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Biologists by tradition have seldom used the term representation to describe 
their findings. Instead they have relied on phrases such as "receptor field" on 
the sensory side and "command" or "corollary discharge" on the motor side 
when discussing neural control of sensation and motion in goal–directed 
behavior. Such words connote dynamic process rather than symbolic content. 
One might suppose that this neglect of a now common word reflects 
diffidence about discussing so–called higher functions of the brain, owing to 
a humbling lack of understanding of the brain's complexity. Inspection of 
biology textbooks belies this view. Biologists have shown no lack of hubris 
in pontificating about the properties of the brain supporting mental functions. 
On the contrary, they have always taken pride in being uniquely qualified to 
explain brain function to anyone willing to listen. 

A turning point came in the 1940s with the popularization of digital and 
analog computers as "giant brains" and with the adoption of the Turing 
machine as a model for explanation. In this conception, which is lucidly 
illustrated by von der Malsburg (Chapter 18, this volume), the human ability 
to understand the world is likened to the procedure of incorporating 
information on a tape into a machine by means of symbols. Cognitive 
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operations are interpreted as the manipulation of these symbols according to 
certain semantic rules. At present we are all so accustomed to this metaphor 
that it seems self–evident (Goldman Rakic, 1987). The brain's job is to 
incorporate features of the outside world and make internal syntactical 
representations of these data, which together constitute a world model that 
serves to control motor output. Any other account appears to be 
"noncognitive" (Earle, 1987) and counterintuitive. In short, to question this 
commonsense notion seems quixotic, sophistic, and arbitrary. 

We propose, however, that physiologists avoid this way of thinking for 
two reasons. One is that no one now understands how brains work, but the 
use of the term representation and its attached concepts tends to obscure this 
fact. The term gives us the illusion that we understand something that we do 
not. We suggest that the idea of representation is seductive and ennervating, 
promising good deals but delivering nothing new. When researchers refrain 
from using the term, knowledge of brain function is not significantly 
affected. We conclude that use of the term is unnecessary to describe brain 
dynamics. 

The second reason is that the use of the metaphor points us in a direction that 
carries physiological research away from more profitable lines of inquiry. 
We have found that thinking of brain function in terms of representation 
seriously impedes progress toward genuine understanding. 

An example is taken from our studies of the behavioral correlates of the 
electroencephalograms (EEGs) of the olfactory system under conditioning 
(Freeman & Skarda, 1985). The EEGs of the olfactory bulb and cortex show 
a brief oscillatory burst of potential that accompanies each inhalation. This 
can be likened to a burst of energy carried by a wave of neural activity at a 
common frequency. Each burst exists over the entire bulb or cortex with a 
spatial pattern of amplitude that varies from one burst to the next. We have 
shown that a stereotypical pattern recurs whenever a particular odorant is 
presented that the animal has been trained to respond to. 

For more than 10 years we tried to say that each spatial pattern was like a 
snapshot, that each burst served to represent the odorant with which we 
correlated it, and that the pattern was like a search image that served to 
symbolize the presence or absence of the odorant that the system was 
looking for. But such interpretations were misleading. They encouraged us 
to view neural activity as a function of the features and causal impact of 



stimuli on the organism and to look for a reflection of the environment 
within by correlating features of the stimuli with neural activity. This was a 
mistake. After years of sifting through our data, we identified the problem: it 
was the concept of representation. 

Our research has now revealed the flaws in such interpretations of brain 
function. Neural activity patterns in the olfactory bulb cannot be equated 
with internal representations of particular odorants to the brain for several 
reasons. First, simply presenting an odorant to the system does not lead to 
any odor–specific activity patterns being formed. Only in motivated animals, 
that is, only when the odorant is reinforced leading to a behavioral change, 
do these stereotypical patterns of neural activity take shape. Second, odor–
specific activity patterns are dependent on the behavioral response; when we 
change the reinforcement contingency of a CS we change the patterned 
activity. Third, patterned neural activity is context dependent: the 
introduction of a new reinforced odorant to the animal's repertoire leads to 
changes in the patterns associated with all previously learned odorants. 
Taken together these facts teach us that we who have looked at activity 
patterns as internal representations of events have misinterpreted the data. 
Our findings indicate that patterned neural activity correlates best with 
reliable forms of interaction in a context that is behaviorally and 
environmentally co–defined by what Steven Rose (1976) calls a dialectic. 
There is nothing intrinsically representational about this dynamic process 
until the observer intrudes. It is the experimenter who infers what the 
observed activity patterns represent to or in a subject, in order to explain his 
results to himself (Werner, 1988a, 1988b). 

The impact of this insight on our research has been significant. Once we 
stopped looking at neural activity patterns as representations of odorants, we 
began to ask a new set of questions. Instead of focusing on pattern 
invariance and storage capacity, we began to ask how these patterns could 
be generated in the first place from less ordered initial conditions. What are 
the temporal dynamics of their development and evolution? What are their 
effects on the neurons to which they transmit? What kinds of structural 
changes in brains do they require and do they lead to? What 
neuromodulators do these pattern changes require? What principles of 
neural operations do these dynamical processes exemplify and instantiate? 
In short, we began to focus less on the outside world that is being put into 
the brain and more on what brains are doing. 



Our efforts to answer these questions led us to develop mathematical, 
statistical, and electronic models that describe and explain the neural 
dynamics of pattern generation. These models have, in turn, caused radical 
changes in our views of how brains operate. In particular, we now see brains 
as physicochemical systems that largely organize themselves, rather than 
reacting to and determined by input. As Carew and co–workers (Chapter 2, 
this volume) showed, each brain has a history that begins with simple 
structures and that evolves through innumerable stages and phases of growth 
and development to increasing order and complexity. The patterns are 
formed from within and not imposed from outside, as is commonly 
supposed to occur in brains under sensory stimulation. We have found that 
an essential condition for these patterns to appear is the prior existence of 
unpatterned energy distributions which appear to be noise, but which in 
reality are chaos. New forms of order require that old forms of order 
collapse back into this chaotic state before they can appear. Therefore, in the 
EEG we see each burst appearing from chaotic basal activity and collapsing 
back into chaos, thereby clearing the way for the next burst of patterned 
activity (Skarda & Freeman, 1987). 

These findings challenge two widely held assumptions concerning brain 
dynamics. First, conventional theory holds that full information is delivered 
into the system and that thereafter it is degraded by noise. This property is 
analogized to entropy. However, chaotic systems like the brain are open and, 
by virtue of energy throughput, operate far from equilibrium. They 
internally create new information and can be described as negentropic 
(Tsuda & Shimizu, 1985). The brain has immunity from the first and second 
laws of thermodynamics because its assured blood supply brings it more 
energy than it can use and carries off waste heat and entropy. As a result the 
formalisms of information theory that underlie the representation–based 
computational metaphor of brain dynamics do not apply to the neural 
networks of biological systems, because these formalisms make no sense in 
systems with positive information flow. 

Second, the conventional description of signals embedded in noise is 
inappropriate. The same neural system that generates bursts (signals) also 
generates the background state of chaotic activity (often thought to be noise). 
When the system switches (bifurcates) from chaos to burst activity, the 
chaotic activity stops and the signal starts. Chaos operates up to the moment 
of bifurcation. It plays no role of "annealing" thereafter because response 
selection has already taken place, convergence is assured, and there is no 



role for "noise." The metaphor of the "signal to noise ratio" is inappropriate 
for brain function, yet it is essential for representation in man–made systems. 

 These considerations are well illustrated by the preceding four chapters. 
Of these the report by Cooper, Bear, Ebner, and Scofield (Chapter 15) deals 
most directly with neurophysiological data, and they alone make no 
reference to representations. Their model describes the dynamics of 
modifiable synapses over the time scale of learning. It does not address the 
dynamic of stimulus–induced neural activity on the time scale of responding. 
It attempts to explain the dynamics in terms of membrane conductances and 
calcium fluxes and not the semantic content of the input. The strength of 
their model lies in the identification of global variables as important for 
consideration; the main weakness is their decision to "delay consideration of 
the global variables by assuming that they act to render cortical synapses 
modifiable or nonmodifiable by experience." 

Their chapter emphasizes the great value of the "mean field" state variable 
for the analysis and understanding of physical systems composed of 
ensembles. They elect not to consider the basis for defining and using such 
variables in their work with neural networks, thereby depriving themselves 
and their readers of access to the existing literature, including well–reasoned 
approaches to brain systems from the classical standpoints of statistical 
mechanics (Amari, 1974; Wilson & Cowan, 1972) and of nonequilibrium 
thermodynamics from the school of Prigogine (Babloyantz & Kaczmarek, 
1981; Freeman, 1975). Both approaches emphasize the importance of 
mutually excitatory (positive) feedback within laminar distributions of nerve 
cells by their recurrent collateral axons and the renewal process in cell firing, 
leading to the emergence of macroscopic state variables to represent the 
activity of local neighborhoods, that is, axonal pulse density and dendritic 
current density functions that are continuous in both time and the spatial 
dimensions of cerebral cortex. These activity states are readily observed in 
many parts of brains by use of electrodes, magnetic probes, and optical dyes 
and by computer–implemented spatial filtering, summing, and enhancement 
of the raw data for visual display (Freeman, 1987). By means of these and 
related well–documented procedures these investigators and others can test 
their models directly with respect to brain dynamics. 

Chapter 18 by von der Malsburg and part of Chapter 17 by Sejnowski and 
Tesauro are at the opposite pole and take representation for granted. They 
are also explicitly about machines and not about brains. "Representations" 



that are selected and defined by the observer serve as the goals or end points 
of the evolution of the machines. Sejnowski and Tesauro present elements 
on both sides. The description of Gerald Westheimer's dynamics of spatial 
attractors, which in some ways recalls Wolfgang Kohler's field theories, is 
accounted for by the dynamics of mutually excitatory feedback. This is 
physiology (Freeman, 1975). When he asks "Who reads the population 
code?" he gives engineering answers: "find all possible depths and find 
which matches the closest with minimal error." The algorithms of back 
propagation and error correction by the observer instilled "teacher" and 
"correct answer" are machine processes that do not exist in biological brains. 
"NETtalk" can transduce optical characters to sounds that are recognizable 
by human observers, so it is a machine that can be shaped to read to the 
blind, but one cannot say that the machine has learned to read in the sense 
that a schoolchild has. 

Kohonen (Chapter 16) most clearly addresses the nature of internal 
representations as they are needed and used by engineers and machines. 
Each representation has characteristics and attributes that are to be stored, 
matched, and retrieved by processes ultimately deriving from mappings. Our 
physiological data show that episodic storage of odor trials does not happen, 
that "retrieval" is not recovery but re–creation, always with differences, and 
that stimulus–bound patterns cannot coexist with re–created patterns to 
support matching procedures. We agree with Kohonen's statement that we 
are faced with semantic difficulties, and we conclude that they stem from 
deep incompatibilities between the dynamics respectively of biological and 
present–day artificial intelligence. The key words to look for are "best 
matching" and "error detection," because these refer to machine cognition 
and not neural cognition. 

These considerations give an answer to our question about representations. 
Who needs them? Functionalist philosophers, computer scientists, and 
cognitive psychologists need them, often desperately, but physiologists do 
not, and those who wish to find and use biological brain algorithms should 
also avoid them. They are unnecessary for describing and understanding 
brain dynamics. They mislead by contributing the illusion that they add 
anything significant to our understanding of the brain. They impede further 
advances toward our goal of understanding brain function, because they 
deflect us from the hard problems of determining what neurons do and 
seduce us into concentrating instead on the relatively easy problems of 
determining what our computers can or might do. In a word, representations 



are better left outside the laboratory when physiologists attempt to study the 
brain. Physiologists should welcome the ideas, concepts, and technologies 
brought to them by brain theorists and connectionists, but they should be 
aware that representation is like a dose of lithium chloride; it tastes good 
going down but it doesn't digest very well (Bureg, Chapter 1, this volume). 
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