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ABSTRACT OF THE DISSERTATION

Analysis and Design of an Incentive Scheme for a Proof-of-Work Blockchain

by

Seunghyun Yoo

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Leonard Kleinrock, Chair

A blockchain characterized by a distributed, decentralized, and public computer system

rapidly grows and realizes the Internet of Value. The fundamental idea is to replicate its state

database to every node computer with protocol-specific restrictions to keep consistency and

integrity. Transferring controls from a central entity to each individual sounds compelling,

but a protocol designer should carefully design an incentive scheme to encourage anonymous

participants to do the desired actions.

In this dissertation, we analyze the reward policy on block creation in a proof-of-work

blockchain. The reward policy consists of a block reward and transaction fees. A proto-

col designer intends to incentivize block miners to process transactions until the designed

capacity. However, we observe that the hidden costs may distort the reward policy; block

miners do not have incentives if processing and network delays are not negligible. We model

a transaction fee market, the block mining process with the delays, and the decision-making

of block miners under the reward policy. We express the expected mining revenue as a func-

tion of the number of transactions in a block. We then identify the operating region of a

block reward to mitigate the effect of the hidden costs. We propose a dynamic block reward

ii



of a proportional subsidy for processing transactions as a revised incentive scheme. Thus,

blockchain users experience reduced waiting time and less expensive transaction fees.

In addition, we further expand queueing theory, especially for a head-of-line bulk service

priority queue with an arbitrary service time distribution. We provide analytical expressions

(exact solutions) for critical numbers in a transaction fee market: average waiting time,

minimum transaction fee, and average total transaction fee.
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CHAPTER 1

Introduction

1.1 Motivation

The idea of decentralization, which transfers controls from a central entity to each individual,

is a response to the current problems of a centralized system. Admittedly, the clear ownership

of a centralized system provides a tailored experience to its users and enables the system

components to be configured in a highly efficient manner. The users generally delegate

their controls and often responsibilities to one trusted party for the sake of convenience.

However, such delegation may pose potential risks such as a single point of failure, a lack of

transparency, and an imbalance between users and service providers.

A blockchain characterized by a distributed, decentralized, and public computer sys-

tem instantiates the concept of decentralization and further realizes the Internet of Value.

The fundamental idea is to replicate its state database to every node computer with some

protocol-specific restrictions to keep its consistency and integrity. The remarkable properties

are its global openness and transparency, while the system state is tamper-proof. A cen-

tralized system does not possess these properties as a system operator can alter the internal

state. A blockchain may empower the Internet space by allowing people to define the value

in a digital form on the borderless peer-to-peer network of computers.1

However, a blockchain requires special care for its successful operation. Unlike a cen-

1The (potential) applications are programmable money (cryptocurrency), smart contract (business logic),
logistics, document management, copyright management, social media, online games, identification manage-
ment, verifiable electronic voting system, and many others.
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tralized system, an incentive scheme is significant in encouraging anonymous participants to

do the desired actions. Improperly designed incentives may lead to degraded system per-

formance or system failure in the worst-case scenario. Since it is also hard to modify the

established system components and even some minor parameters (causing political conflicts),

a careful study of the incentive scheme is necessary.

A typical incentive scheme for a proof-of-work blockchain defines a block reward and

transaction fees that are received by the “miners” who process the user transactions. The

block reward has multiple roles: incentivizing running blockchain node computers, subsi-

dizing transaction fees, and issuing new coin into a blockchain economy. The transaction

fee paid by users can be either constant or decided by the market mechanism. However,

we observed that some blockchain miners do not process user transactions as opposed to

intuition. In this work, we build a mathematical foundation to explain why these miners

make a seemingly irrational decision and also suggest ways to properly incentivize them to

process transactions.

1.2 Contributions

This dissertation studies the dynamics of a transaction fee market, the mining process with

processing and network delays, and the reward policy on block creation in a proof-of-work

blockchain. We expand queueing theory, especially for a bulk service queue with multiple

priority groups, to relate the number of waiting transactions in a pending transaction pool

and the transaction fee market.

A block miner claims a block reward RB created by a system and transaction fees RTX

paid by users, only if her proposed block survives from the intense mining competition where

its probability is psurvival. Every miner selects ri, the number of transactions she includes in

a block to maximize her expected mining revenue given by

E[RB + RTX] = (RB + RTX)psurvival (1.1)

2



The main problem is to find the optimum number of transactions r∗i that maximizes the

expected mining revenue and an operating range of block reward RB such that

∀i : r∗i ≥ B (1.2)

where B is a bulk size, i.e., the maximum number of transactions allowed in a block.

This work makes the following contributions:

• (Average Waiting Time for an M/GB/1 Head-of-Line Bulk Service Priority

Queue)2 We provide an analytical expression (exact) to compute the average waiting

time for a head-of-line [Kle76, p.119] bulk service priority queue with an arbitrary

service time distribution. A typical method involves evaluating B system stationary

probabilities. Our numerical approach bypasses this necessity.

• (Minimum Transaction Fee) We transform the distribution of the number of wait-

ing transactions to the distribution of the minimum group index, and we then mul-

tiply with the fee distribution as a weight. We also present concrete solutions for an

M/MB/1 head-of-line bulk service priority queue. These are exact solutions.

• (Average Total Transaction Fee) We derive an analytical expression for the ex-

pected value of the total transaction fee, E[RTX]. It is also an exact solution.

• (Mining Process with Delays) We approximate the probability of fork survival,

psurvival, i.e., winning the mining competition. Finding an exact formula is complicated

because of an explosively growing number of combinations. We provide the formulae

for lower and upper bounds of the probability of fork survival. We also provide concrete

solutions for special cases for two miners and three miners. These are approximation.

2Kendall’s queueing theory notation is A/S/c where A denotes an arrival time distribution, S denotes a
service time distribution and c denotes the number of servers. M stands for Markovian (Poisson process),
G stands for a general distribution, and B stands for the size of the bulk when more than one customer is
served at a time.

3



• (Three Miner Approximation method) We find that the solution for the special

case for three miners is useful to approximate the probability of fork survival among

many miners with two strategies.

• (Reward Policy) We derive the optimum number of transactions in a block r∗i to

explain the behavior of miners. We then identify an operating region of the block

reward RB that incentivizes a miner to process transactions to the designed capacity

B, and achieve the maximum system throughput µB.

• (Dynamic Block Reward) We also propose a revised reward policy of a propor-

tional subsidy RS for processing transactions. We show that the optimum number of

transactions increases and the operating region of a block reward gets extended.

1.3 Roadmap of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 presents the background

of a blockchain system architecture. Chapter 3 provides the mathematical analysis of the

transaction fee market and the expected waiting time using queueing theory. In Chapter 4,

we analyze the block mining process considering processing and network delays. Chapter 5

studies the optimum reward policy on block creation and the corresponding decision-making

of block miners, and proposes the dynamic block reward to improve their response.

The above roadmap of our research is motivated by the following. We wish to establish

incentives to encourage miners to mine blocks with B, the maximum number of transac-

tions. Consistent with the protocol constraints, this will deliver the most transactions per

second while at the same time will maintain lower transaction fees for the users since their

transactions are being processed quickly and without cutthroat competition for service. One

of our main goals is to provide the best incentives to the miners to mine full blocks. To do

so, we note that Eq. 1.1 identifies the expected reward that a miner receives and one system

4



design variable in this equation that we study is to optimally select the block reward RB, in

a way that incentivizes the miner to mine full blocks. Thus we seek to evaluate the terms of

this equation. In particular, we must find E[RTX] as well as psurvival. We devote Chapter 3 to

finding E[RTX] (whose solution is Eq. 3.78) and Chapter 4 to finding psurvival (whose solution

is in Eq. 4.79). Then, in Chapter 5, we finally solve for the value of RB that identifies the

optimal value for this block reward.

Finally, we conclude in Chapter 6.

5



CHAPTER 2

Background

2.1 Blockchain System Overview

Figure 2.1: An immutable linked list of blocks.

In this section, we briefly introduce the core idea of a blockchain. In short, a blockchain

is an immutable linked list of blocks which contain transactions. Every block must include

a hash digest of the parent block as shown in Fig. 2.1. Now the data structure obtains the

property of immutability. The alteration on the history, either for a malicious purpose or a

simple hardware failure, can easily be detected because any single-bit change will result in

entirely different hash digests as shown in Fig. 2.2.

This append-only database is replicated over a peer-to-peer network. However, the im-

mutability alone does not guarantee a global consensus. Any peer may append a new block

to the end of the linked list. It is virtually impossible for peers, especially anonymous ones,

to determine which version is valid among many legitimate blocks.

Bitcoin [Nak08] solves this global consensus problem by using a proof-of-work [Bac02,

DN92, JJ99] scheme, which is originally designed to prevent spam emails by imposing some

6



Figure 2.2: Any single-bit change invalidates subsequent hash digests.

computational cost. According to this special rule, a peer must present a random number

(nonce) that satisfies a trapdoor function [Yao82] condition to propose a new block. The

trapdoor function is easy to verify but very hard to find its inverse. In addition, the protocol

specifies that peers should choose the longest chain as a canonical state. To break the

global consensus, an attacker needs to possess at least 51% of the total computing power on

the network and reiterate mandatory proof-of-work tasks [Nak08, ES14, GKL15, GKK16,

PSS17].

Figure 2.3: From a cryptocurrency to a global computer.

A transaction is a verifiable message secured by a digital signature.1 A private key

represents the ownership of the specific address in a blockchain.2 Fig. 2.3 shows an example

of what information a blockchain stores. A ledger keeps the balance (and the history) of

1ECDSA (Elliptic Curve Digital Signature Algorithm) is popular due to its compactness.

2A wallet address is derived from a public key.
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each address. A Bitcoin transaction is mostly used for value transfer. It also supports some

special instructions for limited-purpose scripting. Ethereum [Woo14] extends this idea to

facilitate a general-purpose smart contract [Sza97] platform. A ledger also stores data and

even a program code associated with the address. A stack-based virtual machine executes

a program code and records state transitions (the program result) to the ledger. In other

words, a blockchain is a global computer running on the Internet.

Figure 2.4: Overall blockchain components.

Fig. 2.4 depicts the overall blockchain components. The physical layer provides basic

computing resources such as CPU, memory, storage, and network. The chain layer defines

a data structure. A linked list of blocks is the most common form. One may also consider

an alternative data structure like DAG (Directed Acyclic Graph) [FKS19]. The runtime

environment layer consists of the internal state database and the virtual machine that can

execute a program code stored in the ledger. A smart contract may take some inputs from
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the external world if necessary. A blockchain user may define an advanced service (business

logic) upon the application layer by creating a smart contract or combining the existing

contracts.3 Finally, the consensus algorithm ensures that every participant has a global

common view of the state.

2.2 Consensus Algorithms

2.2.1 Proof-of-Work

(Mining) Bitcoin [Nak08] relies on a proof-of-work scheme to reach a global consensus in a

trust-less environment.4 A miner prepares a block by selecting and processing transactions

from a pending transaction pool where the transactions received from users are temporarily

stored. In addition, a miner (i.e., a node who proposes a block) must find a random number,

called a nonce, that satisfies Eq. 2.1, called a hash puzzle. The term target difficulty adjusts

the difficulty of the hash puzzle.

SHA256 (SHA256 ((nonce) + (data)))︸ ︷︷ ︸
A numerical value

< (target difficulty)︸ ︷︷ ︸
A numerical value

(2.1)

A hash function such as SHA256 maps an input to a random number. Due to its ran-

domness, the miner finds a nonce that satisfies the above difficulty condition through trial-

and-error. This iterative procedure is called mining. The other miners can easily check the

validity of the new block by plugging the nonce into Eq. 2.1.

(Block Creation Time) A feedback mechanism regulates the block creation time.5

If the protocol senses that the block creation time is too fast, it sets the lower threshold

3However, a careful review is necessary on the logic of the contract code and its implication.

4There are more than 10,000 cryptocurrencies with slight differences as of 2021. We choose Bitcoin as an
example because it is the first proof-of-work blockchain.

5The block creation time of Bitcoin is approximately 600 seconds. The block creation time of Ethereum
is approximately 12 ∼ 15 seconds.
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(target difficulty). Thus, the probability of solving a hash puzzle decreases. The opposite

adjustment is necessary for the slowed block creation time. Fluctuations in the network hash

rate (computing power) and propagation delays may affect the block creation time in a short

period [DW13, BKK20]. Over a long period, the feedback mechanism regulates the block

creation time reasonably.

(Probabilistic Finality) [GKL15] Since mining is a random process, there can exist

multiple new blocks in the peer-to-peer network at the same time, even under the difficulty

condition. To resolve such an inconsistent state, miners select the longest chain by default.

Combined with the controlled block creation time, the probability that the past blocks are

reverted to decreases quickly. One needs to possess 51% of the computing power (hash rate)

on the network to supersede the other miners and reiterate mandatory proof-of-work tasks.

(Permission-less) Another attractive characteristic of a proof-of-work consensus is that

it does not require authorization to join a blockchain peer-to-peer network. Open member-

ship is achievable because the protocol counts the majority by computing power.

(Block Size) There is a hard limit on the maximum number of transactions in a block.

It depends on the size of a digital signature (bytes) and the block size limit (bytes). An in-

creased block size may improve performance in terms of the number of transactions processed

per unit time. However, it causes more processing and network delays.

The block size limit naturally forms a transaction fee market. Users pay a fee to place

their transactions in a new block. Miners naturally process transactions in order of the

highest fees first. The level of transaction fee is sensitive to the demand on the block space

as the supply is fixed.

(Reward Policy) It is important to define an incentive scheme properly as the par-

ticipants are anonymous, and their interests may differ from the intention of a protocol

designer. There are mostly two types of incentive rewards: RB (block reward) and RTX

(transaction fees). The protocol specifies that a miner whose proposed block gets accepted
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by the blockchain receives the block reward from a system plus the associated transaction

fees. The block reward (which manifests itself as new coin to the miner) serves the following

purposes: encouraging miners to run a blockchain node, subsidizing transaction fees, and

issuing new coin.

This dissertation studies the reward policy on block creation in a proof-of-work blockchain.

2.2.2 Proof-of-Stake

While a proof-of-work consensus counts the majority by computing power, a proof-of-stake

consensus uses the amount of share. The concept was first introduced by Peercoin [KN12].

It is generally energy-efficient since it does not rely on a proof-of-work style hash puzzle.

The idea is based on the belief that most shareholders will not harm the system against

themselves. A hybrid form of using both proof-of-work and proof-of-stake was suggested

by [BLM14, CDF17]. Ethereum plans to migrate to a proof-of-stake consensus [BRL20].

Cardano [KRD17], Algorand [GHM17] with VDF (Verifiable Delay Functions) [BBB18], and

Polkadot [Woo16] are pure proof-of-stake blockchains.

(Block Creation Time) The amount of share determines the probability of finding the

next block. The miner who is chosen to create the next block has a probability of being

selected in proportion to her stake. The block creation time is typically a constant.

(Finality) The cost of block creation is very cheap compared to that of a proof-of-

work consensus. For this reason, a proof-of-stake consensus must tackle a nothing-at-stake

problem [Zam15, LAB17, Mar18], i.e., a miner has an incentive to vote on multiple chain

forks at the same time. It usually consists of a pre-commit stage and a commit stage. The

protocol forbids reverting committed blocks.

(Permission-less) No explicit authorization is required to join a blockchain peer-to-peer

network.

(Reward Policy) In a proof-of-stake consensus, a penalty is one way of mitigating the
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nothing-at-stake problem. When a node does not behave as expected, e.g., being offline, the

protocol allows forfeiting the staked coin. A block reward RB is typically zero or nonzero

under an inflationary policy. Block validation gets a reward instead. A transaction fee may

exist, but some projects set a fixed amount.

2.2.3 Byzantine Fault Tolerance

This traditional consensus algorithm [Lam82, CL99] can also be used for a blockchain. It is a

permission-ed system. Byzantine Fault Tolerance (BFT) requires knowledge of the number

of members N whereas a proof-of-work or proof-of-stake consensus counts the majority by

computing power or share, respectively.

A distributed computing system should consider two important properties: (1) liveness

and (2) safety. The liveness property is associated with whether the system is available

(i.e., continues to run). The safety property is associated with whether the system state is

consistent. Fig. 2.5 depicts the relationship between the number of failing nodes and the

two properties. Let N be the total number of nodes and T be the minimum group of nodes.

Set theory tells us that if there are more than N − T failing nodes, it is impossible to find

a sufficient number of good nodes (N − (N − T + 1) < T ). Let m be the number of shared

nodes between two groups. The size of the union of the two groups is 1 ≤ 2T −m ≤ N , i.e.,

2T −N ≤ m ≤ 2T − 1. If there are more than 2T −N − 1 failing nodes, it is possible to find

two disjoint groups leading to an inconsistent state. For a blockchain, the safety property is

most important. The condition of N − T ≤ 2T −N − 1, i.e., T ≥ 2
3
N + 1

3
tells us that 67%

of nodes must be honest in order to reach a consistent state (i.e., safe).

Ripple [CM18] and Hyperledger Fabric [ABB18] are blockchains with the BFT consensus

algorithm. Only pre-authorized nodes may create a new block. Stellar [LLM19] requires

a node to select trustworthy entities. A transaction fee may exist, but a block reward RB

hardly exists in this consensus algorithm.
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Figure 2.5: Safety and liveness with respect to the number of faulty nodes.

2.2.4 Variants

There are variants of a proof-of-work consensus to mitigate costly busy waiting.

(Proof-of-Elapsed-Time) A proof-of-elapsed-time [Int17] consensus leverages a special

hardware feature such as Intel SGX (Software Guard Extensions). The code being executed

in a protected area cannot be inspected or tampered with.

(Proof-of-Space) A proof-of-space (proof-of-capacity) [DFK15, ABF14] consensus uses

a complicated and slow hash function. Instead of using a CPU or GPU, it precomputes

hash values on a disk drive. Looking up the value from the disk drive is much faster than

computing the hash function in real-time. Filecoin [BG18] and Chia [CP19] are blockchains

with this consensus algorithm.

2.3 Security Threats

There are many unseen security threats and potential vulnerabilities to a blockchain re-

gardless of its consensus algorithm. Some security assumptions on hash functions or digital

signature algorithms might not hold in the future. Software defects and human errors are

prone to happen repeatedly. They cause catastrophic damage.

In particular, the following attacks apply to a proof-of-work blockchain.

(Double Spending Attack) A 0-confirmation attack, or Finney Attack [Fin11] is one
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of double-spending attacks. An attacker finds and hides a block with a transaction that

moves the fund of the attacker to somewhere else. The attacker takes an irreversible service

in the real world using it and broadcasts the hidden block to override the transaction. The

users should be aware of that the probability that a transaction is reverted is not exactly

zero.

(Nonlinearity in Mining) Selfish Mining [ES14, GKK16, SSZ16] is an exploit in which

a miner generates a fork deliberately to make the other miners waste computing power on

the stale block. Block Withholding (BWH) is an attack against the opponent mining pool by

pretending to contribute to mining. Fork-After-Withholding (FAW) attack [KKS17] extends

the BWH attack, and the gain is greater than or equal to that of a BWH attacker. These

attacks weaken the assumption of 51% of computing power.
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CHAPTER 3

Transaction Fee Market

3.1 Introduction

In a blockchain system, a transaction fee indicates the urgency of the submitted transaction.

It motivates block miners to process transactions. Miners typically process transactions in

order of the highest transaction fees first to maximize their mining revenue. Thus, the market

mechanism prioritizes expensive user transactions, which prevents attackers’ cheaper trans-

actions from pushing the system load beyond the designed capacity. As the transaction fee

determines the relative position among other competing transactions, a user should consider

the trade-off relationship between her transaction fee and the waiting time required for her

transaction to be processed.

We wish to find the average waiting time for a customer as a function of their transaction

fee paid. To model this, we consider a head-of-line bulk service queue with multiple priority

groups with an arbitrary service time distribution. A bulk service queue requires us to

find the system stationary probabilities to obtain the waiting time distribution, and this

typically involves the evaluation of some unknown constants. Below, we choose to make use

of the Hilbert transform to bypass the necessity of simulations to evaluate those unknown

constants.

The standard supply and demand curves provide a basic understanding of how a user

determines her transaction fee. The equilibrium price is the point where the two curves

intersect. A typical blockchain fee market has an inelastic supply curve due to the block size
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limit. The equilibrium price is sensitive to the demand curve. In a head-of-line priority queue,

we find that the minimum transaction fee in a block is the same as the equilibrium price. We

derive the distribution of the minimum transaction fee in a block from the distribution of

the number of customers (transactions) for each priority group. We also derive the formula

for the average total transaction fee in a block.

3.2 Related Work

The literature has extensively studied bulk service queues. Bailey solved the limiting dis-

tribution of queue length by using an Imbedded Markov chain [Bai54]. Downton obtained

the Laplace transform of the waiting time distribution from Bailey’s result [Dow55]. Jaiswal

solved time-dependent equations for a bulk service queue by defining an additional state

(phase) [Jai60]. Neuts considered a case where the server must wait for enough customers

to arrive to fill the bulk [Neu67], and Medhi obtained the waiting time distribution [Med75].

Chaudhry [CT81] and Holman et al. [HCG81] related the distribution of queue length at

random epochs to departure epochs. Chaudhry and Templeton [CT83] covered almost com-

plete variants of bulk service queue problems. The above methods usually need to find

stationary probabilities numerically, except for some cases, and [PH86, BC89] developed an

optimization technique for finding roots.

Another approach is to solve the recurrence relation known as the Lindley process by the

Wiener-Hopf method [Lin52]. Keilson related the bulk service queue problem to the Hilbert

problem and obtained the steady state waiting time distribution [Kei62]. Bhat nicely solved

the Lindley process and provided a compact expression for distinct roots [Bha64]. Keilson

further developed the approach and presented stationary probabilities in terms of Green’s

function [Kei64].

For a head-of-line priority queue, Cobham presented a recursive formula for the average

waiting time for each priority group [Cob54][Kle76, p.119]. Kesten et al. showed the Laplace
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transform of the waiting time distribution [KRV57].

For a blockchain as an application, Kawase and Kasahara obtained the average waiting

time for a bulk service queue by finding roots with an arbitrary service time distribution

[KK17] and developed the discussion for a priority queue [KK20]. Huberman et al. obtained

the average waiting time for a bulk service priority queue with an exponential service time

distribution [HLM19]. For a transaction fee market, Houy modeled the fee market by using a

linear demand curve and a quadratic supply curve of physical goods [Hou14]. Rizun analyzed

the existence of the fee market regarding the block size limit [Riz16]. Basu et al. [BEO19]

showed that the first price auction can be unstable but proposed a revised bidding method

based on the second price auction.

3.3 System Model

Figure 3.1: A miner chooses up to B transactions from her pending transaction pool.

Fig. 3.1 illustrates a brief overview of the transaction selection process by an individual

block miner. A user submits a transaction with a fee to the peer-to-peer (P2P) network.

The submitted transactions are propagated to the rest of the network. They eventually

reach every miner’s pending transaction pool. We assume that every miner has an identical

set of pending transactions, i.e., no message is lost. We also assume that transactions
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are homogeneous, i.e., the size of each transaction is constant.1 Now, a miner chooses B

transactions from her pending transaction pool for the next block. A rational miner who

maximizes her mining revenue chooses the most expensive transactions for her next block.

Bulk Service Queue (M/GB/1)

We assume that a miner always includes B transactions for the next block, except in

the case of an occasional lack of a sufficient number of pending transactions. If a pending

transaction pool contains k transactions (0 ≤ k < B), a miner (server) includes k transac-

tions. The service time distribution for a miner to create a block is arbitrary. The number of

servers in our queueing model for blockchain mining is 1 as only one chain will survive. The

arrival time (assumed to be Poisson arrivals), the service time (arbitrary), and the transac-

tion fees are all independent random variables. That is, we use a bulk service queue model

(M/GB/1).

Head-of-Line Priority Queue

A transaction fee can be any real number as long as the user credit balance allows.

However, we assume that there are P priority groups as we will assume a discrete set of P

transaction fees. For each priority group x = 1, · · · , P , the corresponding transaction fee

is gx and we assume Poisson arrivals at the mean rate of λx. We assume that every miner

determines the priority based on the transaction fee such that g1 < · · · < gP ; note that this

implies the priority increases with the group index, the P -th group being the highest priority.

The discrete case (coarse-grained) can be extended to the continuous case (fine-grained) as

P → ∞. We also consider a non-preemptive priority queue since any new transaction does

not alter or join the block mining process.

Table 3.1 summarizes the notation.

1In practice, the unit of block size limit is a byte. Throughout this work, the block size limit refers to a
bulk size B, i.e., the maximum number of transactions in a block.
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Table 3.1: Notation

Symbol Description Unit

P Number of priority groups

x Priority group index, x = 1, · · · , P

gx Transaction fee used by priority group x B

x∗ The smallest index of the group that experiences a finite av-

erage waiting time (“saturation” point)

λx Mean arrival rate for priority group x (TX)/s

λ Mean arrival rate for the system (priority groups of interest) (TX)/s

B Bulk size, the maximum number of transactions in a block (TX)

µ Block rate, the mean service rate (the number of processed

transactions per unit time is equal to µB)

(block)/s

ρ Utilization factor, ρ = λ
µB

W̄x Average waiting time (i.e., time in queue) for priority group

x

s

T̄x Average system time (waiting time plus service time) for pri-

ority group x

s

Nx Random variable denoting the number of waiting transac-

tions in priority group x

(TX)

RTX Random variable denoting the sum of transaction fees (total

transaction fee) in a block

B
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3.4 Analysis

3.4.1 Average Waiting Time

3.4.1.1 Mean Queue Length

Little’s result [Lit61] states the following relationship between the average number of cus-

tomers N̄ in an ergodic system, their average time spent in the system T̄ , and the mean

customer arrival rate λ. We use the term “customer” and “transaction” interchangeably.

N̄ = λT̄ (3.1)

Figure 3.2: Little’s result for each priority group (P = 5).

If we consider the average number of customers Nqueue in a queue, by Little’s result, the

average waiting (i.e., queueing) time W̄ is equal to Nqueue/λ.

Eq. 3.1 is also useful for a queue with priority groups. Fig. 3.2 shows an example of a

queue with five priority groups (P = 5). We may consider each priority group a separate

queue. Each priority group x has its mean arrival rate λx. The arrived customer spends

time T̄x on average in the system (queue plus service) before it departs the system. It forms
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a line of customers in the priority group x whose average length is λxT̄x. Our goal is to find

W̄x = N̄x/λx.

The number of waiting customers in each priority group Nx is essential to compute average

waiting (and system) time. We can obtain the distribution of the number of customers in

the highest priority group NP . However, it is difficult to obtain the distribution for every Nx

(except NP ) directly because of entangled dependencies. Instead, we consider the distribution

of the cumulative sum of the numbers of customers as an indirect approach. For example,

N4 + N5 shares the same problem structure except the different rate parameter λ4 + λ5. As

shown in Eq. 3.2, we may obtain the average number of customers in the priority group 3

by solving the two instances of the queue problem.

E [N3] = E [N3 + N4 + N5]︸ ︷︷ ︸
a solution for λ3+λ4+λ5

− E [N4 + N5]︸ ︷︷ ︸
a solution for λ4+λ5

(3.2)

Now we consider an imbedded Markov chain to model the number of customers in the

queue. A state transition occurs whenever the bulk of customers departs the system. Let qj

denote the number of customers in the queue where j is the state transition instant. The

server handles at most B customers (transactions) for each block service unit, with vj equal

to the new arrivals during the bulk service period. Thus, we obtain the stochastic recurrence

relation as follows:2

qj+1 = max(qj −B, 0) + vj (3.3)

We generalize a helper function ∆k in [Kle75, p.181] as follows:

∆k,B ≜


B if k ≥ B

k if k < B

(3.4)

The value of the helper function ∆k,B means the number of customers that a server

2The use of the recurrence relation is known as the method of Kendall [Ken51].
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handles for each service unit. The server cannot handle more than a bulk size B even if

there are plenty of customers. To simplify the notation, ∆k refers to ∆k,B from now on.

Now Eq. 3.3 can be written as follows:

qj+1 = qj − ∆qj + vj (3.5)

By squaring both sides of Eq. 3.5 and applying the expectation E[·], we have:

E[qj+1
2] = E[qj

2] + E[∆qj
2] + E[vj

2] − 2E[qj∆qj ] − 2E[∆qjvj] + 2E[qjvj] (3.6)

Now we let q̃ and ṽ be the limiting number of customers waiting in the queue and the

limiting number of new arrivals during the service period, respectively.

The expected value of ∆q̃ in terms of E[q̃] is:

E[∆q̃] = E[q̃] +
∞∑

k=B

(B − k)P[q̃ = k] (3.7)

The expected value of ∆q̃
2 is:

E[∆q̃
2] =

B−1∑
k=0

k2 P[q̃ = k] + B2

∞∑
k=B

P[q̃ = k] (3.8)

Similarly, the expected value of q̃∆q̃ is:

E[q̃∆q̃] =
B−1∑
k=0

k2 P[q̃ = k] + B
∞∑

k=B

k P[q̃ = k] (3.9)

Since the number of arrivals vj is independent of qj, the last two terms E[∆qjvj] and

E[qjvj] are the products of expectations, E[∆qj ]E[vj] and E[qj]E[vj], respectively. By taking

the above equations together, we obtain:

2(B−E[ṽ])E[q̃] = E[ṽ2] +B2− 2B E[ṽ] + 2E[ṽ]
B−1∑
k=0

(B − k)P[q̃ = k]−
B−1∑
k=0

(B − k)2 P[q̃ = k]

(3.10)
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If E[ṽ] ̸= B, the mean queue length E[q̃] is:

E[q̃] =
E[ṽ2] + B2 − 2B E[ṽ] + 2E[ṽ]

∑B−1
k=0 (B − k)P[q̃ = k] −

∑B−1
k=0 (B − k)2 P[q̃ = k]

2(B − E[ṽ])
(3.11)

We further simplify the numerator part:

E[q̃] =
E[(B − ṽ)2] +

∑B−1
k=0 (B − k)(2E[ṽ] − (B − k))P[q̃ = k]

2(B − E[ṽ])
(3.12)

For a bulk service queue (B > 1), we first need to find B stationary probabilities, P[q̃ = k]

where k = 0, 1, · · · , B − 1.

Unstable Conditions

Note that we expect an infinite number of customers when the average number of arrivals

E[ṽ] is equal to B. Further, if E[ṽ] > B, (i.e., again when the system is unstable), the

denominator of Eq. 3.12 is a negative number. The numerator of Eq. 3.12 is still a positive

number (assuming that P[q̃ = k] is a positive number). The contradiction is due to the

ergodicity assumption. Recall that the state transition occurs at the mean rate of µ. The

mean arrival rate λ is now µE[ṽ]. With the unstable condition E[ṽ] ≥ B, we get:

ρ =
λ

µB
=

µE[ṽ]

µB
≥ 1 (3.13)

For a priority queue, we may consider groups from x to P . The mean arrival rate for the

groups of interest is
∑P

i=x λi. The saturation point x∗, which is the smallest index for the

group that experiences a finite average waiting time, can be obtained by
∑P

i=x∗ λi < µB.

Special Case (B = 1)

Eq. 3.12 is solvable for a single service queue, B = 1. We may reduce it to:

E[q̃] =
E[ṽ2] + 1 − 2E[ṽ](1 − P[q̃ = 0]) − P[q̃ = 0]

2(1 − E[ṽ])
(3.14)

where E[ṽ] ̸= 1. Note that E[ṽ] is equal to ρ (the usual utilization factor in queueing theory).

Now P[q̃ = 0] stands for the probability that the queue is idle, or 1−ρ. Thus, we may further
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reduce Eq. 3.14 to:

E[q̃] =
E[ṽ2] + 1 − 2ρ2 − (1 − ρ)

2(1 − ρ)
= ρ +

E[ṽ2] − E[ṽ]

2(1 − ρ)
(3.15)

where ρ is the utilization factor. This result is well known in queueing theory.

3.4.1.2 z-Transform

Let us return to the bulk service queue with a bulk size B. A unilateral z-transform is useful

to solve Eq. 3.5 as we now show. This method results in a probability generating function

for the distribution of the number of customers in a queue.

For a random variable qj, we apply the unilateral z-transform.

Qj(z) =
∞∑
k=0

P[qj = k]zk = E[zqj ] (3.16)

Let us apply expectations for Eq. 3.5.

E[zqj+1 ] = E[zqj−∆qj ]E[zvj ] (3.17)

Likewise, we apply the unilateral z-transform for a random variable vj.

Vj(z) =
∞∑
k=0

P[vj = k]zk = E[zvj ] (3.18)

We obtain the probability generating function.

Qj+1(z) = E[zqj−∆qj ]Vj(z) (3.19)

For the limiting random variable q̃ and ṽ:

Q(z) = E[zq̃−∆q̃ ]V (z) (3.20)

The expectation term in Eq. 3.20 is:

E[zq̃−∆q̃ ] = z−B

(
Q(z) +

B−1∑
k=0

P[q̃ = k](zB − zk)

)
(3.21)
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By rearranging the equation, we obtain:

Q(z)
(
zB − V (z)

)
=

B−1∑
k=0

P[q̃ = k](zB − zk)V (z) (3.22)

The probability generating function for the number of customers in a queue is thus:

Q(z) =
V (z)

∑B−1
k=0 P[q̃ = k](zB − zk)

zB − V (z)
(3.23)

Now the mean queue length E[q̃] can be obtained from the probability generating function

Q(z) by taking the first order derivative with z = 1.

E[q̃] =

[
dQ(z)

dz

]
z=1

(3.24)

We know that z = 1 is one of B zeros for the denominator of Q(z). For some cases,

one may explicitly find the remaining B − 1 zeros and determine the unknown stationary

probabilities. In general, using z-transforms does not eliminate the necessity to find the

B − 1 zeros.

3.4.1.3 Hilbert Transform

We now propose a numerical method to compute the mean queue length without evaluating

the stationary probabilities.

Let us once again consider the recurrence relation:

qj+1 = qj − ∆qj + vj = max(qj −B, 0) + vj (3.25)

The initial number of customers is zero, i.e., q0 = 0. At round 1, we have q1 = v0. At

round 2, we have q2 = max(v0 −B, 0) + v1. At round 3, we have q3 = max(max(v0 −B, 0) +

v1 −B, 0) + v2. The nested max functions can be rearranged as follows:

q3 = max (v0 −B + v1 −B, v1 −B, 0) + v2 (3.26)
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In general, the recurrence relation of the number of customers at round j can be expressed:

qj = max

(
max

0≤i≤j−2

(
j−2∑
k=i

(vk −B)

)
, 0

)
+ vj−1 (3.27)

Now let us define an auxiliary variable sk:

sk =
k−1∑
i=0

(vi −B) (3.28)

Since the number of arrivals is an independent process, we may ignore the subscript index

and only consider the number of additive terms.

qj = max

(
max

0≤i≤j−2
(si+1), 0

)
+ vj−1 (3.29)

The outermost max function can be applied to each term.

qj = max
0≤i≤j−2

(max(si+1, 0)) + vj−1 (3.30)

To simplify the notation, we define x+ ≜ max(x, 0) and we have:

qj = max
0≤i≤j−2

(
s+i+1

)
+ vj−1 = max

1≤k≤j−1

(
s+k
)

+ vj−1 (3.31)

Now we may use Spitzer’s identity (Corollary 1) [Spi56]:

E[max(s+1 , s
+
2 , · · · , s+n )] =

n∑
k=1

E[s+k ]

k
(3.32)

Therefore, the mean queue length is:

E[q̃] = lim
j→∞

E[qj] = lim
j→∞

(
j−1∑
k=1

E[s+k ]

k
+ E[vj−1]

)
=

∞∑
k=1

E[s+k ]

k
+ E[ṽ] (3.33)

Expectation of the positive part of random variable X

Now we consider the expectation of X+ ≜ max(X, 0).

E[X+] =
∞∑
k=1

k P[X = k] (3.34)
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From the definition of the expectation, we have:

E[X] =
∞∑

k=−∞

k P[X = k] =
−1∑

k=−∞

k P[X = k] +
∞∑
k=1

k P[X = k] (3.35)

For the positive part of random variable X:

E[X+] =
∞∑
k=1

k P[X = k] =
1

2

(
E[X] −

−1∑
k=−∞

k P[X = k] +
∞∑
k=1

k P[X = k]

)
(3.36)

Now we want to represent the above series in terms of a characteristic function. In

general, the characteristic function of the positive part of a random variable is studied in

[Pin15, Pin18].

Characteristic Function

In a probability theory, ϕX(t), a characteristic function of a random variable completely

defines its probability distribution:

ϕX(t) ≜ E[eitX ] =
∞∑

k=−∞

eitk P[X = k] (3.37)

where i =
√
−1.

Now we use Euler’s formula

eix = cosx + i sinx (3.38)

and take a first order derivative of ϕX(t) as follows:

ϕ′
X(t) =

∞∑
k=−∞

ik(cos tk + i sin tk)P[X = k] (3.39)

We compute ϕ′
X(−t) and find that the sign of the sine term is the opposite.

ϕ′
X(−t) =

∞∑
k=−∞

ik(cos tk − i sin tk)P[X = k] (3.40)

Then we consider their difference divided by t:

ϕ′
X(t) − ϕ′

X(−t)

t
= −2

∞∑
k=−∞

k sin tk

t
P[X = k] (3.41)
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By integrating from 0+ to ∞ and assuming that we may change the order of integration

and summation: ∫ ∞

0+

ϕ′
X(t) − ϕ′

X(−t)

t
dt =

∫ ∞

0+
−2

∞∑
k=−∞

k sin tk

t
P[X = k]dt

= −2
∞∑

k=−∞

∫ ∞

0+

k sin tk

t
dtP[X = k]

(3.42)

From the integration of a sinc function [Wei]:∫ ∞

−∞
sinc(x)dx = π (3.43)

where

sinc(x) ≜


1 for x = 0

sinx
x

otherwise

(3.44)

Since the integrand is symmetric, we obtain:

∫ ∞

0+

k sin tk

t
dt =


kπ
2

if k > 0

0 if k = 0

−kπ
2

if k < 0

(3.45)

Now we have the following equation:∫ ∞

0+

ϕ′
X(t) − ϕ′

X(−t)

t
dt = −π

(
∞∑
k=1

k P[X = k] −
−1∑

k=−∞

k P[X = k]

)
(3.46)

By rearranging Eq. 3.46,

∞∑
k=1

k P[X = k] −
−1∑

k=−∞

k P[X = k] = − 1

π

∫ ∞

0+

ϕ′
X(t) − ϕ′

X(−t)

t
dt (3.47)

The expectation of X can be computed from the characteristic function.

E[X] = ϕ′
X(0)/i =

∞∑
k=−∞

ikei·0·k P[X = k]/i =
∞∑

k=−∞

k P[X = k] (3.48)
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By combining Eq. 3.48 and the above result,

E[X+] =
∞∑
k=1

k P[X = k] =
1

2

(
ϕ′
X(0)

i
− 1

π

∫ ∞

0+

ϕ′
X(t) − ϕ′

X(−t)

t
dt

)
(3.49)

The integral form − 1
π

∫∞
0+

ϕ′
X(t)−ϕ′

X(−t)

t
dt can be represented by the Hilbert transform

[Ksc06]. The Hilbert transform is defined as:

H(f)(t) ≜ − 1

π

∫ ∞

0+

f(t + τ) − f(t− τ)

τ
dτ (3.50)

Now we have:

E[X+] =
1

2

(
ϕ′
X(0)

i
+ H(ϕ′

X)(0)

)
(3.51)

Going back to the original discussion, we have the formula for the mean queue length for

a bulk service queue (M/GB/1) as follows:

E[q̃] =
∞∑
k=1

E[s+k ]

k
+ E[ṽ]

=
∞∑
k=1

(
1

2k

(
ϕ′
Sk

(0)

i
− 1

π

∫ ∞

0+

ϕ′
Sk

(t) − ϕ′
Sk

(−t)

t
dt

))
+

ϕ′
V (0)

i

(3.52)

The auxiliary random variable Sk is the sum of the number of arrivals with B deductions

for every service unit (k times).

The characteristic function of the shifted random variable X ′ = X −B is:

ϕX′(t) = E[eit(X−B)] = E[eitX ]e−itB = ϕX(t)e−itB (3.53)

The characteristic function of the sum of independent random variables is the product

of their characteristic functions. Therefore, we obtain the characteristic function for the

random variable Sk in terms of k times convolution:

ϕSk
(t) =

(
ϕV (t)e−itB

)k
= ϕk

V (t)e−itkB (3.54)
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We now have everything to compute the mean queue length for a bulk service queue

(M/GB/1). Note that the use of the Hilbert transform does not require B stationary prob-

abilities. All terms are eventually real numbers. However, we need to deal with the two

infinite ranges. Let us consider the finite ranges.

E[q̃] ≈
kmax∑
k=1

(
1

2k

(
ϕ′
Sk

(0)

i
− 1

π

∫ ak

0+

ϕ′
Sk

(t) − ϕ′
Sk

(−t)

t
dt

))
+

ϕ′
V (0)

i
(3.55)

In practice, we choose suitable kmax and ak for approximation and stop the iteration loop

if the absolute value of an additional term is less than the threshold (arbitrarily set at 10−3).

For a priority queue with groups (1, · · · , P ), we use the total arrival rate of the groups

of interest λ =
∑P

i=x λi. Let E[q̃;λ] denote the mean queue length at a service instant for a

bulk service queue with the arrival rate λ. For priority group x, we obtain:

E[q̃x] = E

[
q̃;

P∑
i=x

λi

]
− E

[
q̃;

P∑
i=x+1

λi

]
(3.56)

Since Eq. 3.56 is defined for each service instant, the sum of the number of waiting

transactions in priority group x and the number of transactions being served in priority

group x is

E[q̃x] + λxW0 (3.57)

where W0 is the average remaining service time.

We apply Little’s result to get the average system time for priority group x.

T̄x =
E[q̃x]

λx

+ W0 (3.58)

Finally, we obtain the average waiting time as follows:

W̄x =
E[q̃x]

λx

+ W0 − T̄ (3.59)

where T̄ is the average service time.

Now we compare the average waiting time obtained from a simulation and the truncated

computation using Eq. 3.55. The queue simulation code and the numerical integration
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code are available in Appendix D. As examples, we consider three arbitrary service time

distributions.

• Exponential service time distribution (µ′ = 1
600s

)

• Shifted exponential service time distribution (µ′ = 1
300s

, d = 300s)

• Deterministic service time distribution (µ′ = 1
600s

).

The average service time for each distribution is 600 seconds.3 As common parameters,

the bulk size B is 10, the utilization factor ρ = λ
µB

is 1.15, and the number of priority groups

P is 100. However, there are no specific implications regarding the parameter choices. The

queue is slightly saturated. For convenience, we assume a uniform distribution of arrival rates

for each group x, λx = λ/P . The saturation point x∗ is 15 as x∗ > P (1 − 1/ρ) + 1 ≈ 14.04.

Finally, we need to obtain the characteristic function ϕV (t) of the number of arrivals for each

service unit. The detailed derivations for Eq. 3.60, Eq. 3.61 and Eq. 3.62 are available in

Appendix C.

For the exponential distribution:

ϕV (t) =
1

λ
µ

(1 − eit) + 1
(3.60)

For the shifted exponential distribution:

ϕV (t) =
∞∑
k=0

(
eitk

µ

λ + µ

1

eλd

(
λ

λ + µ

)k k∑
m=0

(λd + µd)m

m!

)

=
e−λd(1−eit)

λ
µ
(1 − eit) + 1

(3.61)

For the deterministic service time distribution:

ϕV (t) = e−
λ
µ
(1−eit) (3.62)

3The distribution of block creation time in Bitcoin is close to the exponential distribution with rate
parameter 1

600s . If there exists a processing delay, one may consider the shifted exponential distribution. If
a consensus algorithm uses constant block creation time, one may consider the deterministic service time
distribution.
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Figure 3.3: Average waiting time for exponential service time (µ′ = 1
600s

).
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Figure 3.4: Average waiting time for shifted exponential service time (µ′ = 1
300s

, d = 300s).
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Figure 3.5: Average waiting time for deterministic service time (µ′ = 1
600s

).
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3.4.2 Minimum Transaction Fee

Figure 3.6: Supply and demand curves in a transaction fee market.

Due to the block size limit, a miner cannot include more than B transactions in a block.

Fig. 3.6 shows the supply and demand curves in a transaction fee market. The fixed

supply curve, Q = B, represents the constraint. Though a miner may change her preferred

block size, we assume that every miner always includes B transactions in a block if enough

transactions are available. The descending demand curve (shown arbitrarily as a straight

line as an example) represents the general tendency of users who do not want to submit

transactions with expensive fees.

Now we focus on the equilibrium price, the intersection point of the supply and demand

curves. The equilibrium price goes higher for the following cases. When a miner prefers to

create a block with fewer transactions, the supply curve (the vertical line) shifts to the left.

When users need to pay more transaction fees, the demand curve shifts to the right.

We are interested in finding the location of the equilibrium price. The minimum trans-

action fee in B transactions included by a miner is the same as the equilibrium price. Since

a fee distribution may fluctuate over time, it is not convenient to deal with absolute values.
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Instead, we use a priority group index x = 1, · · · , P . Suppose that group x contains the

cheapest transaction fee. Then the equilibrium price is gx. The group index can be under-

stood as the percentile ≈ (1 − x/P ) × 100(%), especially if we have fine-grained priority

groups with a uniform distribution of arrival rates. It also allows us to obtain the lower

bound of the sum of transaction fees (RTX > gxB) for a fully filled block.

Definition 3.1. (Minimum Group Index) The minimum group index k = 0, 1, · · · , P refers

to priority group k containing the cheapest transaction fee among B transactions included

by a miner. The special case k = 0 refers to a partially filled block due to an insufficient

number of transactions (< B).

Let X denote a random variable for the minimum group index k. Let Ni denote the

number of transactions in priority group i. The event X ≤ k is equivalent to the event∑P
i=k+1Ni < B. Note that the special case X ≤ 0 (X = 0) implies an insufficient number of

transactions,
∑P

i=1Ni < B. In this case, a miner creates a partially filled block. The event

X ≤ P always happens.

We now derive the distribution of the minimum group index X, P[X = k]. This proba-

bility can be computed as follows:

P[X = k] =


P[X ≤ k] − P[X ≤ k − 1] if k = 1, · · · , P

P
[∑P

i=1Ni < B
]

if k = 0

(3.63)

Note that the probability P[X ≤ k] = P
[∑P

i=k+1Ni < B
]

= P [Nk+1 + · · · + NP < B]

can be obtained from the distribution of customers in a system. Likewise, the probability

P[X ≤ k − 1] can be obtained from the same process with a different arrival rate.

For an M/MB/1 queue, the equilibrium difference equations yield the distribution of

customers in a system [Kle75, p.138]. The details are available in Appendix A. The stationary
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probability that j customers are waiting in the queue is:

pj =

(
1 − 1

z0

)(
1

z0

)j

(3.64)

We numerically solve z0 for given a utilization factor ρ and a bulk size B:

BρzB+1
0 − (1 + Bρ)zB0 + 1 = 0 (3.65)

where z0 > 1.4

Now we consider the total arrival rate for priority groups k, · · · , P , which is equal to∑P
i=k λi. The utilization factor ρk is

∑P
i=k λi/(µB). We find z0,k such that Bρkz

B+1
0,k − (1 +

Bρk)zB0,k + 1 = 0 and z0,k > 1. We may then evaluate the probability of the block having a

total number of transactions less than B.

P[Nk + · · · + NP < B] =

(
1 − 1

z0,k

) B−1∑
m=0

(
1

z0,k

)m

= 1 −
(

1

z0,k

)B

(3.66)

Similarly, we find z0,k+1 using the same equation with a utilization factor ρk+1. Therefore,

we obtain the distribution of the minimum group index X for an M/MB/1 queue as follows:

P[X = k] = P[X ≤ k] − P[X ≤ k − 1]

= P[Nk+1 + · · · + NP < B] − P[Nk + · · · + NP < B]

=

(
1 −

(
1

z0,k+1

)B
)

−

(
1 −

(
1

z0,k

)B
)

=

(
1

z0,k

)B

−
(

1

z0,k+1

)B

= Bρk(1 − z0,k) −Bρk+1(1 − z0,k+1)

(3.67)

Now we compare the analytical result and the simulation result for the distribution of

the minimum group index X. As an example, we consider two different cases: (1) slightly

overloaded queue (ρ = 1.15) and (2) underloaded queue (ρ = 0.85). The service time

4When B = 1, we immediately know that z0 = 1/ρ from a quadratic equation ρz20 − (1 + ρ)z0 + 1 =
(ρz0 − 1)(z0 − 1) = 0
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distribution is exponential with the rate µ = 1
600s

, the bulk size B is 100, and the number

of priority groups P is 100. The simulation length is 100, 000 × 600s. There are no specific

implications regarding the parameter choices.

Both Fig. 3.7 and 3.8 show the nice agreement. For the overloaded queue, the saturation

point x∗ is 15. For the underloaded queue, it is frequent to observe partially filled blocks. The

probability of X = 0 (not shown in Fig. 3.8) is 0.2967 (simulation) and 0.3022 (analytical).

Finally, given an (empirical) fee distribution gx, we immediately obtain the distribution

of the minimum transaction fee gX from the distribution of the minimum group index (see

Eq. 3.63).

Table 3.2: Distribution of the minimum transaction fee

Weight Probability

g0 ≜ 0 P[X = 0]

g1 P[X = 1]

g2 P[X = 2]

...

gP−1 P[X = P − 1]

gP P[X = P ]
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Figure 3.7: Distribution of the minimum group index (ρ = 1.15).
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Figure 3.8: Distribution of the minimum group index (ρ = 0.85).
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3.4.3 Average Total Transaction Fee

Now we consider the total transaction fee RTX collected by a miner. Let N ′
i be the number

of transactions in priority group i processed by a miner.

RTX =
P∑
i=1

giN
′
i (3.68)

Getting the distribution of RTX remains an open question as one needs to solve the dis-

tribution of the number of transactions in each priority group. The product of the minimum

transaction fee gk and a bulk size B is a lower bound of RTX for a fully filled block (k ̸= 0).

gkB ≤ RTX (3.69)

We find that the law of total expectation yields the expectation of RTX. Recall the

expected value of the conditional expected value of A given B is the same as the expected

value of A.

E[RTX] = E[E[RTX|X]] =
P∑

k=0

E[RTX|X = k]P[X = k] (3.70)

where X is a random variable denoting the minimum group index.

The minimum group index X = k gives detailed information about the number of trans-

actions.

• When k = P ⇒ NP ≥ B,

• When k = 1, · · · , P − 1 ⇒ Nk+1 + · · · + NP < B and Nk + · · · + NP ≥ B,

• When k = 0 ⇒ N1 + · · · + NP < B.

For example, k = P , a miner selects B transactions from the highest priority group P .

When k = 0, a miner selects all existing transactions to fill the block (but partially). When
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k = 1, · · · , P − 1, a miner selects all transactions from priority groups k + 1, · · · , P and

B −
∑P

i=k+1Ni transactions from priority group k. Thus, the number of transactions in

priority group i processed by a miner is:

N ′
i =


min

(
Nk, B −

∑P
i=k+1Ni

)
if i = k

Ni if i = k + 1, · · · , P
(3.71)

By combining Eq. 3.68, Eq. 3.70 and Eq. 3.71, we have:

E[RTX] = E

[
P∑
i=1

giNi|X = 0

]
P[X = 0]

+
P∑

k=1

(
E

[
gkB +

P∑
i=k+1

(gi − gk)Ni|X = k

]
P[X = k]

) (3.72)

After a lengthy rearrangement, we obtain the following equation.5

E [RTX] = B

(
P∑

k=1

gk P [X = k]

)

+ g1 E

[
P∑

k=1

Nk|X = 0

]
P [X = 0]

+
P∑
i=2

(
(gi − gi−1)

i−1∑
j=0

(
E

[
P∑
k=i

Nk|X = j

]
P [X = j]

)) (3.73)

To simplify the equation, we define an auxiliary random variable as follows:

Mi ≜
P∑
k=i

Nk (3.74)

5The detailed derivation is available in Appendix B.
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E [RTX] = B

(
P∑

k=1

gk P [X = k]

)
+ g1 E [M1|X = 0]P [X = 0]

+
P∑
i=2

(
(gi − gi−1)

i−1∑
j=0

(E [Mi|X = j]P [X = j])

) (3.75)

Note that the event X = 0 (partially filled block) is equivalent to M1 =
∑P

k=1Nk < B.

Now we can merge mutually exclusive events as follows:

i−1∑
j=0

E [Mi|X = j]P [X = j] = E [Mi|X < i]P [X < i] (3.76)

In general, the event X < i is equivalent to the event Mi < B. We then rewrite the

equation in terms of Mi:

E [RTX] = B

(
P∑

k=1

gk P [X = k]

)

+ g1

B−1∑
k=1

k P [M1 = k,M1 < B]

+
P∑
i=2

(
(gi − gi−1)

B−1∑
k=1

k P [Mi = k,Mi < B]

) (3.77)

Finally, we obtain the formula for the average total transaction fee. To simplify the

equation, we define g0 ≜ 0.6

E [RTX] = B

(
P∑

k=1

gk P [X = k]

)
+

P∑
i=1

(
(gi − gi−1)

B−1∑
k=1

k P [Mi = k]

)
(3.78)

For an M/MB/1 queue, we may use the following information.

P [X = k] =Bρk (1 − z0,k) −Bρk+1 (1 − z0,k+1)
(3.79)

6This definition also means that the minimum transaction fee for a partially filled block is 0.
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For the partial sum, we have:7

B−1∑
k=1

k P [Mi = k] = B2ρi (z0,i − 1) + B (ρi − 1) (3.80)

Then we obtain the average total transaction fee for an M/MB/1 queue.

E [RTX] = B

(
P∑

k=1

gk (Bρk (1 − z0,k) −Bρk+1 (1 − z0,k+1))

)

+
P∑
i=1

(gi − gi−1)
(
B2ρi (z0,i − 1) + B (ρi − 1)

) (3.81)

For a single service queue B = 1, the above equation is reduced to:

E [RTX] =
P∑

k=1

gk (ρk − ρk+1) =
P∑

k=1

gk
λk

µ
(3.82)

We compare the average total transaction fee from the analytical expression, Eq. 3.81 and

one from the simulation. Fig. 3.9 shows the distribution of total transaction fee (simulation),

where the vertical lines are indicating the average total transaction fee (simulation and

analytical). The simulation uses an M/MB/1 queue with the bulk size B = 10. The number

of priority groups P is 100. The fee distribution is gk = k.8 The service rate µ is 1
600s

. The

utilization factor ρ is 1.15 (slightly overloaded). The total arrival rate λ is ρ · µB and the

arrival rate for each priority group is uniform, i.e., λx = λ
P

. The number of trials (blocks) is

100, 000. Our analytical expression for the average total transaction fee yields 580.75, which

matches well with the simulation result of 571.09.

7
∑n

k=1

(
k · ark

)
= ar

(
nrn+1−(n+1)rn+1

(1−r)2

)
8One may consider using an empirical fee distribution.
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Figure 3.9: Average total transaction fee.
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3.5 Conclusion

In this chapter, we analyzed a transaction fee market using queueing theory. We modeled

the system as a head-of-line bulk service priority queue with an arbitrary service time dis-

tribution. We developed a numerical method to compute the average waiting time without

the necessity of finding the stationary probabilities for an M/GB/1 queue, as given in Eq.

3.52. We transformed the distribution of the number of transactions for each priority group

to the distribution of the minimum transaction fee, which is an equilibrium price in the

transaction fee market, as given in Eq. 3.63. We also derived the formula for the expected

total transaction fee collected by a miner, as given in Eq. 3.78. For an M/MB/1 queue, we

obtained the concrete solutions for the distribution of the minimum transaction fee and the

average total transaction fee, as given in Eq. 3.67 and Eq. 3.81, respectively.
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CHAPTER 4

Block Mining Process with Delays

4.1 Introduction

A proof-of-work blockchain relies on the stochastic process of creating a block with protocol

specific constraints. Due to the luck-based block proposal method, a blockchain peer-to-peer

network occasionally observes multiple versions of chains, called a fork. The most common

rule for resolving a fork is that every miner chooses the longest chain of blocks as a canonical

state. Combined with the difficulty of block creation, the protocol gives a consistent view to

every participant, especially for the past blocks.

Block mining is intense and expensive competition. Every miner wants to extend the

chain by finding a new block as soon as possible. The intuition is that the probability of fork

survival, i.e., winning the mining competition, is a pure function of computing power (hash

rate). However, this only applies in an ideal world where delays do not exist. While the new

block is propagated to the blockchain peer-to-peer network, there are inevitable processing

and network delays as a miner should verify transactions. The nonzero delays in the real

world decrease the probability of fork survival.

Users are sensitive to the probability of fork survival. The users can have strong confi-

dence in probabilistic finality of the included transaction after waiting for a certain number of

blocks. Miners are also sensitive to this probability since only winning miners claim a block

reward and transaction fees. The miners want to maximize the expected mining revenue with

this probability. They determine how many transactions they will put in a block considering
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the trade-off relationship between the block size and the probability of fork survival.

In this chapter, we focus on deriving a formula for the probability of fork survival. Due

to the complicated nature of the combinatorial problem that emerges, we provide a lower

bound and an upper bound of this probability. We then solve special cases for two miners

and three miners. We introduce the three miner approximation method, which is helpful to

approximate the probability of fork survival with an arbitrary number of miners.

4.2 System Model

Figure 4.1: Miners are broadcasting their blocks to the network.

Every node in a blockchain peer-to-peer network replicates the append-only database.

Once a miner finds a block by solving a hash puzzle, she broadcasts the new block to the

peer-to-peer network. A proof-of-work blockchain protocol defines that miners should choose

the longest chain as a canonical state.
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In most cases, there is no disagreement between (honest) miners as there exists only one

block proposal in the network. Fig. 4.1 illustrates that two miners (miner 1 and 4) are

broadcasting their new blocks to the network. Every node accepts the block that arrives

first. Due to processing and network delays, block arrival timing is different. In the example,

miner 2 and 3 accept the block proposed by miner 1, while miner 5 accepts the block proposed

by miner 4. Now there exist two proposals in the network. It is natural to observe multiple

chain forks even among (honest) miners in probabilistic finality. In our work, we assume

that every miner does not hide a new block intentionally.

We divide the block mining process into three parts for our analysis. It consists of block

creation, propagation, and acceptance subprocesses.1 In the block creation subprocess, we

incorporate the processing delay. In the block propagation subprocess, we consider the

network delay. To model the network delay, we will use a one-hop transmission delay model

defined at each pair of nodes. In the block acceptance subprocess, we introduce a timing

matrix to describe that a miner accepts a new block based on its arrival timing.

Table 4.1 summarizes the notation.

Table 4.1: Notation

Symbol Description Unit

n Number of miners

mi Miner i = 1, · · · , n

hi Hash rate of miner i (computing power) #/s

µi Average rate of solving a hash puzzle by miner i (see Eq. 4.1) (block)/s

µb Average block creation rate (system parameter) (block)/s

di Processing delay at miner i s

τij One-hop transmission delay from miner i to miner j s

1Mining a block often refers to the block creation subprocess in a narrow sense.
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τ ′ij Aggregate delay from miner i to miner j (see Eq. 4.8) s

Xi Random variable denoting time spent by miner i solving a

hash puzzle.

s

Yi Random variable denoting time spent by miner i creating a

new block (see Eq. 4.2)

s

BH,i Block proposed by miner i whose height is H (block)

TH,i Timestamp at which miner i reaches chain height H s

oH,i Time skew in miner i at round H s

4.3 Block Mining Process

4.3.1 Block Creation Subprocess

A block contains a list of transactions and metadata such as a hash digest of the parent

block, a wallet address of a miner, a block height, a (local) timestamp, target difficulty,

nonce (a random number), etc.

Definition 4.1. A chain is a sequence of blocks. The chain height is the number of elements

(blocks) in the sequence. The block height is the position of the block in the chain.

Every block has a very strong link to the parent block. Any single-bit modification inval-

idates all the subsequent hash digests. Rearranged blocks are considered entirely different

ones, even if they have the same list of transactions.

Definition 4.2. If chains have at least one different element at the same height, a fork

occurs.

In probabilistic finality, it is natural to observe different blocks at the same height.2

2We do not consider a fork caused by a protocol change. This type of fork should be regarded as a
different blockchain instance. This work can be applied to each instance separately.
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Nodes have an inconsistent state by definition, especially for the recent blocks. However,

every miner has the same sequence of the past blocks, i.e., the intersection of chains. To

resolve a fork, miners choose the longest chain.

However, the longest chain rule alone is insufficient for a proof-of-work consensus. Sup-

pose that the cost of block creation is nearly zero. Many new blocks will flood the peer-to-peer

network. It will then be impossible for each miner to decide which version she should accept.

Therefore, a proof-of-work blockchain must regulate the block creation rate by requiring a

miner to solve a hash puzzle as shown in Eq. 4.1.

Hash((transactions), (nonce), · · · )︸ ︷︷ ︸
a numerical value

< (target difficulty)︸ ︷︷ ︸
a numerical value

(4.1)

In the block creation subprocess, a miner processes transactions for a new block that

extends the chain. She then solves the hash puzzle. A hash function maps the input data

to a fixed-size random number. It is almost impossible to find its inverse. Due to the

randomness of hash values, only the trial-and-error method is available to solve the hash

puzzle. Therefore, presenting a nonce that satisfies Eq. 4.1 proves that a miner has spent

some time creating a new block. Other miners can easily verify the nonce.

We have the following assumptions for the block creation subprocess.

• (Busy miner) A miner continues the block creation subprocess to append a new block.

If the chain is extended by another miner or replaced, she immediately stops solving

the current hash puzzle and starts solving a new hash puzzle for the new chain. The

random variable Xi denotes the time spent by miner i solving a hash puzzle, i.e., finding

a nonce satisfying the difficulty condition.

• (Processing delay) There is additional time di for miner i to process transactions to

prepare a new block. She needs to verify the signature of each transaction and other

conditions (like account balance) for integrity. The random variable Yi denotes the
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time spent creating a new block by miner i, which is given by

Yi = Xi + di (4.2)

• (No selfish mining) We assume that a miner does not intentionally hide a new block to

get more benefits or conduct a double-spending attack. She broadcasts the new block

to the rest of the network without any hesitation.

• (No hash split) A miner does not split her computing power to cause a fork. Instead,

miners tend to form a group called a mining pool to aggregate their computing power.

A mining pool is considered a single mining node with the sum of hash rates.

Block Creation Time Distribution

There are only two possible outcomes for a nonce: invalid (failure) or valid (success).

Since the distribution of hash values is uniform, then the probability that any given nonce

is valid is given by

p =
(Target Difficulty)

(Range of a Hash Function)
(4.3)

In a short period of time, we assume that the hash rate hi of miner i does not change.

Solving a hash puzzle follows the binomial distribution B(N, p).3 However, it requires many

trials (N → ∞) as the target difficulty is much smaller than the range of a hash function

(p → 0). In this case, as is well known, the binomial distribution then converges to the

Poisson distribution with the parameter (= Np). Now we know that the time spent by miner

i solving a hash puzzle, Xi, follows the exponential distribution with the rate parameter µi.

Xi ∼ exp (µi) (4.4)

Note that random variables Xi (i = 1, · · · , n) are mutually independent.

3P[x successes in a sequence of N trials] =
(
N
x

)
px(1− p)

N−x
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For a collection of miners {m1, · · · ,mn}, the time in solving a hash puzzle follows the

exponential distribution with the sum of rate parameters.

min (X1, · · · , Xn) ∼ exp(µ1 + · · · + µn) (4.5)

If any hash rate changes, it affects the block creation rate. A proof-of-work blockchain

adjusts the target difficulty to keep the block creation rate to be µb. However, the protocol

does not know the actual hash rate of each miner nor the exact block arrival timing. Alter-

natively, it estimates the average block creation time from timestamps of the recent blocks.

For example, Bitcoin uses the recent 2, 016 blocks (≈ 14 days) [Wik]. Ethereum only uses

the timestamp of the parent block, but a geometric ratio adjusts the target difficulty quickly

[Woo14].

Note that there exists a survival bias in the estimated average block creation time. The

hash rate of miner i, hi, is directly related with µi. However, the block creation rate by

miner i can differ from µi.

4.3.2 Block Propagation Subprocess

After a miner finds a valid nonce for the new block, she advertises the information to her

neighbor nodes. The neighbor nodes request the block data if there is any chance that

the chain may become the longest one. Every mining node then checks the validity of the

received block: nonce, transactions, and other necessary metadata, and repeats the same

advertisement to her neighbor nodes.

The analysis of the block propagation subprocess often gets complicated due to many

factors such as network topology, message path, and resource utilization that may affect

block arrival timing. We choose to simplify this process by assuming that only one-hop

transmission delays are required to propagate from miner i to miner j, which are pairwise

constants denoted by τij where i, j ∈ {1, · · · , n}. This approximation is useful to model the

stochastic nature of block arrival timing.
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Figure 4.2: One-hop transmission delays between miners.

For one-hop transmission delays, we assume the followings:

• (Nonnegative) One-hop transmission delays are nonnegative real number, i.e., τij ≥ 0.

• (Zero loopback delay) A one-hop transmission delay from node i to the node itself is

zero, i.e., τii = 0.

• (Indirect path) An indirect path i → j → k takes a longer time than a direct path

i → k, i.e., τij + τjk ≥ τik.

Fig. 4.2 shows the two competing chains proposed by miners (m1 and m2) in the peer-

to-peer network of ten miners (n = 10). There are a lot of possible message paths between

miners. Even if we suppose that the two miners found the blocks simultaneously, block

arrival timing for each miner will be different as there are many factors along the message

path. We simplify the situation by the use of n2 = 102 constants. For example, miner m3

receives the block proposed by m1 first because τ13 is smaller than τ23. Miner m4 receives

the block proposed by m2 first because τ24 is smaller than τ14. The same logic applies to

miner m5 who receives the block proposed by m1 first as τ15 < τ25.

We also assume that there is no message lost along the communication channel.
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4.3.3 Block Acceptance Subprocess

Every miner accepts a new block based on its height and block arrival timing. We assume

that a miner does not discriminate blocks by other metadata like wallet addresses. While

a miner does not accept a stale block (because of late arrival), it may keep it in the cache

storage. We also assume that retransmission for the entire chain data is not required.

Definition 4.3. When miner i accepts block BH,j, she begins solving a hash puzzle for the

next block, BH+1,i, whose parent block is BH,j.

Figure 4.3: Time diagram of the mining process with delays.

Fig. 4.3 depicts a time diagram for three miners. Initially, every miner has the same

chain with BH−1,?. Their chain height is H−1. Miner 1 finds block BH,1 and she broadcasts

it to the rest of the network. Miner 2 and 3 accept BH,1 as their chain height is still H − 1.

Every miner agrees with BH,1 (fully accepted). Now miner 1 finds the next block BH+1,1,
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but miner 2 also finds the next block BH+1,2 before the arrival of BH+1,1. Miner 1 and 2

are in disagreement. Miner 2 ignores the stale block BH+1,1 and miner 1 also ignores the

stale block BH+1,2. Miner 3 accepts block BH+1,1 as it arrives before BH+1,2. Now there are

two competing chains in the network. The chain with BH+1,1 is supported by {m1,m3} and

another chain with BH+1,2 is supported by {m2}. This inconsistent state may be resolved in

the next round H + 2, or may be continued.

Now we represent timing information in matrix form.

Definition 4.4. A timing matrix (aij) is an n× n matrix defined as:

aij ≜ Yi + oH,i + τij = Xi + di + oH,i + τij (4.6)

where Yi is a random variable denoting time spent by miner i creating a block, oH,i denotes

time skew in miner i at round H, and τij is a one-hop transmission delay from miner i to

miner j. Note that Yi is equal to Xi + di.


a11 · · · a1n
...

. . .
...

an1 · · · ann

 (4.7)

The i-th row represents miner i who proposes block BH,i. The j-th column represents

miner j who accepts the first arrived block at round H. Let Aij denote the event that the

i-th row contains the smallest element for the j-th column.4 We draw a rectangular box at

the location of the smallest element for each column. For example, Eq. 4.7 shows the event

A11 ∩ · · · ∩ A1n, i.e., every miner accepts block proposed by miner 1, BH,1.

The processing delay term di and the one-hop transmission delay term τij can be expressed

as follows:

τ ′ij ≜ τij + di (4.8)

4A∁
ij denotes the complementary event of Aij .
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The time skew in miner k can be expressed as follows:

oH,k = TH−1,k − min
i∈{1,··· ,n}

TH−1,i (4.9)

where TH,k is the timestamp at which miner k reaches chain height H.

Theorem 4.5. Miner i whose block height H − 1 may extend the chain either by proposing

a new block BH,i or by accepting another miner j’s block BH,j (the block height is H) if

available.

Proof. The proof is straightforward due to causality. Without receiving a block from another

miner, miner i must propose BH,i to extend her own chain. When accepting a block from

another miner, the block height must be equal to H. Although the next block BH+c,j

(c = 1, 2, · · · ) may exist at that time, BH,j must arrive earlier than BH+1,j.

Theorem 4.6. Let S be the set of rows containing the smallest element for each column in

a timing matrix. |S| is the number of chain forks in the network.

Proof. Miner j accepts the block proposed by miner i, BH,i, if and only if

aij = min
k∈{1,··· ,n}

akj (4.10)

because a miner cannot accept another block without splitting her computing power. The

set S is {arg mink akj | j = 1, ..., n}. For every element i ∈ S, the content of block BH,i is

unique.

Fig. 4.4 shows an example of three miners. At round H−1, every miner has a consistent

state. At round H, miner 1 finds block BH,1, miner 2 accepts block BH,1, and miner 3 finds

her own block BH,3. Now there are two competing chains supported by {m1,m2} and {m3},

respectively. Eq. 4.11 shows the timing matrix at round H−1. Note that the first and third

rows contain the smallest elements (|S| = 2).
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Figure 4.4: Every miner accepts BH+1,2 at round H + 1 and BH,1 survives.


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (4.11)

At round H + 1, every miner accepts block BH+1,2. The chain (· · ·BH−1,?BH,1BH+1,2)

wins the mining competition against the chain (· · ·BH−1,?BH,3). The transactions in block

BH,3 are discarded. Eq. 4.12 shows the timing matrix at round H. Note that the only

second row contains the smallest elements (|S| = 1).


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (4.12)

Fig. 4.5 shows a case in which the fork persists. At round H + 1, miner 2 finds block

BH+1,2 instead of accepting block BH+1,3. Eq. 4.13 shows the timing matrix at round H.

Note that the second and third rows contain the smallest elements (|S| = 2).
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Figure 4.5: The fork persists. BH,1 and BH,3 have a chance to survive.


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (4.13)

4.4 Probability of Fork Survival

The analysis of the probability of fork survival for an arbitrary number of miners, n, is fairly

complicated. Most of the time, the fork will not persist. However, the different block arrival

timing and nonuniform hash rates lead to a combinatorial problem.

At the first round H, there are three possible outcomes regarding how the block proposed

by miner i, namely BH,i, is accepted by miners. Fig. 4.6 shows the possible outcome paths

for the proposed block.

• (Fully accepted at round H) Every miner accepts block BH,i.

• (Partially accepted at round H) Some miners (not everyone) accept block BH,i.

• None of them accept block BH,i at round H.
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Figure 4.6: The possible outcome paths for the proposed block BH,i.

If every miner accepts block BH,i at round H, a chain with BH,i wins the race (fully

accepted). In this case, since no miners are working on the other competing chain with

BH,j (i ̸= j) (the third outcome happens to BH,j), there is no chance that the chain with

BH,i is defeated by any other possibly longer chain.

If the second outcome happens, there is a question whether BH,i survives or not. Recall

the example of three miners (n = 3) in Fig. 4.5. At round H, one chain with BH,1 is

supported by {m1,m2} and another chain with BH,3 is supported by {m3}. At round H + 1,

either miner 1 or 2 may extend the chain and BH,1 survives.

4.4.1 Probability of Full Acceptance (n miners)

First, let us compute the probability that every miner accepts BH,i within one round (fully

accepted). We consider the following two cases.

Case 1) Processing and one-hop transmission delays are zero.

Since processing delay di and one-hop transmission delay τij are zero, the corresponding

timing matrix is aij = Xi + oH,i. Miner j = 1, · · · , n accepts block BH,i according to the
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following condition:

aij = min
k∈{1,··· ,n}

akj ⇐⇒ Xi + oH,i = min
k∈{1,··· ,n}

(Xk + oH,k) (4.14)

The right-hand side is independent of j, and thus, every miner finds the same k for the

smallest value. Furthermore, time skew does not exist, oH,k = 0, as the delays are zero.

Since X1, · · · , Xn are mutually independent, the probability, pfull,i, that every miner

accepts block BH,i within one round is:

pfull,i =

∫ ∞

0

n∏
k=1
k ̸=i

e−µkxiµie
−µixidxi =

∫ ∞

0

µie
−

∑n
k=1 µkxidxi =

µi∑n
k=1 µk

(4.15)

The sum of the above probability for each miner i is
∑n

i=1

(
µi∑n

k=1 µk

)
= 1. The probability

that a fork occurs is 1 − 1 = 0, i.e., the network does not suffer a fork.

Case 2) Processing and one-hop transmission delays are nonnegative.

Miner j = 1, · · · , n accepts block BH,i according to the following condition:

aij = min
k∈{1,··· ,n}

akj ⇐⇒
n∧

k=1

(aij ≤ akj) =
n∧

k=1

(
Xi + oH,i + τ ′ij ≤ Xk + oH,k + τ ′kj

)
(4.16)

where
∧

represents the logical AND for boolean predicates and τ ′ij = τij + di.

Since Eq. 4.16 should hold for every miner j,
n∧

k=1

(
Xk + oH,k ≥ Xi + oH,i + max

j∈{1,··· ,n}

(
τ ′ij − τ ′kj

))
(4.17)

To simplify the notation, we define:

cik ≜ max
j∈{1,··· ,n}

(
τ ′ij − τ ′kj

)
(4.18)

Theorem 4.7. cik + dk − di is always nonnegative, i.e., cik ≥ di − dk where cik denotes

maxj∈{1,··· ,n}
(
τ ′ij − τ ′kj

)
.

Proof. From the definition of cik, we have cik + dk − di = maxj∈{1,··· ,n} (τij − τkj). When

j = k, τij − τkk = τij ≥ 0 because one-hop transmission delays are nonnegative real numbers.

Therefore, we have maxj∈{1,··· ,n} (τij − τkj) ≥ 0 and cik + dk − di ≥ 0.
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Since X1, · · · , Xn are mutually independent, the probability, pfull,i, that every miner

accepts block BH,i within one round is

pfull,i =

∫ ∞

0

n∏
k=1
k ̸=i

e−µk max(0,xi+oH,i−oH,k+cik)µie
−µixidxi (4.19)

where oH,i denotes time skew in miner i at round H.

It is often impractical to consider all boundaries of the max functions in Eq. 4.19 for n

arbitrary miners. Therefore, we introduce the following bounding approach.

e−amax (0,b) ≤ e−ab︸ ︷︷ ︸
the equality holds when b≥0

(4.20)

where a > 0 and b is any real number.

Now we have:∫ ∞

0

n∏
k=1
k ̸=i

e−µk max(0,xi+oH,i−oH,k+cik)µie
−µixidxi ≤

∫ ∞

0

n∏
k=1
k ̸=i

e−µk(xi+oH,i−oH,k+cik)µie
−µixidxi

=

∫ ∞

0

n∏
k=1
k ̸=i

e−µk(oH,i−oH,k+cik)µie
−

∑n
k=1 µkxidxi

=

 n∏
k=1
k ̸=i

e−µk(oH,i−oH,k+cik)

 µi∑n
k=1 µk

(4.21)

As an approximation for Eq. 4.21, we assume that the difference of the time skew terms

is negligible. Theorem 4.7 states that one-hop transmission delays do not make cik negative

and processing delays can make cik negative. One-hop transmission delays decrease the

probability that every miner accepts the proposed block, i.e., increasing the probability of

causing a fork. Processing delays are tricky as now cik can be a negative value depending

on the difference of di − dk. We can imagine miner i with a significant processing delay di,

which becomes a penalty to miner i. The other miners take advantage of the delays as they

have more time for the next block.
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By summing Eq. 4.19 for every miner i, we compute the probability that a fork occurs

as follows:

1 −
n∑

i=1

∫ ∞

0

n∏
k=1
k ̸=i

e−µk max(0,xi+oH,i−oH,k+cik)µie
−µixidxi

 (4.22)

4.4.2 Lower Bound and Upper Bound

The straightforward approach encounters an intractable number of combinations for n arbi-

trary miners. We choose to derive a lower bound and an upper bound of the probability of

fork survival. Recall that there are three possible outcomes of the first round H for a chain

with BH,i. Clearly, if every miner accepts a block, the block survives. If none of the miners

accept a block, the block does not survive. If some miners (not everyone) accept the block,

we need to consider the subsequent outcomes of the next round H + 1.

Let pfull,i, ppartial,i, and pnone,i denote the probability of the following outcomes at first

round H, respectively.

• pfull,i ≜ P[Every miner accepts block BH,i]

• ppartial,i ≜ P[Some miners (not everyone) accept block BH,i]

• pnone,i ≜ P[None of them accept block BH,i]

(pfull,i) We already computed the probability that everyone accepts the block in Eq. 4.19:

pfull,i =

∫ ∞

0

n∏
k=1
k ̸=i

e−µk max(0,xi+oH,i−oH,k+cik)µie
−µixidxi (4.23)

(ppartial,i) Suppose that the chain with BH,i is partially accepted at round H. Let M be a

set of miners who accept BH,i. At round H+1, if every miner accepts any block proposed by

miner m ∈ M , BH,i survives. We cannot simply reuse Eq. 4.23 as the probability depends

on the set of miners who accepted block BH,i. For an upper bound, there is a chance that
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another chain defeats BH,i, the probability of fork survival BH,i is always less than or equal

to ppartial,i. We obtain the inequality as follows:

pfull,i︸︷︷︸
lower bound

≤ psurvival,i ≤ pfull,i + ppartial,i (4.24)

(pnone,i) Suppose that none of the miners accept BH,i. Since the sum of probabilities is

1, we obtain pfull,i + ppartial,i = 1 − pnone,i. In the timing matrix, the i-th row never has the

smallest element for every column.

pnone,i = P[A∁
i1 ∩ · · · ∩ A∁

in] = 1 − P[Ai1 ∪ ... ∪ Ain],

pfull,i + ppartial,i = P[Ai1 ∪ ... ∪ Ain]
(4.25)

The union of events, Ai1 ∪ ... ∪ Ain, can be expressed:

n∨
j=1

(
n∧

k=1

Xk ≥ Xi + oH,i − oH,k + τ ′ij − τ ′kj

)
(4.26)

where
∧

represents the logical AND,
∨

represents the logical OR for boolean predicates.

Eq. 4.26 implies the following (its converse is not necessarily true).

n∧
k=1

Xk ≥ Xi + oH,i − oH,k + min
j∈{1,··· ,n}

(
τ ′ij − τ ′kj

)
(4.27)

Thus, we obtain the (loose) upper bound

P[Ai1 ∪ ... ∪ Ain] ≤
∫ ∞

0

n∏
k=1
k ̸=i

e−µk max(0,xi+oH,i−oH,k+c′ik)µie
−µixidxi

︸ ︷︷ ︸
(loose) upper bound

(4.28)

where

c′ik ≜ min
j∈{1,··· ,n}

(
τ ′ij − τ ′kj

)
(4.29)

We report that the lower bound and the (loose) upper bound are not tight when the delays

are large. However, the lower bound is equivalent to the probability of full acceptance.
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In Fig. 4.7 we compare the analytical lower bound and the simulation of the timing

model. The simulator implements block creation, propagation, and acceptance subprocesses.

It measures the empirical probability of fork survival. In the simulation, we consider three

miners whose hash rates are (µ1, µ2, µ3) = (0.50, 0.25, 0.25) · µb. We assume that the effect

of time skew is zero. The aggregate delays are defined as follows:

τ ′ij =


d if i ̸= j

0 if i = j

(4.30)

where d ∈ [0, 600].5 The lower bound, Eq. 4.23, matches well with the simulation result

(full acceptance), as indeed it should. The probability of full acceptance decreases as the

delay increases. However, the lower bound does not capture an effect of interaction between

miners. A large miner (50% of the network hash rate) can extend the chain faster than a

small miner (25%). The probability of fork survival for the large miner increases as the delay

increases, whereas that of the (relatively) small miner decreases.6

5The relative amount of delay is important. The delay in the Bitcoin network (≈ 15 ∼ 30 seconds) is
small compared to its block creation time (≈ 600s). We exaggerate the absolute amount of delay (from 0%
to 100% of the block creation time).

6This advantage can be one of reasons to form a mining pool.
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Figure 4.7: Lower bound of the probability of fork survival.
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4.4.3 Special Case: two miners (n = 2)

For two miners, we consider a 2 × 2 timing matrix. There are 22 = 4 combinations in terms

of the location of the smallest elements. We consider the following two cases.

Case 1: (Fully accepted) Every miner accepts the proposed block.

Suppose that miner 1, without loss of generality, proposed a block at round H, namely

BH,1. Only the first row contains the smallest elements. The corresponding timing matrix

is:  a11 a12

a21 a22

 (4.31)

The probability that every miner accepts BH,1 is:

pfull,1 = P [a11 < a21 ∧ a12 < a22] =

∫ ∞

0

e−µ2 max(0,x1+oH,1−oH,2+c12)µ1e
−µ1x1dx1 (4.32)

i) oH,1 − oH,2 + c12 ≥ 0, we can reduce Eq. 4.32 to:∫ ∞

0

e−µ2(x1+oH,1−oH,2+c12)µ1e
−µ1x1dx1 =

µ1

µ1 + µ2

e−µ2(oH,1−oH,2+c12) ≤ µ1

µ1 + µ2

(4.33)

ii) oH,1 − oH,2 + c12 < 0, the value of X1 determines the sign of the max function:∫ −(oH,1−oH,2+c12)

0

µ1e
−µ1x1dx1 +

∫ ∞

−(oH,1−oH,2+c12)

µ1e
−(µ1+µ2)x1e−µ2(oH,1−oH,2+c12)dx1

=
(
−eµ1(oH,1−oH,2+c12) + 1

)
+

µ1

µ1 + µ2

eµ1(oH,1−oH,2+c12)

= 1 − µ2

µ1 + µ2

eµ1(oH,1−oH,2+c12) >
µ1

µ1 + µ2

(4.34)

Summarizing these two cases,

P [a11 < a21 ∧ a12 < a22] =


µ1

µ1+µ2
e−µ2(oH,1−oH,2+c12) if oH,1 − oH,2 + c12 ≥ 0

1 − µ2

µ1+µ2
eµ1(oH,1−oH,2+c12) if oH,1 − oH,2 + c12 < 0

(4.35)
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For miner 2, we repeat the above computation. Only the second row contains the smallest

elements.  a11 a12

a21 a22

 (4.36)

The probability that every miner accepts BH,2 is:

P [a21 < a11 ∧ a22 < a12] =


µ2

µ1+µ2
e−µ1(oH,2−oH,1+c21) if oH,2 − oH,1 + c21 ≥ 0

1 − µ1

µ1+µ2
eµ2(oH,2−oH,1+c21) if oH,2 − oH,1 + c21 < 0

(4.37)

Case 2) (Partially accepted) Some miners accept the proposed block.

Miner 1 and miner 2 are in disagreement: m1 accepts BH,1 and m2 accepts BH,2. The

corresponding timing matrix is:  a11 a12

a21 a22

 (4.38)

Equivalently,

a11 < a21 ∧ a22 < a12 (4.39)

We rewrite Eq. 4.39 in terms of X1 and X2:

(X2 > X1 + oH,1 − oH,2 + τ ′11 − τ ′21) ∧ (X2 < X1 + oH,1 − oH,2 + τ ′12 − τ ′22) (4.40)

To evaluate the probability, we need to consider the following cases:

i) oH,1 − oH,2 + τ ′11 − τ ′21 ≤ oH,1 − oH,2 + τ ′12 − τ ′22 ⇐⇒ τ ′11 − τ ′21 ≤ τ ′12 − τ ′22

a) oH,1 − oH,2 + τ ′11 − τ ′21 ≤ 0 ≤ oH,1 − oH,2 + τ ′12 − τ ′22 (common),

The probability that a fork occurs is:

1 −
∫ ∞

0

(∫ ∞

x1+oH,1−oH,2+τ ′12−τ ′22

µ2e
−µ2x2dx2

)
µ1e

−µ1x1dx1

−
∫ ∞

−(oH,1−oH,2+τ ′11−τ ′21)

(∫ x1+oH,1−oH,2+τ ′11−τ ′21

0

µ2e
−µ2x2dx2

)
µ1e

−µ1x1dx1

(4.41)
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We evaluate the integrals as follows:

1 − µ1

µ1 + µ2

e−µ2(oH,1−oH,2+τ ′12−τ ′22) − µ2

µ1 + µ2

eµ1(oH,1−oH,2+τ ′11−τ ′21) (4.42)

We further simplify Eq. 4.42:

µ1(1 − e−µ2(oH,1−oH,2+τ ′12−τ ′22)) + µ2(1 − eµ1(oH,1−oH,2+τ ′11−τ ′21))

µ1 + µ2

(4.43)

b) 0 ≤ oH,1 − oH,2 + τ ′11 − τ ′21 ≤ oH,1 − oH,2 + τ ′12 − τ ′22,

µ1

µ1 + µ2

(
e−µ2(oH,1−oH,2+τ ′11−τ ′21) − e−µ2(oH,1−oH,2+τ ′12−τ ′22)

)
(4.44)

c) oH,1 − oH,2 + τ ′11 − τ ′21 ≤ oH,1 − oH,2 + τ ′12 − τ ′22 ≤ 0

µ2

µ1 + µ2

(
eµ1(oH,1−oH,2+τ ′12−τ ′22) − eµ1(oH,1−oH,2+τ ′11−τ ′21)

)
(4.45)

Summarizing these three cases,

P [a11 < a21 ∧ a22 < a12]

=



µ1(1−e−µ2t2 )+µ2(1−eµ1t1 )
µ1+µ2

if t1 ≤ 0 ≤ t2

µ1

µ1+µ2
(e−µ2t1 − e−µ2t2) if 0 ≤ t1 ≤ t2

µ2

µ1+µ2
(eµ1t2 − eµ1t1) if t1 ≤ t2 ≤ 0

(4.46)

where t1 ≜ oH,1 − oH,2 + τ ′11 − τ ′21 and t2 ≜ oH,1 − oH,2 + τ ′12 − τ ′22.

ii) oH,1 − oH,2 + τ ′11 − τ ′21 > oH,1 − oH,2 + τ ′12 − τ ′22 ⇐⇒ τ ′11 − τ ′21 > τ ′12 − τ ′22

Since one-hop transmission delays are nonnegative, τ ′11− τ ′21 > τ ′12− τ ′22 ⇐⇒ −τ21 > τ12

is not true. Thus, this case never happens.

The following type of disagreement does not happen too. a11 a12

a21 a22

 (4.47)
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Equivalently,

a21 < a11 ∧ a12 < a22 (4.48)

To consider Eq. 4.40, the following condition must hold:

τ ′12 − τ ′22 < τ ′11 − τ ′21 ⇐⇒ τ12 < −τ21 (4.49)

Since one-hop transmission delays are nonnegative, Eq. 4.49 is not true.

The probability that chain with BH,1 survives, psurvival,1, is approximately:

psurvival,1 ≈ pfull,1 + ppartial,1 · pfull,1 + p2partial,1 · pfull,1 + · · · = pfull,1

(
1

1 − ppartial,1

)
(4.50)

From the sum of probabilities is 1, we have:

ppartial,1 + pfull,1 + pfull,2 = 1 ⇐⇒ ppartial,1 = 1 − pfull,1 − pfull,2 (4.51)

Note that pfull,2 = pnone,1.

Unless ppartial,1 = 1 the probability that chain with BH,1 survives is:

psurvival,1 ≈ pfull,1

(
1

1 − ppartial,1

)
=

pfull,1
pfull,1 + pfull,2

≈ µ1

µ1 + µ2

(4.52)

Similarly, the probability that the chain with BH,2 survives, psurvival,2, is approximately

pfull,2
pfull,1+pfull,2

≈ µ2

µ1+µ2
. A fork will be eventually resolved unless the network is isolated.

4.4.4 Special Case: three miners (n = 3)

For three miners, we consider a 3 × 3 timing matrix. There are 33 = 27 combinations in

terms of the location of the smallest elements. We consider the following two cases.

Case 1: (Fully accepted) Every miner accepts the proposed block.

Suppose that miner 1, without loss of generality, proposed a block at round H, namely

BH,1.
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The probability that every miner accepts block BH,1 is computed:

pfull,1 =

∫ ∞

0

e−µ2 max(0,x1+oH,1−oH,2+c12)e−µ3 max(0,x1+oH,1−oH,3+c13)µ1e
−µ1x1dx1 (4.53)

To simplify the notation, we define:

tk ≜ oH,1 − oH,2 + c1k (4.54)

We need to consider the several cases to evaluate the probability pfull,1:

i) t2 ≤ t3

a) 0 ≤ t2 ≤ t3 ∫ ∞

0

e−µ2(x1+t2)e−µ3(x1+t3)µ1e
−µ1t1dx1

=
µ1

µ1 + µ2 + µ3

e−µ2t2e−µ3t3

(4.55)

b) t2 ≤ 0 ≤ t3 ∫ −t2

0

e−µ3(x1+t3)µ1e
−µ1x1dx1

+

∫ ∞

−t2

e−µ2(x1+t2)e−µ3(x1+t3)µ1e
−µ1x1dx1

=
µ1

µ1 + µ3

e−µ3t3

−
(

µ1

µ1 + µ3

− µ1

µ1 + µ2 + µ3

)
e(µ1+µ3)t2e−µ3t3

(4.56)

c) t2 ≤ t3 ≤ 0 ∫ −t3

0

µ1e
−µ1x1dx1

+

∫ −t2

−t3

e−µ3(x1+t3)µ1e
−µ1x1dx1

+

∫ ∞

−t2

e−µ2(x1+t2)e−µ3(x1+t3)µ1e
−µ1x1dx1

=1 −
(

1 − µ1

µ1 + µ3

)
eµ1t3

−
(

µ1

µ1 + µ3

− µ1

µ1 + µ2 + µ3

)
e(µ1+µ3)t2e−µ3t3

(4.57)
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ii) t2 ≥ t3

a) 0 ≤ t3 ≤ t2
µ1

µ1 + µ2 + µ3

e−µ2t2e−µ3t3 (4.58)

b) t3 ≤ 0 ≤ t2

µ1

µ1 + µ2

e−µ2t2 −
(

µ1

µ1 + µ2

− µ1

µ1 + µ2 + µ3

)
e(µ1+µ2)t3e−µ2t2 (4.59)

c) t3 ≤ t2 ≤ 0

1 −
(

1 − µ1

µ1 + µ2

)
eµ1t2 −

(
µ1

µ1 + µ2

− µ1

µ1 + µ2 + µ3

)
e(µ1+µ2)t3e−µ2t2 (4.60)

Summarizing these six cases,

pfull,1 =



µ1

µ1+µ2+µ3
e−µ2t2e−µ3t3 if 0 ≤ t2 ≤ t3

µ1

µ1+µ3
e−µ3t3 −

(
µ1

µ1+µ3
− µ1

µ1+µ2+µ3

)
e(µ1+µ3)t2e−µ3t3 if t2 ≤ 0 ≤ t3

1 −
(

1 − µ1

µ1+µ3

)
eµ1t3 −

(
µ1

µ1+µ3
− µ1

µ1+µ2+µ3

)
e(µ1+µ3)t2e−µ3t3 if t2 ≤ t3 ≤ 0

µ1

µ1+µ2+µ3
e−µ2t2e−µ3t3 if 0 ≤ t3 ≤ t2

µ1

µ1+µ2
e−µ2t2 −

(
µ1

µ1+µ2
− µ1

µ1+µ2+µ3

)
e(µ1+µ2)t3e−µ2t2 if t3 ≤ 0 ≤ t2

1 −
(

1 − µ1

µ1+µ2

)
eµ1t2 −

(
µ1

µ1+µ2
− µ1

µ1+µ2+µ3

)
e(µ1+µ2)t3e−µ2t2 if t3 ≤ t2 ≤ 0

(4.61)

Case 2) (Partially accepted) Some miners accept the proposed block.

Now we consider that some miners (not every miner) accept the proposed block BH,1

by miner 1, without loss of generality, at the round H. Suppose that miner 1 and miner 2

accept BH,1, but miner 3 does not accept BH,1.


a11 a12 a13

a21 a22 a23

a31 a32 a33




a11 a12 a13

a21 a22 a23

a31 a32 a33

 (4.62)
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Since A13, A23, and A33 are disjoint sets, the probability that {m1,m2} accept BH,1 can

be computed as follows:

P
[
A11 ∩ A12 ∩ A∁

13

]
= P [A11 ∩ A12 ∩ A23] + P [A11 ∩ A12 ∩ A33]

= P [A11 ∩ A12] − P [A11 ∩ A12 ∩ A13]

(4.63)

Note that P [A11 ∩ A12] is reiteration of Eq. 4.53 except the parameter. To simplify the

notation, we define:

pfull,1 (y2, y3) ≜
∫ ∞

0

e−µ2 max (0,x1+oH,1−oH,2+y2)

· e−µ3 max (0,x1+oH,1−oH,3+y3)

· µ1e
−µ1x1dx1

(4.64)

We rewrite Eq. 4.63 in terms of pfull,1 (y2, y3):

P
[
A11 ∩ A12 ∩ A∁

13

]
= pfull,1 (max(τ ′11 − τ ′21, τ

′
12 − τ ′22),max(τ ′11 − τ ′31, τ

′
12 − τ ′32)) − pfull,1 (c12, c13)

(4.65)

where

cik = max
j∈{1,2,3}

(
τ ′ij − τ ′kj

)
(4.66)

Similarly, suppose that only miner 1 accepts her block BH,1.

P
[
A11 ∩ A∁

12 ∩ A∁
13

]
= P

[
A11 ∩ A∁

12

]
− P

[
A11 ∩ A∁

12 ∩ A13

]
= P [A11] − P [A11 ∩ A12] − P [A11 ∩ A13] + P [A11 ∩ A12 ∩ A13]

(4.67)

We rewrite Eq. 4.67 in terms of pfull,1 (y2, y3):

P
[
A11 ∩ A∁

12 ∩ A∁
13

]
= pfull,1 (τ ′11 − τ ′21, τ

′
11 − τ ′31)

− pfull,1 (max(τ ′11 − τ ′21, τ
′
12 − τ ′22),max(τ ′11 − τ ′31, τ

′
12 − τ ′32))

− pfull,1 (max(τ ′11 − τ ′21, τ
′
13 − τ ′23),max(τ ′11 − τ ′31, τ

′
13 − τ ′33))

+ pfull,1 (c12, c13)

(4.68)
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We need to further classify the combinations based on the set of miners who accept block

BH,1. The sum of hash rates determines the probability of whether BH,1 survives or not.

1. Accepted by {m1,m2,m3} (fully accepted)

2. Accepted by {m1,m2} (partially accepted)

3. Accepted by {m1,m3} (partially accepted)

4. Accepted by {m1} (partially accepted)

Other sets of miners without including m1 (an original block miner), e.g. {m2}, {m3},

{m2,m3}, are infeasible.

Theorem 4.8. When miner 1 does not accept her block, BH,1, the other miners do not accept

BH,1.

Proof. From the definition of the timing matrix, we have:

a11 > min(a21, a31)

⇐⇒ a12 = a11 + τ12 > min(a21 + τ12, a31 + τ12) = min(a22 + τ21 + τ12, a33 + τ31 + τ12)

(4.69)

Miner 2, without loss of generality, compares a12 with min(a22, a32) = min(a22, a33 + τ32).

There are two possible subcases. If a12 > a22 + τ21 + τ12, miner 2 finds that a22 is smaller; a12

is not smallest because one-hop transmission delays are nonnegative. If a12 > a33 + τ31 + τ12,

we need to assume τ32 < τ31 + τ12, i.e., the indirect path (3 → 1 → 2) takes the longer delay

than the direct path (3 → 2). Therefore, miner 2 does not accept BH,1.

For the event that two miners {m1,m2} accept BH,1 (partially accepted), either m1 or

m2 may propose the next block BH+1,1 or BH+1,2. Miners are possibly in disagreement for

74



height H + 1, but note that their parent block is BH,1. In the timing matrix at round H + 1,

the smallest element for each column should be found in either the first or second row.
a11 a12 a13

a21 a22 a23

a31 a32 a33

 (4.70)

Let A′
ij denote the event that miner j accepts the block proposed by miner i at round

H + 1.

To simplify the notation, we define:

p⋆|1 ≜ P [A′
11 ∩ A′

12 ∩ A′
13] (full acceptance)

p⋆|12 ≜ P [(A′
11 ∪ A′

21) ∩ (A′
12 ∪ A′

22) ∩ (A′
13 ∪ A′

23)]

p⋆|13 ≜ P [(A′
11 ∪ A′

31) ∩ (A′
12 ∪ A′

32) ∩ (A′
13 ∪ A′

33)]

p⋆|123 ≜ P [(A′
11 ∪ A′

21 ∪ A′
31) ∩ (A′

12 ∪ A′
22 ∪ A′

32) ∩ (A′
13 ∪ A′

23 ∪ A′
33)] = 1

(4.71)

In other words, p⋆|12 is the probability that every miner accepts any block mined by {m1,m2}.

Now the probability that every miner accepts either one chain with BH+1,1 or another

chain with BH+1,2 is:

p⋆|12 = 1 − P
[
(A′

11 ∪ A′
21)

∁ ∪ (A′
12 ∪ A′

22)
∁ ∪ (A′

13 ∪ A′
23)

∁
]

= 1 − P [A′
31 ∪ A′

32 ∪ A′
33]

(4.72)

where

A′
31 = {(X1, X2)|X3 + oH+1,3 + τ ′31 < min(X1 + oH+1,1 + τ ′11, X2 + oH+1,2 + τ ′21)},

A′
32 = {(X1, X2)|X3 + oH+1,3 + τ ′32 < min(X1 + oH+1,1 + τ ′12, X2 + oH+1,2 + τ ′22)},

A′
33 = {(X1, X2)|X3 + oH+1,3 + τ ′33 < min(X1 + oH+1,1 + τ ′13, X2 + oH+1,2 + τ ′23)}

(4.73)

To evaluate the probability of the union of A′
31, A

′
32, and A′

33, we need to consider three

random variables X1, X2, and X3. Suppose that the sampled value of X3 is x3 to reduce the

dimension. We have the three regions as follows:
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R1 :X1 > max(0, x3 + oH+1,3 − oH+1,1 + τ ′31 − τ ′11) ∧

X2 > max(0, x3 + oH+1,3 − oH+1,2 + τ ′31 − τ ′21)

R2 :X1 > max(0, x3 + oH+1,3 − oH+1,1 + τ ′32 − τ ′12) ∧

X2 > max(0, x3 + oH+1,3 − oH+1,2 + τ ′32 − τ ′22)

R3 :X1 > max(0, x3 + oH+1,3 − oH+1,1 + τ ′33 − τ ′13) ∧

X2 > max(0, x3 + oH+1,3 − oH+1,2 + τ ′33 − τ ′23)

(4.74)

Fig. 4.8 depicts the three regions (the slices of X3 = x3) in the 2D plane (X1, X2). To

consider the boundaries of the union of the events, we sort the above three corner points by

the first dimension X1. Let (a, b), (c, d) and (e, f) be the sorted points such that a < c < e.

There are 3! = 6 permutations for the relative order of the second dimension X2.

Figure 4.8: Possible boundaries for three miners (3! = 6).

Since X1 and X2 are mutually independent, we compute the probability of the union of
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A′
31, A

′
32, and A′

33 (conditioned on X3 = x3) as follows:

P [A′
31 ∪ A′

32 ∪ A′
33|X3 = x3]

=



e−µ1ae−µ2b if b < d < f

e−µ1ae−µ2b if b ≤ f ≤ d

e−µ1ae−µ2b + e−µ1ce−µ2d − e−µ1ce−µ2b if d ≤ b ≤ f

e−µ1ae−µ2b + e−µ1ee−µ2f − e−µ1ee−µ2b if f ≤ b ≤ d

e−µ1ae−µ2b + e−µ1ce−µ2d − e−µ1ce−µ2b if d ≤ f ≤ b

e−µ1ae−µ2b + e−µ1ce−µ2d − e−µ1ce−µ2b + e−µ1ee−µ2f − e−µ1ee−µ2d if f ≤ d ≤ b

(4.75)

If the delays are small, it is likely that the fork is resolved at the next round H + 1.

In this case, the three corner points are close to (x3, x3). The probability of the events is

approximately
∫∞
0

e−µ1x3e−µ2x3µ3e
−µ3x3dx3 = µ3

µ1+µ2+µ3
and we have:

p⋆|12 = P [(A′
11 ∪ A′

21) ∩ (A′
12 ∪ A′

22) ∩ (A′
13 ∪ A′

23)] ≈
µ1 + µ2

µ1 + µ2 + µ3

(4.76)

However, if the delays are significantly large, the fork may persist over many rounds

(more than two rounds). The fork can be resolved at round H + 2, H + 3, and so on. We

further assume that the probability of fork survival for the subsequent rounds is proportional

to the sum of hash rates. For example, if the block BH,1 is partially accepted by a set of

miners M = {m1,m2}, the probability of fork survival conditioned on M is close to p⋆|12.

We summarize the probabilities in Table 4.2.

Table 4.2: Summary for the probabilities that a set of miners accepts the block

Set of miners, M M accepts BH,1 All accept chain (· · ·BH,1BH+1,k) : mk ∈ M

{m1,m2,m3} P [A11 ∩ A12 ∩ A13] p⋆|123 = 1

{m1,m2} P
[
A11 ∩ A12 ∩ A∁

13

]
p⋆|12 ≈ µ1+µ2

µ1+µ2+µ3
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{m1,m3} P
[
A11 ∩ A∁

12 ∩ A13

]
p⋆|13 ≈ µ1+µ3

µ1+µ2+µ3

{m1} P
[
A11 ∩ A∁

12 ∩ A∁
13

]
p⋆|1 ≈ µ1

µ1+µ2+µ3

Now we approximate the probability that BH,1 survives:

psurvival ≈P [A11 ∩ A12 ∩ A13] · p⋆|123

+P
[
A11 ∩ A12 ∩ A∁

13

]
· p⋆|12

+P
[
A11 ∩ A∁

12 ∩ A13

]
· p⋆|13

+P
[
A11 ∩ A∁

12 ∩ A∁
13

]
· p⋆|1

(4.77)

We further simplify Eq. 4.77 using the probability of set difference:

psurvival ≈P [A11 ∩ A12 ∩ A13] ·
(
p⋆|123 − p⋆|12 − p⋆|13 + p⋆|1

)
+ P [A11 ∩ A12] ·

(
p⋆|12 − p⋆|1

)
+ P [A11 ∩ A13] ·

(
p⋆|13 − p⋆|1

)
+ P [A11] · p⋆|1

(4.78)

In terms of the aggregate delays, we finally have our approximation to psurvival:

psurvival ≈

pfull,1 (c12, c13) ·
(
p⋆|123 − p⋆|12 − p⋆|13 + p⋆|1

)
+pfull,1 (max(τ ′11 − τ ′21, τ

′
12 − τ ′22),max(τ ′11 − τ ′31, τ

′
12 − τ ′32)) ·

(
p⋆|12 − p⋆|1

)
+pfull,1 (max(τ ′11 − τ ′21, τ

′
13 − τ ′23),max(τ ′11 − τ ′31, τ

′
13 − τ ′33)) ·

(
p⋆|13 − p⋆|1

)
+pfull,1 (τ ′11 − τ ′21, τ

′
11 − τ ′31) · p⋆|1

(4.79)

where

pfull,1 (y2, y3) ≜
∫ ∞

0

e−µ2 max (0,x1+oH,1−oH,2+y2)

· e−µ3 max (0,x1+oH,1−oH,3+y3)

· µ1e
−µ1x1dx1

(4.80)
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In Fig. 4.9, we compare the approximation of the probability of fork survival, Eq. 4.79,

and the simulation result. We use the same simulation parameters. We consider three miners

whose hash rates are (µ1, µ2, µ3) = (0.50, 0.25, 0.25) · µb. We assume that the effect of time

skew is zero. The aggregate delays are defined as follows:

τ ′ij =


d if i ̸= j

0 if i = j

(4.81)

where d ∈ [0, 600]. The approximation of psurvival captures an effect of interaction between

miners. The large miner (50%) takes advantage of the delays whereas the small miners

(25%) get some penalties. We further consider an approximation of pfull,1(y2, y3) by ignoring

the max function: emax(x,0) = ex if x ≥ 0. This approximation yields a convenient form as

follows:

pfull,1 (y2, y3) ≈ p̃full,1 (y2, y3) =
µ1

µ1 + µ2 + µ3

e−µ2y2e−µ3y3 (4.82)

The approximation error can be large, especially when y2 and y3 are negative numbers, e.g.

τ ′11 − τ ′21, τ
′
11 − τ ′31.
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Figure 4.9: The probability of fork survival (special case, n = 3).
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4.5 Three Miner Approximation

It is complicated to consider the explosively growing number of combinations for n arbitrary

miners. We find that the special case for n = 3 helps analyze our problem: an individual

miner decides how many transactions she processes for the next block. Let us assume that

we have one miner, miner i who processes ri transactions and that there are in addition two

“super” groups of miners: (1) those who never process transactions (i.e., “empty” blocks)

and (2) those who prefer to process B transactions (the maximum number of transactions in

a block, i.e., “full” blocks). We use the sum of hash rates as a representative for each group.

We call this the three miner approximation method.

4.5.1 Delay Assumptions

Now we will represent processing delay di at miner i and one-hop transmission delay τij from

miner i to miner j in terms of the number of transactions in a block. Let ri be the number

of transactions in a block proposed by miner i.

0 ≤ ri ≤ B (4.83)

where B is the maximum number of transactions in a block.

Let αi be the average processing delay per transaction at miner i. Now the processing

delay is given by:

di = αiri (4.84)

Let βij be the average one-hop transmission delay per transaction.

βij =
b

Cij

(4.85)

where b is the size of each transaction (bytes), and Cij is a channel capacity (bytes per

second) from miner i to miner j.
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τij =
b

Cij

ri = βijri (4.86)

The aggregate delay τ ′ij can be represented in terms of the number of transactions in a

block:

τ ′ij = di + τij = (αi + βij)ri (4.87)

By using the approximation for p⋆|12, p⋆|13, and p⋆|1 (p⋆|123 − p⋆|12 − p⋆|13 + p⋆|1 ≈ 0), we

can simplify Eq. 4.79 as follows:

psurvival ≈

pfull,1 (max(τ ′11 − τ ′21, τ
′
12 − τ ′22),max(τ ′11 − τ ′31, τ

′
12 − τ ′32)) ·

(
µ2

µ1 + µ2 + µ3

)
+pfull,1 (max(τ ′11 − τ ′21, τ

′
13 − τ ′23),max(τ ′11 − τ ′31, τ

′
13 − τ ′33)) ·

(
µ3

µ1 + µ2 + µ3

)
+pfull,1 (τ ′11 − τ ′21, τ

′
11 − τ ′31) ·

(
µ1

µ1 + µ2 + µ3

)
(4.88)

where

τ ′ik − τ ′jk = (αi + βik)ri − (αj + βjk)rj (4.89)

4.5.2 Distribution of Miners

Let Gbad be a set of miners who never process transactions and Ggood be a set of miners who

prefer to process B transactions. The sum of hash rates is:

hgood =
∑

i∈Ggood

hi, hbad =
∑

i∈Gbad

hi (4.90)

The rate of solving a hash puzzle is proportional to the hash rate.

µgood =
∑

i∈Ggood

µi, µbad =
∑

i∈Gbad

µi (4.91)
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4.5.3 An Example Comparison

In this example comparison, let us assume that there are 15 miners (6 bad miners, 8 good

miners, and one joining a group of good miners) whose hash rates are nonuniform (arbitrarily

chosen). It is fairly complicated to consider 15 miners using a 15 × 15 timing matrix. The

three miner approximation method is useful to obtain the probability of fork survival. We

compute the aggregate hash rate of the two groups of miners as follows:

µgood

µb

= 0.035︸ ︷︷ ︸
oneself

+ 0.25 + 0.10 + 0.035 ∗ 6︸ ︷︷ ︸
6 miners

= 0.035 + 0.560 = 0.595

µbad

µb

= 0.20 + 0.05 + 0.05 + 0.035 + 0.035 + 0.035 = 0.405

(4.92)

Fig. 4.10 compares the empirical probability of fork survival from the simulator and the

analytical result from the three miner approximation method. An individual miner with

3.5% of the network hash rate experiences a drop in probability as the delay increases. This

approximation gives a reasonable value. However, the approximation error can be large when

the aggregate delays are large. The different aggregate delays cause the additional errors

since these miners cannot be merged into a homogeneous group. Eq. 4.88 will be used in

Chapter 5.
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Figure 4.10: Three miner approximation.

4.6 Time Skew

The timestamp at which each miner reaches chain height H is uneven due to the delay. Fig.

4.11 shows that three miners started mining tasks at the exact same time at round H − 1,

i.e., TH−1,1 = TH−1,2 = TH−1,3. Specifically, miner 1 has additional time τ ′12 for her mining

task for round H + 1 than miner 2. Miner 3 also has additional time τ ′31 and τ ′32 than miner

1 and miner 2, respectively. The time skew term further decreases the probability of full

acceptance.

We recall from Eq. 4.9, that the time skew in miner i, particularly at round H, can be

expressed as follows:

oH,k ≜ TH−1,k − min
i∈{1,··· ,n}

TH−1,i (4.93)

We find that there exists at least one miner whose time skew term is 0. This can be

proven by definition. TH−1,k − mini∈{1,··· ,n} TH−1,i = 0 when TH−1,k is the minimum, i.e.,
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Figure 4.11: Time skew caused by delays.

miner k found block BH−1,k earlier than the other miners.

From the definition of the timing matrix:

TH,k = TH−1,k + min
j∈{1,...,n}

ajk

= TH−1,k + min
j∈{1,...,n}

(
Xj + oH,j + τ ′jk

) (4.94)

Now we consider:

oH+1,k = TH,k − min
i∈{1,··· ,n}

TH,i

= TH−1,k + min
j∈{1,...,n}

(
Xj + oH,j + τ ′jk

)
− min

i∈{1,··· ,n}
TH,i

= min
j∈{1,...,n}

(
Xj + oH,j + τ ′jk

)
−
(

min
i∈{1,··· ,n}

TH,i − TH−1,k

) (4.95)

To simplify the notation, we define:

bk ≜

(
min

i∈{1,··· ,n}
TH,i − TH−1,k

)
(4.96)
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The cumulative distribution function of oH+1,k is:

P [oH+1,k ≤ ω] = P
[

min
j∈{1,...,n}

(
Xj + oH,j + τ ′jk

)
− bk ≤ ω

]
= P

[
min

j∈{1,...,n}

(
Xj + oH,j + τ ′jk

)
≤ ω + bk

]
= 1 − P

[
min

j∈{1,...,n}

(
Xj + oH,j + τ ′jk

)
> ω + bk

]
= 1 − P

[
n∧

j=1

(
Xj + oH,j + τ ′jk > ω + bk

)]
(4.97)

Since oH+1,k is a nonnegative value, we may obtain the expectation from the cumulative

distribution function.7

E [oH+1,k] =

∫ ∞

0

(1 − P [oH+1,k ≤ ω]) dω

=

∫ ∞

0

P

[
n∧

j=1

(
Xj + oH,j + τ ′jk > ω + bk

)]
dω

=

∫ ∞

0

n∏
j=1

e−µj max(0,ω+bk−oH,j−τ ′jk)dω

(4.98)

For a rough approximation:

E [oH+1,k] ≈
∏n

j=1 e
µj(−bk+oH,j+τ ′jk)∑n

j=1 µj

(4.99)

Note that processing and one-hop transmission delays τ ′jk = dj + τjk increase the time

skew experienced by miner k.

7However, bk and oH remain in the equation. We leave it for future work to deal with these quantities.
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4.7 Conclusion

In this chapter, we analyzed a block mining process with processing and network delays.

We introduced a timing matrix that represents block arrival timings between pairwise two

nodes. We provided the formulae for the lower and upper bound of the probability of fork

survival, i.e., winning the mining competition. We also provided analytical expressions that

approximate the probability of fork survival, namely Eq. 4.79, for two miners and three

miners. We found that not only the hash rates but also the delays affect the probability of

fork survival. We discovered an effect of interaction between miners that a large miner takes

advantage of the delays, and the opposite effect exists for small miners. We found that the

three miner approximation method provides simpler, but approximate expressions for the

fork survival probability for many miners with two strategies. We also studied the time skew

caused by delays.
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CHAPTER 5

Optimal Block Reward Policy

5.1 Introduction

The block reward and transaction fees incentivize miners to participate in the intense mining

competition and hopefully to process as many transactions as possible. The protocol defines

the block reward, and the transaction fee market determines the level of transaction fees as

we studied in Chapter 3.

Any rational miner wants to maximize her expected mining revenue. In an ideal world

where processing and network delays are zero, the probability of fork survival, i.e., winning

the mining competition, is purely a function of computing power. In this case, the optimal

strategy for the miner is to process transactions until she reaches the block size limit. This

would be the intention of the protocol designer.

As we studied in Chapter 4, adding more transactions in a block negatively affects the

probability of fork survival, especially with significant delays. When a miner processes

transactions, she decides how many transactions she will include in a new block. With a

large block reward, the optimal strategy might be to skip transactions. Such a reward policy,

which is not incentive-compatible, may cause severe performance degradation.

In this chapter, we analyze the behavior of miners. We derive the optimum number of

transactions from the probability of fork survival. We then identify the operating region of

a block reward that pushes the system throughput to maximum designed capacity. We also

propose a dynamic block reward that may further improve the system throughput.
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Table 5.1 summarizes the notation.

Table 5.1: Notation

Symbol Description Unit

ri Number of transactions in a block proposed by miner i (TX)

r∗i Optimum number of transactions for miner i that maximizes

her expected mining revenue

(TX)

B Maximum number of transactions in a block (TX)

κ Average transaction fee per transaction B/(TX)

αi Processing delay per transaction at miner i s/(TX)

βij Transmission delay per transaction from miner i to miner j s/(TX)

RB Block reward B

RB,0 Base block reward (for a dynamic block reward) B

RS Subsidy for processing a transaction (for a dynamic block

reward)

B/(TX)

RTX Sum of transaction fees (total transaction fee) B

5.2 Reward Policy

A proof-of-work blockchain commonly defines a reward policy with the following rewards.1

• A block reward RB

• The sum of transaction fees RTX

In this chapter, we assume that the sum of transaction fees RTX is given. Let κ denote

the average transaction fee per transaction.

1There can be special types of rewards like an uncle reward in Ethereum.
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In our model, the sum of transaction fees can be expressed as follows:

RTX = κ · ri (5.1)

where ri is the number of transactions processed by miner i.2

5.3 Optimum Number of Transactions

Figure 5.1: The reward policy affects the behavior of miners.

A miner claims the block reward RB and transaction fees RTX once her block is accepted.

For the expected mining revenue as shown in Eq. 5.2, one should consider the probability

of fork survival, psurvival. Fig. 5.1 shows the factors that affect the behavior of miner i, i.e.,

the number of transactions processed by miner i.

E [RB + RTX] = (RB + RTX) · psurvival

= (RB + κ · ri)︸ ︷︷ ︸
increasing as ri↑

· psurvival(ri)︸ ︷︷ ︸
decreasing as ri↑

(5.2)

2We also assume that κ is constant. Suppose that no miner processes any transactions; then the cor-
responding system utilization factor is

∑P
i=k λi/(µ · 0) = ∞. As we studied in Chapter 3, the level of

transaction fee will rise and there exists an equilibrium. We leave the study of such a system for future work.
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To continue the analysis, we now resort to our three miner approximation method. By

plugging Eq. 4.89 into Eq. 4.88, we represent psurvival as follows:

psurvival(r1) ≈
1

µ1 + µ2 + µ3

(

µ2 · pfull,1
(

max
k∈{1,2}

((α1 + β1k)r1 − (α2 + β2k)r2), max
k∈{1,2}

((α1 + β1k)r1 − (α3 + β3k)r3)

)
+µ3 · pfull,1

(
max
k∈{1,3}

((α1 + β1k)r1 − (α2 + β2k)r2), max
k∈{1,3}

((α1 + β1k)r1 − (α3 + β3k)r3)

)
+µ1 · pfull,1 ((α1 + β11)r1 − (α2 + β21)r2, (α1 + β11)r1 − (α3 + β31)r3)

)
(5.3)

where

pfull,1 (y2, y3) ≜
∫ ∞

0

e−µ2 max (0,x1+oH,1−oH,2+y2)

· e−µ3 max (0,x1+oH,1−oH,3+y3)

· µ1e
−µ1x1dx1

(5.4)

Now we consider a partial derivative of the expected mining revenue of miner 1, Eq. 5.2,

with respect to the number of transactions, r1:

∂ E [RB + RTX]

∂r1
= κ · psurvival(r1) + (RB + κ · r1) ·

∂psurvival(r1)

∂r1
(5.5)

When the probability of fork survival is independent of delays, i.e., ∂psurvival(r1)
∂r1

= 0, Eq.

5.5 is nonnegative (κ ≥ 0 and psurvival(r1) ≥ 0). The revenue increases with r1. Thus, miners

will process transactions until they reach the hard limit B to maximize their mining revenue.

This agrees with intuition.

By assuming the concavity of Eq. 5.2, we may find the optimum number of transactions

r∗1 as follows:
∂ E [RB + RTX]

∂r1

∣∣∣∣
r1=r∗1

= 0 (5.6)
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We approximate pfull,1 (y2, y3) as Eq. 4.55 which is a common case and we assume that

the difference of the two time skew terms is negligible:

pfull,1 (y2, y3) ≈ p̃full,1 (y2, y3) =
µ1

µ1 + µ2 + µ3

· e−µ2y2e−µ3y3 (5.7)

By taking a partial derivative of Eq. 5.7, we have:

∂p̃full,1 (y2, y3)

∂r1
=

µ1

µ1 + µ2 + µ3

·
(
−µ2

∂y2
∂r1

− µ3
∂y3
∂r1

)
· e−µ2y2−µ3y3

=

(
−µ2

∂y2
∂r1

− µ3
∂y3
∂r1

)
· p̃full,1 (y2, y3)

(5.8)

Now we consider a partial derivative of the max function in Eq. 5.3.

∂ maxk∈{1,2} ((α1 + β1k)r1 − (α2 + β2k)r2)

∂r1
= max

k∈{1,2}
(α1 + β1k) (5.9)

By combining these, we have:

∂p̃survival(r1)

∂r1
=

µ2

µ1 + µ2 + µ3

·
(
−µ2 max

k∈{1,2}
(α1 + β1k) − µ3 max

k∈{1,2}
(α1 + β1k)

)
· p̃full,1 (y2a, y3a)

+
µ3

µ1 + µ2 + µ3

·
(
−µ2 max

k∈{1,3}
(α1 + β1k) − µ3 max

k∈{1,3}
(α1 + β1k)

)
· p̃full,1 (y2b, y3b)

+
µ1

µ1 + µ2 + µ3

· (−µ2(α1 + β11) − µ3(α1 + β11)) · p̃full,1 (y2c, y3c)

(5.10)

where

y2a ≜ max
k∈{1,2}

((α1 + β1k)r1 − (α2 + β2k)r2)

y3a ≜ max
k∈{1,2}

((α1 + β1k)r1 − (α3 + β3k)r3)

y2b ≜ max
k∈{1,3}

((α1 + β1k)r1 − (α2 + β2k)r2)

y3b ≜ max
k∈{1,3}

((α1 + β1k)r1 − (α3 + β3k)r3)

y2c ≜ (α1 + β11)r1 − (α2 + β21)r2

y3c ≜ (α1 + β11)r1 − (α3 + β31)r3

(5.11)
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We assume that a one-hop transmission delay for a loopback is zero, i.e., β11 = 0 and the

channel capacity is restricted by the source node, i.e., β12 = β13 = β1. We further simplify

the max functions in Eq. 5.10 as follows:

∂p̃survival(r1)

∂r1
=

µ2

µ1 + µ2 + µ3

· (−µ2 (α1 + β12) − µ3 (α1 + β12)) · p̃full,1 (y2a, y3a)

+
µ3

µ1 + µ2 + µ3

· (−µ2 (α1 + β13) − µ3 (α1 + β13)) · p̃full,1 (y2b, y3b)

+
µ1

µ1 + µ2 + µ3

· (−µ2(α1) − µ3(α1)) · p̃full,1 (y2c, y3c)

= −(µ2 + µ3) · (α1 + β1) · p̃survival(r1) + (µ2 + µ3) · β1 ·
µ1

µ1 + µ2 + µ3

· p̃full,1(y2c, y3c)

(5.12)

Note that Eq. 5.12 is not positive, i.e., processing and one-hop transmission delays

decrease the probability of fork survival.

To simplify the notation, we define:

ζ(r1) ≜ (µ2 + µ3) · β1 ·
µ1

µ1 + µ2 + µ3

· p̃full,1(y2c, y3c) (5.13)

Note that ζ(r1) ≥ 0 as every term is nonnegative.

Specifically, we represent Eq. 5.5 in terms of the number of transactions r1 as follows:

∂ E [RB + RTX]

∂r1
= κ · p̃survival(r1) − (RB + κ · r1) ((µ2 + µ3) · (α1 + β1) · p̃survival(r1) − ζ(r1))

(5.14)

We next obtain an explicit form for the optimum number of transactions r∗1:

κ · p̃survival(r∗1) − (RB + κ · r∗1) · ((µ2 + µ3) · (α1 + β1) · p̃survival(r∗1) − ζ(r∗1)) = 0 (5.15)

By rearranging Eq. 5.15, we have:

r∗1 =
1

(µ2 + µ3)(α1 + β1) − ζ̃(r∗1)
− RB

κ
≥ 1

(µ2 + µ3)(α1 + β1)
− RB

κ
(5.16)

where ζ̃(r∗1) ≜ ζ(r∗1)

p̃survival(r
∗
1)

≥ 0.
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5.4 Operating Range of Block Reward

Every rational miner tries to maximize her mining revenue. In an ideal situation where

delays do not exist, miners are always willing to process transactions until they reach the

hard limit of B. In the real world with inevitable processing and network delays, miners

will consider the implication of including transactions to their rewards. As we analyzed it

in the previous section, the delays decrease the probability of fork survival, i.e., winning the

mining competition. That is, including more transactions does not necessarily mean more

expected mining revenue.

In this section, we seek to identify the operating range of the block reward RB such that

the optimum number of transactions r∗i is greater than or equal to B as follows, that is we

seek to have the following hold:

∀i : r∗i ≥ B (5.17)

That is, we are interested in incentivizing miners to mine full blocks.

From Eq. 5.16 and 5.17, we obtain the following inequality for miner i:

RB ≤ κ

(
1

(µb − µi)(αi + βi) − ζ̃(r∗i )
−B

)
(5.18)

where µ1 + µ2 + µ3 = µb.

This is a key result of this research. For every miner i the above condition, Eq. 5.18,

should hold.3 If the processing and one-hop transmission delays are negligible, we get αi +

βi ≈ 0 ⇒ RB < ∞, i.e., any block reward can be chosen. When the operating range of RB

is negative, Eq. 5.18 does not hold (RB ≥ 0).

On the other hand, transaction fees may also affect the behavior of miners. Now we

3The result in [YKJ18] is a relaxed condition of B = 0. The assumption that the probability of winning
the mining competition is proportional to the relative hash rate does not reflect the effect of interaction
between miners discussed in Chapter 4.
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rearrange the condition in Eq. 5.18 and express it in terms of κ:

κ ≥
RB

(
(µb − µi)(αi + βi) − ζ̃(r∗i )

)
1 −B

(
(µb − µi)(αi + βi) − ˜ζ(r∗i )

) (5.19)

Figure 5.2: The expected mining reward (κ = 0.008).

Fig. 5.2 shows an example of the expected mining revenue as a function of the number

of transactions in a block proposed by miner i. We assume RB ∈ {25B, 12.5B, 10B, 8B, 4B},

RTX = 8B, (µ1, µ2, µ3) = (0.25, 0.50, 0.25) · µb, r1 ∈ [0, 2000], r2 = 0, r3 = 1000 and

αi = βi = 0.2.4 In this example, we assume that one group of miners (50%) does not process

transactions. Another group of miners (25%) processes r3 transactions.

The solid dots indicate the peak of each mining revenue curve and the optimum number

of transactions that achieve that peak. While a large block reward gives more mining reward

to a miner, it does not necessarily encourage miners to process transactions. With the large

block reward (RB = 25B), we observe that the optimum number of transactions is near

4We exaggerate transaction fees because of the exaggerated delay. In practice, the delay in Bitcoin is
small compared to its block creation time (≈ 600s).
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0 transactions.5 With the small block reward (RB = 4B), we observe that the optimum

number of transactions is near B.

5.5 Dynamic Block Reward

In this section, we attempt to revise the current reward policy of giving a block reward RB

plus transaction fees RTX. The block reward is constant in a short period, while the coin

issuance schedule changes the block reward over a long period.

We now consider a dynamic block reward by adding a proportional subsidy RS for each

transaction processed, i.e.,

(static block reward) := (RB + RTX)

(dynamic block reward) := (RB,0 + RS · r1 + RTX)
(5.20)

where RB,0 denotes a constant base block reward.

Similarly, Eq. 5.5 becomes:

∂ E [RB,0 + RS · r1 + RTX]

∂r1
=

(κ + RS) · psurvival(r1) + (RB,0 + RS · r1 + κ · r1) ·
∂psurvival(r1)

∂r1

(5.21)

Note that the system creates the subsidy RS and users pay the transaction fees RTX.

Now we obtain the optimum number of transactions as follows:

r∗1,dynamic =
1

(µ2 + µ3)(α1 + β1) − ζ̃(r∗1)
− RB,0

κ + RS

(5.22)

If we suppose that
RB,0

κ+RS
≤ RB

κ
and ζ̃(·) is negligible, we obtain the improved optimum

number of transactions under the dynamic block reward policy:

r∗1,dynamic ≥ r∗1 (5.23)

5Due to the effect of interaction between miners, the expected mining revenue at r1 = 0 is 6.98B > 6.25B
(= 25B · 0.25).
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We also obtain the operating region of the base block reward RB,0:

RB,0 ≤ (κ + RS)

(
1

(µ2 + µ3)(α1 + β1) − ζ̃(r∗1)
−B

)
(5.24)

Since the system gives out the additional reward for processing transactions, some miners

may abuse the policy. They can create internal transactions to get more rewards (subsidies).

It takes almost no cost to create wallet accounts. For example, suppose that a miner has

two wallet accounts: addr1 and addr2. Then the miner puts transactions like

send xB from addr1 to addr2

send xB from addr2 to addr1 (the opposite)
(5.25)

in her block.6

Let r1,user be the number of real transactions and r1,miner be the number of internally

generated transactions created by a miner.

r1 = r1,user + r1,miner (5.26)

Since the net mining transaction revenue from the internal transactions is zero, we have

the expected mining revenue as follows:

E [RB,0 + RS · r1 + RTX] = (RB,0 + RS · (r1,user + r1,miner) + κ · r1,user) · psurvival(r1) (5.27)

The level of system load determines whether a miner creates internal transactions or not.

If the system is running at its full capacity, r1,user + r1,miner = B holds. In this case, a miner

does not get an additional incentive to create internal transactions. However, if the system is

underloaded, i.e., r1,user < B, the miner now has an incentive to create internal transactions

up to B − r1,user. Therefore, the system running at full capacity may adopt the dynamic

reward policy.

6Internal transactions might be indistinguishable from normal transactions as a miner forms a long cyclic
path in a graph of transactions.
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In summary, the dynamic block reward has the benefits only if the system runs at its full

capacity as follows:7

• The operating region of a block reward (a base block reward) gets extended.

• The optimum number of transactions increases; the system throughput gets improved.

• The average waiting time and transaction fee get lowered because of less intense demand

in the transaction fee market.

5.6 Conclusion

In this chapter, we studied a reward policy on block creation in a proof-of-work blockchain.

We analyzed the decision-making of block miners in terms of the number of transactions they

are willing to include in a block. Our results showed that (1) in an ideal world where the

delays are negligible, block miners process transactions until they reach the designed capacity

and (2) in a real-world where the delays are not zero, the optimum number of transactions

can be below the block size limit. We also identified the operating range of a block reward

that pushes the optimum point beyond the designed capacity (which leads us to full blocks,

our desired outcome). Finally, we proposed a dynamic block reward of a proportional subsidy

for processing transactions. We showed that it further improves the system throughput as

the optimum number of transactions increases and the operating region of a block reward

gets extended. Therefore, blockchain users can have a better experience: (1) reduced waiting

time and (2) less expensive transaction fees.

7In practice, there are a sufficient number of pending transactions in a popular blockchain.
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CHAPTER 6

Conclusion

In a decentralized system, it is essential to define an incentive scheme properly to encourage

anonymous participants to take the desired actions. However, the ideal and the real world

gap is always wider than expected. There are many unknown (and sometimes ambiguous)

external factors. In this dissertation, we mathematically analyzed a reward policy in a proof-

of-work blockchain. The reward policy that we analyzed is relatively manageable compared

to the human world: it consists of (1) a block reward and (2) transaction fees.

In Chapter 3, we used queueing theory to model a transaction fee market as a head-of-line

bulk service queue with multiple priority groups. We obtained an analytical expression for

the average waiting time for each priority group with an arbitrary service time distribution.

We showed that the numerical integration of the formula matches well with the simulation

results. We used a Hilbert transform approach which does not require evaluating system

stationary probabilities.

We derived the distribution of the minimum group index in this priority queue, which

yields the equilibrium price in the transaction fee market. We showed that the minimum

transaction fee in a block comes from the minimum group index with the fee distribution

as a weight. We also derived the analytical expression for the average total transaction fee

in a block. We provided concrete solutions for an exponential service time distribution. We

showed that the formulae match well with simulation results.

In Chapter 4, we analyzed a block mining process that included processing and network

delays. We aimed to obtain the analytical expression for the probability of fork survival,
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i.e., winning the mining competition. We provided lower and upper bound formulae of the

probability of fork survival. We also offered the analytical expressions to approximate the

probability for special cases for two miners and three miners. We found an effect of interaction

between miners that a large miner takes advantage of the delays and small miners experience

the opposite effect. We also found that the three miner approximation method is helpful to

evaluate the probability for many miners with two strategies. We also studied the time skew

caused by delays.

Lastly, in Chapter 5, we analyzed the reward policy on block creation in a proof-of-work

blockchain. We showed that the processing and network delays (as hidden costs) distort

the reward policy. We calculated the number of transactions in a block that maximizes

the expected mining revenue. We then identified the operating range of a block reward

that encourages miners to create fully filled blocks. We proposed a dynamic block reward

of a proportional subsidy for processing transactions. We showed that the revised reward

policy further improves the system throughput, and there is no incentive to abuse the policy

only if the system runs at its designed capacity. Thus, blockchain users can have a better

experience.
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APPENDIX A

Number of Customers in an M/MB/1 Queue

Figure A.1: The state-transition-rate diagram for a bulk service queue (M/MB/1).

In [Kle75, p.138], the distribution of the number of customers in an M/MB/1 queue is

solved. Fig. A.1 depicts the state-transition-rate diagram. The state j represents that there

are j customers in the queue. We start with a set of equations for the stationary probabilities

pj (j = 0, 1, · · · ).

For the general case we have:

(λ + µ)pj = µpj+B + λpj−1 (A.1)

where j ≥ 1.

With the boundary condition:

λp0 = µ(p1 + · · · + pB) (A.2)
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By solving the above two equations, we have the following probability generating function

P (z),

P (z) =

∑B−1
j=0 pj(z

j − zB)

BρzB+1 − (1 + Bρ)zB + 1
(A.3)

where ρ = λ
µB

.

Clearly, one of the denominator roots is z = 1, and B additional roots besides z = 1

exist. Since P (z) is a probability generating function, the region of convergence (ROC) is

|z| < 1. The numerator has one zero at z = 1 and B − 1 additional zeros. For P (z) to have

a bounded value in the ROC |z| < 1, then B − 1 zeros in the numerator must be the same

as B − 1 zeros of the denominator. Otherwise, the ROC does not hold. Therefore, besides

the denominator root at z = 1 the remaining zero z0 in the denominator must be located

at |z| > 1 which is outside the ROC. We then numerically solve for the zero z0 outside the

ROC (z0 > 1).

BρzB+1
0 − (1 + Bρ)zB0 + 1 = 0 (A.4)

The stationary probability pj for every possible state j is then given by

pj =

(
1 − 1

z0

)(
1

z0

)j

(A.5)

where we have used the fact that P (1) = 1.
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APPENDIX B

Derivation for the Average Total Transaction Fee

Consider E[RTX], the expected value of the transaction fee as given by the following equation,

Eq. 3.72:

E[RTX] = E

[
P∑
i=1

giNi|X = 0

]
P[X = 0]

+
P∑

k=1

(
E

[
gkB +

P∑
i=k+1

(gi − gk)Ni|X = k

]
P[X = k]

) (B.1)

To simplify the notation, we define Aij ≜ E[Ni|X = j] and pk ≜ P[X = k].

E[RTX] = (B.2)

(g1A10 + g2A20 + · · · + gPAP0) p0 (B.3)

+ (g1B + (g2 − g1)A21 + (g3 − g1)A31 + · · · + (gP − g1)AP1) p1 (B.4)

+ · · · (B.5)

+ (gP−1B + (gP − gP−1)APP−1) pP−1 (B.6)

+ (gPB) pP (B.7)

103



The first line, Eq. B.3, can be expanded:

(g1A10 + g2A20 + · · · + gPAP0) p0 (B.8)

= (g1)A10p0 (B.9)

+ ((g2 − g1) + g1)A20p0 (B.10)

+ · · · (B.11)

+ ((gP − gP−1) + · · · + (g2 − g1) + g1)AP0p0 (B.12)

The second line, Eq. B.4, can also be expanded:

(g1B + (g2 − g1)A21 + (g3 − g1)A31 + · · · + (gP − g1)AP1) p1 (B.13)

= g1Bp1 (B.14)

+ ((g2 − g1))A21p1 (B.15)

+ ((g3 − g2) + (g2 − g1))A31p1 (B.16)

+ · · · (B.17)

+ ((gP − gP−1) + · · · + (g2 − g1))AP1p1 (B.18)

By grouping terms,

E[RTX] = g1 (A10 + A20 + · · · + AP0) p0

+ B (g1p1 + g2p2 + · · · + gPpP )

+ (g2 − g1) ((A20 + A30 + · · · + AP0)p0 + (A21 + A31 + · · · + AP1)p1)

+ (g3 − g2) ((A30 + · · · + AP0)p0 + (A31 + · · · + AP1)p1 + (A32 + · · · + AP2)p2)

+ · · ·

+ (gP − gP−1) (AP0p0 + AP1p1 + · · · + APP−1pP−1)

(B.19)

Thus, we obtain Eq. 3.73.
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APPENDIX C

Distribution of the Number of Poisson Arrivals

First, we assume Poisson arrivals. Let V denote a discrete random variable for the number

of arrivals in an interval and T denote a random variable for the interval or service time.

The conditional probability mass function of V is given by

P[V = k|T = τ ] = P[k events in interval τ ] =
(λτ)ke−λτ

k!
(C.1)

where λ is the mean arrival rate.

We may then uncondition on τ using the probability density function fT (τ) of the service

time for the interval T .

P[V = k] =

∫ ∞

0

(λτ)ke−λτ

k!
fT (τ)dτ (C.2)

C.1 Exponential Service Time

The probability density function of the exponential distribution is given by

fT (τ) =


µe−µτ if τ ≥ 0

0 otherwise

(C.3)

where µ > 0 is the rate parameter.

Then we obtain the probability mass function of V by plugging Eq. C.3 into Eq. C.2.
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P[V = k] =

∫ ∞

0

(λτ)ke−λτ

k!
µe−µτdτ

=
λkµ

k!

∫ ∞

0

τ ke−(λ+µ)τdτ

(C.4)

We use integration by parts and define Mk,0.

Mk,0 ≜
∫ ∞

0

τ ke−ατdτ =

[
−τ k

α
e−ατ

]∞
0

+
k

α
Mk−1,0 (C.5)

where α = λ + µ > 0.

We now prove the following equation holds by induction.

Mk,0 =
k!

αk+1
(C.6)

where α > 0.

The base case M0,0 can be computed:

M0,0 =

∫ ∞

0

e−ατdτ =
1

α
=

0!

α0+1
(C.7)

The induction step is:

Mk+1,0 =

[
−τ (k+1)

α
e−ατ

]∞
0

+
k + 1

α
Mk,0 =

k + 1

α

k!

αk+1
=

(k + 1)!

αk+2
(C.8)

By the principle of induction, Mk,0 = k!
αk+1 holds for any nonnegative integer k. Using

this with Eq. C.5 yields ∫ ∞

0

τ ke−(λ+µ)τdτ =
k!

(λ + µ)k+1
(C.9)

By plugging Eq. C.9 into Eq. C.4, we obtain:

P[V = k] =
λkµ

k!

k!

(λ + µ)k+1

=
µ

λ + µ

(
λ

λ + µ

)k (C.10)
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Since
∣∣∣ λ
λ+µ

eit
∣∣∣ < 1, we obtain the characteristic function of V .

ϕV (t) = E
[
eitV
]

=
∞∑
k=0

eitk
µ

λ + µ

(
λ

λ + µ

)k

=
µ

λ + µ

∞∑
k=0

(
λ

λ + µ
eit
)k

=
µ

λ + µ

1(
1 − λ

λ+µ
eit
)

=
1

λ
µ

(1 − eit) + 1

(C.11)

C.2 Shifted Exponential Service Time

The probability density function of a shifted exponential distribution is given by

fT (τ) =


µe−µ(τ−d) if τ ≥ d

0 otherwise

(C.12)

where µ > 0 is the rate parameter and d ≥ 0 is the number of shifted units.

P[V = k] =

∫ ∞

d

(λτ)ke−λτ

k!
µe−µτeµddτ

=
λkµeµd

k!

∫ ∞

d

τ ke−(λ+µ)τdτ

(C.13)

We use integration by parts and define Mk,d, which is the generalized version of Mk,0.

Mk,d ≜
∫ ∞

d

τ ke−ατdτ =
dk

α
e−αd +

k

α
Mk−1,d (C.14)

where α = λ + µ > 0.

We will prove the following equation holds by induction.

Mk,d =
k∑

m=0

k!dk−m

αm+1(k −m)!
e−αd =

k∑
m=0

k!(αd)m

αk+1m!
e−αd (C.15)
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where α > 0.

The base case M0,d can be computed:

M0,d =

∫ ∞

d

e−ατdτ =
1

α
e−αd (C.16)

The induction step is:

Mk+1,d =
dk+1

α
e−αd +

k + 1

α
Mk,d

=
dk+1

α
e−αd +

k∑
m=0

(k + 1)!(αd)m

αk+2m!
e−αd

=
k+1∑
m=0

(k + 1)!(αd)m

αk+2m!
e−αd

(C.17)

By the principle of induction, Eq. C.15 holds for any nonnegative integer k.

We thus obtain the probability mass function of V :

P[V = k] =
µ

λ + µ

1

eλd

(
λ

λ + µ

)k k∑
m=0

(λd + µd)m

m!
(C.18)

Note that when d = 0 the above equation becomes Eq. C.10.

ϕV (t) =
∞∑
k=0

(
eitk

µ

λ + µ

1

eλd

(
λ

λ + µ

)k k∑
m=0

(λd + µd)m

m!

)
(C.19)

The characteristic function can further be simplified because:
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∞∑
k=0

(
αk

k∑
m=0

βm

m!

)

= 1 + α

(
1 +

β

1!

)
+ α2

(
1 +

β

1!
+

β2

2!

)
+ · · ·

= (1 + α + α2 + · · · ) +
αβ

1!
(1 + α + α2 + · · · ) +

(αβ)2

2!
(1 + α + α2 + · · · ) + · · ·

=
eαβ

1 − α

(C.20)

where |α| < 1 and
∑∞

m=0
xm

m!
is the Maclaurin series of ex.

By plugging α = λ
λ+µ

eit and β = λd + µd into Eq. C.20, we obtain the characteristic

function of V .

ϕV (t) =
µ

λ + µ

1

eλd
eλde

it

1 − λ
λ+µ

eit

=
e−λd(1−eit)

λ
µ
(1 − eit) + 1

(C.21)

Note that Eq. C.21 becomes Eq. C.11 with a special case d = 0.

C.3 Deterministic Service Time

Let d be a constant service time. The mean service rate µ = 1
d

is also a constant. We may

consider the Dirac delta function δ(τ − d) for the (generalized) probability density function

fT (τ). The probability mass function of the number of Poisson arrivals for the interval d is

given by

P[V = k] =
(λd)ke−λd

k!
(C.22)

We obtain the characteristic function of V .
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ϕV (t) = E
[
eitV
]

=
∞∑
k=0

(
eitk

(λd)ke−λd

k!

)
= eλd(e

it−1) = e−λd(1−eit)

= e
λ
µ(eit−1)

(C.23)

where
∣∣∣λµeit∣∣∣ < 1.

Note that the product of Eq. C.23 and Eq. C.11 matches with Eq. C.21 (the sum of

independent random variables).
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APPENDIX D

Program Code

D.1 Head-of-Line Bulk Service Queue with Priority Groups

...

def simulate ():

# [Input]

events = create_tx_arrival_and_block_mining_events ()

P = 100 # The number of priority groups

g = fee_distribution () # len(g) == P

B = 100 # Bulk size

# [Process]

# pending_tx_pool: A head -of-line bulk service queue

# with priority groups

# temp_bucket: We may replenish the pending transaction pool

# right after the current mining task is finished.

pending_tx_pool = create_queue_with_priority_groups ()

temp_bucket = create_queue_with_priority_groups ()

# [Output]

waiting_time = [[]] # W

total_transaction_fee = [] # R_{TX}

minimum_group_index = [] # X

queue_length_after = [] # q
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for e in events: # e := (timestamp , event type , [group index ])

e_timestamp = e[0]

e_type = e[1]

if e_type == "t": # TX arrival event

tx_group = e[2] # Priority group index

temp_bucket[tx_group].append(e_timestamp)

elif e_type == "b": # Block mining event

__total_tx_fee = 0

__minimum_group_index = None

__remaining_space = B

# Select up to B transactions from group P to group 1

i = P - 1

while i >= 0:

num_of_available_txs = len(pending_tx_pool[i])

if num_of_available_txs > 0:

len_txs = min(__remaining_space , num_of_available_txs)

txs = pending_tx_pool[i][0:len_txs] # FIFO

for tx_ts in txs:

waiting_time = prev_block_ts - tx_ts

# Record the waiting time of a TX in group i

waiting_time[i].append(waiting_time)

__total_tx_fee += g[i] * len_txs

__minimum_group_index = i

pending_tx_pool[i] = pending_tx_pool[i][len_txs:]

__remaining_space -= len_txs

if __remaining_space == 0:

break

else:

pass

i -= 1

if __remaining_space > 0: # Partially filled block

__minimum_group_index = 0

queue_length = list(map(len , pending_tx_pool))
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# Record R_{TX}

total_transaction_fee.append(__total_tx_fee)

# Record X (the minimum group index)

minimum_group_index.append(__minimum_group_index)

# Record the queue length after serving TXs

queue_length_after.append(queue_length)

# Now we may replenish the pending transaction pool.

for i in range(P):

pending_tx_pool[i].extend(temp_bucket[i])

temp_bucket[i].clear ()

prev_block_ts = e_timestamp

...

D.2 Numerical Integration

import cmath

import math

from scipy import integrate

def phi_sk_prime_det(_lambda , d, B, k, t):

# The first -order derivative of

# k-times convoluted characteristic function of

# the deterministic service time distribution.

i = complex(0, 1)

return k * (cmath.exp(_lambda * d * (cmath.exp(i*t)-1)-i*t*B) ** k) \

* (_lambda * d * i * cmath.exp(i*t) - i * B)

def compute_mean_queue_length ():

integration_limit = 1000
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integration_upper = 48

stop_threshold = 1e-4

maximum_iterations = 10000 # won’t reach

num_of_groups = 100

bulk_size = 10

total_arrival_rate = 1/600 * 10 * 1.15

service_time = 600

for group_index in range(num_of_groups - 1, 0, -1):

arrival_rate = total_arrival_rate * \

(num_of_groups - group_index)/num_of_groups

bs = [0]

for k in range(1, maximum_iterations):

area_sub_sum = 0

for b in range(1, integration_upper):

if b == 1: # to handle a singular point (zero)

area_sub , _ = integrate.quad(

lambda t: 2*phi_sk_prime_det(

arrival_rate ,

service_time ,

bulk_size ,

k,

t).real/t,

a=0,

b=1,

points=[0],

limit=integration_limit)

else:

area_sub , _ = integrate.quad(

lambda t: 2*phi_sk_prime_det(arrival_rate ,

service_time ,

bulk_size ,
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k,

t).real/t,

a=(b-1),

b=b,

limit=integration_limit)

area_sub_sum += area_sub

inc = 0.5 * (phi_sk_prime_det(arrival_rate ,

service_time ,

bulk_size ,

k,

0).imag

- area_sub_sum/math.pi)/k

bs.append(bs[-1] + inc)

delta = None

if len(bs) >= 2:

delta = (bs[-1] - bs[-2])

if abs(delta) < stop_threshold:

break

print(group_index , k, bs[-1], arrival_rate * 600 , sep="\t")
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[Int17] Intel. “Proof-of-Elapsed-Time (PoET).” https://sawtooth.hyperledger.org,
2017. [Online].

[Jai60] NK Jaiswal. “Time-dependent solution of the bulk-service queuing problem.”
Operations Research, 8(6):773–781, 1960.

[JJ99] Markus Jakobsson and Ari Juels. “Proofs of work and bread pudding protocols.”
In Secure Information Networks, pp. 258–272. Springer, 1999.

[Kei62] Julian Keilson. “The general bulk queue as a Hilbert problem.” Journal of the
Royal Statistical Society: Series B (Methodological), 24(2):344–358, 1962.

[Kei64] Julian Keilson. “An alternative to Wiener-Hopf methods for the study of bounded
processes.” Journal of Applied Probability, 1(1):85–120, 1964.

118

https://sawtooth.hyperledger.org


[Ken51] David G. Kendall. “Some Problems in the Theory of Queues.” Journal of the
Royal Statistical Society. Series B (Methodological), 13(2):151–185, 1951.

[KK17] Yoshiaki Kawase and Shoji Kasahara. “Transaction-confirmation time for bit-
coin: A queueing analytical approach to blockchain mechanism.” In International
Conference on Queueing Theory and Network Applications, pp. 75–88. Springer,
2017.

[KK20] Yoshiaki Kawase and Shoji Kasahara. “Priority queueing analysis of transaction-
confirmation time for Bitcoin.” Journal of Industrial & Management Optimiza-
tion, 16(3):1077, 2020.

[KKS17] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasserman, and Yongdae Kim.
Be Selfish and Avoid Dilemmas: Fork After Withholding (FAW) Attacks on Bit-
coin, p. 195–209. Association for Computing Machinery, New York, NY, USA,
2017.

[Kle75] Leonard Kleinrock. Queueing Systems: Volume 1 - Theory. Wiley Interscience,
1975.

[Kle76] Leonard Kleinrock. Queueing Systems: Volume 2 - Computer Applications. Wiley
Interscience, 1976.

[KN12] Sunny King and Scott Nadal. “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake.” self-published paper, August, 19(1), 2012.

[KRD17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
“Ouroboros: A provably secure proof-of-stake blockchain protocol.” In Annual
International Cryptology Conference, pp. 357–388. Springer, 2017.

[KRV57] Harry Kesten, J Th Runnenburg, and D Van Dantzig. Priority in Waiting Line
Problems I and II. Koninklijke Nederlandse Akademie van Wetenschappen Ams-
terdam, 1957.

[Ksc06] Frank R Kschischang. “The Hilbert Transform.” University of Toronto, 83:277,
2006.
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in Asynchronous Networks.” In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part II, volume 10211 of Lecture
Notes in Computer Science, pp. 643–673, 2017.

120

https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027


[Riz16] P. Rizun. “A Transaction Fee Market Exists Without a Block Size Limit.” 2016.

[Spi56] Frank Spitzer. “A combinatorial lemma and its application to probability theory.”
Transactions of the American Mathematical Society, 82(2):323–339, 1956.

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. “Optimal selfish min-
ing strategies in bitcoin.” In International Conference on Financial Cryptography
and Data Security, pp. 515–532. Springer, 2016.

[Sza97] Nick Szabo. “The idea of smart contracts.” Nick Szabo’s Papers and Concise
Tutorials, 6, 1997.

[Wei] Eric W Weisstein. “’Sinc Function’ From MathWorld–A Wolfram Web Resource.”
https://mathworld.wolfram.com/SincFunction.html. [Online].

[Wik] Bitcoin Wiki. “Difficulty.” https://en.bitcoin.it/wiki/Difficulty. [On-
line].

[Woo14] Gavin Wood. “Ethereum: A secure decentralised generalised transaction ledger.”
2014.

[Woo16] Gavin Wood. “Polkadot: Vision for a heterogeneous multi-chain framework.”
White Paper, 21, 2016.

[Yao82] Andrew C Yao. “Theory and application of trapdoor functions.” In Foundations
of Computer Science, 1982. SFCS’08. 23rd Annual Symposium on, pp. 80–91.
IEEE, 1982.

[YKJ18] Seunghyun Yoo, Seungbae Kim, Joshua Joy, and Mario Gerla. “Promoting Co-
operative Strategies on Proof-of-Work Blockchain.” In 2018 International Joint
Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13,
2018, pp. 1–8. IEEE, 2018.

[Zam15] Vlad Zamfir. “Introducing Casper ’the Friendly Ghost’.” https:

//blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/,
2015. [Online].

121

https://mathworld.wolfram.com/SincFunction.html
https://en.bitcoin.it/wiki/Difficulty
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/

	Introduction
	Motivation
	Contributions
	Roadmap of the Dissertation

	Background
	Blockchain System Overview
	Consensus Algorithms
	Proof-of-Work
	Proof-of-Stake
	Byzantine Fault Tolerance
	Variants

	Security Threats

	Transaction Fee Market
	Introduction
	Related Work
	System Model
	Analysis
	Average Waiting Time
	Minimum Transaction Fee
	Average Total Transaction Fee

	Conclusion

	Block Mining Process with Delays
	Introduction
	System Model
	Block Mining Process
	Block Creation Subprocess
	Block Propagation Subprocess
	Block Acceptance Subprocess

	Probability of Fork Survival
	Probability of Full Acceptance (n miners)
	Lower Bound and Upper Bound
	Special Case: two miners (n = 2)
	Special Case: three miners (n = 3)

	Three Miner Approximation
	Delay Assumptions
	Distribution of Miners
	An Example Comparison

	Time Skew
	Conclusion

	Optimal Block Reward Policy
	Introduction
	Reward Policy
	Optimum Number of Transactions
	Operating Range of Block Reward
	Dynamic Block Reward
	Conclusion

	Conclusion
	Number of Customers in an M/MB/1 Queue
	Derivation for the Average Total Transaction Fee
	Distribution of the Number of Poisson Arrivals
	Exponential Service Time
	Shifted Exponential Service Time
	Deterministic Service Time

	Program Code
	Head-of-Line Bulk Service Queue with Priority Groups
	Numerical Integration

	References



