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BACKGROUND: Interictal epileptiform discharges are an important biomarker for
localization of focal epilepsy, especially in patients who undergo chronic intracranial
monitoring. Manual detection of these pathophysiological events is cumbersome, but is
still superior to current rule-based approaches in most automated algorithms.
OBJECTIVE: To develop an unsupervised machine-learning algorithm for the improved,
automated detection and localization of interictal epileptiform discharges based on
spatiotemporal pattern recognition.
METHODS: We decomposed 24 h of intracranial electroencephalography signals into
basis functions and activation vectors using non-negative matrix factorization (NNMF).
Thresholding the activation vector and the basis function of interest detected interictal
epileptiform discharges in time and space (specific electrodes), respectively. We used
convolutive NNMF, a refined algorithm, to add a temporal dimension to basis functions.
RESULTS: The receiver operating characteristics for NNMF-based detection are close to
the gold standard of human visual-based detection and superior to currently available
alternative automated approaches (93% sensitivity and 97% specificity). The algorithm
successfully identified thousands of interictal epileptiform discharges across a full day of
neurophysiological recording and accurately summarized their localization into a single
map. Adding a temporal window allowed for visualization of the archetypal propagation
network of these epileptiform discharges.
CONCLUSION: Unsupervised learning offers a powerful approach towards automated
identification of recurrent pathological neurophysiological signals, which may have
important implications for precise, quantitative, and individualized evaluation of focal
epilepsy.

KEY WORDS: Epileptogenic tissue, Interictal epileptiform discharges, Automated detection, Non-negative
matrix factorization, Intracranial monitoring
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I nterictal epileptiform discharges (IEDs)
are a hallmark of the epileptic brain, and
their localization is a critical complement to

definitive delineation of the seizure onset zone for
optimal treatment. IEDs include spikes (or sharp
waves) and high-frequency oscillations (HFOs)

ABBREVIATIONS: BFs, basis functions; EEG,
electroencephalography; HFOs, high-frequency
oscillations; IEDs, interictal epileptiform discharges;
MRI, magnetic resonance imaging; NNMF, non-
negative matrix factorization; ROC, receiver
operating characteristics

Supplemental digital content is available for this article at
www.neurosurgery-online.com.

that can coexist or occur independently1 and
are thought to collectively reflect synchronous
activity in a hyperconnected epileptic network.2
To date, their identification in the electroen-
cephalography (EEG) is based on visual recog-
nition of 3 distinctive features: (i) a sudden
increase in slope (spikes), (ii) a transient increase
in HFOs, and (iii) propagation to neighboring
brain areas. Manual interpretation becomes
limited and impractical when data increases as
a factor of time of recording and number of
channels in the setting of chronic high-density
intracranial implantation for presurgical workup
(>50 electrodes, weeks long). Computer-
based EEG-labeling has been investigated for
decades and is available with some commercial
EEG packages, but often rely on rule-based
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TABLE 1. Clinical Summary and ComparisonWithMachine Detection and Localization

IEDs source IEDs propagation

ID Age sex Dur Symptoms Surgery
Engel

outcome SOZ Clinical Machine Clinical Machine
IEDs count
Machine

Final NNMF
rank

EC72 46 M 7 Dyscongnitive R ATL 3 (16 m) Hpc Hpc Hpc Ent Ent 6316 (4.4) 4
Rare SGTCS

EC77 44 F 13 Dyscognitive
automatism

R ATL 2 (14 m) Parhpc Parhipc Parhpc Ent Hpc 3282 (2.3) 5

Rare SGTCS Hpc Ent
EC82 65 M 4 Dyscognitive L ATL 1a (12 m) Amg Hpc Hpc Ent Ent 5215 (3.6) 8

Fus Fus
EC87 53 F 3 Dyscognitive R FLE 2 (12 m) SFG OFCl OFCl OFCm OFCm 13686 (9.5) 5

LUE clonic sz
Rare SGTCS

EC91 27 F 3 Experiential L ATL 2 (10 m) Parhpc Hpc Parhpc Parhpc Hpc 4016 (2.8) 6
Drop attacks Amg Cingp Amg
Rare SGTCS Cingp

EC92 26 M 7 Dyscognitive L ATL 2 (10 m) Hpc Hpc Hpc Ent Ent 40882 (28.4) 6
Dysphasia Amg Amg Fus Fus
Automatism Cinga Cinga

SGTCS

P, patient; Dur, duration; SGTCS, secondarily generalized tonic-clonic seizure; sz, seizure; LUE, left upper extremity; R/L, right/left; ATL, anterior temporal lobectomy; FLE, frontal
lobectomy. Engel postoperative class with interval in months (m). SOZ, seizure onset zone. IEDs counts given in total count per 24 h and per min. SFG, superior frontal gyrus; Hpc,
hippocampus; Parhpc, parahippocampal cortex; Ent, entorhinal cortex; Cing, cingulate; OFC, orbitofrontal cortices (medial or laterat); Fus, fusiformgyrus; paraHG, parahippocampal
gyrus; Ins, insula.

detection (eg, amplitude, slope) and, consequently, the sensitivity
and specificity tradeoff is usually poor.3 The issue of variable IEDs
morphology was recently addressed by multitemplate matching,
clustering algorithms, and adjustable wavelet analyses,4–7 but
was not extended to the question of patient-specific networks of
spike propagation. In contrast, we developed a machine-learning
algorithm, based on non-negative matrix factorization (NNMF),
that leverages spatiotemporal features across all channels and
all time points of 24-h intracranial EEG recordings. Among
machine-learning techniques, NNMFperforms well with classical
problems such as face and speech recognition,8,9 and recently
entered the field of neuroscience as a method to study struc-
tural10 or functional connectivity,11,12 and recurrent patterns in
EEG13–15 based on the fact that connected regions of the brain co-
vary across a variety of imaging and electrophysiological metrics.
Conceptually, NNMF decomposes data into additive constituent
representations that can be seen as learned building blocks of the
signal.8 We hypothesized that NNMF could recognize epileptic
events from normal physiological data in multichannel EEG. The
rationale being that IEDs could be schematically represented as
discrete activation of recurring patterns of channel involvement.
We found that our algorithm is capable of personalizing to each
patient, synthesizing the data into a single anatomic map without
human supervision, and detecting and quantifying innumerable
IEDs.

METHODS

Subjects and Electroencephalograms
All subjects (n = 6) were medically refractory epilepsy patients

implanted for seizure localization; informed consent was obtained
and study protocol was approved by the Institutional Review Board.
Patients were selected retrospectively to represent a heterogeneous mix of
mesiotemporal and neocortical focal epilepsies (Table 1). A 24-h period
of continuous EEG (mix of subdural grid, strip, and depth electrodes
referenced to a subgaleal electrode) was identified according to (i) at least
48 h postimplant, (ii) minimal number of seizures during that period (if
any, ictal discharges were excluded from the analysis).

Algorithm for IED Detection and Localization
See Appendix, Supplementary Digital Content for preprocessing,

NNMF, and statistical details. As a first step, we used the line-length
transform to increase the signal-to-noise ratio of IEDs,16,17 and output
non-negative values that are fit forNNMF (Figure 1). Note that here line-
length enhances the “sharpness” of the EEG visible by eye and related to
spikes and ripples (80-200 Hz, termed HFOs in this paper; Figure 1).
We excluded fast ripples (by bandpass filtering < 200 Hz) because this
phenomenon was out of the “pattern recognition” focus of the present
methodological development. As a second step, the NNMF algorithm
factorizes the line-length transformed data (number of channels × time)
into a Wmatrix (basis functions [BFs] or “bases,” number of channels ×
rank) and an H matrix (activation matrix, rank × time), where the
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FIGURE 1. Line-length. Example of EEG (upper panels) and corresponding
line-length (lower panels, using 40ms sliding window) tracing for an amygdala
depth electrode in patient 1. A, Sample of a small epileptic spike (↓) and its
after-going slow wave. B, Sample of 3 successive HFOs (∗ and inset), note also
that a large amplitude slow wave is filtered out by line-length (#). C, Sample
of a large epileptic spike (↓) with preceding HFO (∗ and inset). Dotted line
represents zero for EEG and minimal line-length of 40μV/40 ms. Note thatC
has a different y-axis than A and B to accommodate for a very large amplitude
spike.

rank of the decomposition was chosen between 1 and 10 to achieve
integration of data in space and time (Figure 2). Given that W and H
only have positive entries and that bases are combined only by addition
(and not by subtraction), NNMF can intuitively be regarded as a combi-
nation of parts (W) to form a whole, where H weights the different
parts at each time point.8 Thresholding the activation vector and the
BF of interest detected IEDs in time and space (specific electrodes),
respectively. We computed the algorithm’s receiver operating character-
istics (ROC) against the gold standard of IED marking from 2 neurolo-
gists (Y.L.T. and M.O.B.) in 5 of our files. To increase homogeneity in
human labeling, the 2 scorers first reached consensus on a few typical
discharges labeled by the algorithm (∼20-30 for each file) and then
labeled entire raw files independently. To confirm accurate detections, we
obtained 5 additional files labeled by 3 neurologists at another hospital.
We localized the source of IEDs by projecting the weights found by
NNMF on electrode coordinates in a 3-dimensional individual brain
reconstruction from the patient’s brain magnetic resonance imaging
(MRI). To add a temporal dimension to the BFs obtained by NNMF,
with a view to infer IED propagation, we applied a convolutive variant of
the algorithm.

RESULTS

NNMF Decompositions and IED Detection Accuracy
NNMF found electrode weights corresponding to IEDs and

coded for them in one specific BF (Wi; Figure 2); this was
consistent across all patients analyzed. Other BFs accounted for
lower fluctuations of line-length. The activation vector of interest
Hi effectively compressed information for IEDs into a sparse
vector (ie, mainly zero-values, except for a few high values at time
points with IEDs). Thresholding Hi allowed for the detection
of IEDs of variable shape, voltages, and extent but involving a
common set of channels. The number of detections over 24 hours
varied extensively between patients ranging from 3282 to 40 882
(Table 1).

Comparing machine detections to epileptologist-labeled data
sets yielded excellent ROCs (Figure 3) with average sensitivity and
specificity of 93% and 97%, respectively. This was also true for
training and labeling on recordings of only 10-min length, but the
sensitivity went down with shorter training sets (Table, Supple-
mental Digital Content 2, rows 1 and 2). Training BFs on 24-h
recording and applying them to test data always yielded excellent
results (Table, Supplemental Digital Content 2, rows 3-5). Our
method for setting the detection threshold (see Methods) yielded
an optimal sensitivity and specificity tradeoff (ie, the threshold
was at the elbow of the ROC). Cohen’s kappa agreement (inter-
rater reliability) was substantial (kappa > 0.6) to almost perfect
(kappa > 0.8) both among human scorers and with the machine,
validating the ROC reported here. In addition, we confirmed
excellent agreement with data labeled independently by epilep-
tologists not involved in the present study (Table, Supplemental
Digital Content 3).
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FIGURE 2. Decomposition. Two-step detection algorithm using line-length transform and NNMF decomposition. A, Sample preprocessed
112 channel EEG over 10 s extracted from 24-h recording in patient EC92 showing 10 IEDs of slightly varying topography and amplitude.
B, Line-length transform. C, NNMF BFs. Note how W3 calculated on 24 h of data summarizes the set of channels commonly involved in
all IEDs shown here. Gray-scale represents individual electrode weights (arbitrary units, darker corresponds to stronger weight). D, NNMF
activation matrix. H3 accurately compresses the information in space into a single dimension (instead of more than 15 channels that have
IEDs). Red dotted line: threshold for detections. In this representative case, IEDs involved mostly the hippocampus (Hpc) and the entorhinal
cortex (EntG) but also propagated with a mild delay to the cingulate (Cing) and orbitofrontal cortices (OFC). Interestingly, W2 has activation
weights every eighth channel, which corresponds to the posterior electrodes on the hemispheric grid and reflects the posterior dominant rhythm.
STG, MTG, ITG: superior, middle, and inferior temporal gyrus. SMG, supra-marginal gyrus. Pre, post CG: central gyrus; SFG, MFG, IFG:
superior, middle, and inferior frontal gyri; FusG: fusiform gyrus; paraHG: parahippocampal gyrus; Ins: insula.
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FIGURE 3. ROCs of the algorithm. The thick and thin lines respectively represent
median and individual ROC on 5 test EEGs presented in Table, Supplemental
Digital Content 2. Note how the threshold (dots) determined by a probability
density function method (see methods) is at the optimal sensitivity and specificity
tradeoff (elbow of the ROC). The bottom gray ROC curve (worse characteristics)
represents the performance when training on only 3 min of recording, whereas the
other recordings were at least 10 min and up to 24 h long. Median sensitivity and
specificity are reported in the bottom right corner.

IED Localization
Projected weights of Wi onto the brains of patients 1 to 5

(Figure 4) resulted in a summary map of 24-h recordings taking
into account every detected IED. An electrode that has a high
weight is an electrode that contributed large voltage changes or
frequents IEDs. Conversely, an electrode that has a low weight
(but still above the mean of Wi, per our definition) is only
occasionally involved in extensive spikes or only has small voltage
changes when included. Indeed, in a linear regression model
including 2 predictors, NNMF BFs weights were explained at
90% (adjusted R2) mostly by the frequency of involvement of
the corresponding channel (coefficient = 0.3, P < .001) with
a minor contribution of the average line-length of IEDs in that
same channel that was not independent from the frequency of
involvement (coefficient = 0.0006, P < .001 for the inter-
action term, no significant coefficient for mean line-length alone).
Comparison to the localization of IEDs documented in the daily
clinical EEG reports is shown in Table 1. As one can see, machine-
learning identified the parahippocampal cortex in patient EC77
and EC91 as the IEDs onset zone, whereas it was identified
as the site of propagation by clinicians. When using convo-
lutive NNMF, peak weights were identical to those found by
regular NNMF (patient 6, correlation 0.98, P < .001) but their
ascent and descent was staggered in time for channels successively
activated. Projected weights of Wi onto the brain reconstruction

FIGURE 4. IED localization. Projection of the weights of the BF of interest
onto the electrode montage (left column) and the corresponding cortical surface
maps (right column). EC72 and 82 were cases of mesiotemporal epilepsy with a
source of IEDs located in the hpc. EC77 and 91 also had IEDs arising from the
hippocampus with a larger contribution of IEDs arising from the paraHG and
the FusG compared to the 2 previous cases. Of note, a minor contribution of a
posterior Cing can be seen for EC91, reflecting occasional spread to that structure,
a phenomenon that was also noted clinically (arrow). EC87 had IEDs arising from
the lateral OFC with projection to the medial OFC. WM, white matter. Abbrevi-
ations are only reported for electrodes that were involved in IEDs. Lines connecting
4 to 10 electrodes represent depth probes, whereas strip and grid electrodes are not
connected to facilitate 3-dimensional interpretation.

revealed the successive activation of structures of the limbic circuit
(Figure 5).

Rank of Decomposition
As expected for the NNMF algorithm, the total explained

variance increased monotonically, as the rank increased (Figure,
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A

C

B

FIGURE5. Propagation of IEDs. Illustration of convolutive NNMF for patient EC92.A, BF of interest obtained by the regular NNMF
algorithm. B, BF of interest obtained by a convolutive NNMF algorithm where weights are distributed in time over a 200 ms sliding
window (10 data-points) to capture the temporal aspect of signal propagation. The Pearson correlation between the weights in A and the
peak weights in B was 0.98. C, Projection of convolutive NNMF weights at data-points 6 to 10 on the patient’s brain surface. Note how
archetypal spikes for this patient start in the hippocampus, then spreads to the entorhinal and parahippocampal cortex and ultimately
spread to the anterior cingulate and orbitofrontal cortices, highlighting connections of the limbic system (arrows). See also Figure 2 for
sample IEDs for this patient. Note that weights in C are normalized to the maximum weight at that data-point.
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Supplemental Digital Content 4). The optimal rank used for
IED localization varied from patient to patient ranging from 4 to
8 (Table, Supplemental Digital Content 2). Since no principled
way is established to select the optimal rank beforehand, we
explored the stability of our results through a series of decom-
positions across increasing ranks. We found that low ranks (eg,
rank of 2) yielded BFs coding for pathological signal but also
background fluctuation given their need to optimally explain the
total variance. Generally, the BF of interest was quite well defined
at a rank of 4 or above. The average correlation among BFs of
interest was 0.81 ± 0.16 (P < .001) from rank 2 to 10 and 0.97
± 0.04 (P< .001) at and above the optimal rank defined individ-
ually (see Methods). The percent of variance explained by Wi
and Hi alone reflected the same trend as it decreased across low
ranks (eg, ranks of 2 to 4) and stabilized at a lower value above
the individual optimal rank. This means that Wi initially gains
in specificity (explaining less of the total variance) and stabilizes
beyond a minimal rank (eg, 4) to explain only and entirely the
pathological data.

DISCUSSION

Here, we showed that statistical learning by NNMF could
derive distinct pathological features of an intracranial EEG.When
inspecting representations used by the NNMF algorithm to
detect abnormal activity, we found that it attributed weights to
electrodes that reflected their involvement in IEDs. By drawing
from hours of recordings at a time and finding the common
feature of all detected IEDs across the circadian cycle, this method
statistically synthesizes innumerable data and makes it intelligible
to the clinician in the form of a single localization map repre-
senting the archetypal IED for a specific patient. The addition of
a convolutive window to the algorithm enables the study of the
circuits of propagation of IEDs.18,19 This is in contrast with other
matrix factorization techniques such as principal or independent
component analyses where the result often lacks intuitive inter-
pretability. Another key advantage of NNMF is that it is fully
unsupervised, meaning that the machine learns merely by the
recurrence of patterns in unlabeled data. This is contrary to neural
networks that require training through exposure to a quantity
of prelabeled data.20 Unlike previous applications of NNMF to
the EEG spectral domain that can capture task-related oscilla-
tions,13,14 we focused on best-defined temporal features of IEDs
with further emphasis on their spatial distribution. Because focal
epilepsies are patient-specific, we did not endeavor to look for
common patterns across patients using NNMF,13 but this could
be feasible across a larger cohort.
Furthermore, we showed that the algorithm developed here has

an excellent sensitivity and specificity tradeoff that seems similar
or superior to algorithms developed elsewhere,4,21 including
head-to-head comparison on identical data.22 Our algorithm is
resistant to false positives by nature. For example, a spurious
increase in slope in an isolated channel would lack the activation

of the entire base and would thus be skipped or included in
separate bases if a larger rank is used. Conversely, it is also highly
sensitive to minor changes involving a set of channels similar to
the base of interest, thereby detecting IEDs despite some level of
variability in morphology from one to the next. We showed that
bases found by NNMF are stable for a given patient across ranks
of decomposition, meaning that the derived solution is robust
and immune to small changes in the parameters of the algorithm.
Although performance of the algorithm tends to increase with
more data, we showed that it agreed with human labeling even
on 5-min recordings. One setting where it may fail is if only one
example of a discharge is present in a very long recording, but this
is a rare clinical situation with intracranial EEG.
Highly reliable tools for localization-related epilepsy are

critical, as the success of resective surgery depends on precise
determination of the epileptogenic zone. EEG-based spatial local-
ization (eg, source imaging) remains a critical tool as it was
shown to be superior to advanced and expensive neuroimaging
techniques such as MRI, positron emission tomography, and
single-photon emission computed tomography techniques.23
Manual ranking of the channels most often involved in IEDs
(and thus the anatomic location) can vary extensively from one
scorer to the next.24 We found that NNMF attributed weights to
channels resulting from a linear combination of their frequency
of involvement in IEDs and the average IED line-length. Overall,
the method seems closer to visual pattern recognition used by
human observers than a combination of rules on single dimension
metrics (ie, single channel detections), offering a key spatial
integrative advantage. This has conceptual and practical impli-
cations: the core of the algorithm relies on the existence of an
IED’s onset zone and extended propagation zone(s) and in doing
so, it quantifies the localization of the irritative tissue, which
is of clinical value for epilepsy surgery. Thus, our algorithm
exploits spatial integration and adds temporal integration. At
the millisecond level, we showed that line-length temporally
integrates different types of IEDs including spikes andHFOs into
a single metric, placing greater emphasis on sharp elements of the
EEG compared to physiological background. At the subsecond
level, the use of convolutive NNMF provided additive infor-
mation about the networks of IEDs propagation. This could
be valuable for detecting subtle intricacies of broader epileptic
networks that could likely add clinical relevance. At the level of a
full 24-h cycle, temporal integration was possible as well, as line-
length can be down-sampled and large files can be processed by
NNMF. Processing data over the entire circadian cycle offers an
opportunity to capture the epileptic brain in all vigilance states,
which is important when considering IEDs such as HFOs that are
more prominent during sleep.25 Given that isolated HFOs occur
more rarely than interictal spikes, it is likely that their contri-
bution to the BFs found here was inferior to spikes. However,
NNMF weights reflect an unbiased distribution of these 2 events
through the lens of line-length. Spikes with overriding HFOs are
potentially as relevant to localization as isolated HFOs1 and were
also represented with our method. The goal here was to obtain a
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single summary map, but if HFOs were to be confirmed as better
markers of the epileptogenic zone than spikes, the algorithm could
be adjusted to detect only HFOs by prefiltering/bandpassing
before the calculation of line-length. Seizures were not included
in the present analyses but adjusting windows to achieve temporal
integration at a larger scale (eg, 5 s) could enable the use of a
similar method for their detection. Although we demonstrated
consistency with clinical reports of the IED foci, larger scale
studies comparing NNMF-based localization to surgical outcome
data in more subjects will be necessary to confirm its true clinical
value.

CONCLUSION

In summary, applying NNMF to the detection of IEDs
engenders multiple important and novel features. This method
is automatic and unsupervised (therefore time-saving), and is one
of the few detection algorithms that learns an individual’s unique
IEDs and captures its archetype, which is of value in surgical
planning. It is also quantitative, counting beyond what is practical
by manual methods and is applicable to long time-scales, such
as multiple days in the epilepsy monitoring unit, and potentially
months/years of data with portable intracranial EEG.26 Potential
future applications include characterization of long time-scale
IEDs rhythms (eg, circadian), which could guide anti-epileptic
drug dosing and timing. Machine-detected IEDs may serve as a
biomarker for the effectiveness of medications27 or neurostimu-
lation.28 Intraoperative guidance of epilepsy surgery using IEDs
is currently under investigation29 and algorithms such as ours
may accelerate the interpretability of such recordings. Character-
izing the localization specificity of epileptiform discharges of a
given patient may be a prerequisite for future closed loop devices,
where a set of prelearned bases could significantly accelerate
computations for the detection of subsequent similar discharges
in real time. We anticipate that our study is a step forward for
machine-learning in clinical neurophysiology. These computa-
tional technologies have had a tremendous success in nonmedical
fields and may soon become routine aids to the neurosurgeon and
neurologist.
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