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Generative Artificial Intelligence for Behavioral Intent Prediction
Willa M. Mannering, Noah Ford, Justin Harsono, and John Winder

Johns Hopkins University Applied Physics Laboratory, Laurel MD
[willa.mannering][noah.ford][justin.harsono][john.winder]@jhuapl.edu

Abstract

Theory of mind is an essential ability for complex social in-
teraction and collaboration. Researchers in cognitive science
and psychology have previously sought to integrate theory of
mind capabilities into artificial intelligence (AI) agents to im-
prove collaborative abilities (Cuzzolin, Morelli, Cirstea, & Sa-
hakian, 2020). We introduce the Recurrent Conditional Varia-
tional Autoencoder (RCVAE), a novel model which leverages
the ability of generative models to learn rich abstracted rep-
resentations of contextual behaviors to predict behavioral in-
tent from human behavioral trajectories. Advancing on current
concept learning models, this model allows for the discovery of
latent intent in human behavior trajectories, while maintaining
the scalability and performance of generative AI models. We
show that in the Overcooked-AI environment, the RCVAE out-
performs baseline Long Short-Term Memory (LSTM) models
in predicting intent, achieving higher prediction accuracy and
greater predictive stability. The implications of these results
are significant; the RCVAE’s proficiency in learning the rela-
tionship between basic actions and resulting contextual behav-
iors represents a significant advancement in concept learning
for behavioral intent prediction.
Keywords: generative AI, theory of mind, imitation learning,
intent prediction, variational autoencoder

Introduction
Theory of mind, the ability to predict and explain another per-
son’s actions in terms of internal mental states such as beliefs
and desires, is a fundamental human ability responsible for
complex social interaction and cooperative abilities (Baker,
Saxe, & Tenenbaum, 2011; Perner, 1991). Theory of mind
has been extensively researched in the cognitive science and
psychology fields (Apperly, 2010; Wellman, Cross, & Wat-
son, 2001) and equipping AI agents with theory of mind ca-
pabilities is becoming an increasingly popular approach in
the field of machine learning (Fuchs, Walton, Chadwick, &
Lange, 2021; Rabinowitz et al., 2018).

Recently, generative AI models have experienced a surge
in popularity, with their impressive ability to create realis-
tic and novel content. This increase in popularity can be at
least partially attributed to the release of models such as Ope-
nAI’s ChatGPT (Brown et al., 2020) and DALL·E (Ramesh,
Dhariwal, Nichol, Chu, & Chen, 2022), which have show-
cased the potential of generative algorithms in diverse do-
mains, from natural language processing to image synthe-
sis. Beyond their creative capabilities, these models have the
ability to learn rich latent representations, similar to earlier
deep learning models (Engelcke, Kosiorek, Parker Jones, &

Posner, 2020; Ye & Bors, 2021). Cognitive scientists have
long leveraged learned latent representations to gain insights
into human cognitive processes (Hills, Jones, & Todd, 2012;
Jones, 2016; Kumar, Steyvers, & Balota, 2022). Thus, being
at the forefront of AI research, generative AI models have the
potential to provide novel insights and advanced capabilities
for computational modeling in the field of cognitive science.

In this paper, we leverage the ability of generative mod-
els to learn rich abstracted representations of contextual be-
haviors, and introduce a novel model, the Recurrent Condi-
tional Variational Autoencoder (RCVAE). Advancing on cur-
rent concept learning models, this model allows for the dis-
covery of latent intent in human behavior trajectories, while
maintaining the scalability and performance of generative AI
models. We evaluate the RCVAE’s ability to predict behav-
ioral intent when compared to established baseline models.
We find that the RCVAE can predict intent with higher ac-
curacy and consistency, paving the way for real-time intent
prediction in cooperative multi-agent environments. This is a
critical step towards imparting AI with theory of mind capa-
bilities, essential for understanding the intentions of collabo-
rative partners.

Related Work
Machine Theory of Mind
A popular method for integrating theory of mind in AI
is through concept learning, which enables AI agents
to comprehend and utilize human-understandable concepts
(Oguntola, Campbell, Stepputtis, & Sycara, 2023; Grupen,
Jaques, Kim, & Omidshafiei, 2022). In this context, a “con-
cept” is an abstract behavior that is meaningful to humans
but is not necessarily understandable to AI. Concept learning
techniques allow AI models to utilize meaningful ideas which
enable them to interpret and predict the beliefs and behavior
of human partners.

A variety of models for concept learning, including con-
cept whitening (Chen, Bei, & Rudin, 2020), concept bot-
tleneck (Koh et al., 2020), and concept embedding models
(Zarlenga et al., 2022), have been used previously to inte-
grate theory of mind reasoning into AI. However, these mod-
els have primarily been used for predicting concepts present
in static images. We aim to adapt the idea of concept learn-
ing models to understand and predict behavioral concepts
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from sequential trajectory data. This advancement will aid AI
agents in better understanding human behavior as it changes
throughout a behavioral trajectory.

Imitation Learning
Imitation learning has recently attracted interest with an in-
crease in real-world applications, with researchers using the
technique for playing video games, driving autonomous ve-
hicles, and training assistive robots (Hussein, Gaber, Elyan,
& Jayne, 2017). In the imitation learning paradigm, agents
observe expert trajectories in some task (such as driving a
car) and attempt to develop a policy that replicates expert be-
havior. Imitation learning contrasts with reinforcement learn-
ing, where the objective is to learn a policy that maximizes a
predefined reward function. An advantage of imitation learn-
ing is that it is not required to hand craft reward functions as
learning relies on expert behavior data. This property makes
it easier to scale up to real-world tasks, especially in scenar-
ios where gathering expert behavior data is possible. The
method described in this paper falls into the category of be-
havioral cloning (Torabi, Warnell, & Stone, 2018), with addi-
tional steps applied to extract contextual behavior predictions
from the learned latent space of our model.

Variational Autoencoders
The Variational Autoencoder (VAE) (Kingma & Welling,
2013) is a class of generative model that extends the core
concept of the autoencoder architecture to data generation.
An autoencoder is typically comprised of two subnetworks,
an encoder qφ and a decoder pθ (where φ and θ denote the
parameterizations of the distributions q and p). The encoder
transforms a sample of input data, x, into a latent represen-
tation, z. The decoder transforms the latent variables into an
output, most often a reconstruction of the input. VAEs esti-
mate mappings between distributions by incorporating auxil-
iary noise, denoted as ε, into the latent variables. The integra-
tion of noise encourages the model to map points nearby in
the latent space, modeled by the distribution of ε, to similar
reconstructions. This property enhances the model’s ability
to generalize from the training data and allows for smoother
interpolations between different inputs (Kingma & Welling,
2013).

VAEs originally gained popularity due to their ability to
produce diverse, high-quality data samples and to learn via
unsupervised methods (Doersch, 2016). Their structured la-
tent space allows for insightful data representation and ma-
nipulation, making them valuable in fields such as image gen-
eration, anomaly detection, and data analysis where under-
standing underlying patterns in the data is important. Consid-
ering their widespread use in AI applications, cognitive sci-
entists should explore the benefits of utilizing these models
for addressing computational modeling challenges within the
field.

Modeling Intent Prediction
Recurrent Conditional Variational Autoencoder
The model introduced by this paper is a Recurrent Condi-
tional Variational Autoencoder (RCVAE) which is a novel ar-
chitecture designed to predict behavioral intent from sequen-
tial trajectory data. The RCVAE is a modification of the stan-
dard VAE that is designed to handle trajectory data rather than
merely perform input reconstruction.

The Conditional Variational Autoencoder (CVAE) is a vari-
ation of the VAE architecture where the decoder predicts the
output y conditioned on input x, instead of predicting decod-
ing back to the input space, x. For this paper, x is the agent’s
environmental observations and y is the agent’s action. Ad-
ditionally, both the VAE and CVAE produce an intermediary
latent variable, z. This paper will view z a representation of
the higher-level task that an agent is performing.

The loss function for the CVAE is a slight variation of the
VAE loss function displayed below:

LCVAE(x,y;θ,φ) =−1
L

L

∑
l=1

log pθ(y|x,z(l))

+DKL(qφ(z|x,y)||pθ(z|x)), (1)

where z(l) ∼ gφ(x,y,ε(l)), g is the noise-conditioned parame-
terization of the encoder distribution q, ε(l) ∼ N (0, I), DKL
is the Kullback-Leibler Divergence, and L is the batch size
(Sohn, Lee, & Yan, 2015).

The RCVAE modifies the CVAE to handle trajectory data,
allowing it to capture behavior and intent over time. We en-
hanced the architecture with recurrent layers, which allow
the model to maintain information about previous states, and
added a new behavioral term (see Equation 2) to the loss func-
tion, which acts as a latent space regularizer that conditions a
portion of the latent space on contextual behaviors.

Lbehavior(x;θ) =
1
L

1
E

L

∑
l=1

E

∑
i=1

(z(l)i − e(l)i )2, (2)

where z(l) ∼ pθ(z|x), E is the number of behaviors, and
{e(l)}E

i=1 is the one-hot encoding of the behaviors.
To learn a relationship between basic actions and contex-

tual behaviors, we have introduced a divided training ap-
proach for the latent space. We enforce a separation of the
latent space whereby half of the latent dimensions are trained
using the behavioral loss and the remaining dimensions are
trained exclusively on the conventional CVAE loss (Equa-
tion 1). The number of dimensions that receive the additional
behavioral loss training will vary depending on the training
environment.

To achieve balanced training, we employ a latent space seg-
mentation scheme to help structure the latent space. In partic-
ular, when computing the loss, we only apply the behavioral
loss to half of the latent space: for a latent z with h hidden di-
mension (latent features), the behavioral loss only computes
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mean squared error for [z1,zh/2] elements. As a result, the first
half of the latent space is fine-tuned for specific contextual
behavior encoding, providing clear semantic interpretation,
while the latter half ([z(h/2)+1,zh]) is trained to capture more
generalized features of the basic action input data. Thus, the
full loss for the RCVAE is shown in Equation 3:

LRCVAE(x,y;θ,φ) = γLbehavior(x;θ)+LCVAE(x,y;θ,φ), (3)

where γ is a hyperparameter for balancing the behavioral loss.

Extracting Meaningful Relationships
After training the RCVAE, we extract meaningful relation-
ships between behaviors from the learned latent space of the
model. To do this we utilize several unsupervised algorithms:
Uniform Manifold Approximation and Projection (UMAP)
(McInnes, Healy, Saul, & Großberger, 2018), Density Based
Spatial Clustering of Applications with Noise (DBSCAN)
(Ester, Kriegel, Sander, Xu, et al., 1996), and K-Nearest
Neighbors (KNN). While the dimensionality of input data
is reduced through the latent layer of the RCVAE during
training, when representations of trajectories are extracted
from the latent layer they are still relatively high dimensional.
To further reduce the dimensionality of the latent variables
we employ the UMAP algorithm. UMAP is a dimension-
ality reduction algorithm that generally preserves the global
structure of the original data while also keeping similar data
points together. Unlike simpler dimensionality reduction al-
gorithms, UMAP has higher performance on non-linear data
and manifolds. Once UMAP reduces the dimensionality of
the latent variables to an interpretable size (2 or 3 dimen-
sions), DBSCAN is used to identify potential clusters. To fa-
cilitate real-time behavioral intent prediction with our trained
model, the KNN algorithm is used for online clustering where
new observations are passed through the RCVAE. Then, the
latents are extracted and undergo dimensionality reduction
via the saved UMAP model. Finally, KNN associates the new
data points with the distinct clusters identified by DBSCAN.
The full pipeline for our proposed method of intent prediction
is shown in Figure 1.

Experiments
Training Environment
We use the Overcooked-AI environment1 developed by
Carroll et al. (2019), a dynamic and interactive platform in-
spired by the cooperative cooking game Overcooked. The en-
vironment is characterized by several kitchen layouts where
AI agents are tasked with preparing and serving a variety of
dishes under time constraints. The action space for agents
in the environment is discretely defined, comprising six pos-
sible basic actions: (move) up, down, right, left, wait (to
remain stationary), and interact (to carry or drop objects).
The observation space is structured as an 11x5 grid with

1The GitHub repository for the Overcooked-AI environment
can be found here: https://github.com/HumanCompatibleAI/
overcooked ai

26 different channels. The contextual behavior space con-
sists of eight possible events: tomato dropoff, tomato pickup,
onion dropoff, onion pickup, dish dropoff, dish pickup, soup
dropoff, and soup pickup.

Importantly, we distinguish between the six low-level,
atomic “actions” (up, down, left, right, interact, wait) defined
by the environment, and the eight high-level “contextual be-
haviors” that we defined to capture semantic events. Behav-
iors emerge as a combination of the basic actions and the sur-
rounding game context. For example, at the beginning of the
game, the players are empty-handed. If the player first directs
their avatar to move up then interact near a tomato, the be-
havior “tomato pickup” will occur. However, if the avatar is
holding a tomato already and the player chooses the interact
action, the “tomato dropoff” behavior will occur. Therefore,
by executing the same interact action the player can trigger
different behaviors depending on the current context of the
game environment (where the avatar is located, whether they
are holding an ingredient already or not, etc.)

Model Evaluation
To tailor the RCVAE to the Overcooked environment, we
configured the model with a 16-dimensional latent space
(h = 16), where the first eight dimensions of the latent space
are trained to represent the eight possible behaviors in the
Overcooked-AI environment and the other eight dimensions
remain flexible to learn additional latent encodings that may
be important for task performance. We enforce this separa-
tion of the latent space by using a mean squared error loss to
fit the first eight dimensions of the latent space to predict the
one-hot encoding of the eight behaviors.

To evaluate the behavioral intent prediction ability of the
RCVAE, we compare our model to a baseline Long Short
Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997)
predictor model which is trained specifically to predict behav-
iors. An LSTM is a type of recurrent neural network designed
to learn sequential information that may vary over distance
scales, such as time series or text data. Our LSTM model
encodes the environmental observations into a latent space,
passes these vectors to an LSTM, and decodes the output into
an 8-dimensional vector. The model is trained using a mean
squared error loss to predict the most likely behavior out of
eight. Meanwhile, the RCVAE is trained to predict the ba-
sic actions and the latent space is additionally conditioned on
the contextual behaviors. Our goal is to determine whether
learning a relationship between basic actions and contextual
behaviors imparts an increased ability to predict behavioral
intention more accurately and more consistently.

Data and Automated Labeling
In the original dataset, contextual behaviors and the behav-
ioral intentions are not explicitly labeled, so we apply au-
tomatic heuristic methods to label them for training. Our
goal is to recover human-understandable subtasks undertaken
by players. These subtasks typically end with a qualitative
change in the environment, which we have termed a “behav-
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Figure 1: The behavioral intent prediction pipeline. This figure includes the RCVAE architecture (in the blue box) and the
process for extraction and clustering of the learned latent space into human understandable clusters (in the red box).

ior” or behavioral intent. These behaviors, once defined, can
be automatically detected and labeled in trajectories. In Over-
cooked, discrete subtasks like “take onion to stove” conclude
with a qualitative environmental change, such as the “onion
drop off” behavior.

We make the assumption that all basic actions performed
by a player directly leading up to a contextual behavior were
part of the task culminating in that behavior. This heuris-
tic rule, while not always accurate, is reasonably justified in
environments with short task horizons. In Overcooked, this
assumption works well to segment the trajectories into iden-
tifiable subtasks. This method of automatic heuristic labeling
enables our models to correlate sequences of basic actions
with the resulting contextual behaviors to which they con-
tribute.

To train both the LSTM and RCVAE we use the 2020
dataset collected and made available by Carroll et al. (2019).
The dataset consists of two human players playing the “soup
coordination” layout (see image of the game environment in
Figure 2). The dataset contains a total of 15,410 steps dis-
tributed across 39 distinct trajectories (representing 39 pairs
of humans playing the game).
The models were trained via the imitation learning paradigm
on one human player from each trajectory. The training
dataset contained 13,410 trajectory steps while the remaining
2,000 steps were set aside as a testing set to evaluate model
performance. The models were trained on 15,000 batches,
each containing 20 steps.

Figure 2: Overcooked “soup coordination” layout.

Results
In this section we compare the performance of the RCVAE
and LSTM models in two areas: clustering ability and be-
havioral intent prediction. The clustering ability analysis will
determine how accurately and distinctly the latent spaces of
each model represent the contextual behaviors. Ideally, the
models would produce eight individual clusters representing
each behavior type. The behavioral intent prediction analysis
will test both the accuracy and consistency of each model’s
clustering ability through time. This analysis will determine
how far in advance each model can accurately predict the be-
havioral intent of a player to trigger a contextual behavior
given the basic actions performed at each timestep.

Clustering Ability
Five distinct clusters were extracted from the RCVAE latent
space and six clusters were extracted from the LSTM latent
space. The additional LSTM cluster consisted only of behav-
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Table 1: RCVAE Cluster Information.

Cluster
ID

Cluster
Size

Unique
Behaviors

Cluster
Purity

Intra-Cluster
Distance

0 54 5 0.5 7.2
1 26 1 1 0.5
2 10 1 1 1.7
3 11 1 1 0.6
4 1 1 1 0

Table 2: LSTM Cluster Information.

Cluster
ID

Cluster
Size

Unique
Behaviors

Cluster
Purity

Intra-Cluster
Distance

0 36 3 0.6 5.4
1 30 3 0.9 2.4
2 14 2 0.9 2.1
3 11 1 1 0.7
4 11 2 0.9 1.6

ioral intents without corresponding behaviors. This observa-
tion suggests that the LSTM was unable to learn sufficient
similarity between the intents and their respective behaviors,
and failed to group them into the same cluster.

The following analysis of clustering ability includes only
contextual behaviors and does not include timesteps leading
up to the behaviors (labeled as behavioral intents). Five dis-
tinct clusters containing only contextual behaviors were iden-
tified from the latent space of each model. To compare the
clustering capabilities of each model, we computed several
metrics: cluster purity, the degree to which clusters are com-
prised of a single behavior; intra-cluster distance, the mean
distance between points within the same cluster; and inter-
cluster distance, the average distance between points across
different clusters. The purity and intra-cluster distances for
each cluster for both the RCVAE and LSTM models are
shown in Table 1 and Table 2, respectively. The RCVAE
model had an average cluster purity of 0.9, an average intra-
cluster distance of 1.9, and an average inter-cluster distance
of 22.8. The LSTM model had an average cluster purity of
0.86, an average intra-cluster distance of 2.4, and an average
inter-cluster distance of 19.7.

The analysis of cluster metrics supports the finding that the
RCVAE achieves a greater clustering ability. Higher cluster-
ing purity and lower intra-cluster distance indicate that the
RCVAE is able to more accurately group similar behaviors
together while the higher inter-cluster distance implies more
separation between unrelated behaviors. Overall, the combi-
nation of these results suggests that the RCVAE learns more
discernable differences between behavior types, which may
lead to better behavioral intent prediction.

Behavioral Intent Prediction
To evaluate the behavioral intent prediction performance of
the RCVAE and LSTM models, we have employed two met-
rics: weighted clustering accuracy and clustering uncertainty.
Weighted clustering accuracy quantifies the precision with
which each model groups intents, calculated by averaging
the proportion of actual behaviors in a cluster relative to the
cluster’s total behavior count. This metric favors models that
can accurately segregate behaviors into homogeneous clus-
ters and penalizes those that produce heterogeneous clusters.
This property is important, as a model which produces only
a single, heterogeneous cluster for all behavior types will be
able to cluster behavioral intents with 100% accuracy. For
each trajectory in the test data, each intent timestep is as-
signed a weighted accuracy score depending on the assigned
cluster. The weighted clustering accuracy by timestep leading
up to a behavior is displayed in Figure 3.

The RCVAE shows improvement over the baseline LSTM
model in accurately predicting clusters for intents. We eval-
uated the overall difference in accuracy between models by
collapsing across timesteps. The RCVAE and LSTM dis-
tributions were tested for normality with the Kolmogorov-
Smirnov test for goodness of fit and were found to be non-
normal. We employed the non-parametric Mood’s median
test to compare the overall weighted clustering accuracy of
both models and found that the RCVAE median weighted
clustering accuracy score (Mdn = 0.49) was significantly dif-
ferent than the LSTM score (Mdn = 0.34) where χ2 = 42.05
and p < 0.001.

Clustering uncertainty measures the frequency that a model
revises its decisions regarding the clustering of intents and
is an indication of a model’s overall predictive stability. A
model with high clustering uncertainty is less decisive, and
often reclassifies intents before a contextual behavior occurs.
Therefore, a lower clustering uncertainty is desirable as it in-
dicates the ability to assign intents to the correct cluster well
before the behavior occurs, without wavering. Figure 4 shows
the clustering uncertainty for each model across timesteps
leading up to a contextual behavior.

The RCVAE demonstrates consistently lower clustering
uncertainty, indicating higher predictive stability. To evaluate
the overall difference in clustering uncertainty between mod-
els, we repeated our previous analysis. Once again, the dis-
tribution of the clustering uncertainty scores were both non-
normal leading us to employ the Mood’s median test. The
RCVAE median clustering uncertainty score (Mdn = 0.31)
was significantly different than the LSTM score (Mdn = 0.97)
where χ2 = 76.05 and p < 0.001.

Discussion
This paper presents the RCVAE (Recurrent Conditional Vari-
ational Autoencoder) model, advancing concept learning
models to account for behavioral trajectory data and taking
advantage of the capability of generative models to learn
complex latent abstractions. Our findings indicate that the
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Figure 3: The weighted clustering accuracy of the RCVAE
and LSTM models by timesteps leading up to a contextual be-
havior, averaged over 50 UMAP latent reductions to account
for randomness in the latent space introduced by the UMAP
algorithm. The weighted clustering accuracy quantifies the
precision with which each model groups intents, calculated
by averaging the proportion of actual behaviors in a cluster
relative to the cluster’s total behavior count.

Figure 4: The clustering uncertainty of the RCVAE and
LSTM models by timestep leading up to a contextual behav-
ior, averaged over 50 UMAP latent reductions to account for
randomness in the latent space introduced by the UMAP algo-
rithm. Clustering uncertainty measures the frequency that a
model revises its decisions regarding the clustering of intents
and is an indication of a model’s overall predictive stability.

RCVAE model outperforms traditional LSTM models in two
key areas: clustering ability and behavioral intent predic-
tion. The analysis of clustering ability suggests that the RC-
VAE can discern more pronounced differences among behav-
ior types compared to the baseline model. Greater cluster-
ing purity and reduced intra-cluster distance imply that the
RCVAE more effectively groups similar behaviors, while the
increased inter-cluster distance indicates a clearer distinction
between unrelated behaviors. These findings demonstrate the

RCVAE’s ability to disentangle and categorize behavior types
more effectively within its latent space.

When analyzing behavioral intent prediction ability, the
RCVAE model outperformed the LSTM. The RCVAE not
only showed higher accuracy in clustering intents but also
demonstrated greater predictive stability, as evidenced by its
lower clustering uncertainty. This suggests that the RCVAE
can more accurately and consistently predict intent leading
up to a behavior. The results of our analysis indicate that the
RCVAE model learns a meaningful relationship between ba-
sic actions and contextual behaviors within the Overcooked
environment that is useful for predicting intent with greater
accuracy and consistency.

Although the RCVAE represents an advancement in con-
cept learning for human behavioral trajectories, like all con-
cept learning models, the RCVAE model requires hand-
labeled data to accurately learn behavioral concepts. While
our automatic heuristic labeling method lessened the burden
of hand-labeling data, this method may be more difficult to
apply in more complex scenarios or in scenarios where hier-
archical behaviors exist. Thus, further research must be con-
ducted to develop effective methods for automatically label-
ing data in scenarios where labeled data is scarce or difficult
to obtain.

Future Directions
A logical next step in this line of research is to employ the
trained RCVAE model for behavioral intent prediction in
multi-agent settings. This application could lead to enhanced
coordination and interaction among AI agents, offering sig-
nificant improvements in fields like robotics, autonomous ve-
hicles, and collaborative AI systems. Additionally, because
the RCVAE is a generative model, future research could in-
vestigate the ability to generate novel behavioral trajectories
and more precisely control agent behavior conditioned on
learned behavioral concepts.

The potential applications of the RCVAE model extend
beyond controlled or “toy” environments. One such appli-
cation is counterfactual analysis, where the model could be
used to predict alternative outcomes based on varying initial
conditions or decisions. This capability would be valuable in
strategic planning and decision-making processes across vari-
ous sectors, including business, healthcare, and public policy.
Another promising application is in the field of anomaly de-
tection. The RCVAE’s ability to understand and predict intent
could be leveraged to identify abnormal patterns or behaviors,
which is crucial for security, fraud detection, and maintaining
the integrity of complex systems.

In conclusion, the RCVAE model represents a significant
advancement in concept learning for behavioral intent predic-
tion. Outperforming traditional LSTM models in both intent
prediction accuracy and clustering ability, this model paves
the way for novel research and practical applications across
various fields.
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