving clouds. This effect is non-negligible, and studies 

report deviations of more than 60-70% when comparing 

insulation values averaged over 1 min with 180 min averages 

of the same data on partly cloudy days [25], [26]. This loss of 

detail is particularly present in higher levels of data 

aggregation, such as when using a single 24h profile to 

represent irradiation for the entire month. 

When considering grid-connected microgrids with PV, the 

variability in insolation may not impact the net energy 

charges, since over- and underestimations in PV generation 

are typically compensated. However, the impact on power 

demand charges, typically paid on the highest average demand 

measured over 5 or 15 minute intervals, can be significant. 

This is confirmed by [4], where it is stated that behind-the-

meter PV decreases energy costs, but the intermittency 

introduced by clouds may cause peak loads and demand 

charges to remain unaffected. Thus, using averaged solar data 

in the sizing process might lead to an overestimation of the 

economic benefit of PV. 

Batteries and fast-ramping onsite generators can potentially 

be used to mitigate variability in PV generation, thus 

preventing high power demand charges in microgrids. 

However, both options represent additional investment and 

operational costs, creating a trade-off between adding more 

DER and avoiding utility demand costs. This will greatly be 

site-specific, and influenced by tariffs, electricity loads, and 

DER costs. This economic problem is addressed in this work 

by taking into account the solar insolation variability in the 

process of estimating power demand charges, and how either 

batteries or fast-ramping on-site generators may be used to 

mitigate this effect. Particularly, the novelty of this paper can 

be summarized by the introduction of a statistical component 

in a state-of-the-art MILP DER sizing model with hourly time 

steps, allowing sub-hourly variations in solar irradiance to be 

considered. By doing so, the gap between different modeling 

approaches is reduced, and the advantages and run-time of the 

linear formulation can be retained, while still incorporating 

relevant effects that would otherwise be ignored. 

A statistical approach incorporated in a deterministic MILP 

is chosen over stochastic formulations, as deterministic 

models are the most common choice for DER sizing problems, 

positioning the work presented in this paper as a natural 

extension to the current state of the art, although the method 

suggested in this work can easily be extended to stochastic 

formulations.  

This suggested methodology is implemented in DER-CAM, 

a state of the art MILP model developed by the Microgrid 

Team at the Lawrence Berkeley National Lab (LBNL) [8]–

[10]. This choice is supported by the extremely comprehensive 

and modular design of DER-CAM, as it simultaneously 

considers electric, heating, and cooling loads, a wide array of 

DER options including reciprocating engines, micro-turbines, 

combustion turbines, fuel cells, heat-exchangers for CHP 

operation, renewable generation technologies including PV, 

wind turbines and solar thermal panels, energy storage 

technologies including heating storage, cooling storage,  

electric vehicles, and multiple stationary storage chemistries, 

as well as several load management strategies including load 

prioritization, peak shaving, load shifting, and demand 

response. Further, the applicability of DER-CAM has been 

demonstrated in a large number of peer-reviewed publications 

and real microgrid implementation projects [27], making it an 

ideal candidate for the purpose of this work. 

The remainder of this paper is organized as follows: In 

section II a very compact formulation of DER-CAM is shown, 

and in section III the incorporation of sub-hourly cloud cover 

in the model is discussed. A case study is presented in section 

IV and in section V the case study results are discussed and 

conclusions are presented. 

II.  DER-CAM FORMULATION 

This work builds on the deterministic version of DER-CAM 

where 3 typical days (week, peak, and weekend) of hourly 

loads per month are used to model energy loads. Operational 

and investment costs are included in the cost minimization 

objective function, with investments being annualized. 
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The optimal capacity of different technologies is modelled 

in DER-CAM using either a continuous or discrete variable, 

with the distinction being made if a technology is available in 

small enough modules and the investment costs can be 

approximated by a linear cost function, in which case a 

continuous variable will be used, significantly lowering the 

computational time. This distinction can be found in the 

formulation below, adopted from [10]. 

Indices 

c  continuous generation technologies: 

photovoltaic panels (PV), and absorption 

chillers (AC) 

g  discrete generation technologies: internal 

combustion engines (ICE), micro-

turbines (MT), gas turbines (GT), and 

fuel cells (FC) 

i  set of all technologies (j ∪ k) 

j  set of all generation technologies (g ∪ c) 

k  storage technologies: stationary storage 

(ES), and thermal storage (TH) 

p  tariff period {on-peak, mid-peak, off-

peak} 

s  season {winter, summer} 

u  end-use: electricity only (eo), cooling 

(cl), refrigeration (rf), space heating (sh), 

water heating (wh), and natural gas only 

(ng) 

m, d, h  month {1, 2, ..., 12}, day type {1, 2, 3}, 

hour {1, 2, ..., 24} 

Customer loads 

Loadm,d,h,u  customer load at time m, d, h for end-use 

u [kW] 

Market data 

TPs,p  regulated demand (power) charges under 

the default tariff for season s and period 

p [$/kW] 

TEm,d,h regulated tariff for electricity at time m, 

d, h [$/kWh] 

TFm regulated tariff fixed charge for 

electricity in month m [$] 

TExm,d,h  regulated tariff for electricity export at 

time m, d, h [$/kWh] 

NGFm regulated tariff fixed charge for natural 

gas in month m [$] 

NGPm regulated tariff for natural gas in month 

m [$/kWh] 

Technology data 

MaxPg rated capacity of generation tech. g [kW] 

Lti expected lifetime of technology i [a] 

CCDg turnkey capital cost of generation 

technology g [$/kW] 

FCC(c,k) fixed capital cost of generation 

technology c or storage technology k [$] 

VCC(c,k) variable capital cost of generation tech. c 

or storage technology k [$/kW] 

VCSCk variable capital cost of storage 

technology k [$/kWh] 

OMFi fixed annual operation and maintenance 

costs of technology i [$/kW] 

OMVi variable operation and maintenance costs 

of technology i [$/kWh] 

MaxHj maximum number of hours technology j 

can operate during the year, [h] 

VCj,m generation cost of technology j during 

month m [$/kWh] 

S(j) set of end-uses that can be met by 

technology j [-] 

αj heat to power ratio: units of useful heat 

that can be recovered from a unit of 

electricity generated by technology j [1] 

SCEk charging efficiency of storage technology 

k [%] 

SDEk discharging efficiency of storage 

technology k [%] 

φk  losses due to decay/self-discharge in 

storage technology k [%] 

MSCk  minimum state of charge of storage 

technology k, [%] 

COPu  central microgrid chillers coefficient of 

performance [1] 

COPa  absorption chillers coefficient of 

performance [1] 

SPEc  theoretical peak solar conversion 

efficiency of generation technology c [%] 

SREc,m,h  solar radiation conversion efficiency of 

generation technology c, in month m, and 

hour h [%] 

Other parameters 

IR interest rate on DER investments [%] 

Ani annuity factor for investments in 

technologies i [1] 

SIm,d,h solar insolation at time m, d, h [kW/m²] 

SA available area for solar technologies [m
2
] 

βu units of heat energy generated from a 

unit of natural gas energy purchased for 

end-use u [1] 

BAU total energy costs in the business-as-

usual case, obtained by running the 

model with investments disabled [$] 

PBP maximum payback period allowed on the 

integrated DER investment decision [a] 

Decision Variables 

𝐼𝐺g number of units of generation technology 

g installed [1] 

𝐺𝑈j,m,d,h,u power generated by technology j, at time 

m, d, h for end-use u [kW] 

𝐺𝑆j,m,d,h power generated to export by technology 

j, at time m, d, h [kW] 

𝑅𝐻j,m,d,h useful heat recovered from technology j, 

at time m, d, h [kW] 

𝐴𝐿m,d,h heat used to drive absorption chillers at 

time m, d, h [kW] 

𝐶𝑎𝑝(c,k)  rated output of generation technology c 

or storage technology k [kW] 

𝐸𝐶𝑎𝑝k energy capacity of storage tech. k [kWh] 



4 
 

𝑆𝑂𝐶k,m,d,h state of charge of storage technology k at 

time m, d, h [kWh] 

𝑆𝐼𝑛k,m,d,h  energy input to storage technology k, at 

time m, d, h [kW] 

𝑆𝑂𝑢𝑡k,m,d,h,u  energy output from storage technology k, 

at time m, d, h for end use u [kW] 

𝑠𝑏k,m,d,h  binary charge/discharge decision of 

storage technology k at time m, d, h [b] 

𝑝𝑠𝑏m,d,h binary decision of purchasing or selling 

electricity at time m, d, h [b] 

𝑁𝐺𝑈m,d,h,u natural gas purchase at time m, d, h for 

end-use u [kWh] 

𝑈𝐿m,d,h,u electricity purchased from power utility 

at time m, d, h for end-use u [kW] 

𝑃𝑢𝑟(c,k) customer purchase binary decision of 

technology c or k [b] 

Economic objective function 

min C = ∑ TFmm   

+ ∑ ∑ ∑ ∑ 𝑈𝐿m,d,h,u ∙uhdm TEm,d,h  

+ ∑ ∑ ∑ TPs,p ∙ max(∑ 𝑈𝐿m,(d,h)∈p,uu∈eo,cl,rf )pm∈ss   

+ ∑ ∑ ∑ ∑ (𝐺𝑆j,m,d,h + ∑ 𝐺𝑈j,m,d,h,uu ) ∙hdmj

(VCj,m + OMVj)  

+ ∑ 𝐼𝐺g ∙ MaxPg ∙ (CCDg ∙ Ang + OMFg)g   

+ ∑ ((FCCi ∙ 𝑃𝑢𝑟i + VCCi ∙ 𝐶𝑎𝑝i + VCSCk ∙ 𝐸𝐶𝑎𝑝k) ∙i∈c,k

Ani + 𝐶𝑎𝑝i ∙ OMFi)  

+ ∑ NGFmm   

+ ∑ ∑ ∑ ∑ 𝑁𝐺𝑈m,d,h,u ∙uhdm NGPm  

− ∑ ∑ ∑ ∑ 𝐺𝑆j,m,d,h ∙ TExm,d,hhdmj   

(1) 

Microgrid constraints 

Loadm,d,h,u +
𝑆𝐼𝑛k,m,d,h

SCEk
 = 𝑆𝑂𝑢𝑡k,m,d,h,u ∙ SDEk  +

∑ 𝐺𝑈j,m,d,h,uj + 𝑈𝐿m,d,h,u ∀ m, d, h: k = {ES} ∧ u =

{eo}   

(2) 

Loadm,d,h,u +
𝑆𝐼𝑛k,m,d,h

SCEk
+ 𝐴𝐿m,d,h = 𝑆𝑂𝑢𝑡k,m,d,h,u ∙

SDEk + βu ∙ 𝑁𝐺𝑈m,d,h,u +
∑ 𝑅𝐻g,m,d,h,ug  ∀ m, d, h: k = {TH}  ∧  u ∈ {sh, wh}   

(3) 

Loadm,d,h,u = ∑ 𝐺𝑈j,m,d,h,uj + 𝑈𝐿m,d,h,u ∙

COPu    ∀m, d, h ∶ u ∈ {cl, rf}  

(4) 

Loadm,d,h,u =  𝑁𝐺𝑈m,d,h,u   ∀ m, d, h ∶ u = {ng}  (5) 

∑ 𝐺𝑈g,m,d,h,uu + 𝐺𝑆g,m,d,h ≤ 𝐼𝐺g ∙ MaxPg   ∀ g, m, d, h  (6) 

∑ ∑ ∑ (∑ 𝐺𝑈g,m,d,h,uu + 𝐺𝑆g,m,d,h)hdm ≤ 𝐼𝐺g ∙ MaxPg ∙

MaxHg   ∀ g, m, d, h  

(7) 

∑ 𝑅𝐻g,m,d,h,uu ≤

αg ∙ (∑ 𝐺𝑈g,m,d,h,uu + 𝐺𝑆g,m,d,h)   ∀ g, m, d, h  

(8) 

𝐶𝑎𝑝i ≤ 𝑃𝑢𝑟i ∙ 𝐌   ∀ i ∈ {c, k}  (9) 

∑ 𝐺𝑈c,m,d,h,uu + 𝐺𝑆c,m,d,h ≤ 𝐶𝑎𝑝c ∙
SREc,m,h

SPEc
∙ (10) 

SIm,d,h   ∀m, d, h ∶ c ∈ {PV}  

∑
𝐶𝑎𝑝c

SPEc
c ≤ SA ∶ c ∈ {PV}  (11) 

𝑆𝑂𝐶k,m,d,h = 𝑆𝐼𝑛k,m,d,h − ∑ 𝑆𝑂𝑢𝑡k,m,d,h,u 𝑢 +

𝑆𝑂𝐶k,m,d,h−1 ∙ (1 − φk)   ∀ k, m, d, h ≠ 1   

(12) 

𝑆𝑂𝐶k,m,d,1 = 𝑆𝑂𝐶k,m,d,24   ∀ k, m, d  (13) 

𝑆𝑂𝐶k,m,d,h ≥ 𝐸𝐶𝑎𝑝k ∙ MSCk   ∀ k, m, d, h  (14) 

𝑆𝑂𝐶k,m,d,h ≤ 𝐸𝐶𝑎𝑝k   ∀ k, m, d, h  (15) 

𝑆𝐼𝑛k,m,d,h ≤ 𝐶𝑎𝑝k   ∀ k, m, d, h  (16) 

∑ 𝑆𝑂𝑢𝑡k,m,d,h,uu ≤ 𝐶𝑎𝑝k   ∀ k, m, d, h  (17) 

𝑆𝐼𝑛k,m,d,h ≤ 𝑠𝑏k,m,d,h ∙ 𝐌   ∀ k, m, d, h  (18) 

∑ 𝑆𝑂𝑢𝑡k,m,d,h,uu ≤ (1 − 𝑠𝑏k,m,d,h) ∙ 𝐌   ∀ k, m, d, h  (19) 

𝐺𝑈j,m,d,h,u = 𝐴𝐿m,d,h ∙ COPa   ∀ m, d, h ∶ j = {AC}  ∧

 u = {cl, rf}   

(20) 

∑ 𝑈𝐿m,d,h,uu ≤ 𝑝𝑠𝑏m,d,h ∙ 𝐌   ∀ m, d, h ∶ u =
{eo, cl, rf}  

(21) 

𝐺𝑆j,m,d,h ≤ (1 − 𝑝𝑠𝑏m,d,h) ∙ 𝐌   ∀ j, m, d, h  (22) 

Ani =
IR

(1−
1

(1+IR)Lti
)

 ∀ i  (23) 

C ≤ BAU + ∑ 𝐼𝐺g ∙ MaxPg ∙ CCDg ∙ Angg +

∑ (FCCi ∙ 𝑃𝑢𝑟i + VCCi ∙ 𝐶𝑎𝑝i + VCSCk ∙ 𝐸𝐶𝑎𝑝k)i∈c,k ∙
Ani −
∑ 𝐼𝐺g∙MaxPg∙CCg+ ∑ (FCCi∙𝑃𝑢𝑟i+VCCi∙𝐶𝑎𝑝i+VCSCk∙𝐸𝐶𝑎𝑝k)i∈c,kg

PBP
  

(24) 

𝑅𝐻j,m,d,h,u = 0   ∀ j, m, d, h ∶ u ∉ S(j) (25) 

𝑈𝐿m,d,h,u = 0   ∀ m, d, h ∶ u ∈ {sh, wh, ng}  (26) 

Eq. (1) shows the objective function, consisting of all key 

cost components. This includes all utility charges, annualized 

capital costs of DER investments, as well as all related 

operation and maintenance costs. 

 The key microgrid constraints are expressed by (2) - (26). 

Eq. (2) - (5) force the energy balances for the different end-

uses. The operation of DER on-site generation is constrained 

by (6) - (11), where M is an arbitrarily large number. The 

operation of the storage technologies is constrained by (12)-

(19). Eq. (20) describes the operation of the absorption chiller. 

Eq. (21) and (22) ensure no simultaneous import and export of 

power can occur. Eq. (23) shows the calculation of annuity 

factors. The payback constraint in (24) states that investments 

must be repaid in a period shorter than the payback period. 

Lastly (25) and (26) are boundary conditions that ensure the 

proper links between different technologies and loads.  

III.  INCORPORATION OF FAST CLOUD COVER 

A.  Sub-hourly variability in irradiance 

This work focusses on the variability of PV generation on a 

sub-hourly scale. The most important parameter related to the 

PV output in DER-CAM is SIm,d,h, expressing the solar 

insolation received during hour h of day-type t in month m. 
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The PV output is modeled to be proportional to the solar 

irradiance as can be seen in (10). For this reason, PV 

variability can be estimated using solar irradiance data, 

similarly to what was done in [26], [28]. 

Fig. 1 shows typical solar irradiance profiles, with the 

average solar irradiance for each hour of each month over a 5 

year period, for a selected site in Moab, Utah [29]. Fig. 2 

displays the distribution of 15-minute solar irradiation data at 

12 pm in April, for the same site, illustrating how valuable 

information is lost when only average values are used.  

  
Fig. 1  Example of solar irradiance profiles used in DER-CAM 

The variability in irradiance shown in Fig. 2 is essentially 

caused by two components: changes in irradiance levels 

occurring at the same hour in different days of a specific 

month, and changes occurring within different 15-min 

intervals of the same hour due to fast moving clouds. Since 

these issues occur on different time scales, they are handled 

separately. 

 
Fig. 2  Empirical probability density function of solar irradiance in April 

during 11 am to 12 pm using 15-min data (average irradiance: 745 kW/m2 ) 

The variability reflecting differences in average hourly 

irradiance in different days of the month, can be expressed by 

making solar insolation dependent of the day-types, i.e. 

establish different solar insolation profiles for different day-

types. This may not have a relevant physical meaning, but 

creating different average-hourly profiles for different day-

types allows capturing different solar irradiance scenarios, 

such as critical conditions where a cloudy day is coupled with 

the peak load day-type profile, as will be shown in the case 

study. 

It is assumed in DER-CAM that the irradiance is constant 

during an hour, leading to identical numeric hourly values for 

both insolation and irradiance. As shown in [3], this may lead 

to errors in the sizing of storage systems, as it is stated that 

any microgrid modeling package will overestimate the 

capabilities of energy storage in the presence of fluctuating 

photovoltaics, and underestimate the amount of storage 

required. 

In addition to the variability observed in solar irradiance, 

other key sources of uncertainty will come into play when 

determining energy costs in a microgrid, such as the 

variability in energy loads. However, this is not addressed in 

this work as it typically exhibits better predictability and 

smaller magnitude, as discussed in [28]. Finally, it is also 

important to mention that the sub-hourly variability in PV 

output will only have a significant influence on the total 

energy costs if demand charges are calculated using periods 

shorter than one hour, and if they represent a significant 

portion of the electricity bill. This is typically the case with 

utilities such as Pacific Gas & Electric, one of the largest 

Californian utilities, where demand charges are calculated 

over 15-min intervals, and it is not uncommon for larger 

customers that roughly 30-40% of the electricity bill consists 

of demand charges.  

B.  Formulation in DER-CAM 

The proposed formulation to incorporate sub-hourly 

variability of solar irradiance in hourly-based DER sizing 

models has a probabilistic nature. The proposed approach 

consists of incorporating an expected percentual drop in 

irradiance of magnitude ∆m,d,h
𝑀  and duration ∆m,d,h

𝐷  relative to 

the average irradiance, SIm,d,h, thus reflecting potential 

changes in utility imports that could negatively impact the 

demand charge. By incorporating this effect in the 

calculations, a trade-off can be established between the cost of 

offsetting PV drops with batteries or online fast-ramping 

generators, and the cost of an increase in the demand charges. 

The financial impact of fast moving clouds is then modeled as 

a positive continuous variable to reflect the expected increase 

in power demand, 𝛿m,d,h, shown in Equation (27) below: 

 

min C = . . .  

+ ∑ ∑ ∑ TPs,p ∙ max(∑ (𝑈𝐿m,(d,h)∈p,u +u∈{eo,cl,rf}pm∈ss

 𝜹𝐦,(𝐝,𝐡)∈𝐩,𝐮))  + . .  

(27) 

This additional term is a function of the expected PV 

output, 𝑃𝑉𝑂𝑢𝑡m,d,h, the expected potential for batteries to 

offset PV drops, 𝐵𝑃𝑜𝑡m,d,h, and the potential for online fast-

ramping generators to offset PV drops, 𝐺𝑃𝑜𝑡g,m,d,h. Please 

note that 𝑃𝑉𝑂𝑢𝑡m,d,h is the sum of PV generation for on-site 

consumption, exports, and eventual curtailments. The 

estimation of 𝛿m,d,h is thus given by: 

 

𝛿m,d,h ≥ ∆m,d,h
𝑀 ∙ PVOutm,d,h − (PVOutm,d,h −

 𝐺𝑈c,m,d,h,u) − 𝐵𝑃𝑜𝑡m,d,h ∙ SDEk −
∑ 𝐺𝑃𝑜𝑡g,m,d,h𝑔    ∀ m, d, h: c = {PV} ∧ k = {ES} ∧ u =

{eo}  

(28) 

It should be noted that this equation establishes that both 

batteries and online fast ramping generators can be used to 

offset PV drops, but depending on the relation between the 

potential PV output and the expected drop this may not be 

necessary – e.g. the PV output may drop to a level that is still 

enough to cover on-site loads. 

Further, it should be noted that the proposed methodology 

only addresses the potential financial implications of PV 

drops, and does not consider changes in the energy balance 
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equations – only the availability of both batteries and online 

fast ramping generators to provide buffering to PV drops is 

considered. In the case of batteries, this is a function of 

maximum power output and state of charge in each time-step: 

 

𝐵𝑃𝑜𝑡m,d,h ≤ 𝐶𝑎𝑝k − 𝑆𝑂𝑢𝑡k,m,d,h,u   ∀ m, d, h: k
= {ES} ∧ u = {eo} 

(29) 

𝐵𝑃𝑜𝑡m,d,h ≤
1

 ∆m,d,h
𝐷 (𝑆𝑂𝐶k,m,d,h − 𝐸𝐶𝑎𝑝k ∙

MSCk)   ∀ m, d, h: k = {ES}  

(30) 

In the case of generators, this potential is determined as a 

function of their available capacity – although it is required 

that they are already online – and on their ability to do fast-

ramping, set by a user-defined binary parameter (𝛾g = 1). This 

is translated into the following equations: 

 

𝐺𝑃𝑜𝑡g,m,d,h ≤

  𝐼𝐺𝑔 ∙ MaxPg − 𝐺𝑈g,m,d,h,u   ∀ g, m, d, h: u = {eo}  

(31) 

𝐺𝑃𝑜𝑡g,m,d,h ≤ 𝐺𝑈g,m,d,h,u ∙ 𝛾g ∙ 𝐌  ∀ g, m, d, h: u =

{eo}     

(32) 

C.  Magnitude and duration of the drops in PV output 

Obtaining values for both the magnitude and duration of 

drops in solar irradiance, ∆m,d,h
𝑀  and ∆m,d,h

𝐷 , requires statistical 

analysis. The drop magnitude is estimated by finding the 

lowest average irradiance values over 15-min periods in each 

hour, as this is the time interval typically used in demand 

charge calculations. Repeating the process over the entire data 

set allows establishing representative distributions of the 

irradiance drop magnitude on a 24-hour basis for every month, 

and define confidence levels. Namely, a confidence level of 

70% corresponds to the 70
th

 percentile of drop magnitude, or 

drops in irradiance occurring in an hour that are exceeded only 

30% of all identical hours in the same month. The results 

presented in this case study use confidence levels ranging 

from 70% to 95%, and the resulting distributions are 

illustrated in Fig 3. 

 
Fig. 3  Short term drop in irradiance relative to the average irradiance in 

April for confidence levels ranging from 70% to 95% 

After obtaining the distributions for the magnitude of solar 

irradiation drops, ∆m,d,h
𝑀 , information on duration, ∆m,d,h

𝐷 , can 

also be obtained. This is done for any given magnitude level 

by calculating the median duration of events where the 

irradiance drop is equal to or greater than the magnitude 

selected. However, given the process of calculating power 

demand charges, only durations in multiples of 15-min 

intervals are considered within each hour. The general 

observed behavior is that higher confidence levels lead to 

higher drops in magnitude and shorter durations. 

IV.  CASE STUDY 

A.  Case study setup  

The proposed methodology to address the impact of short-

term variability in solar radiation in DER sizing is tested by 

conducting the case study presented below. A large hotel is 

selected from the DER-CAM database, containing all load 

data for a typical year. This hotel exhibits a yearly peak 

demand of 736 kW and an average daily electricity demand of 

10.6 MWh. The E-19 tariff from PG&E is applied [30]. In a 

business as usual (BAU) case, with no DER investments, the 

annual energy cost is estimated to be approximately $745,000. 

In this case, the power demand charges account for roughly 

35% of annual electricity costs. Solar data from a selected site 

in Moab, Utah, made available by the Solar Radiation 

Monitoring Laboratory at the University of Oregon [29] is 

used, as no freely accessible high quality short-term irradiance 

data spanning several years could be found in the area of San 

Francisco, although this does not impact demonstrating the 

method presented in this work. The average daily insolation 

measured in the entire data set is 5.189 kWh/m
2
. One peak day 

with high energy loads is defined for every month, and it is 

conservatively assumed that this peak day of loads is also a 

cloudy day, i.e. the 10
%

 lowest values of hourly solar 

irradiance data are used. All other days in each month are 

considered to be either typical weekdays or weekend days, and 

the average monthly solar irradiance profile is assumed. 

The default DER-CAM settings are used to define the 

techno-economic parameters of different DER, and only 

lithium-ion batteries are used for stationary storage. In this 

case, the investment cost is assumed to be the same for both 

energy content ($/kWh) and power output ($/kW), as 

suggested in [4], and different values ranging from $250 to 

$500 are considered to perform a sensitivity analysis on 

battery costs. This approach is intended to represent the cost of 

both the battery and inverter, where the cost of the battery 

scales largely with energy and the inverter costs scale with 

power. The settings for other key parameters are shown in 

Table I. The possible DER investment options considered in 

this case study consist of PV, batteries, and on-site generators. 

 
TABLE I: 

KEY MODEL PARAMETERS 

Parameter Value 

Investment cost PV 

Life time PV 

Efficiency PV 

(Dis)charge efficiency battery 

Min. state of charge battery 

Lifetime battery 

Interest rate 

Maximum payback period 

$3,000 per kWp 

30 years 

Variable: 15-18 % 

90% 

30% 

5 years 

5% 

10 year 
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Table II highlights the key data for the on-site generators, 

where three technologies are considered: internal combustion 

engines (ICE), micro turbines (MT), and phosphoric acid fuel 

cells (PAFC). All generators use natural gas as fuel and only 

ICE are considered as fast ramping. The lifetime of ICE, MT, 

and PAFC is assumed to be 15, 15, and 20 years, respectively. 

Electricity exports are allowed for PV (using net metering), 

but capped at half of the yearly peak demand (368 kW). The 

sensitivity towards short-term variability in irradiance is 

investigated by varying confidence levels in the magnitude of 

irradiance drops between 70 and 95%. 

 
TABLE II:  

IMPORTANT PARAMETERS OF THE GENERATORS 

Tech. 

 

MaxP 

(kW) 

Capital cost ($/kW)  

[no CHP/ CHP] 

Electric 

Eff. 

(%) 

Heat to 

Power 

Ratio  

ICE 

ICE 

75 

250 

2,360/3,011 

2,163/2,704 

26 

27 

1 

1 

MT 

MT 

PAFC 

65 

250 

400 

2,737/3,220 

2,311/2,719 

7,000/7,300 

23.8 

26.1 

38.2 

1.5 

1 

0.5 

B.  Results  

The results obtained for the total energy cost, taking into 

account the sensitivity to the capital cost of batteries and 

confidence levels in irradiance drops are shown in Fig. 4.  

 
Fig. 4  Total annual energy costs and savings relative to the business-as-

usual-case as a function of stationary storage capital cost1 and confidence 
level of short-term irradiance variability 

 It can be seen that relative to the BAU case, where no DER 

investments are allowed, annual savings between 9 and 12% 

are realized. The estimated savings are sensitive to both the 

capital costs of the batteries and the confidence level of short-

term variability in irradiance. It should be noted, however, that 

the total annual energy cost only increases on average by 

roughly 2% when comparing to the ‘no drop’ case, with the 

case with highest confidence levels (highest drops). 

Although changes in total annual energy costs are 

seemingly low, a further analysis of results is required in order 

to capture the effect of short-term solar irradiance variability. 

Specifically, Fig. 5 shows the results obtained for the rated 

output of installed battery systems. In this case, a clear trend 

can be observed, with higher confidence levels leading to 

average rated output values up to twice as high as those where 

 
1 Battery cost is calculated based on energy capacity (kWh) and rated 

output (kW). The same price value is used in both ($/kWh = $/kW). 

no variability is considered. Looking into battery energy 

capacity, a similar trend can be observed, as higher confidence 

levels lead to higher values of energy content. However, as 

shown in Fig. 6, the increase in energy content is not as 

significant as in rated output.  

 

 
Fig. 5  Rated output of installed batteries 

  

 
Fig. 6  Energy capacity over rated output of installed batteries 

The installed capacity of PV is shown on Fig. 7, suggesting 

a slight overestimation when short-term variability in 

irradiance is not taken into account. However, it should be 

noted that an increase of PV capacity is observed with lower 

battery investment costs, highlighting the complementarity 

between these technologies. Of all on-site generators analyzed, 

only CHP enabled MTs were included in investment decisions 

(Table III). These were modelled as non-fast-ramping, thus 

without the ability to offset short-term irradiance variability. It 

can be seen that the installed capacity is sensitive to both 

battery capital costs and short-term variability in irradiance, as 

it affects the overall economic analysis. Once again, results 

suggest that the generator capacity might be underestimated if 

short-term irradiance is not taken into account. 

 
Fig. 7  Capacity of PV installed 
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It should be noted that the confidence level for the short-term 

drops in solar irradiance is an input to the model. While this 

allows different users to express their individual preference, 

running the model with different confidence levels also 

provides an insight on the trade-off between investments and 

expected utility costs. Namely, for higher confidence levels 

the final sizing solution will be more conservative to offset the 

variability of PV output and minimize its implications on the 

power demand costs. 
TABLE III:  

OPTIMAL CAPACITY OF CHP MICROTURBINES (kW) 

  No drop CL70 CL75 CL80 CL85 CL90 CL95 

B
at

te
ry

 c
o

st
 

$
/k

W
h

  
  

  
 

(a
n
d

 $
/k

W
) 

500 250 250 250 250 250 315 315 

450 250 250 250 250 250 315 315 

400 250 250 250 250 250 250 315 

350 250 250 250 250 250 250 250 

300 250 250 250 250 250 250 250 

250 130 130 195 250 250 250 250 

 

Additional calculations show that if variability in solar 

irradiance is not taken into account for the case study, the 

annual demand charges can be underestimated by 15 to 35%. 

The exact underestimation depends on the assumed investment 

cost of the batteries and the confidence level of the sub-hourly 

drops in irradiance applied in the calculations. The lowest 

underestimation is observed when the lowest investment cost 

for the batteries (250$/kW and 250$/kWh) is assumed, given 

the higher overall investment in this technology. The 

underestimation of the demand charges can lead to an increase 

of the annual energy costs up to 2-7 %, or a reduction of the 

anticipated savings using the default DER-CAM settings from 

around 11-12% to 9-5%, demonstrating the added value of the 

proposed methodology. Additionally, it should be noted that 

the effective payback period will be longer than anticipated if 

the sub-hourly variability in irradiance is not taken into 

account when making the investment decision. 

Analyzing similar models found in literature corroborates 

the results found in this work. Particularly, the work presented 

in [3] has found that switching from 1-min to 1-h time step 

increased the levelized cost of energy by only 3%, which is 

comparable with the variation in the cost objective function 

found in this work. Further, the work presented in [3] has 

found that the optimal amount of batteries in this system at a 

1-min resolution is more than double (236%) the optimal 

amount at a 1-h resolution, which emphasizes the relevance of 

sub-hourly variability of irradiance when sizing DER, in 

accordance to our findings. However, the work presented in 

[3] assumed a diesel/PV/battery system with a large amount of 

solar, and the analysis was conducted using a simulation 

model. That approach is not directly comparable with the 

optimization model now being presented, and this remark 

extends to other models found in literature, although the 

overall conclusions are in line with each other.  

Regarding the model performance, the methodology 

proposed in this paper led to a negligible increase in the run 

time, with all runs being concluded within 5-10 min. In 

contrast, stochastic formulations of the same problem led to a 

runtime increase of at least one order of magnitude using only 

three solar irradiance scenarios.  

V.  CONCLUSION 

This paper presents a statistical approach to incorporate 

stochastic sub-hourly variability in solar irradiance caused by 

fast moving clouds in MILP DER sizing problems where 

hourly time steps are used. The proposed formulation was 

incorporated in DER-CAM, a state-of-the art MILP model 

used in DER and microgrid sizing and scheduling, and a case 

study was performed. 

Results show that total annual energy costs obtained are 

slightly underestimated when short-term fluctuations in PV 

output is not considered. This is influenced by the dynamic 

solutions found by DER-CAM, where the inclusion of solar 

irradiance variability is compensated by changes in the 

optimal capacity of DER investments.  

It has been observed that the ratio of energy and power was 

previously overestimated when designing storage systems, and 

the inclusion of short-term variability in irradiance led to rated 

output values up to twice as high as those observed when no 

variability was considered. Similarly, it has been found that 

the capacity of on-site generators is underestimated when not 

considering short-term irradiance variability. Lastly, the value 

of PV has been found to be overestimated, as the inclusion of 

short-term variability leads to capacity values decreasing by 6 

to 15%. 

Additional case studies (not reported in the paper) were 

performed and the impact of fast moving clouds has been 

found to be dependent on a wide spectrum of variables, the 

most important ones being the solar data, tariffs, load data, and 

DER investment options. Specifically, in cases where only PV 

and battery investments are considered, the overestimation of 

optimal PV capacity reaches 50% if high storage prices 

prevent its adoption and therefore the ability to offset drops in 

PV output.  

In future developments this method will be expanded to 

incorporate electrical vehicles and demand response as 

additional alternatives to offset variability in PV output due to 

fast moving clouds. Similarly, the implications of short-term 

variability in loads will be investigated in future research.  
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