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Nutrient Dynamics in a Coupled Terrestrial Biosphere and
Land Model (ELM‐FATES‐CNP)
Ryan G. Knox1 , Charles D. Koven1 , William J. Riley1 , Anthony P. Walker2 ,
S. Joseph Wright3 , Jennifer A. Holm1 , Xinyuan Wei2 , Rosie A. Fisher4 , Qing Zhu1 ,
Jinyun Tang1 , Daniel M. Ricciuto2 , Jacquelyn K. Shuman5 , Xiaojuan Yang2 ,
Lara M. Kueppers1,6 , and Jeffrey Q. Chambers1,6

1Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 2Oak Ridge National Laboratory, Oak Ridge, TN, USA,
3Smithsonian Tropical Research Institute, Ancon, Panama, 4CICERO Center for International Climate Research, Oslo,
Norway, 5Now at NASA Ames Research Center, National Center for Atmospheric Research, Boulder, CO, USA,
6University of California, Berkeley, CA, USA

Abstract We present a representation of nitrogen and phosphorus cycling in the Functionally Assembled
Terrestrial Ecosystem Simulator, a demographic vegetation model within the Energy Exascale Earth System
land model. This representation is modular, and designed to allow testing of multiple hypothetical approaches
for carbon‐nutrient coupling in plants. Novel model hypotheses introduced in this work include, (a) the controls
on plant acquisition of aqueous mineralized nutrients in the soil and (b) fairly straight forward methods of
allocating nutrients to specific plant organs and their losses through live plant turnover as well as litter fluxes
generated through plant mortality. This combines the new with pre‐existing hypotheses (such as nitrogen
fixation and soil decomposition) into a system that can accommodate plant‐soil dynamics for a large number of
size‐ and functional‐type‐resolved plant cohorts within a time‐since‐disturbance‐resolved ecosystem. Root
uptake of nutrients is governed by fine root biomass, and plants vary in their fine root biomass allocation in order
to balance carbon and nutrient limitations to growth. We test the sensitivity of the model to a wide range of
parameter variations and structural representations, and in the context of observations at Barro Colorado Island,
Panama. A key model prediction is that plants in the high‐light‐availability canopy positions allocate more
carbon to fine roots than plants in low‐light understory environments, given the widely different carbon versus
nutrient constraints of these two niches within a given ecosystem. This model provides a basis for exploring
carbon‐nutrient coupling with vegetation demography within Earth system models.

Plain Language Summary This work introduces a new set of nutrient cycling hypotheses
incorporated into a terrestrial biosphere model. This includes the cycling of carbon, nitrogen and phosphorus,
and focuses mainly on plant acquisition, allocation, and turnover. An analysis shows the model offers
reasonable responses to perturbations in parameter constants and variability in climate forcing, considering its
design balance between process complexity and parameterization burden.

1. Introduction
Projections of the global climate system response to anthropogenic CO2 emissions require coupled models of the
climate system and carbon cycle. Much of the uncertainty in current climate projections arises from the global
terrestrial carbon cycle, and in particular the responses of plants to elevated CO2 (Arora et al., 2020). Many
current Earth System Models (ESMs) do not take into account plant size structure, disturbance history, and other
aspects known to govern ecosystem function and thereby current and future responses to anthropogenic pressures
(D. Purves & Pacala, 2008). Additionally, limitation by nutrients of plant productivity under elevated CO2 has
been shown to strongly affect both the historical and future uptake of carbon (Hungate et al., 2003; P. Thornton
et al., 2007; Zaehle & Friend, 2010; Wang et al., 2015). The importance of including nutrient dynamics in
projecting the global terrestrial carbon budget is evidenced by its expanded role in Earth System land models,
such as CASACNP (Wang et al., 2010), GFDL LM4.1‐BNF (Kou‐Giesbrecht et al., 2021; Sulman et al., 2019),
LPJ‐GUESS (Dantas de Paula et al., 2021; Smith et al., 2014), ED2‐MEND‐NCOM (Medvigy et al., 2019), and
Quincy v1.0 (Thum et al., 2019) to name a few. Also, the land model for the Energy Exascale Earth System Model
(E3SM) (Caldwell et al., 2019), the ESM used in this research, has been coupled with the FUN nutrient cycling
model (carbon, nitrogen and phosphorus) using its big‐leaf representation of vegetation (Allen et al., 2020;
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Braghiere et al., 2022; Brzostek et al., 2014; J. Fisher et al., 2010). Despite their importance, processes that govern
nutrient cycling rates in ecosystems are highly uncertain, since many of them occur belowground where
observation is more difficult than in plant canopies. To allow exploration of this epistemic uncertainty, we
propose here a modular approach to representing nutrient cycling that facilitates exploration of alternative process
hypotheses and parameter and structural uncertainty quantification.

This manuscript describes a modeling methodology and new science hypotheses explicitly and only for plant
acquisition, storage, and allocation of nutrients within the terrestrial biosphere of an ESM. No fundamentally new
modeling and science hypotheses are introduced to soil biogeochemistry or nitrogen fixation. We acknowledge
that nutrient limitations have been incorporated in other terrestrial biosphere models that use individual
based vegetation concepts (see above paragraph for several examples). The specific acquisition and allocation
methods explained here differ from those mentioned. The different implementations here and in other terrestrial
biosphere models are hypotheses, because they tentative assumptions that attempt to represent massively complex
natural process with numerical representations tuned by parameter constants. It is crucial that ESMs explore
different representations to evaluate these hypotheses and ultimately inter‐compare for fidelity with observations.

While this manuscript leverages existing hypotheses for in‐soil competition between plants, microbes and min-
erals, the previous coupling in ELM of plant‐soil nutrient exchange had only been performed with the “big‐leaf”
(i.e., a model that lacks size structure and demography) vegetation model, and has thus required us to reformulate
the existing soil nutrient competition schemes to work with the Functionally Assembled Terrestrial Ecosystem
Simulator (FATES) individually based vegetation model. So this manuscript also describes how the plant nutrient
dynamics interface with existing soil nutrient hypotheses, but does not introduce new soil modeling hypotheses.

This system is an extension of the coupledmodeling framework of the E3SMmodel (Caldwell et al., 2019) and the
FATES. E3SM includes a land model (ELM) among other components such as atmosphere, ocean, ice, and hu-
man. The terrestrial vegetation simulated in FATES is based on the plant size and time‐since‐disturbance struc-
tured approach derived from the EcosystemDemography model (R. A. Fisher et al., 2015; Moorcroft et al., 2001).

The nutrient modeling framework we describe here can be summarized in four model components: (a) a new
module that handles the nutrient and carbon allocations to different organs within the plant, designated the Plant
Allocation, Reactions, and Transport Extensible Hypotheses (PARTEH), (b) the tracking of various chemical
elements (which previously was limited to carbon) in seed, unfragmented litter, and coarse woody debris pools,
(c) a means of acquisition and competition for nutrients by FATES plants amongst microbes and mineral surfaces
and (d) the integration of a pre‐existing symbiotic nitrogen fixation scheme into the FATES framework. An
evaluation of the model at a tropical test‐bed site follows. This expanded version of the model will be referred to
as ELM‐FATES‐CNP (where CNP simply refers to “C”arbon “N”itrogen and “P”hosphorus). Shorthand nota-
tions of C, N and P may be used in this manuscript to reference non‐specific forms of Carbon, Nitrogen and
Phosphorus respectively.

2. Model Description–Plant‐Soil Nutrient Dynamics
The ELM model (Burrows et al., 2020) resolves numerous processes related to the cycling of water, energy,
carbon, nitrogen and phosphorus in natural and anthropogenic ecosystems. Soil decomposition (in the simulations
of this manuscript) is handled via a derivative of the CENTURY approach (C. Koven et al., 2013; Parton
et al., 1988). Other decomposition modules are available in ELM and the Community Land Model (CLM)
(Lawrence et al., 2020), such as the Converging Trophic Cascade (P. E. Thornton & Rosenbloom, 2005; P.
Thornton et al., 2007; P. E. Thornton et al., 2009) and the MIcrobial‐MIneral Carbon Stabilization with Carbon
and Nitrogen (Kyker‐Snowman et al., 2020; W. R. Wieder et al., 2019). The former is compatible with FATES‐
CNP. The latter is half‐way through the process of compatibility as of this writing. In all of these decomposition
models, all prognostic carbon and nutrient pools native to these schemes are maintained when coupled with
FATES nutrient cycling. Total ecosystem nitrogen fixation has been represented in ELM by assuming propor-
tionality with either evapotranspiration or net primary productivity (Cleveland et al., 1999; P. Thornton
et al., 2007). Symbiotic fixation at the plant level is introduced in the Methods section and will be described in
more detail. When symbiotic fixation is represented by FATES, the total ecosystem fixation module in ELM is
scaled down to represent only free‐living fixation in the soil. Soil biogeochemical dynamics lead nutrients to
cascade from organic pools with different turnover times to ammonium (NH4), nitrate (NO3), and phosphate
(PO4) pools through organic matter mineralization processes. Soil inorganic nutrients are dynamically maintained
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as a result of supply fluxes (e.g., deposition, net mineralization, nitrogenase/phosphatase activities) and con-
sumption fluxes (e.g., plant uptake, leaching loss). The deposition of nutrients is provided by external data sets
(Mahowald et al., 2008). Unlike phosphorus, the input of nitrogen deposition to the system is somewhat obscured
because of the much larger fixation fluxes. Unlike inorganic nitrogen, soil inorganic phosphorus is also affected
by mineral surface interactions via adsorption, and occlusion. The former is reversible process that quickly
equilibrates phosphate between soil solution and adsorbed pool at mineral surface, while the latter is a slow and
irreversible process to remove available phosphate. ELM contains two alternative representations of competition
for these nutrient species amongst plants, microbes (decomposers for organic pools, as well as nitrifiers and
denitrifiers for mineral nitrogen pools), and mineral surfaces (for phosphorus). These are the Relative Demand
(RD) approach (P. Thornton et al., 2007; X. Yang et al., 2014, 2019) and a Capacitance‐Based approach that
applies the Equilibrium Chemistry Approximation (CB) (Tang & Riley, 2013; Zhu et al., 2016, 2019).

FATES is a vegetation demography model (R. A. Fisher et al., 2015; C. D. Koven et al., 2020) that represents the
demographics of vegetation using plant size and time‐since‐disturbance structured scaling algorithms defined in
the Ecosystem Demography (ED) Model (Moorcroft et al., 2001). FATES represents vegetation by grouping
plants of similar size and functional type into cohorts, which inhabit patches of the landscape that are defined by
their time since last disturbance. Unlike unstructured vegetation models, which treat growth and mortality pro-
cesses as changes to the size of whole ecosystem‐level carbon and nutrient pools, cohort‐based vegetation models
like FATES explicitly track the growth of plants, the size (volume, height, etc) growth of various components, and
the resulting carbon and nutrient pools of their tissues using allometrically defined scaling relationships with stem
diameter. FATES also allows for competition for light between plant types in the same vertical profile, which
leads to self‐thinning dynamics and other spatio‐temporal changes in vegetation composition to emerge as a
function of variation in plant functional traits. FATES estimates mortality at the plant cohort scale, based on
several factors including carbon starvation, understory impact survival, hydraulic stress (R. A. Fisher et al., 2015),
background mortality (i.e., unspecified or unknown effects) (Moorcroft et al., 2001), fire (Thonicke et al., 2010),
and relationships with plant age or size (Needham et al., 2020). In the current version of FATES, the time‐since‐
disturbance patch discretization only resolves heterogeneity in the above‐ground environment, with all cohorts on
all patches drawing water and nutrients from the same soil pools.

FATES represents a variety of processes, including but not limited to: photosynthesis and its coupling with water
limitations on stomatal conductance (G. Bonan et al., 2014; Collatz et al., 1991; Farquhar et al., 1980; Oleson
et al., 2013), respiration (Ryan, 1991) of live tissues, vertical distribution of canopy functional trait parameters
(G. B. Bonan et al., 2012), radiation scattering (Norman, 1979), phenology (Botta et al., 2000), and turnover into
coarse woody debris and fine litter (R. A. Fisher et al., 2015; Oleson et al., 2013). In this model, the organ nutrient
concentrations (i.e., stoichiometry) are time‐invariant constants α(o,N). This is assumed to be a plant trait, that is
reflective of the mean nutrient content for the functional type or group of the plant. Plant maintenance respiration
rates (Ryan, 1991) are calculated for each organ and are sensitive to the nitrogen concentrations. Photosynthesis
rates are also regulated by time‐invariant plant traits, including the maximum carboxylation rate of rubisco Vcmax,
which is assumed to be a trait positively correlated with the nutrient concentrations of the leaves. The reasoning
and implications of constant stoichiometry assumptions in this modeling implementation are discussed in
Section 4.4.

Cohort and ecosystem scale photosynthesis and respiration rates are influenced via growth and allocation
response to nutrient availability and its effect on biomass of resource acquiring organs. Nutrient concentrations
regulate plant growth through the construction costs to build tissues. FATES’ radiation scattering module ac-
counts for both the vertical structure of vegetation and the variable scattering characteristics of different plant
functional groups in parallel (R. A. Fisher et al., 2015). The spatial configuration of the canopy scattering ele-
ments is driven by a modified perfect plasticity approximation (R. A. Fisher et al., 2015; C. D. Koven et al., 2020;
D. W. Purves et al., 2008). While FATES can optionally utilize sophisticated representations of plant hydraulics
(Christoffersen et al., 2014; Fang et al., 2022; Fyllas et al., 2014) and fire (Buotte et al., 2021; Ma et al., 2021;
Thonicke et al., 2010), in order to focus on nutrient dynamics, these options were not active in the modeling
exercises described herein. Details on all of these process representations can be found in the FATES technical
documentation (FATES‐Development‐Team, 2019).

The introduction of nutrients to FATES, via the PARTEH approach to (Plant Resource Allocations, Reactions,
and Transport Extensible Hypotheses) described here, follows a sequence of operations that are shown in
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Figure 1. The descriptions of these processes follow the flow‐chart order and
can be found in the following subsections: symbiotic fixation in 2.1, plant
acquisition of aqueous soil nutrients in 2.2, retranslocation during senescent
turnover in 2.3, updating the target fine‐root biomass (the optimal fine‐root
biomass associated with the plant's nutrient requirements) in 2.6, and allo-
cation to the various plant organs in 2.5. Soil hydrology in ELM is the same as
that described in the CLM technical manual (Oleson et al., 2013).

An overview of the nutrient mass fluxes through the key nutrient pools in the
soil‐plant system are shown in Figure 2. Also, a list of all variables and pa-
rameters described in this manuscript are provided in Appendix A Table A1.

Three chemical elements are tracked and conserved by mass within the plant,
litter and soil system: carbon (non isotope specific), nitrogen, and phos-
phorus. The masses of these elements at any given instance in time are
designatedC(o) for carbon andM(o,s) for the two nutrients elements, where o is
the generic subscript for the organs and s is the generic subscript for the two
nutrient elements nitrogen and phosphorus.

Parameter constants are indicated by lowercase Greek letters. Some variables
not associated with a mass use lower‐case letters. Unless specified otherwise,
fluxes and rates of change use an over‐dot (i.e., Ẋ). All plant states have units
of [kg plant− 1]. Turnover and allocation within the plant occur at a daily
frequency. Thus, they have units of [kg plant− 1 day− 1]. Nutrient competition
between plants and soil competitors (e.g., microbes, mineral surfaces) is
resolved at sub‐diurnal timescales (typically 30 min), and is integrated over
the day and presented as a daily uptake [kg plant− 1 day− 1].

Each plant cohort is represented by an average individual that maintains
discrete mass pools for the following organs (and associated sub‐scripts): leaf
(lf), sap‐wood (sa), dead‐wood (de), fine‐root (fr), reproductive (re) and
storage (so). Sapwood refers to all living woody tissues, including organs such
as the cambium, phloem, and xylem. Dead‐wood refers to all non‐living tis-
sues such as heartwood and bark. Both cases (dead and live) include below
and above‐ground components. The dead pool should not be confused with
the coarse woody debris associated with dead trees. Fine‐roots are function-
ally classified as tissues with high turnover and respiration rates, as compared
to below‐ground sapwood (coarse roots). Reproductive organs encompass all
ephemeral tissues associated with reproduction, including seeds, cones,
flowers, fruits, etc. For storage, the term “organ” is used loosely because

reserves are spatially distributed throughout the plant, often in vacuoles, referring to all forms of C, N, and P that
can be re‐mobilized for growth or maintenance of other tissues. Carbon storage refers to non‐structural carbo-
hydrates of starches and sugars. Storage of N is often comprised of proteins and amino compounds (Millard &
Grelet, 2010), whereas phosphate compounds are typical for phosphorus storage (S.‐Y. Yang et al., 2017).

Plants represented in FATES‐CNP can acquire nutrients through several means: (a) uptake of mineral nutrients
from soil solution, (b) symbiotic nitrogen fixation, and (c) retranslocation preceding litterfall. The model design is
modular and interchangeable with alternative hypotheses. Here we describe the default options for these uptake
processes.

2.1. Acquisition Through Symbiotic Fixation

The carbon cost of symbiotic nitrogen fixation is modeled as an obligate (temperature dependent) increase in
maintenance respiration (Houlton et al., 2008). Plants that are designated as nitrogen fixers generate a fixation rate
Ṁf [kgN plant− 1 day− 1] by respiring carbon rf [kgC plant− 1 s− 1] at a rate that is a constant fraction ρf(pft) of all non‐
fixation fine‐root maintenance respiration (Ryan, 1991) (non‐growth) costs rm [kgC plant− 1 s− 1]. This simpli-
fication assumes that all resources driving nitrogen fixation are mediated through respiration, and those costs act

Figure 1. Flow‐chart of key processes and order of operations for nutrient
cycling in ELM‐FATES‐CNP. This chart places more emphasis on plant‐
side processes. New processes described in this manuscript are shown in
yellow boxes. Gray boxes indicate pre‐existing but relevant processes in the
model. For the process of soil nutrient competition, nothing has changed
from the original schemes, except how plants present themselves as
competitors (shown as with a split gray/yellow color). In the box
highlighting symbiotic fixation, scattering, etc., symbiotic fixation is a new
process and the others are un‐modified.
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as a surrogate for other costs such as building and maintaining nodules and feeding specialized bacteria. This
represents an obligate strategy because all plants of a Plant Functional Type (PFT) with a nonzero value of ρf(pft)
constantly fix N and incur the respiratory cost of doing so. The representation of facultative nitrogen fixation
strategies in FATES is left for future work. The nitrogen fixation flux is accumulated on each sub‐daily time‐step
(of duration Δt = 1,800 s) over the total steps for the day td.

rf = rm ⋅ ρf ( pf t)

Ṁf =∑

td

t
rf nfΔt

(1)

The rate of nitrogen fixed per unit carbon respired, nf [gN gC− 1], follows the functional form by (Houlton
et al., 2008). Calibrated constants are taken from (J. Fisher et al., 2010) (af1 = − 6.25) and (Houlton et al., 2008)
(af2 = − 3.62, af3 = 0.27, af4 = 25.15) and the soil temperature Tsoil is prognostic variable of ELM.

nf = af1

⎛

⎜
⎜
⎝e

af2+a f3 ⋅ Tsoil(1− 0.5 ⋅ Tsoila f4
)
− 2

⎞

⎟
⎟
⎠ (2)

Figure 2. Diagram showing the key pools and fluxes for nitrogen and phosphorus cycling in ELM‐FATES‐CNP. Plant pools
are shown with yellow boxes, soil pools are shown with slate colored boxes. *I and M are short‐hand for (I)mmobilization
and (M)ineralization fluxes. **Denotes the special status of nutrient storage, in that storage nutrient pools are distinct from
the carbon storage pool. The leaf, fine‐root, sapwood, structure and reproductive tissues assume that carbon, nitrogen and
phosphorus are bound together in the tissues. Leaching refers to phosphate and nitrate (not ammonium) and denitrification
losses are from both nitrate and from instantaneous conversion following nitrification. Note that the senescent tissues of
functionally assembled terrestrial ecosystem simulator plants, either from turnover on live plants, or through the death of
plants, does transfer to the soil organic pool, via the litter pools.
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2.2. Plant Acquisition of Aqueous Soil Nutrients

Two of the nutrient competition schemes in ELM are compatible with FATES (CB and RD, see below for
details). These schemes are completely separate implementations with different scientific hypotheses. In both,
FATES cohorts compete with other cohorts, as well as microbes and mineral surfaces (for phosphorus) for
aqueous nutrients in each discrete soil layer j. (The CB scheme does allow for occlusion of ammonium and
nitrate in clay soils) Plants compete for (a) ammonium (NH4) with decomposer and nitrifier microbes, (b)
nitrate (NO3) with decomposer and denitrifer microbes, and (c) phosphate (PO4) with decomposer microbes and
mineral surfaces.

In the native “big‐leaf” vegetation representation in ELM, each functional type competes for nutrients as a group.
In contrast, FATES enables many cohorts of different sizes and functional types, all to compete independently for
resources with soil competitors (typical cohort counts on a site can number anywhere from tens to more than a
thousand, depending on local biodiversity and modeler decisions on how to delineate functional groups and size‐
similarity). Both CB and RD schemes require each cohort to provide a potential uptake rate, or uptake capacity,
for each mineral nutrient species (M̂u,NH4( j), M̂u,NO3( j), or M̂u,PO4( j) units [kg m− 2 s− 1]). The actual net daily uptake
flux Ṁu(s,j) [kg m− 2 day− 1] results from the competition schemes, which we denote with a generic “competition
function” Γc( j,t). The Relative Demand (RD) (P. Thornton et al., 2007) method distributes nutrient uptake to
competitors in proportion to their demands. Their definition of demand is equivalent to our definition of uptake
capacity M̂u,s, because we assume the plant demand for nutrient is its capacity for uptake. It also provides controls
to scale up or down the relative competitiveness of each entity when total mineralized nutrients are less than total
demand. If the total demand exceeds availability, all uptake rates are down‐scaled to ensure that the scheme does
not generate negative soil N and P concentrations. The Capacity Based (CB) (Zhu et al., 2019) method utilizes a
Michaelis‐Menten approach to estimate the simultaneous uptake of competing entities with half‐saturation pa-
rameters, and is therefore influenced by the soil aqueous nutrient concentrations. The exact form of the
competition functions are described in Zhu et al. (2019). Both the RD and CB competition models have repre-
sentations of phosphatase activity following methods of X. Yang et al. (2014) andWang et al. (2010) respectively.

FATES calculates plant growth and allocation on a daily basis, hence, the total daily uptake for each cohort
includes the sum of the uptake over each of the total number of js soil layers and sub‐daily time‐steps (of duration
Δt seconds) over the total for the day td.

Ṁu(N) =∑

js

j
∑

td

t
( M̂u,NH4( j) ⋅ Γc,NH4( j,t) + M̂u,NO3( j) ⋅ Γc,NO3( j,t))Δt

Ṁu(P) =∑

js

j
∑

td

t
( M̂u,PO4( j) ⋅ Γc,PO4( j,t))Δt

(3)

The nutrient uptake capacity of a FATES cohort is defined by the per‐plant fine‐root biomass C(fr) [kg plant− 1],
the plant density np [plants m− 2], the fraction of fine‐root biomass in each soil layer ffr( j) (see Text S2 in Sup-
porting Information S1), and the maximum uptake rate per unit fine‐root biomass νmax(pft). This parameter is
unique to each mineral nutrient chemical species (NH4, NO3, PO4) for each PFT represented by FATES
[kg− 1 s− 1]. Cohort density and fine‐root biomass are prognostic variables in FATES.

M̂u,NH4( j) = νmax,NH4
⋅C( f r) ⋅ np ⋅ ff r( j)

M̂u,NO3( j) = νmax,NO3
⋅C( f r) ⋅ np ⋅ ff r( j)

M̂u,PO4( j) = νmax,PO4
⋅C( f r) ⋅ np ⋅ ff r( j)

(4)

For the RD approach, the nitrate uptake capacity M̂u,NO3( j) is handled slightly different than Equation 4. With RD,
uptake for nitrogen happens sequentially. The uptake capacity for ammonium and nitrate are combined, and used
to drive uptake first from the ammonium pool. This will fulfill some of the plant's needs, and reduce the joint
uptake capacity. The remaining joint uptake capacity is then applied to draw down the nitrate pool.
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2.3. Losses and Re‐Acquisition During Turnover

FATES tracks the daily turnover from senescent tissues on live plants with a carbon loss rate Ċt(o) and nutrient loss
rates Ṁt(o,s) [kg plant− 1 day− 1] for all non‐reproductive plant tissue pools: leaf, fine‐root, sapwood, storage, and
structural wood, for each cohort. These turnover fluxes are non‐episodic, and the rates are controlled by the
turnover period parameter τ(o,pft) [years] associated with the plant's phenological dynamics, which are PFT
dependent. The storage, sapwood, and structural wood all share the same turnover rate which is associated with
branch‐fall. A module that explicitly tracks damage legacies and represents degraded crowns exists (Needham
et al., 2022), but is not used here to reduce confounding model factors during analysis.

Ċt(o) = C(o)/ (365 ⋅ τ(o,pf t))

Ṁt(o,s) = M(o,s)/ (365 ⋅ τ(o,pf t))
(5)

Plants retranslocate a portion of nutrients before leaf and fine‐root tissues are shed during senescent turnover. In
plain terms, the plants may move nutrients that are bound and or stored in the leaves and fine‐roots into other
organs of the plant, to avoid loosing these resources when leaves and roots are shed. This rate Ṁra(o,s) [kg
plant− 1 day− 1] is drawn from the turnover rate, is directed towards plant storage M(so,s), and is removed from the
litter mass flux. There is no retranslocation during fire, and no retranslocation from wood tissues. This retrans-
location happens at a constant proportion for leaves ωlf(s,pft) and fine‐roots ωfr(s,pft) [kg

− 1] specific to each nutrient
(N or P) and PFT. Plants with high retranslocation rates will require less nutrient acquired from other sources, and
will generate litter with lower nutrient density per unit carbon. A description of how retranslocation rates are
estimated is described in Section 3.1.

Ṁra(l f ,s) = Ṁt(l f ,s) ⋅ωlf (s,pf t)

Ṁra( f r,s) = Ṁt( f r,s) ⋅ωfr(s,pf t)
(6)

Litter mass nutrient fluxes from senescent turnover of live plants follow the same proportion rules and constants
as carbon for how they are proportioned into the labile, lignin and cellulose litter pools. For more details, see the
FATES technical manual (FATES‐Development‐Team, 2019).

2.4. Definition of Plant Organ Targets

In FATES‐PARTEH, plants grow (to the extent possible, as described below) their organs to preserve obser-
vationally constrained allometric relationships. Diameter to height relationships follow Martínez Cano
et al. (2019), and diameter + height to biomass follow Chave et al. (2014). As the plant grows and increases in
stature (defined by stem diameter at reference height d), these allometric functions define a target carbon mass for
each organ,C ̀

(o). The plant will always attempt to allocate resources such that mass in an organ matches the target
(i.e., replace what has been lost), before it attempts to further grow in stature. The method of defining carbon
targets in FATES remains unchanged from (R. A. Fisher et al., 2015; C. D. Koven et al., 2020) for all organs
except fine‐root. Fine‐root mass targets now vary as a function of carbon and nutrient storage. This is a key new
model mechanism introduced in this work and is explained in Section 2.6. Details on carbon targets and allometry
functions for the other organs can be found in the FATES technical manual (FATES‐Development‐Team, 2019).

Nutrient targets M̀(o,s) for leaf, fine‐root, sapwood, and structural wood seek to maintain a constant stoichiometry
(i.e., constant P:C and N:C ratios), defined as parameter constants α(o,s,pft) specific to each PFT, element (N or P)
and organ.

M̀(o,s) = α(o,s,pf t) ⋅C(o) (o = lf ,f r,sa,de) (7)

Unlike the other organs, the nutrient to carbon ratio of the reproductive tissues and storage (o = re, so) are not
defined directly by parameter constants. FATES, like many vegetation demography models, does not mecha-
nistically resolve germination or other processes of plants below a minimum recruitment size (Hanbury‐Brown
et al., 2022); instead it assumes that a fraction of carbon flux allocated to reproduction emerges as new recruits at
some time later. We extend this approach to nutrients as well. The stoichiometry of reproductive tissues is set to

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003689

KNOX ET AL. 7 of 34

 19422466, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003689, W
iley O

nline L
ibrary on [05/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



match the nutrient to carbon ratios of a newly recruited plant (i.e., a plant with the smallest trackable stem
diameter d = dmin). This approach means that only the nutrients that are needed to produce recruits with a known
stoichiometry are allocated to reproduction, and represents the optimal reproductive allocation stoichiometry that
also satisfies mass conservation. FATES initializes newly recruited plants with no reproductive tissues, and they
start “on‐allometry” (i.e., when their actual mass matches the allometrically defined target).

α(re,s,pf t) =
∑M̀(o,s)

∑C̀(o)
(d = dmin, o = lf ,f r,sa,de,so) (8)

The target nutrient storageM(so,s) is a special case, because it is not associated with a specific tissue. Therefore the
target is scaled (μ(s,pft)) based on the target nutrient content of the leaves when “on‐allometry.” Alternative hy-
potheses are available for users to test, allowing for storage capacity to scale off of any combination of other
organs (e.g., sapwood, fine roots).

M̀(so,s) = μ(s,pf t) ⋅ M̀(l f ,s) (9)

2.5. Plant Allocation and Mass Balance Accounting

Both the carbon and nutrient fluxes in the plant and soil systems are mass conservative (i.e., all mass fluxes are
accounted for and nothing is created or destroyed). Supplemental nitrogen and phosphorus are often added to the
soil in the early years of a spin‐up simulation. These effectively ’accelerate’ the accumulation of nutrient pools in
the soil, and the unresolved processes pf primary succession. These fluxes are tracked in the overall balance as
well. The FATES code performs mass‐balance checks at both plant and landscape (i.e., contains all disturbance
history patches in each FATES site) scale every day. The following rules are stated explicitly for nutrients M, but
are also valid for carbon C. The sum of daily allocated nutrient Ṁa(o,s) over all organs, should equal the difference
between the plant's total gains for the day Ṁg(s) and losses due to exudation Ṁe(s). The total change in mass over
the course of the dayM(o,s) is therefore the difference between what is allocated Ṁa(o,s) and lost in turnover Ṁt(o,s).

∑
o
Ṁa(o,s) = Ṁg(s) − Ṁe(s)

Ṁ(o,s) = Ṁa(o,s) − Ṁt(o,s)

(10)

For nitrogen, the daily gain Ṁg(s=N) includes aqueous uptake Ṁu(s=N) and symbiotic fixation Ṁ f . As per the ELM
soil biogeochemistry model, any nitrogen made available by free‐living fixers in the soil are assumed to be added
directly to the aqueous NH4 pool, and does not need to be explicitly included in this calculation.

Ṁg(s=N) = Ṁu(N) + Ṁ f

Ṁg(s=P) = Ṁu(P)

(11)

The model considers three phases for allocation. In each phase, the mass pool for the daily gain Ṁg is reduced as
portions of this mass are transferred into plant organs M(o,s). This phase proceeds sequentially in this order, as
described next.

• Phase 1: Replacement of Turnover
• Phase 2: Stature Growth
• Phase 3: Remainder and Overflow

2.5.1. Allocation Phase 1: Replacement of Turnover

In the first phase, replacement of tissues lost to turnover is controlled by a prioritization scheme, whereby a user
controlled parameter indexed by plant organ δ(o) is used to assign priority. Organs with the highest priority have a
δ(o) of 1, organs with the lowest priorities will have larger values of δ(o). A priority of one indicates the organ of
interest has the first opportunity, along with other organs with that priority, to replace losses and thus increase the
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mass of the organ toward the allometric target (turnover losses shift organ masses “off‐allometry”). Other organs
with incrementally increasing δ(o) are then allowed to replace losses while there is still mass in the daily gain pool
Ṁg. The highest priority organs (δ(o)= 1) have some special considerations to how they are applied (see Text S1 in
Supporting Information S1). This flexible scheme reflects persistent uncertainty over the prioritization of allo-
cation by plants and in principle allows rapid hypothesis testing.

The amount of nutrient Ṁa(o,s) (or carbon) sent to each organ is driven by the deficit between the actual element
mass of the organ and its target mass M̀(s,o). We define a set of organs Θ1(p) (subscript 1 is for “phase‐1” allo-
cation”) at priority level p, and the fraction of the total allocation demand that can be filled fa(s) for all organs in
this priority level (bounded between 0 and 1). The allocation for each organ is simply its portion of the total
replacement demand, scaled by the total replaceable fraction fa(s,p).

fa(s,p) = min

⎛

⎜
⎝1, Ṁg(s)/∑

Θ1( p)

max(0, M̀(s,o) − M(s,o))

⎞

⎟
⎠

Ṁa(o,s) = fa(s,p) ⋅ max(0, M̀(s,o) − M(s,o))/∑
Θ1( p)

max(0, M̀(s,o) − M(s,o))

(12)

With each successive allocation, mass is removed from the daily gain Ṁg(s).

2.5.2. Allocation Phase 2: Stature Growth

If mass remains in all of the daily gain pools (Ṁg(s=N), Ṁg(s=P), and Ċg) following the replacement phase, the plant
will grow in stature. The stem diameter will increase, the target masses of the plant organs (which are tied
allometrically to diameter) will increase, and the mass of each organ will increase. All organs grow together as a
group, but exceptions can occur for numerical reasons (this is discussed Text S3 in Supporting Information S1).
This set of organs that are “on‐allometry” are defined as set Θ2.

The first task is to determine which of the three elements (C, N or P) is in shortest supply and will limit growth.
We do this by estimating the mean stoichiometric ratios of the potential new plant growth. Note that to get the
relative proportions of new mass allocated to the organs, we evaluate the derivative of the target carbon with

respect to change in diameter d, dC ̀
(s,o)
dd , for the organs in set Θ2, which can be retrieved the from allometric

functions at the current stem diameter. The estimated mean stoichiometries (represented by the two summation
terms in the brackets to the right of theMg(s) term in Equation 13) are then used to transform the daily nutrient gain
into an equivalent carbon Ċg,eq(s) gain.

Ċg,eq(s) = Ṁg(s)

⎡

⎢
⎢
⎢
⎢
⎣
∑
Θ2

dC ̀
(o)

dd /

⎛

⎜
⎜
⎜
⎜
⎝
∑
Θ2

α( f t,s,o)
dC ̀

(o)

dd

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

(13)

The minimum of the actual carbon gain Ċg and the two equivalent carbon gain pools Ċg,eq(s) then defines the
carbon that is available for stature growth Ċsg.

Ċsg = min(Ċg,Ċg,eq(s=N),Ċg,eq(s=P)) (14)

The carbon fluxes into each plant organ are solved via a set of coupled differential equations, conducted via
numerical integration from bounds zero to Ċsg for each organ in set Θ2. The proportion of carbon gain directed to
each organ is defined by the derivative of the diameter‐to‐mass allometry functions, as a fraction of the sum of all

derivatives in set Θ2. The derivatives of the target masses with respect to diameter (dC
̀
(o)

dd ) are readily available by

differentiating the allometry functions. These are coupled equations because they are all simultaneously drawing
down Ċsg together, and the derivatives are continuously changing as they grow.
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Ċa(o) = Ċa(o) +∫

Ċsg

0
[
dC ̀

(o)

dd /(∑
Θ2

dC ̀
(o)

dd
)] dĊsg (15)

To handle the allocation of nutrient gains, the same allocation rules from Phase 1 are applied here in Phase 2,
using the updated carbon biomass of each organ just explained. Refer to Equations 7 and 12. It should be noted
that this modeling hypothesis holds the stoichiometries of plant organs (aside from storage) to the values provided
by the parameter constants α(ft,s,o). Small deviations may periodically occur, but they will be corrected auto-
matically by the nature of the algorithm.

2.5.3. Allocation Phase 3: Remainder and Overflow

Daily gain pools (Ṁg(s=N), Ṁg(s=P), and Ċg) that were not limiting stature growth or replacement may still be
available and must be allocated to storage or removed from the plant. Unlike other pools, we allow storage to
exceed the target, up to a maximum “overflow” capacity that is based on the target and a user‐defined PFT‐level
parameter constant μov(pft). An overflow flux Ṁov(s) captures this transfer from gains to storage; carbon fluxes
follow the same rules as nutrients and are omitted for simplicity.

Ṁov(s) = max(0,min(M̀(so,s)(1 + μov( f t)) − M(so,s),Ṁg(s)))

Ṁg(s) = Ṁg(s) − Ṁov(s)

Ṁa(so,s) = Ṁa(so,s) + Ṁov(s)

(16)

If the storage overflow capacity is full and there are still gains (i.e., Ṁg(s=N) > 0) that have not been allocated,
the plant will exude residual nutrient Ṁe(s) into the metabolic (i.e., from labile sources, contains no lignin or
cellulose) litter pool with vertical profile fluxes proportional to the fine‐root density of each soil layer. If excess
carbon remains, there are two options to get rid of the excess Ċe. The default method is to burn it off as
autotrophic respiration. Alternatively, users can also opt to exude the carbon with the same partitioning rules
along with the nutrients. As will be described in the next section, this model features optimization process that
seeks to balance uptake of carbon and nutrients, which will also serve to minimize these excesses. This is
evaluated in the analysis.

2.6. Dynamic Fine‐Root Biomass Response

Along with symbiotic relationships with nitrogen‐fixing bacteria, plants also modify their network of fine‐roots to
regulate uptake of mineralized nutrient (Forde & Lorenzo, 2001). Some plant and ecosystem models have utilized
this behavior for some time (de Kauwe et al., 2014; Thornley, 1995), and a dynamic fine‐root optimization
scheme is detailed here as well. This scheme seeks to adjust resource allocation above‐ and below‐ground in order
for plant growth to be equally limited by carbon, nitrogen and phosphorus (Bloom et al., 1985). If the resource
limitations on growth are balanced, the relative amount of carbon in storage (i.e., mass of carbon currently in
storage C(so) divided by the target amount of carbon storageC ̀

(so)) will match the relative amount of nutrient in
storage (i.e., mass of nutrient currently in storage M(so,s) divided by target amount of nutrient storage M̀(so,s)).
Given the high complexity of within‐plant signaling mechanisms that govern allocation and growth of leaf and
root tissues, we do not try to mechanistically represent these processes, and instead aim to tractably represent with
as few parameters as possible the net effects of these mechanisms via the optimality‐based approach developed
here.

We quantify a plant's carbon to nutrient balance with the term fcn, see Equation 17. The term is calculated for
the two nutrient elements and takes the maximum, which represents the nutrient with lowest relative storage. A
natural log transform is applied for several reasons: (a) the metric becomes centered on zero, where carbon
limited plant is less than and a nutrient limited plant is greater than zero, (b) by not being a ratio, it can be
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averaged and/or smoothed, and (c) enables additive properties in the algorithm that optimizes fine‐root
(explained below).

fcn = ln

⎛

⎜
⎜
⎜
⎜
⎝
maxN,P

s

⎡

⎢
⎢
⎢
⎢
⎣

C(so)/C ̀
(so)

M(so,s)/M̀(so,s)

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

(17)

Fine‐root biomass is living tissue that both respires (where maintenance respiration rm is a function of mass,
nitrogen concentration in the tissue, and temperature, following (Ryan, 1991)) and requires continual replacement
of losses. An increase in fine‐root mass will therefore result in more respiration and lower Carbon use efficiency
(CUE) per unit leaf area, but it will also increase capacity for acquiring mineralized nutrients in the soil (recall
Equation 4). This is visualized in Figure 3. Thus, positive values of fcn will drive fine‐root growth, and negative
values of fcn will drive fine‐root reductions.

In the FATES allometric model, the fine root target is defined by its proportionality λ with target leaf biomass
C ̀
(l f ). The target leaf biomass is defined by the plant's allometry (function of diameter), for details see the FATES

technical manual (FATES‐Development‐Team, 2019).

Figure 3. Visualization of the dynamic interaction between differential carbon (C) and nutrient (N) storage and fine‐root
growth. A plant (left) with proportionally more fine‐root will tend to have decreased carbon allocation and increased nutrient
allocation, than a plant (right) with proportionally less fine‐root. The algorithm presented here seeks to balance these
allocations through modifying fine‐root growth. *Note that in this diagram, N is representing any nutrient, including nitrogen
and phosphorus. Illustration by Diana Swantek, Lawrence Berkeley National Laboratory.
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C ̀
( f r) = λ ⋅C ̀

(l) (18)

In previous versions of FATES, the proportionality λ between leaf and fine‐
root was a constant user specified parameter. Here, we create an algorithm
where it is allowed to be dynamic, and it's value is optimized to result in a
differential carbon to nutrient storage fcn that tends towards zero. This system
of carbon and nutrient regulation is summarized in Table 1.

In early iterations of developing this hypothesis, we found that a linear model
between λ and fCN was prone to over and undershooting an optimal solution,
leading to oscillations of λ in steady state climate conditions. To suppress the
oscillatory behavior, we included the temporal derivative of fCN. With this,

the methodology became a reduced form of a Proportional Integral Derivative (PID) “control‐loop” system. In
this particular example, fcn is the “process variable” which is driven by a “set‐point” (λ). PID controllers also
contain an integral term along with the proportion and derivative term. Each of the three terms is given a scaling
coefficient, see Equation 19. The calibration of the controller is discussed further in Section 3.3.

λt = λt− 1 + Kp( pf t) fcn + Ki( pf t)∫ fcndt + Kd( pf t)
dfcn
dt

(19)

3. Model Calibration and Evaluation
An evaluation of the new model mechanics is performed via simulations at the Smithsonian Tropical Research
Institute's Barro Colorado Island (BCI) site in Panama (9° 06ʹ 31ʺ N, 79° 50ʹ 37ʺW). The site could be described as
a semi‐deciduous Tropical Rainforest (i.e., dominated by broadleaf evergreens with a mix of deciduous) with a
pronounced dry‐season (annual rainfall 2.6 [m]). The soils are typical tropical weathered oxisols with a clay
texture. The census plot at this site is located on an andesite plateu. The BCI site has an extensive 100 years history
of ecological monitoring and analysis in areas including forest demography and census (Condit et al., 2017),
growth and mortality (Wright et al., 2010), plant allometry (Cushman et al., 2021; Martínez Cano et al., 2019),
nitrogen fixation (Batterman et al., 2013; R. K. Wieder & Wright, 1995), litter and soil biogeochemistry (Mir-
abello et al., 2013; Powers et al., 2005; Yavitt et al., 2011; Yavitt & Wright, 2001) and more (Muller‐Landau &
Wright, 2023). It also stands out among tropical monitoring sites for the long (>30 years) and quality controlled
meteorological data that is used to drive the FATES model (Faybishenko et al., 2018; Patton, 2019a, 2019b,
2019c, 2019d).

Evaluating the details of both nitrogen and phosphorus dynamics simultaneously would expand the scope beyond
what can be covered in one manuscript. We therefore decided to consolidate the evaluation of co‐limiting nitrogen
and phosphorus simulations to Section 3.5. The remainder of the evaluations focus solely on model response with
nitrogen limitations only. Consider that: (a) the model mechanics for phosphorus within the plant are almost
exactly the same as with nitrogen with the exception of different parameter constants; (b) nitrogen dynamics
modeled in the soil are more complicated than phosphorus because there are two soil mineral pools, a more
complicated loss process (i.e., it includes de‐nitrification along with leaching) and more dynamic input to the
system (i.e., fixation vs. weathering); and (c) there is a separate investigation evaluating phosphorus dynamics at a
site in Puerto Rico. The objective here is to determine if the model can capture sensible pattern responses amidst a
modest manual parameterization effort that focuses on small sets of parameter perturbations in isolation. The
simulation results presented here are not suited as prediction, which would require a parameter calibration ex-
ercise using advanced tools to encapsulate a larger set of parameters (including plant carbon dynamics
parameters).

Turning off phosphorus limitations is straightforward and achieved by (a) providing a supplementation term that
feeds phosphorus directly to soil decomposers, plants, and mineral surfaces so that their nutrient demands are
completely met and (b) using a plant uptake affinity parameter νmax(s = P) that is excessively efficient (large). This
results in the plants ignoring phosphorus effects on the fine‐root biomass optimization, acquiring more than
enough phosphorus for growth requirements and releasing the excess back to the soil and litter.

Table 1
Table Describing the Plant's Response to the fcn Storage Metric

Condition Root response Plant response

high/positive fcn → λ ↑, C(fr) ↑ → rm ↑, Ṁu ↑, CUE ↓

low/negative fcn → λ ↓, C(fr) ↓ → rm ↓, Ṁu ↓, CUE ↑

Note. Relatively high and positive fcn drives increases in the fine‐root
biomass target, which drives increases in fine root biomass, which results
in higher respiration (lower carbon use efficiency CUE) yet increased uptake.
The reverse is true for low and negative fcn status (i.e., proportionally high
nutrient).
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3.1. Initial Parameter Calibration

A set of model parameter constants derived from previous research were used as a basis for investigating the
sensitivity and function of newly introduced parameters. C. D. Koven et al. (2020) performed a parameter
sensitivity analysis of the carbon‐only version of ELM‐FATES at BCI, where they generated an ensemble of
576 parameter combinations to explore model response to 12 plant traits. We retrieved their model output and
compared at different plant size classes to measurements of growth increment (centered at 7.5, 12.5 and 40 cm),
mortality rate (centered at 5.5 and 30 cm), and integrated total basal area (<30 cm, <70 cm and all) (Condit
et al., 2017). Only two size classes were used for mortality (compared with 3 for basal area and growth
increment), to compensate for fewer data points (observations). Scalar values of leaf area and gross primary
productivity (GPP) were also compared (Ely et al., 2019). This totals 10 values that can be compared: 10 = 2
size classes of mortality +3 size classes of basal area +3 size classes of growth increment +1 for leaf area and
+1 for GPP.

For each ensemble member i and each of these 10 comparison points (subscript j), a difference between the
observed and modeled x(i,j) were aggregated to a single fitness metric ϵi for each ensemble member, by summing
the difference squared between the modeled and observed variables, divided by the variance of the difference
across ensembles. The parameter set associated with the simulation that minimized the fitness metric was used as
a basis for simulations described here, a comparison of that parameter set with data is provided in Figure 4.

Δx(i,j) = xobs(j) − x(i,j)

ϵ(i) =∑
j
(Δx(i,j))

2
/σΔx( j)

(20)

Figure 4. Comparison of observations with the most optimal ELM‐FATES parameter set from the ensemble of simulations
generated in (C. D. Koven et al., 2020).
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Some of the parameters described in Table A1, organ stoichiometries αo,s,pft and organ turnover rates τo,pft, are
also derived from the optimization of output (C. D. Koven et al., 2020). For nutrient enabled simulations, there are
several new parameter constants that must be estimated. The methods are explained here:

ωlf(N,pft),ωlf(P,pft) Leaf nitrogen and phosphorus retranslocation fractions are set at 0.45 and 0.65 respectively,
and are derived from measurements of leaf litter and live on‐tree leaf stoichiometries at BCNM (un-
published data set provided by S Joseph Wright).

ωfr(N,pft),ωfr(P,pft) Evidence of root retranslocation of N and P is sparse, but has been observed in extratropical
sites (Freschet et al., 2010; Nambiar, 1987). It is also believed that if roots do not actively retranslocate
nutrients before senescent turnover, some portion of nutrient in the newly made root litter will be made
available for plant uptake by mycorrhizae. We assume a 0.25 fine‐root retranslocation fraction of ni-
trogen and phosphorus on senescence. Given this uncertainty, this modeling framework could be used in
further studies to better understand the sensitivity of different retranslocation assumptions on ecosystem
response.

δ(o) We assign leaves and fine‐roots the highest replacement priority, followed by storage and then sapwood
and structural wood. We view other prioritization groupings as alternative modeling hypotheses that can
be explored in further study.

μ(N,pft), μ(P,pft), μov The size of the nitrogen storage target μ(N,pft), and how much storage overflow is
allowed μov is explored in Evaluation VII (see Table 2 and Text S6 in Supporting Information S1).
Understanding plant nutrient storage is a difficult, but there is some thought that plants store enough
nutrient for seasonal use (Millard & Grelet, 2010). As a base assumption, for all other simulations, we
assume the N and P overflow is 100% of the target, and target storage is 1‐times the size of total
nutrient bound in leaf tissues.

ρf(pft) The maintenance respiration surcharge fraction for obligate symbiotic dinitrogen fixation is explored
in Evaluation V (See Table 2 and Section 3.6). Symbiotic fixation is turned off in all other evaluations,
and total ecosystem fixation is used as a surrogate in those cases.

νmax(N) and νmax(P) Nitrogen and phosphorus uptake efficiencies were viewed as a model calibration pa-
rameters, not readily determined via field measurements. Although calculations based on field inventory,

Table 2
List of Evaluations That Were Performed

Evaluation
group Description

Competition &
nutrients Period Section

Calibration

I Single cohort simulations for controller sensitivity RD, N 150 years spin‐up 3.3

II Competition based controller calibration RD, N 1,000 years spin‐up 3.3

RD, N

III Evaluation of base parameterization RD, N 500 years spin‐up + 300 year industrial‐era 3.4

RD, N

IV Evaluation of C‐N‐P model with field data CB, NP 500 years spin‐up + 1,000 year post‐spinup 3.5

Sensitivity

V Evaluation of competition between symbiotic fixers and
non‐fixers

RD, N 500 years spin‐up 3.6

VI Evaluation of uptake efficiency (νmax(N )) and soil N
availability

RD, N 500 years spin‐up + 300 year industrial‐era year
industrial‐era

3.7

VII Sensitivity to storage capacity RD, N 500 years spin‐up SI–S6

VIII Sensitivity to sub‐module hypotheses RD, N 500 years spin‐up SI–S7

IX Sensitivity to free‐living fixation hypotheses RD, N 500 years spin‐up + 300 year industrial‐era SI–S8

Note. This is partitioned roughly into two‐types of objectives, those groups that focus on calibration and evaluation, and those groups that are focused on sensitivity
analysis and probing the model. The ELM nutrient competition scheme used (Relative Demand RD or Capacitance Based CB), the nutrients limiting the model, the
simulations periods used for each, and the section number are provided. Note that all groups are N limited, and group IV is N and P limited. The last three groups are have
been placed in the supplement to keep the manuscript more concise and readable. All simulations were represented by a tropical broadleaf evergreen tree functional type.
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stoichiometry and turnover data were used to derive a rough starting point. From there, a spectrum of
uptake efficiencies were tested for fitness by comparing basal area estimates to field observations (30 m2
ha− 1). For RD soil competition mechanics, this resulted in a base value of νmax(N) = 5e− 9 [gN gC− 1 s− 1].
Sensitivity is evaluated in Evaluation VI. The capacitance based competition nutrient scheme has a much
smaller actual/potential uptake ratio due to a different algorithm, and thus we arrived at higher values of
νmax(NH4,NO3) = 1.75e− 7. Calibration of νmax(P) used a similar approach. = 5e− 10 [gP gC− 1 s− 1] (which
was used in Evaluation IV).

Kp(pft), Ki(pft), Kd(pft) The calibration and sensitivity of the PID scaling parameters are covered in Evaluations
I and II (see Table 2 and Section 3.3).

3.2. Summary of Evaluations

We conduct a series of evaluations to elucidate the model's behavior. A list of the experiments and the simulations
used in each is provided in Table 2. Some simulations are “spin‐ups.” In these simulations, FATES vegetation is
initialized with saplings (if more than 1 plant‐functional type is present, the abundances are equal). For the first
30 years of the simulation, nitrogen is added to the soils. Specifically, extra nitrogen is given directly to the plants
and microbes if their needs are not met by the existing aqueous nitrogen in the soil (i.e., nitrogen limitations are
removed from all competitors). The added N is an artificial model construct that is not intended to represent
reality. It is used to give simulations a kick‐start (i.e., speed‐up) to the spinup by allowing the plant community to
develop more quickly and generating a stronger nitrogen fixation flux at the start. After this 30 years phase,
nitrogen then accumulates in the system through the natural mechanisms of deposition and fixation (fixation is the
dominant input in the system and evaluated further). The modeled decomposition process in this phase uses
increased rate constants (often referred to as Accelerated Decomposition (P. E. Thornton & Rosenbloom, 2005)).
The atmospheric CO2 concentration in spin‐ups is fixed at pre‐industrial levels (290 PPM). Eventually, the ni-
trogen and carbon content of the soils reaches an equilibrium, as the vegetation evolves towards a mature de-
mographic (quantified by a steady basal area distribution across size and functional types) and the litter fluxes
from the vegetation reaches a steady state. In all spin‐up simulations, phosphorus is supplemented to the com-
petitors, thus turning off its limitation.

The objective of several spin‐up simulations were to provide an initial‐condition for industrial‐era simulations
with transient CO2 concentrations. In those, we determined that the spin‐ups had reached steady‐state because the
log of the absolute value of Net Biome Productivity had reached very small values (approx 10− 4

[kgC m− 2 year− 1]) (C. Koven et al., 2013).

Industrial‐era simulations used normal (un‐accelerated) decomposition rate constants, initialized size and age
structure of vegetation from preceding spin‐up simulations, and likewise initialized organic soil C and N pools
using a multiplier of the values passed in from the preceding spin‐up simulations. If phosphorus is enabled, the
primary, secondary, occluded and organic pools are initialized from the data sets of X. Yang et al. (2013), using a
nearest neighbor mapping of the gridded data set to the site at BCI. The phosphorus in the vegetation was
initialized from the end of the nitrogen‐limited spin‐up simulations as well because the plant C:P tissue stoi-
chiometries are fixed from observations. In some experiments where simulations were evaluated into the future,
CO2 concentrations follow from scenario SSP2‐4.5.

All simulations utilized the 13‐year (2003–2016) meteorological record from Faybishenko et al. (2018) to
provide ELM‐FATES with rainfall, down‐welling solar radiation, down‐welling thermal radiation, atmospheric
pressure, humidity, wind‐speed and surface temperature. The simulations were all much longer than the
meteorological record, so the forcing was looped. Most experiments made use of the RD competition scheme,
solely because this approach is mathematically and conceptually simpler, which is helpful in probing the
complexities of the plant dynamics it is coupled with. In evaluation IV, the N and P limited simulations
compared with observations, utilized the capacitance based scheme because it was effective at maintaining
aqueous soil nutrient pools under high demand from competitors, as well as to see if its dynamics were sensible
and coupled correctly.

3.3. Evaluation I and II: Controller Calibration

The three terms in the PID control system (See Section 2.6 and Equation 19) serve distinctly different func-
tions. The proportion term serves to push the process variable back towards its target value ( fcn = 0) when there
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is a large difference between the current and target value. The derivative term serves to promote stability by
suppressing rapid change in the process variable. The integral term is most useful in reducing small and/or
persistent biases between the process variable and its target; as the bias grows over time it will exert greater
influence to change the set variable. In testing the PID controller and exploring all three terms, we were able to
achieve stable results without the integral term, so we decided to set it's scaling constant Ki to zero for this
study.

This system of nutrient cycling is fairly complex, with many plant and soil actors competing for and cycling
resources, all amongst changing meteorological conditions. The plants are not experiencing a steady availability
of nutrients for acquisition, and thus the relationship between controller set point (root proportion λ) and the
process variable (storage ratio fCN) are continually experiencing perturbations. To reduce the impact of these
perturbations in destabilizing the control system, we apply a multi‐day smoother to the derivative term. We use
simple exponential smoothing where the future smoothed value Xt + 1 is updated by the instantaneous value Y,
the previous smoothed value Xt and a weighting factor D synonymous with the number of time‐points
(days) over which to weight the instantaneous variable: Xt+1 = Xt ⋅ (1 − 1/D) + Y ⋅ (1/D). In the experi-
ments described here, we apply an D = 10 days smoother. We also tested 5 and 20 days smoothing windows.
Ultimately, reasonable controller response was found with all windows depending on the strength of the scaling
constants.

In Evaluation I, special reduced complexity simulations were conducted over a two dimensional log‐scale grid
search of theKp andKd terms from Equation 19. These reduced complexity simulations turned off recruitment and
disturbance, which resulted in a simulation of a single plant cohort over a 100 years life‐cycle trajectory. Each
simulation was assessed for the variance and mean of the process variable fCN(N) (Figure 5), leaf to fine‐root
biomass multiplier λ (set point, Figure S5.1 in Supporting Information S1) and growth increment (an indicator
of optimization of resource use, Figure S5.2 in Supporting Information S1).

The grid search shows that the model simulations are stable and viable (i.e., the plants survive and can adequately
adapt their root sizes to become productive) over a large range of parameters (>2 orders of magnitude each).
However, no single PID parameter combination has emerged as promoting better model results over the others.
Evaluation II seeks to determine this. We create a simulation with four different functional types of plants that
compete against each other for resources. A comparison of their basal area trajectories, and the root proportion λ
of newly recruited plants in open and exposed sunlight are shown in Figure 6. The plant functional types have the
same parameters (i.e., traits) and initial seedling density (this is a spin‐up style simulation) with the exception of
different PID controller constants. These parameter couplets are labeled a, b, c, and d in Figure 5.

The “C” PID parameter couplet was most effective at rapidly adjusting to the competitive resource environment
and homing in on a reasonable λ value fairly quickly, (see the right panel of Figure 6), thus initially occupying the
canopy. The “B” and “D” parameter couplets, while not dominating during any phase, persisted through the
simulation. The “A” PID parameter couplet eventually out‐competes “C” to dominate the canopy. From a theory
standpoint, it may be interesting in future work to consider how these PID parameters represent adaptation
timescales of different plants, and how those timescales may affect competition. At this point, we focus on a
practical perspective, as this exercise has helped to determine a set of PID constants (i.e., “C”) that can be used to
calibrate and evaluate the rest of the nutrient dynamical model. We acknowledge that these parameters do not
affect model outcomes in isolation, and likely have correlation with other parameters that will be investigated in
later evaluations. Therefore, parameter set C should not necessarily be viewed as the most optimal, but rather a
good candidate to explore the model mechanics further. Other users of the ELM‐FATES‐CNP model can modify
these constants in the parameter file if interested.

3.4. Evaluation III: Towards an Optimality‐Based Root Allocation Model

The purpose of this experiment is to view the emergent stand structure of the simulated vegetation under a
nitrogen limitation driving the fine‐root biomass optimization algorithm. In Figure 7, size‐structured estimates
of Basal Area, Above Ground Biomass, and the leaf to fine‐root proportion term λ partitioned into canopy and
under‐story plants, are projected across time. All plots show the signature of a spin‐up simulation, where over
the course of several hundred years the trees grow into the larger size classes from saplings. By the completion
of the simulation, there is a fairly uniform distribution of basal area across size classes. There is also a
signature of inter‐annual variability at any given size. This feature emerges due both the inter‐annual variability
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of the meteorological data set and to the internal dynamics of the cohorts (as
similar cohorts fuse together, and grow from one size‐classification to a
larger one). Other simulations (not shown) were conducted that removed the
inter‐annual meteorological signal by looping a single year of data, and a
similar pattern emerged there as well.

The λ values (i.e., the proportion of fine‐root biomass relative to leaf
biomass) in the canopy plants are distinctly and consistently larger than
those in the understory. This proportion is driven solely by the plant's ni-
trogen and carbon storage differential, which is a direct result of its relative
need for carbon or nitrogen. Therefore plants modeled in the understory
have lower fine‐root proportions because they need less nitrogen than car-
bon compared to canopy plants of the same size. All plants (canopy and
understory) have access to the same nutrient environment regardless of
canopy position, so these differences are driven purely by their ability to
capture carbon. Canopy plants have greater access to light and have
increased primary productivity compared to their understory neighbors. This
increased productivity places a greater demand on nitrogen acquisition to
keep pace with more rapid construction of plant tissues. Moreover, the
increased productivity of the canopy plants provides adequate carbon

Figure 6. ELM‐FATES simulation output containing four competing plant
functional types, labeled (a–d). These four PFTs have identical traits and
parameters, with the exception of their proportion and derivative
proportional integral derivative (PID) parameters. The values of their PID
parameters are provided in 5. The right hand panel shows the mean root
proportionality λ term for the different PFTs for open patch recruits. Patches
that are open, do not have closed canopies and thus light availability to
recruits. Recruit λ values are chosen for evaluation here to avoid the
confounding affects of size on root proportion.

Figure 5. Box plots of the mean (orange line), inter‐quartile range (box) and the 2.5 quartile ranges (fliers) for relative storage
of carbon to nitrogen variable (and Proportion Integral Derivative controller process variable) fCN(N), over a range of
proportion and derivative controller settings. The values next to “v” and “b” indicate the ascending rank of each parameter
couplet for bias and variance. Test v1 and b1 had the lowest variance and biases. Couplets designated A, B, C and D are used
in the follow‐up simulation. The color of the letters is similar to those shown in Figure 6.
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reserves to pay for the increased respiration associated with more fine‐root biomass. Plants that are in the
understory have limited access to light and subsequently lower productivity. Without the carbon to build new
tissues there is a correspondingly lower demand on nutrients to match the construction costs of the carbon. This
potentially triggers a response in the plant to decrease investments (respiration costs of fine‐roots) in the
acquisition of nutrients it doesn't need. A very similar simulation (which was testing a higher vcmax parameter
50 vs. 30.5), is presented in Figure S10.1 in Supporting Information S1. That simulation was more “top heavy”
in its representation of vegetation biomass, that is, distinctly more in the largest size classes and was quicker to
reach those sizes. It also demonstrates that while the understory plants can reduce their fine‐root biomass, they
do not achieve the same CUE of the canopy plants, which is also indicative of their lower, almost stagnant,
growth rates.

We note here a qualitative agreement between this emergent behavior in ELM‐FATES‐CNP, of plants in a higher
light environment shifting their allometry towards greater allocation to roots, with observations similarly showing
that plant allometric plasticity across light gradients favors a greater root biomass fraction under higher light
levels (Poorter et al., 2012).

3.5. Evaluation IV: Comparison of N and P Co‐Limited Simulations With Field Observations

This section demonstrates the co‐limiting affects of simulating both nitrogen and phosphorus together. Com-
parisons are then made with observations at the BCI site. Observations of fine‐root biomass and mineralized

Figure 7. Evaluation of the size structure of vegetated biomass accumulation, and the size and canopy position structure of the
fine‐root proportion term λ [gC fine‐root gC− 1 leaf]. Canopy plants display distinctly larger λ values than understory plants
at similar size classes.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003689

KNOX ET AL. 18 of 34

 19422466, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003689, W
iley O

nline L
ibrary on [05/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



nutrient content was made available via the FRED3 database (Iversen et al., 2017). Each of these simulations
utilizes the same initial condition, which is the final state of a pre‐industrial nitrogen‐only spin‐up simulation.

These C, N and P limited simulations provided an opportunity to study and probe key parameters related to plant P
uptake. Here we focus on the two Michaelis‐Menten parameters in the Capacitance Based (CB) nutrient
competition scheme (Zhu et al., 2019), the maximum uptake capacity νmax(P) and the Michaelis constant Km(P).
The Michaelis constant inversely impacts the competition function Γc (see Equation 3) along with aqueous soil
phosphate concentration [P]:

Γc ∝ 1/ (Km(P) + [P]) (21)

This was the first FATES evaluation to simultaneously compare above‐ground (LAI and Basal Area) and below‐
ground (fine‐root biomass profiles) model output to observations (including previous carbon‐only experiments).
It was evident that with the base calibrations of parameters that directly regulate CUE, productivity was not in
balance with the turnover and respiration losses that came with more fine‐root biomass. To address this, two
parameters that directly impact CUE were updated. The catalytic capacity of Rubisco, Vc, max, was increased from
30.9 (a legacy value used in previous FATES‐ELM runs (C. D. Koven et al., 2020), and other evaluations in this
study) to a value of 71 ((Lamour et al., 2023) and personal communication), and the fine‐root turnover time‐scale
τ(fr) was increased from 1 to 3 years.

Similar to calibrations with N (described in other sections), P uptake parameters were searched manually. A time‐
series of four simulations that demonstrate the coordinated effects of using relatively high and low νmax(P) and Km

(P) are shown in Figure 8.

Figure 8. Time series results from four simulations limited by Nitrogen and Phosphorus. The four simulations present
perturbations (a lower value and a higher value) of the two major plant phosphorus Michaelis–Menten uptake controls,
maximum uptake νmax(P) andMichaelis constantKm(P). Low νmax(P)= 2e− 10, high νmax(P)= 5e− 10, lowKm(P)= 0.01, highKm

(P) = 0.5. Nutrient waste fractions are calculated as the amount of nutrient effluxed from the plant divided by the plant's total
uptake.
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With overly high νmax(P) values, the plants acquire more phosphate than
needed, dumping what they could not use into the labile organic litter pool.
This is quantified by the waste fraction (see lower right panels of Figure 8),
the ratio of effluxed nutrient relative to the uptake through the roots. When
evaluated together, this tells us which nutrient (N or P) is in shortest supply to
the plant (lower waste fraction). Simulations with very high values of νmax(P)

(not shown) would ultimately run into issues with availability because P was
being pulled out of aqueous phosphate and sequestered in soil/litter organics.
Alternatively, plants with overly low values of νmax(P) could not acquire
enough phosphate to meet their needs and stagnated due to their inability to
meet construction costs. With low values of the Michaelis constant Km(P)

(increased competitiveness), the plants preferentially acquire phosphate at the expense of decomposers and
mineral surfaces. Depending on the strength of νmax(P) and the Michaelis constants of the decomposers and the
mineral surfaces, the plant community would potentially survive. But in the best scenarios the canopy persisted
amidst unrealisticaly low concentrations of soil phosphate, and in the worst scenarios (not shown) the canopy
would collapose because the decomposition cycle would slow to a halt thereby essentially stopping the production
of phosphate. Increasing the plant Km(P) (decreased competitiveness) promoted an increased equilibrium level of
aqueous phosphate, correspondingly promoting more plant uptake even at low νmax(P). The values of νmax(P) and
Km(P) in Figure 8 are somewhere in the middle of the endpoints described.

The simulation in Figure 8 using the lower νmax(P) and the higher Km(P) constant (i.e., less competitive) showed
less P wastage than the other three. Moreover, both N and P waste fractions dominated at different times, dis-
playing co‐limitation in the same simulation.

The simulation that maximized competitiveness, that is, νmax(P) = 5e− 10, Km(P) = 0.01, showed better agreement
with results, and is referenced in Table 3, Figures 9, 10, and S9.1 in Supporting Information S1. The fitness of the
simulation was primarily based on comparable forest demographics (i.e., basal area, LAI and fine‐root biomass),
and secondarily with comparable mineralized soil nutrient concentrations (since the primary, secondary, occluded
pools are driven externally).

Model predicted fine‐root biomass was compared to observed profiles by Yavitt et al. (2011), Yavitt and
Wright (2001) and Powers et al. (2005) at BCNM (Figure 9). The model estimated mean concentrations of
mineralized nutrients (NH4, NO3 and PO4) (Figure 10) in solution are compared to measurements by Yavitt and

Table 3
Integrated Relative Bias Scores for Carbon and Nutrient Targets in the CNP
Simulation (νmax(P) = 5e− 10, Km(P) = 0.01), Arranged in Acending Order
for Basal‐Area (BA), LAI, Fine‐Root Biomass (FR), and Mineralized
Nutrient Concentrations of Ammonium (NH4), Phosphate (PO4) and
Nitrate (NO3)

BBA BLAI BFR BNH4 BPO4 BNO3

− 0.0393 − 0.107 − 0.949 − 1.45 1.52 − 1.99

Note. These scores are a companion to the differences presented in Figures 9
and 10.

Figure 9. Comparison of ELM‐FATES predicted fine‐root biomass against observations at BCNM by Yavitt et al. (2011)
(y2011), Yavitt and Wright (2001) (yw2001) and Powers et al. (2005) (p2005). All data was filtered to report only estimates
of live roots from 0 to 2 mm diameter. Studies that did not differentiate between live and dead roots were corrected using the
necromass to livemass ratio of 0.0806 (Yavitt & Wright, 2001). Data points with circles represent measurements on Barro
Colorado Island, data points with triangles are on the other side of the river on the Gigante Peninsula. The polynomial fits to
the data (used in bias calculations) are shown along with the estimates. Comparisons of basal area and LAI are from Condit
et al. (2017).
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Wright (2001). In this parameterization, the model underestimated fine‐root biomass, under‐estimated the
mineralized N concentrations, and over‐estimated the mineralized P concentrations. The low N concentrations is
fairly consistent with other simulations in this manuscript. Mineralized N concentrations using the RD soil
competition scheme were typically lower compared to the CB scheme. Phosphate concentrations that are lower
and more consistent with observations were not overly difficult to achieve in isolation of other verification targets
(i.e., ignoring biomass), and were typical of increasing plant and decomposer competitiveness (small value of Km

(P)) and/or increasing phosphate leaching losses from runoff.

Comparisons for fine‐root biomass and mineralized nutrient content were made over depth. To generate a
comparable statistic, both model and observed quantities were fit with 3rd order polynomials, and then integrated
over depth. The integrated quantities for observed xobs and modeled xmod were then compared as a bias statistic B,
where B = 2 (xmod − xobs)/(xmod + xobs). This is equivalent to an unsigned relative root mean squared difference
statistic on a single data pair. The data fitting was necessary because model and observations where not on the
same depth grid, and more than one study contributed to fine‐root biomass estimates.

In summary, the CNP module was fairly successful in representing its primary target of basal area and LAI, yet
biases on the order of the amplitudes are evident for estimates of fine‐root biomass and mineralized nutrients. We
discuss potential causes of the observed differences, and the interplay between productivity, nutrient uptake
efficiency and total nutrient availability in the discussion.

3.6. Evaluation V: Incorporating Cohort‐Scale Symbiotic Fixers

Here we evaluate if the symbiotic nitrogen fixation module can generate an expected ecosystem response. One
way to test this is to see if a nitrogen‐fixing PFT can coexist with a non‐fixing functional type in simulation. In this
experiment, the two plant functional types have the same traits with the exception of the symbiotic fixing pa-
rameters themselves. This test is a simple proof of concept, and ignores the multifaceted trait space that fixers and
non‐fixers may occupy.

By introducing symbiotic fixation to the simulation, the pre‐existing total ecosystem fixation scheme (Cleveland
et al., 1999) must be modified to only represent free‐living fixation. This approach is similar to the approach used
by CLM5 (Lawrence et al., 2020), which identifies that the original total ecosystem fixation rates estimated in
Cleveland et al. (1999) projected low and high ranges of fixation. Here, we downscale the NPP‐derived total
ecosystem nitrogen fixation rate by a multiplicative scaling factor of 0.2.

For plants to achieve co‐existence in this model configuration, the unit cost of symbiotic fixation must be higher
than the uptake of aqueous nitrogen at its potential rate (i.e., uptake when aqueous nitrogen is abundant and no
source side limitation exists), yet must be lower than aqueous uptake under some amount of limitation. Otherwise,
symbiotic fixers would always be more efficient and out‐compete non‐fixers, not only when nitrogen from the
mineralized soil pool is limited. Menge et al. (2022) has made this type of argument, pointing out that the

Figure 10. Comparison of ELM‐FATES predicted mineralized nutrient concentrations against those observed by Yavitt and
Wright (2001). The polynomial fits to the data (used in bias calculations) are shown along with the estimates.
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energetic costs of breaking the triple bonds in N2 and supporting the nodules
in symbiotic fixers are thought to be costly. The expectation is that the two
functional types will reach an equilibrium in their relative proportion, where
the symbiotic fixers will support a mineralized nitrogen pool to an amount
where the carbon costs of actual plant nitrogen uptake balance with that of
fixation.

One way to assess the unit carbon efficiency [gN gC− 1] (inverse of cost) for
potential mineralized nutrient acquisition, is the sum of the potential uptake
rate of the plant νmax(NH4,pft) + νmax(NO3,pft) [gN gC− 1 s− 1] (for RD based
competition), divided by the maintenance respiration and replacement costs
of the roots [gC− 1 s− 1]. Note this is the steady state rate, and ignores the initial
cost to grow the root. The unit cost of fixation is directly quantified by
Equation 2, (J. Fisher et al., 2010; Houlton et al., 2008). In the base param-
eterization, the carbon efficiency for potential mineralized uptake was lower
than the fixation efficiency. We found that by increasing the total potential
uptake rate νmax(NO3) + νmax(NH4) and increasing the fine‐root lifespan τ(fr)
from 1 to 4 years, the potential mineralized uptake efficiency exceeded that of
fixation, see Figure 11.

The result of the test simulation is shown in Figure 12. The symbiotic‐fixing
PFTs were set to apply a 10% surcharge on fine‐root maintenance respiration
to fuel symbiotic fixation. This experiment also reduced the external N
supplementation period from 30 to 5 years, to ensure that the symbiotic fixers
had more control over system N supply (Figure 13).

Fixers and non‐fixers do show coexistence as demonstrated by their total above‐ground biomass. The fixers have
lower fine‐root biomass fractions λ, which indicates their decreased need for mineralized nitrate and ammonium.
Very early in the simulation, the non‐fixers are more efficient due to the plentiful mineralized soil nitrogen. But
after the supplementation period, plant mineralized nitrogen uptake becomes more limited (see bottom right
panel), which then creates a competitive opportunity for the fixer PFT to emerge.

As a whole (considering both PFTs), symbiotic fixation accounted for about 5%–10% of total plant acquisition,
and slightly more than 50% of the total nitrogen fixed by the ecosystem (including free‐living). The latter is
roughly close to what is expected, Batterman et al. (2013) suggested that symbiotic fixation was the dominant
mode of introducing nitrogen to the site at BCNM, but within the same order of magnitude. The proportion in the
simulation could be increased by further regulating uptake efficiency parameters or scaling down the free‐living
fixation rate. There are also different symbiotic fixation temperature response functions available (Bytnerowicz
et al., 2022), and future ELM‐FATES‐CNPtesting may use these.

It takes about 500 years in this simulation for the fixer and non‐fixer types to reach an equilibrium. Yet, the results
are an average of the whole landscape, and not a representation of how a single plot of land recovers from a
disturbance. Batterman et al. (2013) estimated that symbiotic fixation peaked near the first decade following a
disturbance, but after several decades total fixation flux dwindled considerably. This suggested that symbiotic
fixers play an important role in developing the nutrient environment in newly disturbed lands, but perhaps they
became less competitive as the nitrogen built up in the soil and vegetation over time. The ELM‐FATES‐CNP
model does have the ability to simulate disturbance and discretely track land of different ages (called
“patches”) and the plants that inhabit them. However in the current version of the model, the soil column and its
biogeochemistry (i.e., nitrogen and phosphorus concentrations in all forms) are the same across patches of all
ages, as the patch structure only represents heterogeneity in the aboveground environment. In future versions of
the model it would be interesting to see if the competitive dynamic of symbiotic fixers and non‐fixers can be
achieved over the time‐scales of decades where each patch has a dedicated nutrient environment in the soil.

3.7. Evaluation VI: Sensitivity to Parameter Constants That Control Nutrient Availability and Affinity

Evaluation VI tests model response to the intersection of three forces: nitrogen availability, plant nitrogen use
efficiency and increasing atmospheric CO2 concentration. Nitrogen use efficiency is modified by perturbing the

Figure 11. Comparison of the unit carbon efficiency for obligate symbiotic
fixation (J. Fisher et al., 2010; Houlton et al., 2008) versus potential aqueous
nitrogen uptake under the base parameterization and one with increased
efficiency. Carbon costs for uptake efficiency consider maintenance
respiration and replacement carbon costs, but not the initial investment.
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plant functional parameter constant: unit potential nitrogen uptake rate per mass of fine root (efficiency) νmax(pft,N)

[gN gC− 1]. High values of νmax(pft,N) (highly efficient) will acquire more nitrogen for less fine‐root carbon.
Nitrogen availability is controlled by applying a constant multiplicative scaling coefficient β to the NPP‐based
total ecosystem fixation function. The β parameter is not listed in Table A1, and is not considered a compo-
nent of this model because existing total ecosystem fixation schemes were used in this manuscript and the scaling
coefficient is only used here to test sensitivity. The four parameter combinations are provided in Table 4, and a
time‐series of model output that use these four parameter sets are provided in Figure 13.

In all four simulations, there are several patterns that offer straightforward explanations. Increased productivity
associated with higher CO2 concentrations drive higher basal area (biomass) and leaf area, as well as increased
demand on nitrogen acquisition to meet greater organ construction costs. Mineralized (aqueous) nitrogen depletes
over time, as the new additions to the system (fixation) can not keep pace with the increased uptake. Faced with a
greater need for (higher production) and a reduced supply of aqueous nitrogen, the plants respond by increasing
uptake capacity by building more fine‐roots (λ). With decreased aqueous nitrogen and higher root mass, the unit
uptake of nitrogen per unit biomass decreases. The increase in CUE experienced by the plants is diminished (and
mostly reversed) when the mineralized nitrogen pools fully deplete, and the plants are forced to respire newly
assimilated carbon that cannot be used to build tissues.

Some patterns in the response are explainable, but less straightforward. Mineralized nitrogen depleted first in the
low availability simulations, and also slightly earlier in the high versus low affinity simulations. This suggested
that plants can be overly competitive for nitrogen, ultimately to their detriment. In simulations with higher uptake
affinity, the plants out‐competed decomposers, which prevented the decomposers from mineralizing nitrogen into

Figure 12. ELM‐FATES‐CNP simulation with coexistence between a fixer and non‐fixer plant functional type. The
symbiotic fraction of acquisition, refers to the fraction of plant acquisition that is from symbiotic‐fixation, along with
mineralized nutrient uptake. The fraction of generation looks at the relative contribution of symbiotic fixation to total
nitrogen fixed by the system, also considering free‐living fixation.
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Figure 13. Time series model output for the four simulations described in Experiment VI. Line colors match simulations described in Table 4, where: “lv‐lf” is low‐
affinity low‐fixation, “hv‐lf” is high‐affinity low‐fixation, “lv‐hf” is low‐affinity high‐fixation and “hv‐hf” is high‐affinity high‐fixation. The CO2 forcing signal uses
observed industrial‐era concentrations and follows the SSP2‐4.5 scenario prediction to 2100. With no symbiotic fixation, Free N Fixation is synonymous with total
fixation and is the primary source of nitrogen input. Carbon use efficiency is the ratio of net primary production over gross primary production, where NPP accounts
(i.e., subtracts) for any extra respiration of “excess carbon,” that which couldn't be allocated due to nitrogen limitations. This extra respiration is also captured by “C
Allocation Inefficiency,” the fraction of grams of excess carbon burned per grams NPP. Plant Unit N Uptake refers to the grams of nitrogen uptake per gram of fine‐root
carbon.
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the system, which leads to a slightly earlier collapse. It must be emphasized
here, that mineralized nitrogen concentrations of zero are not observed at this
site. These simulations are intended to stress‐test the model to evaluate its
behavior under end‐member type parameter calibration environments. How-
ever, recall from Evaluation IV that perturbations of the Michaelis‐Menten
competition parameters KM for phosphorus displayed that equilibrium
values of mineralized nutrient could be calibrated with the Capacitance Based
(CB) competition scheme. A discussion on model calibration and generating
parameterization that are useful for prediction is provided in the discussion.

Another interesting pattern was the shift in the process variable fCN(N), from
unbiased (i.e. closer to 0) to a bias indicative of a perpetually nutrient limited
state. In the high affinity case, the algorithm attempts to rectify the bias by

increasing the λ value, however the slowly dwindling supply of aqueous nitrogen continually counteracts the
affect that increased fine‐root fraction (set variable) should have on the process variable. This raises the question:
what is the appropriate time‐scale of response for investing in plant nutrient uptake? In these simulations, the PID
constants that control λ were chosen for competitiveness in a constant CO2 environment, but perhaps a param-
eterization that favors more rapid adaptability would be more competitive in a changing CO2 environment.

4. Discussion
4.1. Regulation of Nutrient Uptake

There are multiple avenues plants employ to regulate nutrient acquisition, which include the fine‐root growth
response and obligate symbiotic fixation described in this manuscript. Yet the uptake of nutrient by plants harbors
complexity, including modification of not just fine‐root biomass, but morphology and structure (e.g., Taylor
et al., 2014), the dynamic regulation of ion‐specific transport systems within and across the root‐soil interface
(Crawford & Glass, 1998), considerations of advection and diffusion (e.g., McMurtrie & Näsholm, 2018),
symplastic and apoplastic transport (Steudle & Peterson, 1998), enzyme kinetics, symbiotic relationships with
facultative nitrogen fixers, algal nitrogen fixation on leaves, mycorrhizal associations and moreover acquisition of
other nutrients not considered here (K, Ca Mg, etc).

Employing dynamic fine‐root response to nutrient gradients has both an established history in observation (Forde
& Lorenzo, 2001) as well as model development (de Kauwe et al., 2014; Farrior et al., 2013; Thornley, 1995).
This method differs from the Thornley models in how fine‐root growth is controlled, where they tracked the
substrate (C and N) concentrations in the roots and shoots dynamically. Several models also down‐regulate
mineral nutrient uptake in a more facultative form, outside of signaling increases or decreases in fine‐root
biomass (Kou‐Giesbrecht et al., 2021; Thornley, 1995; Thum et al., 2019; Zhu et al., 2019). Thornley (1995)
called this downregulation product inhibition, and based it on N concentrations in the roots. Kou‐Giesbrecht
et al. (2021) identified it as nitrogen stress, and tied it to the deficit of actual to target non‐structural nitrogen
content in the plant. Thum et al. (2019) downregulates uptake based on “internal‐demand” which also assesses the
labile (non‐structural) nutrient content in the plant against the nutrient content of roots and leaves. ELM‐FATES‐
CNP does not include this facultative downregulation, for two reasons. The first is that it was not clear how to
represent this economically by associating a cost to this regulation. Secondly, an imperative was placed on
minimizing the accumulation of parameters with the interest of using nutrient limitations in global simulations
and their calibrations. We do however acknowledge this as a limitation of the model. In particular, ammonium,
nitrate and phosphate uptake are all tied to the same optimization target, fine‐root biomass response, and cannot
up and down‐regulate independent of each other. While it is unclear how to quantify both the timescale and the
costs of regulated transport systems in the fine‐roots, particularly using a tractable set of parameter constants
calibrated for a global set of plant functional types, regulated transport systems exist (Crawford & Glass, 1998).

Looking towards future model testing and developments, uptake capacity could be associated with dynamic ac-
tivity levels of the fine roots, as well as the amount of fine‐root biomass or their surface area. While many of these
processes about to be mentioned are implicitly captured in the work presented here, through maximum uptake
capacity of roots and the Michaelis Menten half‐saturation constants, their explicit representation could be illu-
minating. For instance, dynamic activity could be described as enzymatic activity rates, which are tied to nutrient
content, the production of exudates to prime decomposition (via mycorrhizae for instance) or to chelate nutrients.

Table 4
Parameter Combinations for the Four Simulations in Evaluation VI

Low plant uptake affinity High plant uptake affinity

low fixation νmax(N ) = 5e− 9, β = 0.5 νmax(N ) = 2.5e− 8, β = 0.5

high fixation νmax(N ) = 5e− 9, β = 2.0 νmax(N ) = 2.5e− 8, β = 2.0

Note. Each simulations used perturbations to only nitrogen acquisition effi-
ciency νmax(pft,N) and a scaling coefficient on total ecosystem fixation β. The
red (compared to blue) indicates a higher nitrogen availability in the system.
The darker shade (compared to lighter) indicates a higher plant uptake
efficiency.
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Or, as recently stated, dynamically regulated transport systems for each chemical species could be introduced. This
activity could be controlled explicitly by resource investments from the plant (e.g., respiration, carbon and nutrient
allocations) and constrained (albeit not explicitly governed or proportional to) by fine‐root surface area. Root
nutrient uptake could bemademore realistic by considering the diffusion andmass transport of nutrients in the soil,
root surface area and root architecture using the model of McMurtrie and Näsholm (2018).

4.2. Fine‐Roots at the Nexus of Productivity, Resource Availability and Acquisition Efficiency

Potential nutrient uptake (or similarly, plant nutrient demand) in ELM‐FATES‐CNP is dictated by the amount of
fine‐root biomass and the maximum uptake rate parameter family νmax, recall Equation 4. As demonstrated in
Evaluation IV and VI, small (inefficient) values of νmax drive larger fine‐root proportions (λ), and large (efficient)
values of νmax drive smaller fine‐root proportions λ. The response of λ was also impacted by total system nutrient
availability (tested in Evaluation VI by scaling total N addition to the system via community N fixation), and how
carbon productive the plants are (See pertubation to catalytic capacity of Rubisco vc, max in Evaluation IV). This
model has shown an interplay between the processes of how carbon productive and efficient plants are and how
nutrient productive and efficient plants are.

In theory we could continue to decrease the uptake efficiency parameter νmax until we achieve more comparable
estimates of fine‐root biomass. This can not be done in isolation, as to support more fine‐root biomass with a
similar stand‐structure, the plants would need greater productivity and would require a holistic calibration ex-
ercise that also looks at net carbon productivity parameters, such as those controlling organ turnover rates,
respiration rates and GPP.

However, we take the comparison of fine‐root biomass with field data (see Figure 9) with a grain of salt. There is a
difference between how the FATES model differentiates a fine‐root from other tissues, and how fine‐roots are
differentiated in the field. FATES has a functional definition, and differentiates fine‐roots as tissues that respire at
a higher rate than coarse root or below‐ground sapwood. Also FATES makes no differentiation of absorbing
versus transporting fine‐root tissues, or how those tissues respire, turnover or impact nutrient cycling (McCor-
mack et al., 2015).

Also, fine roots in FATES‐CNP are treated as absorbing tissues for the purposes of nutrient uptake. At the same
time, the model applies a single fine‐root lifetime for the purposes of calculating the costs and benefits of fine root
allocation. Alternatively, fine‐roots are typically differentiated in the field by size (diameter) and order (Iversen
et al., 2017), and efforts to reconcile fine root biomass and 14C isotopic ratios have demonstrated two distinct
populations of fine roots with widely varying turnover times (Ahrens et al., 2014; Gaudinski et al., 2010). In this
respect, there is somewhat of a disconnect between the meaning of fine‐root represented in the model and how
fine‐roots are currently conceptualized to influence plant and ecosystem function. Making a more closely aligned
comparison between what the model defines as fine‐root, or what sub‐classifications it has, and what is measured
in the field, would be useful for verification and calibration. Measurements of nitrogen content in fine‐roots, either
connected to the profiles of carbon biomass via ratios, or as a stand‐alone profile would aid in making a cleaner
comparison between model and observation. The current model formulation uses total fine‐root nitrogen as the
basis for the carbon costs of respiration (Ryan, 1991). In future work, we intend to represent different fine root
functional populations, their nitrogen content, and associated turnover times to better represent the joint con-
straints of nutrient uptake rates, root biomass profiles, and root 14C isotopic ratios.

4.3. Looking Ahead to Calibration

The model calibrations performed thus far were driven primarily to achieve fitness in the vegetation structure.
However, we also compared against new axes that we had not previously investigated (or calibrated) with the
carbon‐only model, including fine‐root biomass, eddy flux (See Text SI 9.1 in Supporting Information S1) and
mineralized nutrient concentrations. On one hand it was encouraging that with nutrient limitations, the model
could continue to estimate similar vegetation structure (basal area and LAI) that it had in the carbon‐only model.
However, there were clear biases between the other model estimated metrics and observations (See Table 3).

In Evaluations IV and VI, we learned that mineralized nutrient uptake capacity (i.e., νmax) would promote
increased fine‐root proportions in the model, yet this would also drive down total biomass as CUE decreased due
to increased respiration and turnover costs. Utilizing newly available estimates of Vc, max (Lamour et al., 2023),
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and updates to decrease root turnover, partially (but not completely) increased the productivity and efficiency of
the plant to facilitate the higher fine‐root content seen in the root census data. The Eddy flux data (Detto, 2022)
(Figure SI 9.1 in Supporting Information S1) suggests there possibly an overly large respiration component, yet it
is not clear if that is do to soil respiration over that period, and/or underestimated GPP.

We also learned that the perturbations that focused on model sensitivity to phosphate uptake showed us that
modification of uptake capacity νmax(P) and the Michaelis constant Km(P) did provide powerful levers to generate
different levels of nutrient uptake, and also straight‐forward and somewhat differential controls on phosphate
availability and plant uptake. No sensitivity of ammonium or nitrate affinity, such as νmax(NH4,NO3) or Km(NH4,NO3)

were performed against the measured values, and thus compared poorly (See Figure 10). The nitrogen system is
also more complex, in that there are two mineralized pools (NH4 and NO3 compared to PO3), a more dynamic
gain term (fixation), and another loss term (denitrification) compared to just leaching with phosphate. In a future
calibration effort, it is clear that at least one set of nutrient affinites (those for P or those for N) should be calibrated
along with the parameters that goven plant carbon balance, and parameters that govern soil nutrient losses and
gains (leaching, denitrification, fixation, etc). Moreover, calibrating plant uptake parameters (such as νmax(P)) are
sensitive to the magnitude of the phosphate concentration in solution, which is just as slow to equilibriate as other
soil nutrient pool, and may require simulations of 100s of years to generate realizations in a calibration exercise.

In summary, it became clear that a calibration that operates on a broader parameter set of parameters that controls
plant carbon balance as well as nutrient uptake affinity and cost is the logical next step. Assuming our repre-
sentation of modeled and observed fine‐root biomass can be rectified, these observations would form a key
component of future calibration exercises. Such an exercise would also require more sophisticated toolsets to
explore the parameter optimization space (such as Offline LandModel Testbed (Lu et al., 2018; Sinha et al., 2023),
the Predictive ECosystem ANalyzer (LeBauer et al., 2013), LAVENDAR (Pinnington et al., 2020), etc.)

4.4. Other Limitations and Future Work

This research focused on a single evaluation site, and did not explore the model hypotheses in extra‐tropical
ecosystems, or the competition dynamics between plants with different functional traits. Part of this decision
was based on practicality. Developing a model comparison test‐bed requires high‐fidelity meteorological drivers
and soils data. This study also utilized a calibration of the carbon‐only version of the model (per the BCI site's
specific demographics) to form a solid foundation for the perturbations and analyses of the new nutrient relevant
parameters and module switches. While the type of data used is available at other sites, it requires pre‐processing,
conversion and site‐specific adaptation. Moreover, the scope of this manuscript was already quite large. As
explained elsewhere, this constrains the study to a demonstration of the model's capacity to test its hypotheses and
make sensible and reasonable responses to stimuli, and no intention has been made in making predictions. Future
extensions to this work could evaluate model response to environmental gradients in soil conditions or climate
forcing, and in those cases it would pertinent to perform calibration exercises across multiple sites, tropically or
extra‐tropically. Further studies could also investigate biodiversity and interaction among plants (of different
functional types) that may differ in how aggressive or conservative their nutrient acquisition strategies may be, or
how tradeoffs related to these strategies may or may not lead to coexistence.

The model hypothesis presented here represents plant organ stoichiometries that are time‐invariant traits asso-
ciated with the plant's functional type. While there is evidence for leaf nutrients and photosynethic parameters
such as Vc, max to covary, and it is hypothesized to be important (Walker et al., 2014), the mechanistic under-
standing of how leaf nutrient stoichiometry varies in time, and how it affects Vc, max, are not well understood. In
the current configuration, effects of tight versus loose correlation between these Vc, max and leaf nutrient content,
on productivity and competitive outcomes could be explored through Perturbed Parameter Ensembles in future
work. Our FATES development has provided a software infrastructure to facilitate these types of developments,
and the open‐source code and our paper encourages these types of analyses for future work.

This model formulation has not explicitly incorporated mycorrhizal activity or its affects on nutrient availability.
In a sense, the effects of mycorrhizae are implicit or subsumed in the soil decomposition and nutrient competition
schemes. However, without explicitly representing mycorrhizae, it is impossible to capture the symbiotic benefits
of the association with the plants alone, and not just the broader affects of releasing mineralized nutrient to the soil
system. It would be interesting to incorporate and test hypotheses of explicit mycorrhizal interactions, and their
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effects on nutrient cycling. The ELM‐FUN model explicitly represents mycorrhizal interactions and could
potentially help in this endeavor.

Calibration and uncertainty in Earth System Simulators has become an ever increasing challenge as all facets of
the models steadily become more complex, with more tune‐able parameter constants and greater process un-
certainty. It was imperative that this formulation struck a balance between the desire to represent numerous
complex processes and the desire to have a stable model that uses a reasonably small number of parameter
constants (particularly those that cannot be directly retrieved from measurements). Without these concessions,
terrestrial biosphere models cannot be extended beyond a handful of measurement‐rich testbed sites.

5. Conclusions
This paper presents a framework that allows combining forest demography modeling with nutrient cycling, with a
goal towards balancing increased physical process representation while limiting to the extent possible new pa-
rameters and associated complexity. In their own right, the limitations of nutrients to plant growth, and the ability
to represent plant demographic controls on growth, mortality and disturbance, are both vitally important to
representing the flow of global carbon stocks in a changing world. This work introduces the necessary step of
combining these two major concepts. Land‐surface models are starting to combine higher levels of complexity in
these major demographic and nutrient feature components, in both land models (ED2‐MEND‐NCOM (Medvigy
et al., 2019)), as well as fully coupled ESMs (LM4.1‐BNF (Kou‐Giesbrecht et al., 2021; Sulman et al., 2019)), for
use in better exploring quantifying and understanding how these dynamics interact with global change, and this
work demonstrates a model foundation to further such efforts.

The series of experiments presented here has demonstrated that this model framework can generate sensible
patterns of ecosystem response, using a modest parameter constant calibration effort. To summarize: (a) a small
grid search of PID constants Kd and Kp rendered values that enable the model to adapt stable fine‐root biomasses
with reasonable levels of nutrient and/or carbon efficiency losses, (b) perturbations to parameters that control
nutrient storage μ, μov did not exert undue model instability or variability, and (c) subtle differences in how the
model culls unnecesary roots and removes unused carbon showed modest differences in model output. The
number of newly introduced and salient (to nutrient cycling) model parameters that aren't readily derived from
field meausurements (i.e., stoichiometry α, and leaf retranslocation ωlf) that exerted strong control on model
response is small (namely, the uptake affinity parameters νmax and Km). Balancing model complexity with model
robustness and preventing over‐calibration is of critical importance and has been identified as a key need in land‐
surface modeling endeavors (Prentice et al., 2015).

The new model hypothesis captures a few simple yet important concepts. Nutrient acquisition requires resources
and that the construction of plant biomass is limited by the acquisition of nutrients. In this case, the payment is the
maintenance respiration, construction and turnover replacement cost of the fine‐roots. The current model hy-
potheses can also work with existing hypotheses in free‐living and symbiotic nutrient fixation. Finally, the
dynamicism of fine‐root proportion allows for a new competitive niche, where understory plants have a new
method to conserve resources when there is low access to light and productivity.

Appendix A: Table of Variables and Parameters
This appendix contains a table of variables and parameter constants that are used throughout the manuscript and
its supplemental material.

Table A1
Non Exhaustive List of Variables and Parameter Constants in the Functionally Assembled Terrestrial Ecosystem Simulator
(FATES) Nutrient Cycling Model

Symbol Description Units

State variables

C(o) Carbon mass [kg]

C ̀
(o) Target carbon mass [kg]

M(o,s) Nutrient mass [kg]
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Table A1
Continued

Symbol Description Units

M ̀
(o,s) Target nutrient mass [kg]

d Reference stem diameter [cm]

λ Leaf to fine‐root target biomass multiplier [–]

fcn The relative storage of carbon over the relative

Storage of nutrient, for the maximum (more limited) of nitrogen and phosphorus [–]

External and diagnostic variables

ftrim Canopy trim fraction [–]

np The number of plants in a cohort per square meter [plants m− 2]

ffr( j) The fraction of fine‐root biomass in each soil layer [kg− 1]

Fluxes

M̂u,NH4( j) Plant ammonium uptake capacity in each soil layer [kg m− 2 s− 1]

M̂u,NO3( j) Plant nitrate uptake capacity in each soil layer [kg m− 2 s− 1]

M̂u,POx( j) Plant phosphate uptake capacity in each soil layer [kg m− 2 s− 1]

Ṁu(s) Daily uptake of mineralized soil nutrients in solution [kg day− 1]

Ċg Daily carbon gain [kg day− 1]

Ṁg(s) Daily nutrient gain [kg day− 1]

Ṁ f Daily nitrogen gained through symbiotic fixation [kg day− 1]

Ṁe(s) Excess nutrient exuded back to soil [kg day− 1]

Ċt(o) Daily carbon lost to turnover [kg day− 1]

Ṁt(o,s) Daily nutrient lost via turnover [kg day− 1]

Ṁa(o,s) Daily nutrient net allocated [kg day− 1]

ṙe Excess respiration of unusable carbon [kg day− 1]

ṙ f Respiration cost to fix Nitrogen [kg day− 1]

Parameter constants

α(o,s) Nutrient stoichiometric target for

Non‐labile tissue, nutrient mass per carbon mass [kg− 1]

τ(o,pft) Non‐mortal turnover timescale of plant organs [years]

ωlf(s,pft) * Leaf retranslocation fraction of nutrient on turnover [kg− 1]

ωfr(s,pft) * Fine‐root retranslocation fraction of nutrient on turnover [kg− 1]

μ(s,pft) * Proportion of target nutrient stored

Per target nutrient in tissues [kg− 1]

μov * Fractional overflow of storage (all chemical species)

The plant will hold before exuding or respiring [–]

ρf(pft) * Maintenance respiration surcharge fraction for obligate symbiotic dinitrogen fixation [–]

νmax(s) * Maximum nutrient uptake demand per fine‐root biomass [kg− 1 s− 1]

δ(o) * Allocation priority [index]

Kp(pft) * Proportion term scaling parameter in PID controller [–]

Ki(pft) * Integral term scaling parameter in PID controller [–]

Kd(pft) * Derivative term scaling parameter in PID controller [–]

Note.All Mass and Mass Fluxes Are Assumed to be “per Plant” [plant− 1]. External Variables Refers to Those Variables That
Are Resolved by FATES Processes Outside the Scope of This Manuscript and Are Described in the FATES Technical
Manual. Parameter Constants Denoted With * Are Newly Introduced in This Study. Proportional Integral Derivative Stands
for Proportion Integral Derivative, and Is the Controller Used to Search for Optimal Fine‐Root Biomass
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Appendix B: Software Features
The processes described here are encoded in a modular and extensible software structure. It is modular because
the software for the plant algorithms do not reference data structures from the FATES (or other) model and uses
a lightweight coupler to communicate with FATES. This approach allows the plant model to be ported to any
terrestrial biosphere model that uses a cohort or individual plant type of scaling approach. It is extensible
because the software is written so that other configurations of plant organs (e.g., leaf spatial layering, storage
pools with different functions, mycorrhizae, etc.) and chemical elements (e.g., Potassium, Magnesium, etc.) can
be readily adapted, if the user can provide relevant parameter constants and the surrounding terrestrial
biosphere model can accommodate the boundary fluxes. Further, the FATES model code that processes litter
fluxes has been written to loop over the self‐describing data structures for the chemical elements present
(instead of explicitly defining new variable primitives for each mass pool or flux associated with a chemical
species).

Data Availability Statement
The data and software code used to reproduce the model simulations and analysis in this manuscript have been
made publicly available. The “Next Generation Ecosystem Experiment–Tropics” project provides model driver
data at the Barro Colorado Island Site, including soils and meteorological data (Knox et al., 2019). The data can be
found here: https://ngt‐data.lbl.gov/dois/NGT0086/. Both the FATES and E3SM models use Git (https://git-scm.
com/) version control to manage their software, and Github (https://github.com/) to host their software. The
model software of both projects and their dependencies are publicly available. Readers who wish to either
reproduce or do similar work in this manuscript are encouraged to install git and use it to clone the E3SM model,
also Zenodo DOIs are provided. FATES will be imported as a submodule of E3SM. To initialize submodules
following a clone, and assuming the user has “checked out” the correct tag or branch, they should run the
command “git submodule update –init –recursive”.

The specific E3SM tag used in this research is DOI 10.5281/zenodo.7684977, 10.5281/zenodo.7684977; or the
github tag can be found here: https://github.com/rgknox/E3SM/releases/tag/elm-fates-cnp-ms (Edwards
et al., 2023).

The specific FATES tag used in this research is DOI 10.5281/zenodo.7685350, 10.5281/zenodo.7685350; or the
github tag can be found here: https://github.com/rgknox/fates/releases/tag/fates-cnp-ms-anlsys (FATES‐
Development‐Team, 2023).

The python analysis scripts (contained in (FATES‐Development‐Team, 2023)) used to generate the figures in this
manuscript are provided in the directory: “./ms‐analysis/”.

This file (contained in (FATES‐Development‐Team, 2023)) will patch the default FATES parameter file to
generate parameterizations specifically for one tropical evergreen PFT at Barro Colorado Island Panama: https://
github.com/rgknox/fates/blob/fates-cnp-ms/parameter_files/patch_default_bciopt224.xml.

A nix‐type “shell” script (contained in (FATES‐Development‐Team, 2023)) is provided, that was used to build and
setup the simulations. This script should be executed from the directory: “./cime/scripts.” This file also assumes
that the driver data package listed above is unpacked in the same directory as well. The user will need to modify
many of the paths in the script to accommodate their file structure. This script should facilitate other users running
simulations at BCI, but this file is provided as‐is, and absolutely no support will be provided for making this script
work. https://github.com/rgknox/fates/blob/fates-cnp-ms/parameter_files/create_bci_fatescnp_mscopy.sh.
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