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1. Introduction and Background 

Despite the economic benefits that urban automobile-based travel has brought to society, 
numerous studies have highlighted its potential negative impacts on sustainable development. 
These include increased congestion (Walters, 1961), elevated carbon footprints (Fan et al., 
2018), the promotion of urban sprawl (Wassmer, 2008), and the consumption of valuable urban 
land (McCahill and Garrick, 2012). This issue is especially pronounced in the United States, 
where morning peak period commute occupancy rates in urban areas hover around 1.1 to 1.2 
persons per vehicle (FHWA, 2017). Over recent decades, carpooling has emerged as a promising 
form of shared mobility, offering an effective means to increase vehicle occupancy and 
counteract these challenges (Santos, 2018). Transportation planners believe that carpooling 
strategies can significantly reduce both traffic congestion and the carbon footprint of 
transportation systems (Meyer, 1999). By decreasing vehicle demand in job-centric urban 
districts, carpooling can also potentially free up parking spaces, allowing for alternative land 
uses and improving accessibility for lower-income households (Shaheen et al., 2017). 
Furthermore, by alleviating regional and local congestion during peak hours, carpooling can 
reduce the risk of system-level collapse and enhance network resilience (Fan et al., 2023). 

Recognizing the myriad benefits of carpooling, transportation and planning agencies around the 
world have rolled out diverse incentives, particularly through infrastructure enhancements 
(Guensler, 1998). Agencies have introduced dedicated lanes, ramps, and roads to allow 
carpoolers to circumvent congestion and expedite travel. Examples include High-Occupancy 
Vehicle (HOV) lanes (Dachis, 2011), High-Occupancy Toll (HOT) lanes (Guensler et al., 2016; 
Konishi and Mun, 2010; Kall et al., 2009), and express carpool lanes (Guensler, et al., 2022; 
Small et al., 2006).  

To facilitate carpooling pick-up and drop-off, designated stations and specific zones in densely 
populated urban areas have been established (Glasbeek, 1975). Additionally, carpoolers often 
benefit from preferred parking spots (Cools et al., 2013) or receive discounts or exemptions 
from parking fees (Olsson and Miller, 1978). Financial incentives further bolster carpooling, with 
measures such as reduced or waived congestion pricing (Yang and Huang, 1999), emission-
based pricing discounts (Zong et al., 2021), and employer-based financial incentives (Canning et 
al., 2010). Integration with other modes of transport, like public transit (Minnett, 2013), also 
plays a pivotal role in promoting carpooling. As these initiatives gain traction, there's an 
escalating analytical demand to gauge the efficacy of these investments, both at the program 
level (in terms of incentive type selection) and the project level (focusing on site selection and 
specific implementation requirements). 

Scholars have tackled this issue from two distinct perspectives. The first genre of study 
addresses the problem from the demand side, striving to comprehend influential factors on an 
individual's decision to carpool. These factors encompass household and neighborhood 
characteristics (Shin, 2017), job types (Vanoutrive et al., 2012), travel behaviors (Saxena and 
Gupta, 2023), and psychological elements (Julagasigorn et al., 2021). Researchers in this domain 
typically employ methods such as aggregate-level regression analysis (Benita, 2020), surveys or 
questionnaires (Lowe and Piantanakulchai, 2023), and stated choice methods (Le Goff et al., 
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2022). While these approaches have significantly advanced our understanding of travelers' 
behavior and trade-offs in mode choice (Zhou et al., 2022), their direct application in evaluating 
planning initiatives is often constrained by resultant models’ lack of precision and 
quantifiability. Conversely, the second genre of study delves into the problem from the supply 
side, exploring the feasibility of carpooling in various contexts. This includes system-wide 
matching (Bakkal et al., 2017; Xia et al., 2015), self-organization (Kalczynski and Miklas-
Kalczynska, 2018; Kleiner et al., 2011b; Nourinejad and Roorda, 2016a), and services provided 
by transportation network companies like Uber and Lyft (Agatz et al., 2012, 2011). This line of 
research has established a foundation for a repertoire of routing and matching algorithms, 
facilitating precise case-specific analyses. However, the predictive power of these studies 
regarding a network's carpooling performance is often hampered by the lack of model flexibility 
and practicality. To support project prioritization and evaluation in urban transportation 
planning, a carpool modeling scheme that is both scalable and practical is needed. 

This study introduces a simulation framework tailored to facilitate transportation and planning 
agencies in addressing pivotal questions concerning carpool incentivization: Where are the 
carpooling hotspots within the planning area? Which infrastructure components demand 
prioritization? How might different planning scenarios impact the carpool matching rate? What 
are the factors that hinder users from carpooling in the current infrastructure system? In 
response to these questions, CarpoolSim is a carpool simulation framework crafted to meet 
several essential requirements for carpool planning analyses. The system provides precision (by 
offering detailed spatial and temporal data for each trip segment, enabling nuanced site 
comparisons and time-specific project prioritization), flexibility (by integrating diverse 
mediating parameters to depict varied carpool scenarios and ensuring compatibility with 
multiple incentivizing options), practicality (by designing parameters and matching schemes 
that reflect traveler behavior), and scalability (by incorporating optimization strategies suitable 
for large transportation system networks). Notably, CarpoolSim's output aligns seamlessly with 
standard travel demand modeling practice. To illustrate its capabilities, we delve into a case 
study based on the findings of a regional-scale activity-based travel demand model. 

In the section of this paper that follow: Section 2 discusses the latest updates in the research of 
related carpooling/ridesharing systems in terms of filtering conditions, optimizing algorithms, 
and partitioning methods; Section 3 formulates the specific problem and methodologies used 
to solve the problem, wherein different components/modules of the proposed CarpoolSim are 
introduced; and Section 4 tests the proposed method using the output of an activity-based 
travel demand. To assess model results, system performance is presented for the individual 
commuter, by different role (driver vs passenger), by spatial distribution, etc. A sensitivity 
analysis of CarpoolSim configuration parameters used to screen potential trip pairs is also 
presented to identify influential parameters on carpool match results. Lastly, Section 5 
summarizes the insights derived from the case study and the potential uses and strengths of 
the CarpoolSim analysis framework. 
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2. Literature Review 

Certain conditions must be met for travelers (drivers and passengers) before they are likely to 
opt into carpooling as their commute mode. The most common shared condition in modeling is 
a pick-up and drop-off time window that both the driver and rider’s start/end time must satisfy 
(Agatz et al., 2011; Peng and Du, 2022). Another condition defining the feasibility of carpooling 
is spatial proximity (Bakkal et al., 2017; Nourinejad and Roorda, 2016a). While 
sociodemographic factors do not appear as mainstream factors in current carpool matching 
processes, numerous studies underscore their influence. Factors such as gender (Molina et al., 
2020), income (Shaheen et al., 2017), age, and education (Guensler et al., 2019) have been 
shown to potentially impact carpooling activity. 

With respect to vehicle operation, carpools can also be categorized based upon passenger pick-
up time constraints. While some models require that passengers be picked up at the beginning 
of the journey (Agatz et al., 2011), others allow a carpool to happen at any point along the 
driver’s journey. The goal of carpooling is another consideration in several studies. For example, 
some studies try to minimize individual travel time, allowing a carpool match as long as a time-
saving exists for any user (Agatz et al., 2011); however, a more commonly used approach is to 
minimize the total system-level travel time. Some studies seek to optimize a specific metric 
related to travel. For example, Bakkal et al. (Guo and Xu, 2022) sought to minimize wait time 
and detour time rather than total travel time, while Berlingerio et al. (Berlingerio et al., 2017) 
designed a measure of “enjoyability” as the goal for carpooling. 

To optimize carpool matching, researchers have employed a wide variety of approaches. Those 
targeting system-wide performance optimization have leveraged methods, ranging from 
heuristic approaches (Xia et al., 2015) and greedy algorithms (Agatz et al., 2011; Nourinejad and 
Roorda, 2016a) to mixed integer mathematical programming (Peng and Du, 2022), pick-up and 
delivery problems (Agatz et al., 2012), insertion algorithms, and Tabu search algorithms 
(Kalczynski and Miklas-Kalczynska, 2018). Previous researchers have found that the system-
wide utility will be higher when assuming each individual is rational and chooses to optimize 
his/her performance. For example, some studies use an auction-based mechanism for carpool 
matching, where riders “bid” on rides based on their utility (Kleiner et al., 2011b; Nourinejad 
and Roorda, 2016a). Kalczynski and Miklas-Kalczynska (2018) employ a similar algorithm called 
a “decentralized approach.” More recent studies have started to combine system-wide 
optimization and individual utility. For example, Guo and Xu (2022) have applied a deep 
reinforcement learning approach to combine historical data with current carpool demand to 
achieve a trade-off between overall quality of service and individual utility optimization. 

Faced with the goal of implementing carpool matching at the metropolitan region scale, and 
the complexity of the variety of algorithms that can be implemented, carpool matching often 
demands significant time and computational resources. To improve matching efficiency, 
researchers have devised various spatial partitioning schemes to reduce the need to test 
carpool pairs that are obviously inefficient based upon spatial and temporal distance 
separations between driver and passenger. One broad category is user-based partitioning, 
where users are partitioned into different carpooling communities. Some studies have 
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performed user-based partitioning based on demographic characteristics (Peng and Du, 2022). 
Others have used more complicated methods, such as agent-based modeling (Nourinejad and 
Roorda, 2016a) and cluster analysis (Li et al., 2019). Another type of partitioning is performed 
using a bipartite graph, partitioning groups based on carpool potential (Tafreshian and Masoud, 
2020). Table 1 summarizes some recent studies evaluating the potentials of the 
carpooling/ridesharing system. In summary, while these studies have either pioneered new 
carpool matching algorithms or explored implications in an idealized (Nie and Li, 2022) or 
limited (Kuwahara et al., 2022) context, there remains a gap in demonstrating the scalability 
and practicality of a holistic analysis framework. 

In this paper, CarpoolSim, is proposed as a framework to seamlessly integrate data, algorithms, 
and spatiotemporal control factors to yield actionable insights. The CarpoolSim framework 
seeks to bridge this gap between the large quantity of trips and the complexity of the carpool 
problem. The proposed framework employs a set of filters to identify feasible carpool 
candidates, uses a scalable system based on the bipartite algorithm with heuristics for carpool 
matching, and integrates a rolling horizon algorithm and geo-fencing strategy to enhance model 
efficiency and scalability.
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Table 1. A selective summary of recent studies on evaluating the performance and potentials of carpooling/ridesharing systems. 

Author & 
Year 

Problem Proposed Matching Strategy Partitioning/ 
Clustering 
Method 

Optimization 
Approach 

Network Representation 
& Trip demands 

Results & Findings 

Guo & Xu 
(2022) 

RS Use Deep reinforcement learning 
to maximizing total Q-values 
measuring benefits; two modules 
are designed: vehicle routing 
module and request assignment 
module 

N.A. Bipartite graph 
matching problem 
solved by Kuhn-
Munkres (KM) 
algorithm 

New York region 
(12km×12km or 24km×
24km region); New York 
Taxi Data (40-80 vehicles)  

Proposed reinforcement 
learning approach is the 
best among 4 tested 
methods 

Peng & Du 
(2022) 

RS Semi-centralized ride-matching 
strategy combined with Integer 
Programming method. 

User-based 
partitioning on 
demographics 

Mixed Integer 
Programming 

Hardee network (44 
nodes, 134 links); 100 trip 
requests 

Partitioning trips can save 
computation time 
significantly 

Tafreshian & 
Masoud 
(2020) 

CP Divide the graph of matching 
between vehicles and travelers 
into different subgraphs to lessen 
the computational burden. 

Graph 
partitioning 

Integer Programming New York Taxi Data set; 
248 pre-defined 
“stations” as start/end 
points with over 22,000 
trips 

Run a sensitivity analysis on 
different parameters with 
respect to matching 
qualities 

Li et al. 
(2020) 

RS Cluster-first-route-second 
approach; 

Greedy heuristics 
or k-means 
algorithm 

Mixed Integer 
Programming 

4 benchmark network 
instances are used. The 
largest one has 101 nodes 
of vehicles and 
passengers 

Proposed method achieved 
12.8% increase for objective 
function with speed similar 
to greedy algorithm 

Li et al. 
(2019) 

RS Cluster-based algorithm to 
cluster passengers for 
ridesharing in fewer vehicles 
(each vehicle has occupancy 
greater than 1) 

User-based 
partitioning with 
cluster analysis 

Integer Programming A 20 × 20 grid network; 
Random requests ranging 
from 500 to 4000 are 
tested. 

Proposed method saved 
about 12-48 vehicles 
compared to the insertion 
algorithm 
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Author & 
Year 

Problem Proposed Matching Strategy Partitioning/ 
Clustering 
Method 

Optimization 
Approach 

Network Representation 
& Trip demands 

Results & Findings 

Kalczynski & 
Miklas-
Kalczynska 
(2018) 

CP Decentralized approach 
assuming participant prefer to 
choose the match with more 
savings 

N.A. Integer Programming 
solved by Insertion 
algorithm and Tabu 
search algorithm 

Local road network in 
Orange County, 
California;  
A real “pre-K to 8” school 
bus study case. 281 
children from 195 
families. 

The proposed heuristics 
mimics the planning steps 
for carpool organization by 
also incorporating non-
carpooled vehicle costs. 

Nourinejad & 
Roorda 
(2016) 

RS A fast algorithm designed based 
on auction-based mechanism;  

User-based 
partitioning with 
agent-based 
model 

Greedy Algorithm Network of 24 nodes, 76 
transportation links and 
1.96 million travelers 
simulated. 

The algorithm is flexible to 
solve single/multiple drivers 
to be matched with 
single/multiple passengers 

Xia et al. 
(2015) 

CP Use heuristics approach to speed 
up the time solving the 
algorithm. 

N.A. Simulated Annealing 
Heuristic Approach 
solving Integer 
Programming 

Road network of 
Guangzhou, China is used. 
Cases of 4-50 commuters 
are evaluated. 

Brute force searching is 
nearly as effective as Linear 
Programming when 
commuter size is less than 4. 

Agatz et al. 
(2012) 

CP/RS A review paper on carpooling, 
ridesharing and logistics 
problem. 

N.A. N.A. N.A. N.A. 

Agatz et al. 
(2011) 

RS Solve large scale problem using 
rolling horizon strategy. 

N.A. Greedy Algorithm; 
Bipartite algorithm 

2008 Travel Demand Data 
in Atlanta, Georgia. 

Increase participation rate 
can significantly increase 
success rate 

Kleiner et al. 
(2011) 

RS Auction-based mechanism; 
Proposed a platform for flexible 
choices between riders and 
drivers 

N.A. Hungarian algorithm; 
auction-based solver 

Freiburg, Germany. 
About 50 passengers and 
drivers. 

The performance of the 
auction-based system is 
close to that of the optimal 
solution 

Notes for abbreviation and acronyms: RS: ridesharing; CP: carpooling
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3. Methodology 

This study introduces CarpoolSim, a simulation framework estimating carpool potential, within 
the context of a series of user-defined spatiotemporal constraints. CarpoolSim comprises three 
analytical modules: a filtering module, an optimization module, and a simulation module. The 
filtering module utilizes comprehensive conditions to eliminate infeasible carpool suggestions, 
offers flexible parameter configurations to adjust carpooling conditions, and can adapt to 
various planning scenarios. The optimization module is crafted to resolve the driver-passenger 
role conflict while maximizing the number of carpool matches. Meanwhile, the simulation 
module deploys a rolling horizon strategy and geo-fencing strategy, aiming to enhance the 
efficiency of the algorithm without compromising the level of detail necessary for practical 
applications. 

The methodology section is structured as follows: Section 3.1 describes the basic carpooling 
scenarios studied in the paper. Section 3.2 establishes the foundation for formulating carpool 
travel plans using networks and matrices. Sections 3.3 and Section 3.4 delve into the filtering 
scheme, detailing various parameters and their sequence in the filtering pipeline. While Section 
3.3 is centered on direct carpooling, Section 3.4 lays the groundwork for filters used in park-
and-ride carpools. Sections 3.4 and Section 3.5 explained the optimization and simulation 
modules, respectively. Finally, Section 3.6 offers a comprehensive summary of all parameters in 
the CarpoolSim discussed in the preceding sub-sections. 

3.1 Two carpool modes and four carpool schemes between any pair of travelers 

This research delineates a framework that combines two carpooling modalities: direct carpool 
and park-and-ride carpool. In this context, Figure 1 illustrates four potential carpool travel plans 
between two travelers. The red and blue dots represent the origins and destinations of the 
carpool driver and passenger, respectively, with the red lines indicating the driver's path and 
the thick translucent green highlight marking the shared carpool segment. Figure 1 (a)-(b) 
shows two different possible carpools for a direct carpool match (where each carpooler is 
either a driver or a passenger, and the driver will pick up the passenger at the passenger’s trip 
origin). Another practical way of carpooling is to let two passengers meet at a midpoint before 
they begin the shared portion of their trip. These meet-and-carpool trips are referred to as 
park-and-ride (PNR) carpool mode. Similar to the direct carpool mode, Figure 1 (c)-(d) depicts 
two possible PNR carpool plans for the same pair of travelers. The black square represents the 
midpoint for the meeting, the blue dashed line and solid red lone show the paths for the 
carpoolers to access that meeting place (as driver or passenger), and the green highlighted line 
shows the shared carpool path. The direct carpool and PNR carpool patterns look similar, 
except that carpool passengers needs to drive themselves to the meeting point before being 
picked up by the drivers. Given the four schemes for the carpool trips between two travelers, it 
is time to formulate the computational equations evaluating feasibilities and qualities of any 
specific carpool traveling plan. 
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Figure 1. Four possible carpool traveling plans between the same pair of travelers. 

It is important to note that carpool trips, in terms of their execution and sharing dynamics, can 
become much more complicated than those aforementioned cases. For example, a carpool trip 
can accommodate more than 2 travelers. Transitioning from 2-person to 3-person carpools has 
proven challenging, as matching with multiple individuals becomes less feasible when 
considering all three commuters' strict time constraints. Consequently, this study narrows its 
focus to the impacts of direct carpool and PNR carpool for 2-person carpools only, which are 
much more feasible for commuters to form. 

3.2 Formulating carpool travel plans: from shareability network to matrix 
notations 

To enumerate all possible carpool vehicles’ travel plans among a group of travelers, it is 
important to record the information in a more compact way. To the best knowledge of the 
authors, the three primary ways of describing carpool plans among a group of candidates are 
by: shareability network, bipartite graph, and feasibility matrix. Figure 2 demonstrates the 
logical connections and relationships among the three different networks using a toy example 
with only five potential carpool candidates. In Figure 2 (a), all five travelers (each denoted as a 
node indexed from 1 to 5) originate as SOV (drive-alone) travelers. Each person can join and 
form a carpool trip either as a driver or a passenger. Figure 2 (b) uses directional links pointing 
from the passenger node to the driver node to denote all feasible carpool assignments. In this 
study, diagrams like Figure 2 (b) are referred to as the shareability network, where each node 
denotes a traveler, and each link represents a feasible carpool plan. Figure 2 (c) further splits 
each node in Figure 2 (a)/(b) into two disjoint sets by their specific roles (i.e., passenger or 
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driver) in carpool trips. Moreover, the directional links in Figure 2 (b) are converted to 
undirected links to denote all five potential carpool assignments. 

 

Figure 2. Three different notations for feasible carpool relationships: The shareability 
network notation, the bipartite graph, and the feasibility matrix. 

Furthermore, the information in Figure 2 (b)/(c) (shareability network or bipartite graph) can 
also be represented by a feasibility matrix as shown in Figure 2 (d). In Figure 2 (d), the first 
index row and first index column (with grey background) denotes the index of the driver and 
passenger IDs, respectively. Within this feasibility matrix denoted as 𝐹, the entry corresponds 
to the 𝑖 th row and 𝑗 th column denote the carpool between 𝑖 th driver and the 𝑗 th passenger. 
Thus, 𝐹(𝑖, 𝑗) = 1 denotes the case where driver 𝑖 and passenger 𝑗 can be assigned to a carpool. 
The diagonal entries (with blue background) are always 1 to denote that all travelers can always 
choose to drive alone if not assigned to a carpool. 

In essence, given 𝑛 potential carpool travelers within a group, there are 𝑃(𝑛, 2) = 𝑛 × (𝑛 − 1) 
possible carpool trip configurations. Accounting for those who might opt to drive alone, the 
total possible travel plans amount to 𝑛 × (𝑛 − 1) + 𝑛 = 𝑛 × 𝑛 for 𝑛 travelers. Consequently, a 
feasibility matrix of 𝑛 × 𝑛 dimensions can encapsulate the feasibility data among 𝑛 travelers. 
Beyond the feasibility matrix, other information (e.g., travel time, distance, etc.) can be stored 
in matrices with the same shape. Note that if both carpool schemes (i.e., direct carpool and 
PNR carpool) are considered at the same time, two feasibility matrices are necessary to store 
the information. 

3.3 Filtering module for the direct carpool mode 

After explaining the carpool representation as network and matrices, to ascertain valid carpool 
trips, we need to implement a mechanism to efficiently filter out unsuitable/low-quality 
carpooling matches considering spatiotemporal constraints. There are three types of filtering 
constraints: (1) the Euclidean distance filter; (2) the temporal separation filter; and (3) the path 
distance filter. By default, all filtering conditions discussed in this section pertain to the direct 
carpool mode. The PNR mode, while conceptually similar, will be elaborated upon in Section 
3.4. 
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3.3.1 Euclidean Distance Filters 

The Euclidean distance filter is efficient in filtering out low-quality matches. Given the 
coordinates of each person, the traveling paths for each person can be simplified as one vector 
or a combination of consecutive vectors. In Figure 3, the coordinates of the driver’s origin 𝑂1 

and destination 𝐷1 are denoted as (𝑥1, 𝑦1), (𝑥2, 𝑦2), respectively. Thus, the vector 𝑂1𝐷1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

pointing from origin to destination can coarsely denote the trip’s traveling direction and 
distance and helps compare similarities of trips among different travelers. 

 

Figure 3. Use a vector to represent the SOV trip between the origin 𝑶𝟏 and the destination 
𝑫𝟏. 

Figure 4 illustrates the carpool travel plan between driver 1 and passenger 2 using three 

vectors: 𝑂1𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  , 𝑂2𝐷2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐷2𝐷1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . These vectors represent the trip segments involved in a matched 

trip, where 𝑂1𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗   denotes the driver's segment to the passenger's trip origin, 𝑂2𝐷2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   signifies the 

overlapping trip portion, and 𝐷2𝐷1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  indicates the driver's segment from the passenger's 

destination to the driver's own destination. Using these vectors, we formulate different filtering 
criteria as follows. 

 

Figure 4. Use three vectors to represent a carpool trip as well as the driver’s traveling path. 

Criterion 1-1: The Euclidean distance between the driver’s and passenger’s origin coordinates 
are within an empirically determined threshold, 𝑟. 

 ‖𝑂1𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ‖ ≤ 𝑟 (1) 

where ‖𝑂1𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ‖ denotes the L-2 distance (i.e., Euclidean length) of 𝑂1𝑂2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  . 
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Criterion 1-2: The ratio in Euclidean distance between the driver’s whole carpool segment and 
the shared trip segment should be capped by an empirically determined threshold 𝜇1: 

 
‖𝑂1𝑂2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖+‖𝑂2𝐷2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖+‖𝐷2𝐷1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

‖𝑂2𝐷2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 
≤  μ1 (2) 

Criterion 1-1 and 1-2 effectively filter out many unsuitable carpool matches. However, to 
further refine the selection, we introduce an additional Euclidean filter. Figure 5 depicts a 
scenario where the carpool driver has to drive past their destination to drop off the passenger, 
subsequently driving in the reverse direction to reach their own destination. To account for 
such cases, we formulate Criterion 1-3. In this criterion, the numerator represents the length of 
the blue dashed line in Figure 5. If this length exceeds a certain proportion 𝜇2 of the driver’s 
original distance, then the carpool match is not appropriate. 

 

Figure 5. Use of a projected vector (in blue) to describe the “reverse travel” cost after 
dropping off the passenger. 

Criterion 1-3: The ratio between the projected “reversal travel” distance and the shared 
distance should be smaller than an empirically determined threshold 𝜇2: 

 
− 𝑣1⃗⃗⃗⃗  ⋅𝑣2⃗⃗⃗⃗  

𝑣1⃗⃗⃗⃗  ⋅𝑣1⃗⃗⃗⃗  
 =  

−‖𝑂1𝐷1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖⋅‖𝐷2𝐷1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖⋅cos〈𝑣1⃗⃗⃗⃗  ,𝑣2⃗⃗⃗⃗  〉

‖𝑂1𝐷1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖⋅‖𝑂1𝐷1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
 =  

𝑑2𝐷1
̅̅ ̅̅ ̅̅ ̅

𝑂1𝐷1̅̅ ̅̅ ̅̅ ̅
 ≤  𝜇2 (3) 

3.3.2 Temporal Separation Filters 

Temporal filters account for the time difference between two trips, adding an additional layer 
of complexity beyond mere distance, as factors like congestion can play a significant role in 
carpool viability. For this study, we introduce two temporal filtering criteria: 

Criterion 2-1: The difference in departure times between two travelers should not exceed a 
predefined threshold: 

 |𝑇𝑂1
− 𝑇𝑂2

| ≤ Δ1 (4) 

Here, 𝑇𝑂1
and 𝑇𝑂2

 represent the original departure times from 𝑂1 and 𝑂2 for the first and 

second carpool participants, respectively. The parameter Δ1, a constant defined as the 
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maximum allowable difference in departure time, is used to efficiently filter out candidate 
carpool matches that depart at very different times. 

Criterion 2-2: The maximum waiting time for the carpool passengers at their origin (i.e., pick-up 
location) is capped by a threshold: 

 𝑇𝑂2
≤ 𝑇𝑂1

+ 𝑇𝑇𝑂1𝑂2
≤ 𝑇𝑂2

+ Δ2 (5) 

where 𝑇𝑇𝑂1𝑂2
 denotes the travel time on road networks from 𝑂1 to 𝑂2 for the driver during the 

whole carpool trip. The driver’s time of arrival at the passenger’s pick-up point (origin) cannot 
be more than Δ2 minutes after the passenger’s original departure time. Because the driver has 
already rerouted to accept a longer distance for the carpool trip, it would be more reasonable if 
the extra waiting time cost is “paid” on the passenger’s side. That is, by design, the passenger’s 
departure time should be earlier than when the driver’s arrival time at the passenger’s origin. 

3.3.3 Path Distance Filters 

While the temporal previous filters efficiently eliminate low-quality carpool matches, they may 
not be sufficient. Hence, we propose supplemental path distance filters that employ actual 
travel path distances. These filters can be viewed as a more accurate version of the Euclidean 
distance filters using network distance. This category introduces three filters. 

Criterion 3-1: The driver’s total carpool travel time minus the driver’s original SOV time is 
capped by a fixed amount: 

 (𝑇𝑇𝑂1𝑂2
+ 𝑇𝑇𝑂2𝐷2

+ 𝑇𝑇𝐷2𝐷1
) − 𝑇𝑇𝑂1𝐷1

≤ 𝛿1 (6) 

where 𝛿1 is the travel time cap of the extra traveling (reroute) time cost for carpool drivers. In 
this study, 𝛿1 is chosen to be either 10 or 15 minutes (any reasonable times can be specified). 

Criterion 3-2: The ratio of post-carpool total travel time for the driver (shared travel time plus 
segments traveled by the driver alone) over the driver’s original SOV travel time is capped by a 
ratio: 

 
𝑇𝑇𝑂1𝑂2+𝑇𝑇𝑂2𝐷2+𝑇𝑇𝐷2𝐷1

𝑇𝑇𝑂1𝐷1

≤ 𝛾 (7) 

where 𝛾 is the lower bound of the shared travel time for drivers. In practice, it is suggested that 
𝛾 should be at most 1.5, and a value around 1.25 may be more appropriate to filter out lower-
quality carpool matchings. 

Criterion 3-3: The passenger’s travel time takes a significant portion of the carpool driver’s 
travel time: 

 
𝑇𝑇𝑂2𝐷2

𝑇𝑇𝑂1𝑂2+𝑇𝑇𝑂2𝐷2+𝑇𝑇𝐷2𝐷1

≥ ι (8) 

where the Greek letter ι (iota) denotes the lower bound of the ratio between shared distance 
and the driver’s total distance. 
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Considering the high computational demand required for these filters (searching shortest paths 
on networks), the path distance filters are executed as the last step of all filtering steps to 
minimize the total computational efforts. 

3.3.4 Organizing the Filters for Improved Computational Efficiency 

In practice, all the proposed filters are executed in matrix form to leverage vectorized 
computation. For efficiency, simpler filters are applied before the more complex ones. The 
computational sequence adopted in CarpoolSim for executing the criteria is: 

“2-1”→ “1-1” → “1-2” → “1-3” → “2-2” → “3-1” → “3-2” → “3-3”. 

3.4 The filtering module for PNR carpool mode 

As a reminder, the Park-and-Ride (PNR) mode involves two carpoolers meeting at a designated 
midpoint, such as a public parking lot, before initiating their shared journey. Given the limited 
number of parking lots specified in this study, the PNR matching mode can be conceptualized as 
a two-step process: 1) assessing whether a driver can bypass a midpoint without incurring too 
much reroute costs in time or distance; and 2) if the first condition is met, assessing whether 
two individuals can initiate a carpool from the identified midpoint. 

Figure 6 illustrates the first filtering step. Adapted versions of Criteria 1-1 and 3-1 are employed 
to gauge accessibility to all PNR stations. This results in a feasibility matrix that maps from 
individuals to PNR stations, providing insights into travelers' accessibility to these stations (as 
depicted in the lower left of Figure 6). 

 

Figure 6. Use of projected vector to describe an SOV driver bypassing a PNR facility. 

In evaluating the accessibility between travelers and PNR stations, the next step is to determine 
whether two individuals can carpool from each specific PNR station. This matrix can be 
initialized through matrix multiplication, as shown in the top left of Figure 7. Subsequently, all 
filters from Section 3.3 are reapplied, but with the assumption that both travelers commence 
from the PNR station and their trip requests align with their arrival times at these stations. It's 
worth noting that while this two-step filtering approach adopts slightly more lenient constraints 
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compared to the direct carpool method, experimental results indicate that the quality of 
carpool matches remains on par with direct carpool outcomes. 

 

Figure 7. Evaluating PNR carpool from based on the accessibility matrix from travelers to PNR 
stations. 

3.5 The Optimization Module 

Upon completion of the filtering steps, we obtain a finalized version of the 0-1 feasibility matrix. 
In this matrix, entries with a value of 1 indicate feasible carpool trips. However, not every 
potential match can be realized due to two primary constraints: 1) Time Conflict - a driver can't 
carpool with multiple passengers simultaneously, and similarly, a passenger can't carpool with 
multiple drivers at the same time; and 2) Role Conflict - for each trip an individual can be a 
driver, or a passenger, but not both. To address these conflicts and maximize the number of 
carpool pairings, this study employs a two-step algorithm: 1) Bipartite Algorithm (as illustrated 
in Figure 2 (c)) - this algorithm is used to determine the maximum number of carpooling 
matches after resolving time conflicts; and 2) Role Conflict Resolution - this step addresses 
remaining role conflicts by eliminating the minimum number of carpool trips. The primary 
objective of this algorithm is to quickly identify a large number of feasible carpool trips. Unlike 
certain algorithms from other studies, such as auction-based algorithms (Kleiner et al., 2011a; 
Nourinejad and Roorda, 2016b), which prioritize certain matches over others, our approach 
treats all feasible carpool candidates equally during the optimization phase, given that they've 
already met the filtering criteria. 

Figure 8 describes the carpool matching algorithm, building upon the example provided in 
Figure 2. Figure 8 (a)-(b) showcasing the transformation of the Bipartite problem into the Max-
flow algorithm. In Figure 8 (b), the goal of the Max-flow problem is to determine the maximum 
flow from the source node (s) to the sink node (t), assuming each link has a capacity of one. The 
green lines in Figure 8 (a)-(b) represent a potential optimal solution for both the Max-flow and 
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Bipartite problems. This step effectively resolves all time conflicts. The results from Figure 8 (b) 
transition to Figure 8 (d), which represents a shareability network. Notably, travelers 2 and 4 
are designated as drivers in one trip and passengers in another, indicating unresolved role 
conflicts. To address this, our role conflict resolution algorithm is straightforward: for each 
connected component in the network graph, links are numbered sequentially from 1 to k. 
Subsequently, links (or carpool matches) with even indices are removed. In essence, this two-
step process combines the Bipartite algorithm with a heuristic rule to efficiently address both 
time and role conflicts. 

 

Figure 8. A small example of graph representations of solving the carpool matching problem. 

3.6 The Simulation Framework 

While the filtering and optimization modules effectively address the carpool matching problem, 
the computational efficiency can be further enhanced. Given that most travel demand is 
dispersed both spatially and temporally, the memory space required for analysis can grow 
quadratically O(𝑛2) with the number of carpool candidates, 𝑛 (considering 𝑛 × 𝑛 matrices are 
used). As such, it's more efficient to partition trips based on their spatiotemporal proximity. 

In terms of temporal partitioning, the CarpoolSim operates in a simulation mode, focusing on 
trips in the immediate future. This is referred to as the rolling horizon strategy. As illustrated in 
Figure 9, if the current simulation time is 𝑡, trips departing between time 𝑡 and time 𝑡 + 𝑡0 
(represented by the green band) are potential carpool drivers. Meanwhile, trips departing 
between 𝑡 and time 𝑡 + 𝑡1 (spanning both green and blue bands) can be carpool passengers. 
This design emulates a dynamic carpool system where users request carpools shortly before 
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their departure. Consequently, the feasibility matrix is adjusted to a rectangular shape (since 
the number of passengers and drivers are different), as shown in the lower right of Figure 9 
with |𝑆𝑑| and |𝑆𝑝| number of drivers and passengers, respectively). 

 

Figure 9. The relationship between time regions and carpool passenger/driver sets 

Following the assignment at time 𝑡, the simulation clock advances by a small step of 𝑤 minutes, 
as demonstrated in Figure 10. Before this update, several trip management steps are 
undertaken. Trips assigned to a carpool are removed from the candidate pool. Trips scheduled 
to depart before the current time 𝑡 are also removed. Those without a carpool assignment 
default to their original SOV mode. As the time regions in Figure 10 shift right by 𝑤 minutes, 
new carpool requests are added. By iterating through the simulation day, every carpool 
requester receives an assignment. They either join a carpool or retain their original SOV mode. 
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Figure 10. Updating the simulation module and data processing steps 

Besides visually present the updating steps of the rolling horizon algorithm, a formal 
pseudocode detailing this simulation update process is provided in Figure 11. Executing this 
procedure ensures that each trip is assigned a unique index. As a result, assignment outcomes 
and trip details, including any designated carpool role and travel schedule, can be efficiently 
tracked using tabular data. 
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Figure 11. Pseudocode for running the simulation program. 

In addition to applying rolling horizon strategy to update in time, the geo-fencing strategy runs 
concurrently. To reach concurrence, one must group the computational tasks into groups by 
aggregating with distinct origins and destinations. To delineate the analysis zones, large distinct 
regional wedges are identified, surrounding major freeway commute corridors, and often 
demarcated by notable boundaries such as rivers. These distinct spatial wedges are large 
enough that most carpooling opportunities reside within wedges (see Figure 12). 
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3.7 The Control Parameters 

All parameters discussed in Sections 3.1 through 3.4 are consolidated in Table 2 below. While 
most of these parameters serve to impose constraints on carpool matching, the last three 
specifically dictate the granularity of the simulation model's operational schemes. 

Table 2. Default configuration parameters in the experiment (SOV mode and PNR mode) 

Parameter 
name 

Definition/Interpretation 
Default 
Settings 

Euclidean Distance Filters 

𝑟 Euclidian distance from the driver’s origin to the pick-up location of 
the passenger 

5 miles 

𝜇1 The ratio between shared carpool distance and the carpool distance  1.5 
𝜇2 The ratio between the travel segment after the passenger is dropped 

off and the driver’s original travel time  
0.1 

Path Travel Time Filters 
𝛿1 Extra travel time for carpool modes for drivers compared to the SOV 

mode 
15 minutes 

𝛾 The minimum proportion of shared travel time over the driver’s SOV 
time 

1.3 

𝜄 (SOV mode) The minimum proportion of shared travel time over the passenger’s 
SOV time 

0.85 

𝜄 (PNR mode) The minimum proportion of shared travel time over the passenger’s 
SOV time 

0.5 

Temporal Filters 

𝑐1 The maximum difference in the departure time 15 minutes 
𝛿2 The maximum waiting time for the carpool passengers (driver should 

never wait in a carpool) 
10 minutes 

Simulation program settings 

𝛿𝑡 The maximum number of minutes in the near future for passengers to 
send travel requests 

10 minutes 

𝜖𝑡 The maximum number of minutes into the near future for drivers to 
depart 

2.5 minutes 

𝑤 The number of minutes to update the simulation clock each time 1 minute 
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4. Experiment 

To gauge the efficacy and applicability of the CarpoolSim framework, we implemented it in the 
vicinity of the I-85 inbound highway corridor in Atlanta, Georgia. To prepare for experiment, 
Section 4.1 elaborates the data preprocessing steps. Section 4.2 initiates our assessment with 
an experiment based on default configuration parameters. To further understand the marginal 
impacts of these parameters, Section 4.3 conducts a sensitivity analysis using a one-variable-at-
a-time (OVaaT) approach, where each carpool match constraint parameter was varied one at a 
time. 

4.1 Data Processing 

4.1.1 Study Area and Data 

To experiment with carpool potential, the Atlanta Metropolitan Area ("Metro Atlanta"), the 
major urban cluster in Georgia, United States, is used as a study case. As of 2020, Metro Atlanta 
was home to over six million people and there is a heavy reliance on automobile transportation 
in Metro Atlanta (Crimmins and Preston, 1980; Henderson, 2002). For example, the observed 
average vehicle occupancy in the morning commute along the I-85 corridor is less than 1.3 
persons per vehicle (Guensler et al., 2022); most vehicles on the road are single-occupancy 
vehicles (SOVs), where the driver is the only vehicle occupant. On the other hand, Metro 
Atlanta has established a relatively mature transit system with various options for riders, 
including fixed-route rail transit, bus service, and express bus service (ARC, 2021). Thus, it is 
important to measure the possibility of using existing parking lots (e.g., park-and-ride stations) 
for carpool activities. Moreover, a comparison between PNR carpool and direct carpool is also a 
meaningful study to evaluate the potential of carpool systems. 

4.1.2 Identifying trips for the analysis: identify traveler of interests from the synthetic 
population 

We have devised a systematic filtering procedure to identify potential carpool candidates. This 
procedure is delineated in Table 3, which encompasses details such as the total number of trips, 
the percentage retained from the preceding step, the cumulative retained percentage in both 
number and mileage, among other metrics. 

Given our focus on the I-85 corridor, the initial step in curating candidate trips for carpool 
matching involved extracting a subset of regional trips emanating from this specific area, 
amounting to 4,984,177 trips (a little more than a quarter of total model-predicted daily 
automobile trips within the region). Out of these nearly five million trips, approximately 1.7 
million have their starting point at homes, with 73,250 arriving at the employment hubs along I-
285. Notably, 55.3% of these journeys are work-related, and 64.2% are undertaken by single-
occupancy vehicles (SOVs). This narrows down the pool to 26,029 viable carpool trips for 
matching. In this study, roughly 0.522% of total regional trips (originating in proximity to I-85), 
or about 1.615% of the total daily regional trip mileage, are candidates for employment center 
carpooling. The cumulative sample size employed in this experiment stands at 26,029 trips, 
translating to a total distance of 553,805 miles per day of travel. 
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Table 3. The steps of identifying commuter of interest for the case study from the Atlanta’s 
ARC ABM model results. 

Trip Conditions 
Number of Trips 
Retained 

Percent of 
Trips 
Retained 

Travel Distance 
Retained (miles) 

Percent of 
Travel 
Distance 
Retained 

Total Daily Trips 19,235,737  136,589,656  
Daily Departures  
along the I-85 Corridor 

4,984,177 100.00% 34,290,538 100.0% 

Corridor Departures  
from Home (34.22%) 

1,705,854 34.22% 13,818,307 40.3% 

Home to Employment 
Center Pairs (4.29%) 

73,250 1.47% 1,478,443 4.31% 

Center Arrivals that are  
Work Trips (55.32%) 

40,519 0.813% 860,710 2.51% 

Work Trip Arrivals  
by SOV Mode (64.24%) 

26,029 0.522% 553,805 1.62% 

Upon identifying the carpool population, we visualized the distribution of origin and destination 
pairs. Figure 12 (a) illustrates the spatial scope of the study and identifies the travelers of 
interest. The origins and destinations are geographically delineated by adjacent zones around 
the I-85 corridor and within the confines of I-285, a ring-shaped circulating highway encircling a 
vast central portion of Metro Atlanta. Four large regions (i.e., wedges) are identified within I-
285. Two regions, plotted in orange and blue, are identified along I-85 and out of I-285. Figure 
12 (b) offers a graphical representation of the origins and destinations of potential carpoolers 
within each Traffic Analysis Zone (TAZ) parcel. The areas shaded from white to red outside of I-
285 represent the departure points of the 26,029 candidate travelers heading to work from 
their respective TAZs. Conversely, the areas transitioning from yellow to green within I-285 
signify the destinations of these candidates, marking their arrival at employment hubs, as 
predefined by the Atlanta Regional Commission. 
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Figure 12. Distribution of trip demands by origins and destinations. 

4.1.3 Enhancing accuracy: resampling and refining spatiotemporal data for 
CarpoolSim 

After identifying the target population, it's essential to refine the trip data sourced from the 
ABM to ensure a more granular spatiotemporal resolution suitable for carpool analysis. To 
achieve this, each trip is allocated a refined longitude-latitude coordinate within its original and 
destination TAZ, effectively enhancing the spatial precision. Given that the ABM's output data 
clusters departure/arrival times in 30-minute intervals, we employed a spline curve fitting 
method to resample departure times down to a specific minute. The refined arrival time is then 
quantified by adding the shortest network travel time to the resampled departure time. 

4.2 Experiment results for the default scenario 

This section presents the experiment results from the default scenario. Section 4.2.1 introduces 
the overall carpooling potential, as illustrated by the upper bound condition allowed in the 
infrastructure setup. Section 4.2.2 discusses implications from the before/after analysis. Finally, 
Section 4.2.3 takes a closer look at the spatial representation and potential impacts of 
carpooling on traffic volume and congestion. 

4.2.1 Overall carpool potential 

To gauge the implications of smart carpooling in a specific scenario, we conducted a before-
and-after analysis using the processed data. CarpoolSim model is executed by utilizing the 
default filter parameters in Table 2. These parameters ensure, for instance, that no driver 
spends over 15 extra minutes for passenger pick-up, no passenger waits beyond 10 minutes 
from their intended departure time, and the shared route encompasses at least 85% of the 
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passenger's original SOV commute. The constraints for the default settings are neither too 
loose nor too strict to the authors perspective. 

Applying the CarpoolSim framework, eligible SOV commute trips were paired through both 
direct carpool and PNR carpool. The results, using the default parameters from Table 2, 
revealed that approximately 24% of the potential single-occupancy home-to-work commutes to 
primary employment hubs along the I-85 corridor in Metro Atlanta could be facilitated through 
direct carpools. Furthermore, over 19% of these trips could be paired via the PNR carpool 
mode. 

While the candidate home-to-work SOV trips heading to the primary employment centers along 
I-85 represent a mere 1.62% of the total daily travel mileages originating near I-85 (as per Table 
3), the number is not small as many trips are not inbound trips towards those employment 
centers. Future studies will release the constraints towards employment centers to assess the 
potential of more widespread morning peak period carpool matching. 

4.2.2 Implications from the before-and-after analysis  

Upon implementing the CarpoolSim framework, we visualized the travel time variations before 
and after carpool matching. Figure 13 provides a comprehensive view of these variations. The 
histograms in Figure 13 (a)/(b) and Figure 13 (c)/(d) represent travel time distributions for the 
direct carpool mode and the park-and-ride (PNR) mode, respectively. Figure 13 (a)/(c) provide 
these distributions in terms of number of travelers, and Figure 13 (b)/(d) in terms of vehicle 
miles traveled (VMT). Each panel, from top to bottom, includes five histograms, showing the 
change in travel time distribution for all travelers, SOV trips, carpool drivers, carpool 
passengers, and all traveling vehicles, respectively. The white boxes in Figure 13 (a)/(c) show 
each type's share compared to the total population. In Figure 13 (b)/(d), the white boxes 
contain changes in VMT (area under the histograms) before/after considering the carpool. 

In examining the subplots across various carpool roles, trips with durations under 10 minutes or 
exceeding 45 minutes have a limited match rate. This is attributed to the constraints set by the 
model. Short trips, in particular, face challenges in matching because rerouting costs surpassing 
the permissible limits set by the model's input parameters. On the other hand, longer journeys, 
which often originate from distant, exurban areas, encounter difficulties in finding suitable 
carpool matches. This is primarily because the potential shared segments of these routes 
frequently fall short of the requirement specified by the model's parameters. 

As is introduced in the previous section, this experiment uses 26,029 SOV trips. By observing 
Figure 13 (a), most matched carpools have a travel time traveling time in range between 10 and 
30 minutes. Moreover, the travel time distribution exhibits a heavily right skewed pattern, 
demonstrating a typical suburban travel profile. 

In direct carpool mode, CarpoolSim estimates that up to 24.1% of SOV can participate in 
carpools. Given that these are two-person carpools, this translates to 12.0% acting as carpool 
drivers and another 12.0% as passengers. Consequently, the total number of vehicles in 
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operation would be reduced to 88.0% compared to the scenario before carpooling was 
introduced. Before carpooling, both carpool passengers and drivers exhibit a similar travel time 
distribution, with the majority of trips ranging between 10 to 45 minutes, which is consistent 
with expectations (Figure 13 (a)). 

In PNR mode, 19.2% of SOV riders can be accommodated in carpools, leading to a 9.6% 
decrease in the number of vehicles on the road. The travel time distributions for both carpool 
passengers and drivers in the PNR mode remain largely consistent, predominantly falling within 
the 10-45 minute range. However, a noticeable decline is observed in the shorter-travel-time 
zone, specifically between 14 and 18 minutes. This can be attributed to the PNR mode 
implementation of different filtering criteria than used in the direct carpool mode. Given that 
passengers in the PNR mode also need to make detours to the designated meet-up locations, 
the filtering criteria for short-distance segments of the trips become more restrictive (Figure 13 
(c)). 

The total VMT before carpooling is 551,841 miles. In the direct carpool mode, carpooling will 
not bring any changes in VMT for carpool passengers and SOV riders, but carpool drivers will 
typically experience an increase in travel distance, averaging 10.26% more driven mileage, due 
to rerouting to pick up and/or drop off passengers. Overall, on an individual basis, SOV riders, 
carpool passengers and drivers altogether will see an average of 1.39% increase in person-miles 
of travel (PMT). On a vehicle basis, since the two parties in a carpool share the VMT, the system 
will see a 12.1% reduction in total VMT (Figure 13 (b)). In the PNR mode, since both drivers and 
passengers need to reroute to park-and-ride location before starting carpool, an increased VMT 
is observed in both parties (4.4% for passengers and 9.2% for drivers). While solo drivers remain 
the same VMT as before, the individual-basis overall average increases by 1.63%. Similar to 
direct carpool, the system sees an overall reduction in total VMT by 7.31% (Figure 13 (d)). 
Detailed investigation of the impacts of such reduction is presented in a separate analysis in 
Section 4.2.3.



 

 

 

Figure 13. A before-after comparison of travel time by traveler’s role.
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To further understand the implications of carpooling on travel times, we introduced a graph to 
demonstrate the differences in travel times before and after the introduction of carpooling. 
This analysis was facilitated by examining histograms that depict these differences. Two distinct 
measures of travel time were considered: 1) Extra Travel Time – which refers to the additional 
time spent traveling due to carpooling. This analysis captures the time taken for detours, 
rerouting, or any other changes in the route that result from carpooling, and 2) Extra Journey 
Time – which encompasses the extra travel time and also factors in the waiting time for carpool 
partners. Essentially, this metric represents the total additional time from the moment a 
traveler is ready to depart to the moment they reach their destination. 

In Figure 14, the distinctions between these two measures are visually represented. The red 
histograms depict the extra travel time, while the purple histograms illustrate the extra journey 
time. Similar to Figure 13, from the data in Figure 14 (a)/(c), we can infer the distribution of the 
number of travelers affected by these extra times. On the other hand, Figure 14 (b)/(d) provides 
insights into the VMT associated with these extra times. 

In direct carpool mode, a key observation from the data is that the travel time for carpool 
passengers remains unchanged. This is because their route, from the pickup point to the 
destination, remains consistent regardless of carpooling. However, for drivers, the extra travel 
time is constrained to be less than 10 minutes, as dictated by the model parameters outlined in 
Table 3. Additionally, the waiting time for passengers, which contributes to the extra journey 
time, is also capped at 10 minutes according to the model's parameters. This means that any 
delay experienced by carpool passengers in their journey time is solely attributed to the time 
they spend waiting for their carpool driver. 

In PNR mode, while the passengers extra journey time remain in a similar distribution as that of 
the direct carpool mode, a higher portion of it comes from the extra travel time. Drivers 
experience a slightly higher extra journey time in general, and a smaller portion of it comes 
from the extra travel time.



 

 

 

Figure 14. A before-after comparison of traveling time plotted by each group of travelers. 
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The scatterplot in Figure 15 shows the influence of the filtering criteria on the simulation 
outputs. Each scatterplot compares the baseline travel/journey time (x-axis) with the post-
carpooling time (y-axis). Figure 15 (a)-(d) focuses on the direct carpool mode, while Figure 15 
(e)-(h) examines the PNR mode. The plots differentiate between travel time (actual commuting 
duration, as shown in the first row) and journey time (commuting plus waiting time, as shown 
in the second mode). Several reference lines in the scatterplots represent some of the carpool 
quality constraints. Red lines (i.e., a 45-degree line) indicate the case where pre and post-
carpooling durations are equal. Solid blue lines set a boundary where post-carpooling time 
shouldn't exceed 1.3 times the original. For the PNR mode, the dashed blue lines set this limit at 
1.5 times. Green dotted lines mark the maximum reroute time of 10 minutes. 

The before-after scatterplot is useful as a safeguard of the simulation results. In Figure 15 (b), 
the travel and journey times for carpool drivers are identical. This outcome aligns with the 
experimental setup where passengers are configured to wait for drivers and not otherwise. 
Most data points in the scatterplots adhere to the predefined boundaries, consistent with the 
model's input parameters. However, Figure 15 (g) displays a few outliers. These deviations arise 
from the recalculation of shortest travel paths using Dijkstra’s algorithm, after initial results 
from CarpoolSim are implemented. It's worth noting that CarpoolSim employs a faster, albeit 
less accurate, query-based shortest-path search algorithm. Despite these outliers, the 
boundaries in Figure 15 effectively highlight the influence of the model control parameters, as 
detailed in Table 2.



 

 

 

Figure 15. Journey time vs. Travel time for different carpool modes. 
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4.2.3 Spatial patterns  

Analyzing spatial patterns that result from aggregating matched trips based on their origins or 
destinations can provide some valuable insights. In Figure 16 (a)-(b), the number of matched 
travelers by their origin is depicted. Specifically, Figure 16 (a) presents the percentage of 
matched trips grouped by Traffic Analysis Zone (TAZ). Note that trips either too proximate or 
distant from the destinations have a diminished match percentage. Despite the higher travel 
demands near I-285, as shown in Figure 12, the match rate is lower. This is attributed to the 
impedance cost of carpool formation, which makes matching short-distance trips challenging 
based on the model's filtering conditions. 

Furthermore, assessing changes in traffic volumes on the network can highlight broader 
impacts. Figure 16 (f) illustrates the changes in traffic volume across the subregion being 
assessed. Notably, there is a significant reduction in traffic volumes along I-85 and its 
neighboring major arterials for both SOV and PNR modes. Figure 16 (f) provides a detailed 
breakdown of matched carpoolers allocated to each PNR station and the corresponding traffic 
volume changes in the vicinity of these stations. Some PNR stations experience an uptick in 
traffic as vehicles converge on these locations, while others see a reduction, especially if the 
SOV trips that previously passed these stations are now converted to PNR carpool trips.
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Figure 16. Spatial distribution of travel demand by TAZ and by network link. 
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4.3 Understanding the impacts of quality control parameters: a sensitivity 
analysis. 

Sensitivity analysis is a crucial tool for understanding the influence of various parameters on the 
carpool system's performance. This section begins by identifying the key control parameters. A 
series of experiments is then conducted, using a one-variable-at-a-time (OVaaT) sensitivity 
analysis approach, where all parameters are held constant except for one, which is varied to 
observe its impact. The matching percentage under different model input parameter 
assumptions are detailed in Table 4 for both direct carpool mode and PNR carpool mode. 

Table 4. A set of sensitivity analysis for important model control parameters in CarpoolSim. 

 

In Table 4, the parameter 𝜄 (iota) dictates the shared percentage of distance between 
carpoolers. A higher 𝜄 value indicates closely located origins/destinations for the carpoolers, 
implying a higher quality of carpool matches. As the value of ι rises from 0.8 to 0.9, there's a 
sharp decline in the matched percentage from 41.62% to 8.70%. The parameters γ and δ are 
associated with the additional costs borne by carpool drivers. While γ represents the maximum 
additional cost as a ratio, δ denotes the cost in absolute terms. The matching results are less 
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sensitive to these extra cost parameters than to ι. Even with stringent constraints (δ=1 or 
γ=1.05), over 6% of trips can still be matched for carpooling. 

Temporal filtering parameters are also evaluated. Δ1 restricts the difference in departure times 
between travelers. When Δ1 exceeds 2 minutes, its impact becomes negligible. Δ2 sets the 
maximum waiting time for a passenger when being picked up by a driver. Reducing Δ2 from 7.5 
minutes to 2 minutes results in a modest decrease in the matched ratio from 24.1% to 20.5%. 

Parameters governing the simulation process (i.e., 𝛿𝑡 , 𝜖𝑡) are also assessed. These parameters 
dictate the time window within which drivers and passengers can form carpools. The sensitivity 
analysis reveals that reducing 𝛿𝑡 or 𝜖𝑡 has a minimal effect on the matching ratio. Even under 
stringent conditions, the benefits of matching current drivers with future passenger requests 
are limited. 

The sensitivity analysis offers valuable insights into the CarpoolSim system's responsiveness to 
various parameters. Among them, ι, which determines the shared carpool segment's ratio, 
emerges as the most influential. Absent this constraint, drivers on long routes might pick up or 
drop off any short-distance passenger with a similar trajectory. 

The same experiments were also conducted for the PNR mode, with results presented in Table 
4’s lower section. In comparison to the direct carpool mode, the PNR mode is less sensitive to 
the constraining parameters. This is attributed to the limited number of selected parking lots 
for the PNR mode, which inherently restricts the number of potential matches. However, the 
potential for higher match rates exists if more PNR stations are introduced along adjacent 
corridors, such as SR 19 and SR 78 (Pelzer et al., 2015; Tafreshian and Masoud, 2020b). 

5. Discussion 

5.1. Carpooling Potential 

Under the predefined filtering criteria, this analysis reveals that 24.1% of morning commute 
trips to employment centers along I-85 have the potential to form carpool trips via direct 
carpool mode, and 19.2% of these trips have the potential to form carpool trips via Park-and-
Ride (PNR) mode, leading to a 12.2% and 7.3% reduction in VMT, respectively. This reduction in 
VMT will translate to a significant decrease in energy use and emissions, given the strong 
correlation between VMT and emissions on this corridor (Kall et al, 2009; Fan et al., 2022), 
promoting a more sustainable and environmentally-friendly transportation system. 

The analysis reveals a marked reduction in traffic volumes on I-85 and adjacent arterials for 
both SOV and PNR modes. The forecast decline in traffic volume presents several advantages. 
Commuters, especially carpoolers using HOV/HOT lanes, will experience shorter travel 
durations. Furthermore, traffic volumes on the corridor should decrease, further enhancing 
travel times for all commuters and improving overall transportation system efficiency. Finally, 
the shared-cost aspect of carpooling (sharing fuel and parking costs) also helps make carpooling 
a more attractive commute choice for participants. 
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CarpoolSim currently employs a fixed-cost traffic network structure. That is, the simulator does 
not dynamically adjust link travel time costs as a function of changes in traffic volumes and 
congestion. This static approach does not capture the full range of potential benefits offered by 
Intelligent Carpool Systems (ICS), especially when considering the ripple effects of congestion 
reduction. As congestion decreases, travel times across the corridor will likely decrease, which 
may make carpooling a more favorable option for some trips that do not meet current filtering 
criteria, potentially increasing carpool mode share. On the other hand, as congestion declines, 
some users may have less incentive to carpool. This dynamic relationship requires further 
assessment for simulator integration. 

While the PNR mode analysis shows promise, especially for those living close to the corridor 
and PNR stations, it also presents potential challenges. Increased use of PNR stations could lead 
to increased traffic volumes and congestion on local roads near these stations. Potential shifts 
in local traffic patterns underscores the importance of thorough planning and simulation before 
implementing PNR stations. Proactive measures should ensure that the introduction of these 
stations doesn't inadvertently lead to localized congestion, undermining the broader benefits of 
carpooling. By strategically placing additional PNR stations along other key corridors, it should 
be possible to optimize the carpool match rate, while ensuring that local arterial roads remain 
free-flowing and efficient. 

5.2. Contribution of Current Research to Existing Literature 

The present research offers several noteworthy contributions to the existing body of literature 
on transportation and carpooling systems. These contributions can be categorized into four 
main areas: flexibility, scalability, accuracy, and practicality: 

Flexibility: One of the standout features of this research is the design of numerous filtering 
parameters, where each can be adjusted individually by the modeler. This design allows for a 
tailored approach to carpool matching, accommodating various scenarios and conditions. This 
flexibility enhances the adaptability of the model, building upon the foundations set by existing 
models in the field. 

Scalability: A major challenge in transportation modeling is ensuring that the model can handle 
large datasets without compromising on speed or accuracy. This research introduces a 
spatiotemporal partitioning scheme that effectively addresses this challenge. Minimizing total 
model run time ensures that even extensive datasets can be feasibly processed. This scalability 
ensures that the model remains relevant and usable as data sets grow in size and complexity. 

Accuracy: Model accuracy is crucial. This research has diligently focused on maintaining model 
accuracy throughout each linked model phase, by carrying the travel demand model input data 
trajectory data throughout the entire process. By carrying accurate estimates of the trip 
trajectories, calculations of change in traffic volumes at each stage provide detailed insights 
that can inform transportation planning and policy. Furthermore, changes energy consumption 
and emissions can be calculated using these trajectories (Xu et al, 2015; Zhao, 2021). 
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Practicality: Beyond the technical aspects, the research also stands out for its practical 
relevance. All parameters incorporated into the model have been chosen for their significance 
in representing real-world travel conditions. This ensures that the model's outputs are not just 
theoretically sound, but also practicable, making this a valuable tool for transportation 
planners, policymakers, and other stakeholders. 

In summary, this research bridges several gaps in the existing literature, offering a model that is 
flexible, scalable, precise, and practical. Its contributions are poised to drive advancements in 
the field and inform future transportation strategies and decisions. 

5.3. Limitation and Future Research 

The CarpoolSim framework, while promising, has several limitations that need to be addressed. 
One of the primary limitations is the lack of consideration of individual psychological 
preferences. Constraints applied that are uniformly in the analysis might not capture 
differences in preferences of commuters across various demographic groups. Without 
comprehensive data capturing real-world carpooling behavior, modeling such heterogeneity 
remains a challenge. Furthermore, the current study predominantly focuses on morning home-
to-work trips, leaving out the work-to-home segment. While it's posited that the return journey 
(work-to-home) might be simpler to match due to factors such as more flexible home arrival 
times and priority matching for carpool passengers, this assumption requires further 
verification. Another limitation is the rigidity of the travel plans in the model. Once set in 
motion, travelers cannot modify their plans, and there is currently no provision for on-the-fly 
matching, reflecting the reality that punctuality often takes precedence for most commuters. 
The optimization algorithm, based on a bipartite approach, might also have room for 
improvement, especially when compared to more sophisticated machine learning optimization 
solvers. Lastly, the reliance on a static travel network, which doesn't account for real-time 
traffic congestion dynamics, remains a current limitation. A dynamic model that considers 
congestion and other real-time factors could offer a more accurate representation, even if it's 
not an immediate priority. 

Looking ahead, there are several aspects of enhancing and expanding the CarpoolSim 
framework. Given the similarities between the ARC ABM model and those used by other US 
urban planning agencies, there's potential for adapting CarpoolSim for different travel corridors 
and urban contexts. With the rise of autonomous vehicles, the CarpoolSim framework, with 
some modifications, could play a pivotal role in analyzing future carpool dynamics. Additionally, 
features like multi-passenger carpools and real-time assignments could be integrated to make 
the system more versatile. On the computational front, besides the algorithm itself, there's 
ample scope for optimization by optimizing the current code used to implement CarpoolSim 
(continuous code optimization is always needed to take advantage of new and improved 
computing systems). 
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6. Conclusions 

In light of the rapid advancements in communication and computation technologies, carpool 
matching is emerging as a feasible solution to address transportation challenges and has 
garnered significant research interest. This study introduces CarpoolSim, a novel scalable 
analytical framework, designed to estimate the maximum potential of carpools under a set of 
realistic spatiotemporal constraints. The overarching goal is to pave the way for a future 
Intelligent Carpool System (ICS) that can be integrated in transportation planning decisions 
related to carpooling. 

Distinct from many existing studies that primarily focus on optimizing algorithms, this research 
emphasizes the development of an efficient computational pipeline, leveraging established 
methodologies. CarpoolSim is structured around three core modules: 1) the filtering module, 
which refines potential carpool matches based on a range of criteria; 2) the optimization 
module, which ensures maximum feasible matches; and 3) the simulation module, which 
replicates the matching process in a dynamic environment. The framework's flexibility, 
scalability, precision, and practicality, as discussed earlier, underscore its potential to contribute 
significantly to the existing literature. 

A case study centered on the Metro Atlanta I-85 corridor was conducted to evaluate the 
efficacy of ICS. Preliminary findings suggest that approximately 24.1% of the morning commute 
trips to employment centers along I-85 could be carpooled directly, while 19.2% could utilize a 
park-and-ride carpool system. While these figures might seem modest in the context of the 
entire regional travel demand, they hint at the promising potential of automated carpool 
matching systems in the long run. The benefits of ICS are twofold: it promotes sustainability by 
reducing individual commute costs and alleviates traffic congestion, benefiting the broader 
commuting community. 

The sensitivity analysis further illuminated the influence of various model parameters on 
carpool formation. Notably, the proportion of shared travel time emerged as a critical factor, 
more so than the additional time costs for carpool drivers. As real-world data becomes 
available, and if it indicates a willingness among commuters to deviate from their shortest 
paths for carpooling, the potential for carpool formation could be even greater than the current 
estimates. 

In terms of contributions to the existing literature, this research stands out in its flexibility, 
scalability, precision, and practicality. The model's adaptability, its capability to handle 
expansive datasets efficiently, its meticulous attention to precision, and its real-world relevance 
make it a significant addition to the field. In essence, this study not only provides insights into 
the potential of carpooling but also offers a robust and adaptable framework that can shape 
future transportation strategies and decisions. 

While CarpoolSim presents a robust framework for analyzing carpool potentials, it also 
highlights the need for continuous refinement and validation against real-world data. As 
carpooling systems evolve and become more integrated into our transportation networks, 
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research like this will play a pivotal role in shaping sustainable and efficient urban mobility 
solutions.  
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