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ABSTRACT OF THE DISSERTATION

Generative Neural Networks Enable Real-time EM Metastructure Designs

by

Erda Wen

Doctor of Philosophy in Electrical Engineering (Applied Electromagnetics)

University of California San Diego, 2023

Professor Daniel F. Sievenpiper, Chair

This dissertation discusses how generative-type artificial neural network (ANNs) enables

the real-time inverse design process of reconfigurable EM megastructures. Specifically, we

demonstrate two designs: 1. a 2-D beamformer with rotatable dielectric slabs and 2. a conformal

EM coating responding to free-form design goals on reflection pattern in a dynamic environment,

the latter being an ultimate ambition of EM scattering control and nearly impossible to realize

with conventional methods. These two examples demonstrate the superiority of ANN methods

in dealing with high-nonlinear EM design problems requiring fast responses. Furthermore,

the proposed data-driven free-form inverse-design approach can be accommodated for other

science/engineering tasks.
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Chapter 1

Introduction

The artificial neural network (ANN), a concept that dates back to the 1940s, finally

embraces its prosperity in the early 21st century, thanks to the fast development of computing

power and the easier accessibility of more big data, for good or bad. For the first time, computers

can perform tasks that are conventionally considered only creatures with real intelligence, i.e.,

human beings, can do: identifying things from video clips, playing games, writing, drawing...

One interesting question is, for other science and engineering topics where well-established

analytical or optimization approaches have always been used and proven very effective, can

ANNs still gain an edge over them in any aspect and provide features that no other methods can

provide?

In this dissertation, we try to answer this question from an EM perspective and demon-

strate the merit of the ANN approach in designing EM metastructure. Particularly, we exhibit

two outstanding advantages of it:

1. the ability to handle highly non-linear mappings, which allows it to be used for EM

structures under very complex environments, and

2. relativity fast prediction speed, which is critical to realize real-time capability.

For readers with different backgrounds, a brief and gentle introduction to some key

concepts throughout this dissertation are as follows.

1



1.1 EM Metamaterial and Metasurfaces

The property of a normal bulk material is decided by its structure on the atomic level;

likewise, the EM property of a metasurface is decided by the exquisitely engineered geometrical

details in sub-wavelength scales. A metamaterial is usually made of periodic or quasi-periodic

elements called “units”, which interact with the EM wave with comparable wavelength through

resonances, and as a whole, create a property usually not found in nature.

Figure 1.1. EM metamaterials and metasurfaces. (a) Negative refractive index material,
from [1], inside which the electric field, magnetic field, and wave vector follow a left-hand rule
instead of the ordinary right-hand rule. (b) 3D wire mesh photonic crystals with unconventional
bandgap, from [2]. (c) High-impedance “mashroom” surface, from [3]. (d) Surface with varying
impedance tensor, from [4]. (e) Tunable impedance surface, from [5].

Some intriguing effects of significant physical and practical interests include negative

reflective index - creating effective negative permittivity εr and permeability µr [1, 6]; frequency

selective plasmonic behavior [2] with band structure not seen in ordinary photonic crystals, and

so on.

Metasurfaces are 2-D versions of metamaterial - sub-wavelength structures built on sheet

2



materials, for EM purposes, usually on printed circuit boards (PCBs). The most relevant design

to what will be adopted in this dissertation is the impedance surface. Fig. 1.1(c) illustrates the

earliest “mushroom structure” that exhibits high character impedance. The resonance created by

patches, vias and gaps prohibits a transverse magnetic field on the surface, effectively creating a

“perfect magnetic conductor”, a boundary condition never seen in nature. To take a step further,

arbitrary impedance can be achieved using various approaches. For example, [4] uses a gradually

changed geometry to tune the local impedance tensor on the surface to guide the surface wave at

will. Another way to tune the impedance is to introduce tunable active components, [5] shows a

mushroom structure as in [3] integrated with varactors to tune the local impedance, which can be

used to realize beam-forming. A design adopting this mechanism will be used in Chapter 3.

1.2 Artificial Neural Networks

Inspired by how brains process complicated tasks through connections between neurons,

artificial neural networks aim at solving highly non-linear classification/regression with archi-

tectures consisting of interconnected “nodes”. The nodes are usually grouped in layers to form

multidimensional matrices (or tensors) for easier calculation with different matrix operations

depending on different applications, as illustrated in Fig. 1.2, the most simple structure being a

fully-connected layer:

Y = g(WX+b) , (1.1)

where the output layer Y can be used as the output of the network or as a “hidden layer” served as

the input of the next layer. Parameters in weight matrix W and bias vector b can be determined

by training process with a dataset of large enough scale, usually with back-propagation and

gradient descent methods.

The activation function g(·) here is a function that involves non-linearly that makes all

the magic happen, without which cascaded products of the matrix can be simply merged into

one. Two very common activation functions that will be used in this dissertation are rectified

3



Figure 1.2. A simple feed-forward ANN. Other common ANN networks are mostly variations
adopting different layer topologies and different tensor operations.

linear unit (ReLU):

g(x) = max(x,0), (1.2)

and hyperbolic tangent (tanh) function:

g(x) = tanh(x) =
ex− e−x

ex + e−x . (1.3)

Other types of layer structures and layer connections that will be used in this dissertation

are as follows.

1.2.1 Convolutional Neural Network

Convolutional layers are used in cases where the same local features in the matrix

are supposed to have similar effects, and thus the weight can thus be shared. One example

is image processing - sudden changes in colors can be considered as edges no matter where

they locate in an image. Compared with fully connected layers, the convolutional layers need

significantly fewer parameters for the same input. For 1-D cases, to “distribute” the weight

parameter W= [w0,w1, ..,wl−1], sometimes referred to as filter or impulse response depending on

different applications, across the whole input X = [x0,x1, ..]
T , we use the convolution operation

Y = W⊗X:

yi = [wl−1,wl−2, ...w0][xik,xik+1, ..xik+l−1]
T , (1.4)

4



where k is the “stride” of the sliding filter. Also, within one layer, multiple filters can be used to

form multiple columns of Y matrix.

1.2.2 Recurrent Neural Network

Reading is a temporal procedure involving simultaneous memorization and data process.

This is how the human brain handles sequential data. Inspired by this, recurrent neural networks

take each element in a data sequence and use them to update an internal state to emulate a

“memory effect”. Suppose at the time step i , the signal Xi if fed into the input, the internal

hidden state H will update with:

Hi = g(WXi +UHi−1 +b) . (1.5)

Meanwhile, the output at that time step is:

Yi = g(WoutHi +bout) , (1.6)

Either all outputs can be used to create a sequential output, or the output at the last time

step can be used as to “conclude” the whole sequence.

1.2.3 Generative Networks

Identifying a cat from a picture and generating a picture of cats are essentially very

different types of tasks - the former extracts information while the latter generates information.

For tasks requiring some “creativity” like drawings or writings, architectures of special types,

usually referred to as generative, are supposed to be used, reasons to be discussed in the next

Chapters. Some very popular generative models are:

• Generative Adversarial Network (GAN): simultaneously training a generator that gener-

ates contents and a discriminator that tries to discriminate generated content from true

content.
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• Variational autoencoder (VAE): cascading an encoder and decoder where the decoder

serves as the generator, generating content from a given latent space parameter.

• Diffusion model: emulating a denoise process so as to generate content from random

noise.

• Generative pre-trained transformer (GPT): an encoding-decoding structure that takes

advantage of the multi-head attention technique.

In this dissertation, we will introduce another architecture, tandem network, in Chapter 2,

which has proven to be useful for engineering problems, and we will propose a modified version

of it, sequential tandem network, in Chapter 4 that empowers it to handle inverse-design with

free-form design goals.

1.3 Structure of this Dissertation

Two projects will be reported in this dissertation. As an appetizer, Chapter 2 demonstrates

a toy model to showcase how a generative neural network enables the inverse design evolving

high non-linear EM system. We focus on a real-time beamforming structure that consists of

simply 8 rotatable dielectric slabs as an example of an EM problem with great complexity. The

determination of the optimal architecture and the detailed training process is discussed, and the

advantage of the proposed data-driven tandem neural network method over some conventional

numerical methods is shown. The system is realized and measured with a platform controlled by a

low-cost system-on-a-chip (SoC) computer to verify its real-time design capability. We showcase

the proposed neural network as a competitive candidate for complex real-time reconfigurable

EM designs.

We then demonstrate how to migrate the same philosophy to a more complicated model

but with more significance: real-time inverse design of an EM coating. Manipulating the EM

scattering behavior from an arbitrary surface dynamically on arbitrary design goals is an ultimate
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ambition for many EM stealth and communication problems, yet it is nearly impossible to

accomplish with conventional analysis and optimization techniques.

In Chapter 3 we present a reconfigurable conformal metasurface prototype that can

sever as a coat an arbitrary 2-D surface. Then in Chapter 4 we present a workflow that enables

it to respond to multiple design targets on the reflection pattern with extremely low on-site

computing power and time. The metasurface is driven by a sequential tandem neural network

which is pre-trained using actual experimental data, avoiding any possible errors that may

arise from calculation, simulation, or manufacturing tolerances. The platform empowers the

surface to operate accurately in a complex environment, including varying incident angle and

operating frequency, or even with other scatterers present close to the surface. The proposed data-

driven approach requires a minimum amount of prior knowledge and human effort yet provides

maximized versatility on the reflection control, stepping towards the end form of intelligent

tunable EM surfaces.

Finally, in Chapter 3, we conclude how this approach can be universally used or modified

to other complicated EM systems, we list several exciting examples to be explored in the future,

including redistributing the energy inside a cavity and solving sensitivity issue in EM structure

designs.
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Chapter 2

A Beamformer Design with Rotatable
Scatterers

Exploring how ANNs can benefit engineers and scientists in solving electromagnetic

(EM) problems has been an active topic across the community for the past decade. Most

straightforwardly, since feedforward neural networks (FNNs) or convolutional neural networks

(CNNs) can approximate complicated nonlinear functions, they can be used to replace the

computationally expensive EM simulations and provide a cost-efficient approach to a wide

range of analytical problems, to name a few, DOA estimation with small amount of elements

[7], directivity estimation for dipole antenna arrays [8], channel estimation for multiple-input

multiple-output (MIMO) systems [9], inverse EM scattering problems for imaging [10, 11],

and building a fast solver for the Poison equation [12]. Once the analytical model is made less

resource-intensive, inverse design can also be realized with simply a fine search, like designing

monopoles in [13], or with other iterative or non-iterative optimizers, like optimizing antenna

multi-parameters in [14] and [15].

To take a step further, the inverse design problem can also be solved with purely neural

network approaches. In some cases, an FNN or a simple modified version of an FNN can do the

job. Examples include antenna array synthesis [16], determining loop antenna radius with given

radiation patterns [17], and multiobjective antenna design by adding an extreme learning machine

(ELM) layer after the FNN [18]. However, in most cases, the one-to-many mapping issue makes
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these naive network architectures impossible to build. To address this, some more delicate

networks are reported: [19] and [20] propose to design photonic metasurfaces/metamaterials

with a generative adversarial network (GAN) and networks with bidirectional configuration,

respectively. Other studies propose generator-predictor architectures for optimizing metasurface

with a specific frequency response [21], and modulating linear arrays with a certain beampattern

[22]. Though the performance of the methods described above is very well examined, two factors

are rarely mentioned:

1. The necessity of using the ANN method: considering that the analytical model is easy to

implement or may even have analytical solutions, the ANN method does not necessarily

over-perform conventional models. For example, the beamforming problem in [22] may

also be solved with sidelobe suppression algorithm reported in [23];

2. The real-time capability: one advantage of ANN methods, especially when compared to

iterative algorithms, is its very little on-site computing time after the network is trained.

If real-time reconfigurability is not required, the time in generating training samples

makes ANN approaches bear the same pain as conventional methods.

In this Chapter, we introduce a 2-D structure inverse design problem to enhance radiation

towards given directions. The complexity of both the analysis and synthesis aspects of the

problem is discussed in detail in section 2.1, followed by our solution with the generator-

predictor neural network in section 2.2. Finally, in section 2.3, we develop a platform with

the commercially available SoC computer Raspberry Pi to verify the feasibility of real-time

reconfigurability.

2.1 Diffractive Slab Model

The geometry of the 2-dimensional design discussed in this work is illustrated as in

Fig.2.1. An out-of-plane electric point source, which excites an outgoing T Mz wave, is sur-

rounded by eight dielectric slabs, with a separation of a = λ/5. The material of the slabs is
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chosen to be Rogers TMM13i to take advantage of its high dielectric constant of around 12.85

that can produce strong scattering needed for creating directionality. The slabs are designed

to rotate freely in-plane to realize reconfigurable beamforming, and their rotational angles are

denoted as Θ = [θ1, ...,θ8]
T . Our objective is to establish both analytic and synthetic methods

for the problem, i.e., 1) predicting the directivity given the rotational angle Θ, and 2) inverse

designing Θ values in a real-time scenario to enhance the radiation towards a certain direction or

several certain directions. The normalized far-field pattern can be evaluated to this intent:

D(φ) =
|Efar(φ)|√

∑ϕ∈Φ |Efar(ϕ)|2
, (2.1)

where Φ represents the vector consisting of all observation angles.

E
z

a

0.9a

0.15a

Figure 2.1. 2-D geometry of the beamforming structure.

2.1.1 Nonlinear Nature of the Problem

The solution for the scattering by a single dielectric slab from a point source, as shown

in Fig. 2.2 , can be theoretically calculated with the uniform geometrical theory of diffraction
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Figure 2.2. Illustration of the scattering of a point source by a single dielectric slab.

(UTD) [24], assuming the slab is electrically long and thin:

E(ii)
z =

e− jksi

√
si

+C
e− jk(s′+sd)

√
sisd

, (2.2)

E(iii)
z = T

e− jksi

√
si

+C
e− jk(s′+sd)

√
sisd

, (2.3)

,where transmission coefficient T can be written in terms of the reflection coefficient R1

at the interface between the air and the dielectric [24]:

T =
(1−R2

1)PdPt

1−R2
1P2

d Pa
, (2.4)

R1 =
cosθi−

√
εr− sin2θi

cosθi +
√

εr− sin2θi
, (2.5)

in which the phase delay terms are:

Pt = e jkd cos(θi−θt)/cos(θt), (2.6)

Pa = e jk2d sinθi sinθt/cos(θt), (2.7)

Pd = e jkrd/cos(θt). (2.8)
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The diffraction term C is given by:

C =
−e− jπ/4

2
√

2πk
·
[

F(kLaφ ′)

cos(φ ′/2)
± F(kLaφ ′′)

cos(φ ′′/2)

]
, (2.9)

where φ ′ = φ1−φ2, φ ′′ = φ1 +φ2, and

F(x) = 2 j
√

xe jx
∫

∞

√
x
e− jτ2dτ . (2.10)

While this expression is already complicated for implementing inverse design, several

extra factors make the problem even more complex: to start with, the size of the slabs in this

model may not be electrically large enough to ensure the accuracy of this approximation; in

addition, strong coupling and multi-reflection may exist between the slabs which sit so close

together. These make it nearly impossible to find an analytical expression of its near-field

distribution or far-field pattern. To illustrate this complexity, Fig.2.3 shows the simulated

normalized far-field at the azimuth directions φ = 0◦,90◦,180◦,270◦, with respect to θ1 and θ2

combinations. The rest of the parameters θ3 to θ8 are fixed at a set of random values. It is quite

obvious that the relation between the directivity and the parameters θ is highly nonlinear and is

characterized by strong fluctuations.

2.1.2 Discussion on Possible Approaches

Common conventional optimizers, such as gradient descent algorithms or genetic algo-

rithms, are based on an iterative process, which essentially prohibits them from operating in real

time. However, if the forward model could be expressed in a relatively simple form (which can be

numerical), these algorithms would not have to perform computationally expensive calculations

such as full-wave simulation for every sample during the iterations, allowing them to achieve

inverse design fast enough to be considered as real-time. Here we examine two approaches for

that purpose targeting at approximating the directivity with rotational angles: interpolation and
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Figure 2.3. Directivity with respect to the combination of θ1 and θ2. The random parameters
[θ3, ...,θ8] = [44.5◦,25.2◦,112.9◦,0.2.5◦,150.5◦,82.8◦].

multivariate regression.

8-D Interpolation

In order to establish a complete map of Θ and D(φ), one needs to perform a grid search

on the 8-dimensional input parameter space as the sample points. Table 2.1 lists the total number

of simulations needed for different sweep resolutions, with the simple formula (180◦/∆θ)8.

From Fig. 2.3, it is safe to claim that even for a very coarse estimation, ∆θ should be smaller

than 30◦, which brings the sample number to the order of 106. Additionally, obtaining more

accurate results would be exponentially more difficult. At a 10◦ resolution, the sample size of

around 1010 renders this approach quite infeasible even when each full-wave simulation takes

only seconds.
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Table 2.1. # of Simulations needed vs. sweep resolution, using interpolation methods.

∆θ 60◦ 45◦ 30◦ 10◦

# of Samples 6561 65536 1.68×106 1.10×1010

Multivariate Regression

The multivariate polynomial regression method can be used with the form of:

D(φ) = ∑
p1+...+p8≤K,i=1..M

βiθ
p1
1 θ

p2
2 ...θ p8

8 . (2.11)

The parameter can be calculated with β̂ = (ΘT
Θ)−1Θ

T D, where the matrix Θ has a

dimension of Ns×M, Ns being the number of samples and M being input dimension of the

variables, which is listed in Table 2.2. The same issue occurs here that for higher accuracy,

the scale of the problem expands exponentially, but it is relatively acceptable compared to the

interpolation method. Nevertheless, in Section 2.2.2, we will further show that this method

significantly underperforms the proposed neural network predictor even when the order is

prohibitively high.

Table 2.2. Input dimension vs. order of polynomial regression

Order K 2 3 4 5 6 7 8
Input Dim M 45 165 495 1287 3003 6435 12870

It is worth noting that even if the function D(φ) = f (Θ) can be determined, it is still

challenging to implement the inverse design using the aforementioned iterative methods. In

order to achieve fast convergence, they may still require high on-site computing power.

2.2 Generative Deep Neural Network Methods

Simple FNNs, even the single-layered ones, can theoretically approximate any function in

any precision if the scale is large enough. In our case, it is tempting to think that if an underlying

function Θ = f−1(D(φ)) exists, one may assign D(φ) and Θ as the input and output of an FNN
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and expect it to approximate f−1(·), so that Θ can be determined with a target D(φ). This is

however not true since there exist multiple sets of input Θ that map to the same (or very similar)

output D(φ), making it impossible to properly train the network. This will be further discussed

in Section 2.2.2. Intuitively for most inverse design problems, the design parameters, in this case

the structure’s geometry, contain more information than the targets, in this case the amplitude of

the pattern in certain directions. As a result, a generative network is often needed instead of a

naive FNN.

(a)

(b)
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Figure 2.4. Tandem network architecture. The architecture of (a) the prediction network P,
and (b) the whole network including the both generation network G and the prediction network
P.

2.2.1 Network Architecture

In this study, a generative network, tandem neural network, based on a pre-trained

prediction network is adopted, similar architectures proved useful for other physical design
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problems such as photonic nano-particles [25]. Fig. 2.4 (a) illustrates the predictor P, which is a

simple n+1 layered fully-connected neural network with the rotational angles as input parameters

and directivity D(Φ) as the output, where the set of azimuth angles Φ = [0◦,10◦, ...,350◦]T . This

can be expressed as:

P1 = g(WP1Θ+bP1), (2.12)

Pk = g(WPkPk−1 +bPk),k = 2...n, (2.13)

D̃ = g(WDPn +bD), (2.14)

in which W and b are the weight matrix and bias vector for each layer, and the function g(·) is the

activation function, which we here choose to be the most common ReLU function. For a stable

learning process, the vector Θ and D are normalized to [0,1] with a scalar X← X−min(X)
max(X)−min(X) .

Note that the form of output depends on the form of the design target, and in this Chapter,

we choose to describe the required directivity in a 10◦ resolution. Since the D(φ) is a continuous

and smooth function with respect to Θ, this network can be easily trained.

The trained predictor is then used as the discriminator of a designer network G, which

takes the target D(Φ) as the input and yields a predicted set of rotational angles Θ̃, forming a

network structure illustrated in Fig. 2.4 (b). The generator G has a similar form to the predictor

P, with an additional layer Θ̃′ to limit the rotational angle to 0◦−180◦:

G1 = g(WG1D+bG1), (2.15)

Gk = g(WGkGk−1 +bGk),k = 2...m, (2.16)

Θ̃
′ = g(WΘGm +bΘ) (2.17)

Θ̃ = min(Θ̃′,1). (2.18)

For this network, the goal is to decrease the discrepancy of the target directivity D(Φ)

and D̃(Φ), which is predicted by P with Θ̃. The difference between predicted Θ̃ and the actual
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rotational angle Θ in the training set is out of the scope in this setup, thus the one-to-many

mapping issue aforementioned is avoided, and the weights of the network can converge during

the training process.

2.2.2 Training Process and Results

The dataset used to train the network is obtained in the commercial software COMSOL

Multiphysics using the 2-D frequency domain FEM method. For each setup, the rotational angles

are set to uniformly distributed random values in [0◦,180◦) and a circular radiation boundary

with a radius of 4a is used to collect the complex far-field information, which is then transformed

into the desired form, in this case, a normalized 36x1 vector of the magnitude of directivity. 95%

of the data are used for training while the remaining 5% serve as the validation set to evaluate

the performance of the network. We pick the size of the validation to be less than common

practice 20-30% based on two reasons: 1) the simulation results contain much smaller statistical

errors than those in other common NN applications, such as image pattern recognition, so less

validation data are needed to cover the variations, and 2) the training set size has a larger impact

on the performance compared to the architecture of the network itself, as will be seen later in

Fig. 2.5 and Fig. 2.6, as a results, a larger training set is preferred to reduce the computationally

expensive simulations needed.

The construction and the training of the network are done with the open-source machine

learning platform Tensorflow and the high-level API Keras for Python 3. For a feed-forward

network in general, the selection of the cost function is based on the distribution of the output

variables. In our case where there is no prior knowledge on the distributions for D, we set the

cost function to be the Gaussian cross-entropy, i.e., the mean square error (MSE) between the

actual value D in the dataset and the predicted value D̃:

LP =
1

ND

ND

∑
i=1

(Di− D̃i)
2 (2.19)
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Figure 2.5. Training process of the predictor. (a) The training process of the predictor P with
various dataset sizes. The solid curve and dashed curves represent the cost functions for the
validation set and the training set, respectively. The mini-batch size in this setup is 100 and the
learning rate is 5×10−4. (b) A visual example of prediction from the validation set.

We here adopt the backward propagation optimization method Adam [26], the update of

the parameters is described as:

Wt ,bt = Wt−1,bt−1−α
m̂t√
v̂t + ε

(2.20)

This involves an adaptive learning rate combining a user-defined hyperparameter α as
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well as the first and the second moments estimation of the gradients m̂t and v̂t . The training

set is divided into mini-batches and for each single iteration, one mini-batch is used, and a

complete pass over the entire training set makes one epoch. The details of the algorithm can

be found in [26]. The stochastic character of this method makes it more likely to jump out of a

local minimum compared to simple gradient descent, as can be found in the n = 2000 case in

Fig.2.5(a) at around epoch 70.

Fig. 2.5(a) illustrates the evolution of the loss function of the predictor along the learning

process with different dataset sizes. The structure of the network, i.e., the number of layers n and

the nodes number per layer are determined by a grid search method, as shown in Fig. 2.6 (a).

From the two plots, we can observe the impact of both input size and the network scale on the

network performance: 1) larger numbers of layers and nodes generally provide more nonlinearity

thus a better fit, but beyond a certain point, the cost function converges, and overfitting starts

to emerge, and 2) while the network shows extremely small error for the training set regardless

of the size of the input dataset, the loss for the validation set is largely dependent on it: the

increased dataset size reduces the overfitting significantly and allows the network to approach

the “true” underlying expression of f (·).

Fig. 2.5(b) shows the patterns of the prediction for one particular case in the validation

set, which is representative as its MSE is rather close to the average. It can be found that 40,000

samples are enough to create a fairly accurate prediction with an average MSE of 1.5×10−3.

The size of the sample needed is remarkably smaller than that in Table 2.1 to allow a complete

mapping. Table 2.3 lists the performance of the polynomial regression introduced in Section

2.1.2 with the same 40,000 samples. The error only converges to around 7×10−3 before the

order K becomes too large to calculate.

Table 2.3. Performance of Multivariate Polynomial Regression

Order K 2 3 4 5 6 7
MSE(×10−3) 16.9 14.0 10.1 8.82 7.19 6.88
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Figure 2.6. Hyper-parameter grid search to determine the number of layers and the
number of nodes per layer. Results for (a) the predictor P and (c) the generator G. The
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early stopping procedure to reduce over-training. The mini-batch size and the learning rate for
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with thick borders. (b) and (d) illustrate the error distribution for the corresponding predictor P
and the generator G, respectively.

The generator is then trained in a similar manner, with the weight and bias matrix fixed

for the predictor. The metric of the network is the MSE between the input directivity D and the
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Figure 2.7. An exemplary case of the design with the target pattern from the validation set.

predicted directivity D̃ with the predicted angle Θ̃:

LG =
1

ND

ND

∑
i=1

(Di− D̃i)
2 (2.21)

Fig. 2.6 (b) lists the gird search results of the generator G, and the architecture of the

whole network is thus determined. Fig. 2.7 shows an exemplary result of the predicted angle

Θ̃ and their corresponding pattern D̃ from one sample in the validation set, in comparison to

the actual angle Θ and pattern D. It can be seen that even though similar patterns are generated,

the designed rotational angles are quite different from those in the dataset, which confirms the

one-to-many mapping issue in the naive architecture: consider both cases appear in the training

set, with (2.20), the gradients of the two are likely to cancel out and leave the weight and bias

matrix trapped at a local minimum.

Now we may validate the network’s performance for requests on arbitrary patterning. Our

main focus is to maximize the radiation towards one or more directions with various beamwidths.

The elements in target D are set to binary values that cover the desired angles for enhanced

radiation. We can evaluate this enhancement effect by examining the overall power gain in the
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Θ = [39.8°, 11.8°, 0.0°, 106.5°,

         12.3°, 65.6°, 143.5°, 52.2°]

Θ = [30.3°, 92.9°, 143.0°, 6.0°,

         0.0°, 91.5°, 0.0°, 49.9°]

Θ = [112.6°, 85.2°, 69.3°, 161.5°,

         21.5°, 98.4°, 11.8°, 119.4°]
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Figure 2.8. Visual examples of the inverse design for arbitrary request on the directivity.The
binary value of the input features and outputs angles are marked with the plot of patterns and
slabs, respectively.

target directions compared with an isotropic radiator:

Enh≡ 1
ND,target

∑
φ∈Φtarget

D2
iso(φ), (2.22)

in which the isotropic directivity relates to the normalized directivity by
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Figure 2.9. Distribution of enhancement Enh in dB on samples with random beam angles.
For multi-beam scenarios, the beams are separated at least 10◦ from each other. Each scenario
contains 100 sets. The mark (M) represents the Mean value and (I) represents the maximum
possible value assuming an Ideal case where all energy radiate within target directions.

Diso(φ) = |Efar(φ)|/ |Efar,iso(φ)|=
√

NDD(φ) = 6D(φ). (2.23)

Fig. 2.9 plots the distributions of Enh for randomly generated requirements. Some visual

examples are given in Fig. 2.8.

From both figures we can find that impressively, with a small dimension of 3/5λ ×3/5λ

and only 8 adjustable parameters, this setup is able to form beam patterns that effectively enhance

the radiation towards desired directions. The model works very nicely for requirements with

beamwidth larger than 60◦, in some cases even apporaching the maximum possible number. For

narrower beamwidths, strong directivities can be achieved even though they do not approach

the ideal number, which is as expected considering the small electrical size of the model. Slight
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degradation occurs when very complicated patterns are requested, such as four or five separated

beams where the model still provides an obvious overall advantage over isotropic radiation.

Improvements are expected with larger physical size and more parameters (slab numbers), within

the limitations on size and cost for different applications.

2.3 Real-time System Realization and Measurement

One of the main objectives of this study is to validate that the proposed neural network

can be deployed on a system with very limited computing power to perform real-time inverse

design. We choose the commercially available SoC Raspberry Pi 4 (RPi for short) with quad-core

Cortex-A72 CPU and 4GB RAM. Tensorflow Lite is used to load the network and execute the

inverse design. We find that this miniaturized portable computer provides more than enough

computing power to allow a negligible design time (around 199 ms per design).

The whole device under test (DUT) is supported by an assembled 3-D printed frame,

shown in Fig. 2.10(b). The slabs are made with 3.81 mm (150 mil) Rogers TMM13i laminate

cutting to 22.86 mm (0.9 inch) by 1.5 mm, sitting on a 21 cm by 21 cm ground plane. The

corresponding operating frequency is 4.725 GHz. The slabs are mounted on eight LJWRC

35kg servo motors, whose rotational angles are controlled by pulse-width modulation (PMW)

signals. A 16-Channel 12-bit PWM servo driver is used as the interface between the RPi and the

motors. The motors take approximately 300 ms to 500 ms to rotate depending on the rotational

angles. The response time of the network and the motor makes this particular setup most fits the

scenarios where a response time on the order of second is needed. A circular top cover with a

rounded edge to avoid the corner and edge currents is then put on top, so that the slabs are in

between two parallel plates, emulating a 2-D environment.

A vector network analyzer (VNA) Keysight E5071C and a modified Creality Ender3D

printer, serving as an XYZ stage, are employed for the field measurement. One vertical probe

made with a rigid SMA cable is fixed at the center as the Ez excitation and another Ez probe is

24



(a)

(b)

Multi-channel

Servo Motor Driver

Rogers

TMM13i

Slabs

GPIO

DUT

Test Bench
RPi Soc

Multi-channel

Servo Motor Driver
Servo Motors

VNA

XYZ Stage (3D Printer)

I2C

×8
PWMSerial

Ethernet

PyVISA

Python 3

+

TensorFlow Lite

USB

Serial

Servo

Motors

Figure 2.10. (a) The whole system controlled by the RPi, including both the DUT and the test
bench. The employed environment, interfaces and protocols between the devices are listed. (b)
A picture of the DUT, the top cover not included for a better view of the parts.

attached on the extruder of the 3D printer as the receiver to perform the scan. Sheet absorbers

are also applied on the frame of the 3D printer to reduce their impact on the field distribution.

The RPi controls both the VNA and the XYZ stage to realize automatic measurements. A whole

diagram of the system, including the DUT and the test bench, is shown in Fig. 2.10 (a). The

measured pattern is plotted in Fig. 2.8. Despite operating in a non-ideal 2-D scenario, the

measured directivity shows reasonable agreement with the simulated results featuring enhanced

radiation towards the required directions.
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2.4 Conclusion

In this Chapter, a real-time beamforming system is presented with a generative network

method, which is otherwise very difficult, if not impossible, to implement with conventional

methods using very limited computing power. Detailed discussions are made to justify and

find the optimal architecture of the network. The device and the test bench are built to verify

the feasibility and the performance of this method. Further studies based on this approach

may include constructing latent space to gain better knowledge of the capability of the model

and adapt the initial setup according to projects’ needs, and achieving 3-D pattern forming by

introducing more parameters like slab tilting.

In a more general aspect, this work showcases the superiority of neural network methods

as a highly nonlinear regressor and optimizer for EM problems. Notably, this tandem architecture

can be easily accommodated to other nonlinear EM inverse design problems, with little additional

analysis needed, such as electrically tuned beamformers or metasurfaces integrated with highly

non-linear components, and conformal arrays in very irregular shapes. We believe this approach

is a superior platform for future quick projects on real-time reconfigurable designs involving

complex mechanisms, as is presented in the following chapters.

This chapter is a reprint of the paper: Wen, E., Yang, X., & Sievenpiper, D. F. (2022).

“Real-time 2-D beamforming with rotatable dielectric slabs enabled by generative neural

network”. IEEE Transactions on Antennas and Propagation, 70(9), 8360-8367. The dissertation

author was the primary investigator and author of this paper.
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Chapter 3

Flexible Reconfigurable Metasurface

As is introduced in Chapter 1.1, it has been decades since the idea was first proposed

to control EM field behavior with metamaterials - structures with subwavelength geometrical

details [2, 27, 28]. In particular, its 2-D version, i.e. metasurface, draws broad attention

and is intensively investigated due to its advantage in engineering aspects - being able to be

manufactured relatively easily on thin sheet materials [29]. The reported application space of

metasurfaces is vast, ranging from directing surface waves in the near-field [4], beam-forming

in the far-field [5], to cloaking [30] and holography[31, 32], etc. Beyond the planer regime,

efforts have been made to implement flexible metasurfaces in hope of bringing these intriguing

wave manipulation capabilities to surfaces with arbitrary shapes. However, the mechanism of

wave interaction with curved surfaces is significantly more complex than its flat counterpart [33],

and as a result, research has mainly focused on optimizing for specific tasks such as wave-front

control [34], radar-cross-section (RCS) reduction [35] or polarization conversion [36]. To realize

a reconfigurable version is even more challenging, not only because of the difficulty in balancing

mechanical properties and EM performance but also because of the lack of accurate and efficient

algorithms to support the inverse design.

Meanwhile, recent years have witnessed the emergence of exploiting ANNs in compli-

cated EM/photonic systems. On the one hand, as a good regressor of highly non-linear functions,

ANNs provide a cost-efficient solution to many analysis problems, from solving Poisson’s equa-
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tions [12], to handling inverse EM scattering problems [37]. On the other hand, recent research

demonstrates the strong design capability of ANNs, including optimizing linear phased arrays

[22], or designing photonic devices and nanoparticles [21, 19, 20, 38, 39]. One special advantage

of a pure NN-driven scheme, compared to conventional optimization methods, is that no iterative

process is involved in the prediction phase, which is crucial for an on-site system in need of

fast response. This feature has been exploited recently to facilitate an emerging concept - the

intelligent metasurface, which refers to metasurfaces that tune themselves in an adaptive manner,

with little human intervention [40], from beam-forming [41], to sensing purposes [42, 43]. In

theory, a similar strategy can be used for curved surfaces, and preliminary studies on NN-driven

non-planer surface has been reported for cloaking or “illusion” applications [44, 45, 46], yet a

more universal and versatile scheme is still needed for the surface to dynamically operate under

different types of tasks.

This chapter, along with Chapter 4, aims to demonstrate one possible universal ANN-

driven scheme to realize an intelligent surface that can respond to arbitrary design goals. We start

by demonstrating a practical realization of a tunable conformal coating operating at microwave

frequencies, whose reflection pattern can be controlled with multi-channel bias voltages. We

demonstrate the difficulty in both the analysis aspect and synthesis aspects of this system. In

the next chapter, a sequential neural network architecture will then be proposed to address this,

which can take free-form design targets on the pattern and environmental factors as the input.

Instead of using data obtained with full-wave simulations to train the network, as is a common

practice in most ANN-assisted EM research, we propose using actual measurement data, which

turns out to be fast, accurate, and very adaptive to different environments.

3.1 Metasurface Geometry Design

The conformal metasurface design is based on a classical tunable reflective metasurface

topology in [47]. The surface is tiled with sub-wavelength metallic patches, with varactor diodes
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Figure 3.1. Simulated reflection amplitude and phase of a unit-cell. (a), (b) are results for
h = 30mil and (c), (d) are results for h = 60mil.

placed between the neighboring unit cells. By changing the reverse bias voltage across a varactor

diode, the reflection spectrum of a unit can be shifted. This results in tuning the local reflection

phase in a frequency range close to the resonance, and collectively all units form a reflection

pattern in the far-field region.

While this continuous-phase tuning approach generally provides greater degrees of

freedom than discrete-state tuning methods like binary phase states with pin-diodes (also known

as phase coding) [48], it is more sensitive to dissipation loss which leads to a significant decrease

in reflection amplitude near the resonant frequency. Fig. 3.1 shows simulation results of a

unit-cell with different substrate thicknesses with different capacitance values for the varactor,

using ANYSY HFSS. The results show that:

• thinner substrate decreases the efficiency of the reflection near resonance, this is as

expected since thicker substrate allows better radiation for the patches;

• thinner substrate increases the quality factor of the resonance, causing a steeper slop in
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Figure 3.2. Illustration of the conformable rigid-flex printed circuit design. The substrate of
each column is made with 1.57mm semi-rigid reinforced PTFE material designed for microwave
applications. They are then bonded to a single flexible sheet made of 0.18 mm thick polyimide,
with a feeding network on the bottom side to provide the varactors with d.c. bias voltages.

the reflection phase, increasing the sensitivity of the varactor, and

• thinner substrate shifts the operating frequency to the higher end, making the unit

electrically larger, potentially causing grating lobe problems.

For these considerations, in this design thicker substrate is always preferred, and low-loss

materials designed for radio frequency (RF) use are preferred to further reduce dielectric loss.

Thick RF materials are not typically flexible, so here we propose a double-layered rigid-

flex stacking structure to provide the overall flexibility of the coating: unit cells are implemented

using relatively thick microwave materials, which are separately attached to a single ultra-thin

flexible layer that also contains circuits for bias feeding. In this demonstration, we built 24

separate columns, with 10 patches in each column, making a 38.51 cm × 13.64 cm × 1.97 mm

surface. Units on each column share the same reversed bias voltage, forming a 24-dimensional
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vector V, realizing pattern control in the azimuth plane, with intensity noted as D(θ).

The photo of the prototype is shown in Fig. 3.4 (a). It is a rigid-flex design is a 4-layer

rigid-flex design shown in Fig. 3.3. The rigid layer is made with 62 mil Rogers RT/Duroid 5880

material and the flexible layer is made with 2 mil polyimide substrate, bonded together with 6

mil prepreg, shown as Fig. 3.4 (b). The unit periodicity is 13 mm along the column and 16.05

mm across the column with a 3.05 mm separation in between columns. The top copper layer is

protected with ENIG finish and the solder mask is only around varactor footprints for soldering

purposes. Ground plane copper layer and d.c. bias feeding network copper layer are protected

with flexible coverlay, as shown in Fig. 3.4 (c).

To further reduce loss, GaAs Hyperabrupt high-quality-factor varactor diodes Macom

MA46H070-1056 are used across the units. To protect the varactors, each channel is in series

with by a 10kΩ series resistor RNCF0603TKY10K0 by Stackpole Electronics Inc.

3.2 Static Reflection Measurement

The static reflection spectrum of a flat metasurface is measured with a single horn

RCDLPHA2G18B by RF-Lambda. S11 is recorded with an Agilent E5071C VNA for 3 cases:

• bare horn, S11,h. This is the reflection from the horn itself;

• an aluminum plate, as a perfect electrical conductor (PEC), of the same size, S11,PEC.

This is the reflection from both the horn and a total reflection of a plane with a 180° phase

shift, and

• with metasurface in front of the horn, S11,s, all channels set from 0 V to 18 V. This is the

reflection from both the horn and the surface.

The complex relative reflection on the surface is thus:

R =
S11,s−S11,h

S11,PEC−S11,h
(3.1)
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Figure 3.3. Rigid-flex PCB design. (a) Dimension of the unit geometry. (b) The stack-up plot
of the rigid-flex board. Dimensions are not proportional. (c) A drawing of the fabricated board.
Ground layers, prepreg layers, and coverlays are not shown.

Figure 3.4. Static performance of the prototype (a) Photo of the prototype. (b) and (c)
Measured reflection amplitude and phase response of the flat surface under various bias voltages.
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Figure 3.5. Static reflection spectrum measurement setup. The distance between the horn
aperture and the patch is 55 cm.

Fig. 3.4 (b) and (c) depict the measured static reflection amplitude/phase response of

a flat board. Note that this data is not used throughout the entire inverse design workflow but

rather merely as an initial examination and verification of the surface reflection performance.

The results show that the board covers a large reflection phase range within the 4.5 GHz - 4.7

GHz frequency band that is necessary to achieve maximum pattern tunability.

3.3 Analytical Challenges

Determining the relationship between the reflection pattern and a given bias combination

D(θ) = f (V) can be challenging, due to the non-linear relationship between bias voltages, local

reflection phases, and directivity to certain directions. Additionally, the multireflection effect

in the concave regions invalidates any theoretical models that consider the surface as simply a

reflective antenna array [45]. Other factors that complicate the problem are, but are not limited

to, the varying orientation of each column, coupling effects between unit cells, tolerance of

individual lumped components, or in some cases, the presentation of scattering objects near

the device. In this scenario, a pure data-driven model is especially advantageous, since it can

automatically take into account all these factors by using the real measured data. However, the
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extremely large search space of the input variables renders the conventional interpolation or

regression methods impractical and make the neural network method the best candidate.

This chapter is based on material in a manuscript to be published: Wen, E., Yang, X., &

Sievenpiper, D. F. (2023). “Real-data-driven Real-time Reconfigurable Microwave Reflective

Surface”. arXiv preprint arXiv:2305.11899. The dissertation author was the primary investigator

and author of this paper.
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Chapter 4

Real-data-driven Free-form Inverse De-
sign Platform

In Chapter 2 we explain why it is impossible to use a simple FNN to find the underlying

pattern-voltage mapping V = f−1(D): the pitfall is that the design parameters and design goals

usually have a multiple-to-one relationship. In this case again, similar or even identical reflection

patterns may correspond to very different bias voltage combinations. When the network is

trained with gradient descent methods, conflict gradients may arise from data with very similar

input (i.e. pattern) but very different labels (i.e. bias voltages), preventing the parameters from

converging. For a problem where the input contains less information than the output, as in this

case, a generative type of neural network is necessary. Recent large generative models such as

diffusion [49] and transformer [50] have shown extremely powerful capability in generating

image and language content, even stepping towards artificial general intelligence (AGI) [51],

yet for engineering problems on specific tasks, small-scale efficient models are still preferred,

among which the tandem architecture has proven a very effective framework [21, 19, 52, 53, 54].

In the same manner, as in Chapter 2, a predictor need to be first trained to solve the

analysis problem, in our case, the bias-pattern mapping; then another network, the designer, is

trained to handle the synthesis procedure - determining the bias combination given a specific

pattern. The designed bias can be fed into the predictor to produce an expected pattern D̃, and

the performance can be evaluated by comparing the discrepancy between D̃ with the design
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goal D, which serves as the loss function for training designer network. Importantly, the second

step does not involve D−V mapping from any dataset, thus there is expected to be no gradient

conflict. Essentially, instead of fitting the reverse function f−1(·), the network aims at seeking

any function that simply optimizes the design performance.

4.1 Sequential Tandem Neural Network

Figure 4.1. Real-data-driven real-time inverse design workflow. (a) The time-consuming
and computationally-heavy part is done off-site in the first two steps - data gathering and
network training. The pre-trained network can be then deployed to on-site controllers with very
limited computing resources to realize the fast-response inverse design. (b) Proposed sequential
tandem network architecture. The predictor is first trained with measured pattern data. Then the
parameters of the predictor are fixed and random design target sequences are used to train the
designer.

Notice in conventional tandem networks reported in Chapter 2, a design target with the

exact form as the predictor’s output is required, which largely limits its practicality. In many

cases, free-form design goals are required, for example, one may want to specify several target

directivity values in certain directions without having to construct the entire pattern. To enable

this free-form input, we introduce the recurrent neural network (RNN) layer in the designer.
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Figure 4.2. Proposed sequential tandem network architecture. Dimensions of tensors in the
predictor for cases A,B and cases C,D are in green and red, respectively.

RNN is typically utilized to process temporal signals such as video and speech [55]: the recurrent

layer updates itself from a current state as a sequential signal is fed in, resulting in a “memory

effect” on all past inputs in the sequence. Here we can use a sequence of design goals as the

input, which could be, for example, a sequence with a length of lt , repeating nt angle-directivity

pairs (θi,Di). Despite that there is no explicit temporal relationship between these design goals,

we still expect the layers to “memorize” all those targets within the sequence. In this way, the

network can respond to design goals with arbitrary dimensions as long as nt is below a reasonable

threshold to avoid vanishing gradient.

For the predictor, convolutional layers are employed, which is based on the physical

knowledge of a linear phased array [56]: the same phase difference between neighboring units

should have a similar effect in the far field no matter where they are located within the array,

and therefore the parameters can be shared among all adjacent units. The convolutional layers
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significantly reduce the number of parameters so that the predictor requires fewer data and suffers

less from overfitting.

To allow the surface to operate with changing incident frequency and under different

incident angles, this varying environmental information can be also cascaded to the input design

goal vectors in the designer, and to the input bias-voltage vectors in the predictor.

Fig. 4.2 shows the detailed layer dimensions and connections. For the predictor:

C0 = g
(
(WC0,bC0)⊗(3,3) Ve

)
, (4.1)

C1 = g
(
(WC1,bC1)⊗(2,2) C0

)
, (4.2)

MP0 = g(WMP0C f +bMP0), (4.3)

MP1 = g(WMP1M0 +bMP1), (4.4)

D̃ = g(WD̃MP1 +bD̃), (4.5)

where Ve is the bias voltage vector V cascaded with the environment vector E, C f is flattened

form of C1 and the operator ⊗(k,k) is the 1-D convolution of length k with stride k, i.e. the tensor

dimension shrinks by k. The activation function g is ReLU function for the predictor.

The structure of the designer can be expressed by:

Ri
0 = h

(
WR0Ti

e +UR0Ri−1
0 +bR0

)
, i = 1...lt , (4.6)

Ri
0,out = h

(
WR0,out R

i
0 +bR0,out

)
, i = 1...lt , (4.7)

Ri
1 = h

(
WR1Ri

0,out +UR1Ri−1
1 +bR1

)
, i = 1...lt , (4.8)

Ri
1,out = h

(
WR1,out R

i
1 +bR1,out

)
, i = 1...lt , (4.9)

MD0 = g
(

WMD0R−1
1,out +bMD0

)
, (4.10)

MDi = g(WMDiDi−1 +bMDi), i = 1,2, (4.11)

V = g(WV MD2 +bV ), (4.12)
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Figure 4.3. Experiment setup for pattern data gathering. A vertically polarized beam is
excited with a horn antenna Tx, and its specular reflection from the surface under test (SUT) is
received by another horn antenna Rx. The intensity and phase are recorded by a vector network
analyzer (VNA). Both SUT and Tx antenna are attached to a servo motor to realize azimuth
pattern scanning. Another servo motor is used to rotate the SUT to simulate incident angle
changes. Revered bias-voltages of 24 channels are generated and applied to the board with data
acquisition (DAQ) cards.

where Te is the bias target vector T with each row cascaded with the environment vector E, the

−1 superscript denotes the last column of the matrix (final step), and the activation function for

recurrent layers h(·) are tanh function and g(·) still ReLU.

4.2 Experiment

Here we demonstrate four scenarios in which the conformal metasurface may operate,

with increasing complexity as follows:

A) the simplest case of a flat surface operating under a normally incident plane wave at a

single frequency;
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Figure 4.4. Photo of the curved surface being measured. The anchor points for the spline
curve are [(-19.8,0),(-7.6,-3.0),(7.6,2.0),(19.8,0)] , units in cm. The length of the cylinder in the
z direction is 20 cm.

B) a curved surface, under normal incidence, at a single frequency;

C) a curved surface working in a varying environment: with incident wave angles ranging

from −30◦ to 30◦, and a frequency band from 4.5GHz to 4.7GHz

D) a curved surface under a varying incident angle and frequency, with a plastic scattering

object present in front of the surface, disturbing the reflective pattern.

For these four cases, the flexible surface is mounted on a 3-D printed backplane made of

PLA plastic fastened with nylon screws. The curve surface for cases B,C and D is a spline with

4 anchor points. The 2-D scattering object for case D is a 3-D PLA cylinder. The dimensions are

given in Fig. 4.4.

4.2.1 Pattern Data Gathering

The pattern data are gathered using a setup in an anechoic chamber shown in Fig. 4.3.

The distance between the Tx and the SUT is 75 cm and the distance between the SUT and the

Rx is 190 cm. The specular angle in the elevation plane is 25◦.

The test bench is controlled by a single controller PXIe-8135 by National Instruments

(NI) running Python 3.7. For the bias voltage supply, three 8-channel 16-bit DAQ cards NI
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Figure 4.5. Interconnections between the devices.

PXI-6733 and a d.c. source Keithley 2410 are used. A servo motor ETS Lindgren 2005, attaching

the SUT (with a tripod) and the Tx antenna (with a wooden arm), is employed to realize azimuth

pattern scanning. Another small servo motor ZOSKAY DS3235SG is used to rotate the SUT to

simulate incident angle changes. This motor is driven by an Adafruit FT232H breakout and an

Adafruit 12-bit PMW driver. The interconnections between all equipment are shown in Fig. 4.5

The transmission between the Tx and the Rx along the azimuth plane, from 3 GHz to 5.5

GHz, is measured for 3 cases:

• blank case S21,b, where the surface is not mounted on the supporting structures. This

includes the ambient noise, scattering from the supporting structures, and direct talk

between Tx and Rx;

• SUT case S21,s. This is the direct reflection along with all noises mentioned above.
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• aluminum board S21,PEC. This is for calculating the directivity of the board with the

transmission intensity.

The loop of sampling, from outer to inner is:

1) θ scanning, by azimuth motor rotation.

2) θinc scanning, by incident motor rotation (for case C and case D).

3) Different bias voltages, by DAQs.

4) Frequency, done by VNA itself.

The wait time for step 1 and step 2 are set to 10 s and 4 s, respectively, to reduce the

impact of mechanical vibration. The wait time between different sets of bias is 20 ms. To reduce

the unwanted noise or environmental scatterings, all received signal is transferred to the time

domain with inverse Fourier transformation to apply a 5 ns time gate, then transferred back to

the frequency domain, i.e.

S21,gated( f ) = F
[
F−1 (S21( f ))W (t)

]
, (4.13)

where the rectangular window in the time domain:

W (t) =

 1, tstart ≤ t ≤ tend

0, otherwise
(4.14)

The directivity is thus calculated by:

D(θ) =

∣∣∣∣ S21,s(θ)−S21,b(θ)

S21,PEC(90◦)−S21,b(90◦)

∣∣∣∣DPEC(90◦), (4.15)

where DPEC(90◦) = 8.85 is the board-side directivity of a PEC aperture.
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Figure 4.6. Surface response in the time domain. This example is from one sample in case
A at θ = 90◦. The direct reflection from the SUT can be observed spanning from around 16 ns
to 20 ns. The direct talk between the Tx and the Rx is likely the peak appears around 14.5 ns.
Highlighted regions are the 5 ns window being applied.

The RCS can be also derived from the directivity with:

σ(θ) = APEC

(
D(θ)

DPEC(90◦)

)2

, (4.16)

where APEC is the physical aperture of the PEC plate.

The patterns are collected in 5-degree resolution from 0◦ to 180◦, forming a 37-D vector

D. For cases with a constant environment (cases A and B), 20,000 samples are collected with

random combinations of bias voltages ranging from 0 V to 18 V on each channel. For cases

C and D, 4,000 random bias samples are collected for each incident angle, with 13 incident

angles; 5 random frequencies within the band of interest are sampled for each incident/bias setup,

making a total of 260,000 samples. As the response time of the varactor diodes is relatively fast,

on the order of nanoseconds, the data collecting speed is mostly limited by the response time

of the control/measurement instrument being used, generally on the order of milliseconds. To

obtain a stable result for our setup, 20 ms wait time is used in between samples, so the total data

collection time is on the order of several hours, details listed in Table 4.4, which is much faster

than any full-wave simulation methods can achieve.
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4.2.2 Predictor Training

The neural network is implemented using TensorFlow 2.6.0 under Python 3.9.5 and

is trained on the UCSD Data Science/Machine Learning Platform (DSMLP) using four Intel

XeonGold 6130 CPU @2.1 GHz cores and one NVIDIA GeForce GTX 1080 Ti GPU.

The gathered pattern data is split 80/20 as the training/test set to train and evaluate the

predictor. All data, including bias voltages, directivity intensity, incident angle, frequency, and

target directions are all normalized to [0,1] in the training process, similar to the process in

Chapter 2.2.1. To deal with overfit, L2 regularization is used[57]:

L = MSE +λL2 ∑
lay∈All layers

∥Wlay ∥2
2 (4.17)

The parameter is optimized with Adam optimizer[26]. The batch size for training is set

to 50. Table 4.1 listed the detailed hyperparameter setup used for four cases.

Table 4.1. Predictor training hyperparameters.

Case Case A Case B Case C Case D

L2 weight λL2 2e-7 5e-7 5e-8 5e-8
Learning rate 1e-3 1e-3 3e-4 3e-4
Epochs 500 500 50 50

The loss function vs. epochs is plotted in Fig. 4.7. The parameters of the epoch with the

lowest validation loss are being used. It can be observed that no significant overfit is presented

with the regularization.

Fig. 4.8 shows the performance of the trained predictor network. The prediction matches

extremely well with measured data in the test set for all four cases, with an error almost close to

the noise level, providing great accuracy for the designer training.
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Figure 4.7. Training process of the predictor. (a)-(d) are losses for case A to case D,
respectively.

4.2.3 Designer Training

Training the designer network is a non-supervised learning process since the label for

any design target is itself: the loss function is defined by the masked means square error (MSE)

on target directions:

L(T, D̃) =
1
nt

nt

∑
i=1

(Di− D̃(θi))
2. (4.18)

In this demonstration, we randomly generate sequences with up to five targets. In

practice, we find each goal needs to be repeated three to four times in order for the network

to fully memorize it, thus for the result to converge, the sequence length lt is chosen to be 20.

Considering the energy distributing effect for multiple targets, the directivity ranges for different

target numbers nt is [0,DPEC/
√

nt ], where still DPEC = 8.85, shown as Table 4.2. For cases A

and B, 100,000 samples are generated, and for cases C and D, 260,000 samples.

The data is again split 80/20 for the training/test set. The parameter from the predictor is

inherited and fixed during the training of the designer. For the designer, no regularization is used
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Figure 4.8. Performance of the predictor for four cases. (a) RMSE distribution from case A
to case D, in the test set. (b) Visual examples with typical error level.

Table 4.2. Directivity range for different number of targets.

# of targets nt 1 2 3 4 5

Max directivity 8.85 6.25 5.1 4.43 3.96

since it is always preferred to generate more data to address overfitting and improve generality.

The training process of the four cases is plotted in Fig. 4.9.

Table 4.3. Designer training hyperparameters.

Case Case A Case B Case C Case D

Learning rate 4e-5 6e-5 5e-5 6e-5
Epochs 150 150 120 200

The performance is shown in Fig. 4.10 and Fig. 4.12-4.15. The network performs very

well for fewer numbers of targets and still decently well for 3 or more targets, obtaining an

average RMSE below 1 for most cases.

It is worth noticing that this performance is evaluated on random targets that is not

necessarily physically feasible, such as the existence of a peak and a null in proximity, or strong

beams at the end-fire direction. By using a large training set, the physical limit of the surface

capability is approached.
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Figure 4.9. Training progress of the designer. (a)-(d) are losses for case A to case D,
respectively.

4.2.4 Network Prediction

Compared with the training process, the prediction of the network consumes minimal com-

puting resources. Therefore, this trained network can be deployed on modest micro-controllers

with very limited computing power. In Table 4.4 we demonstrate this on a cheap commercially

available SoC controller Raspberry Pi 4 with Quad-core Cortex-A72 @1.8GHz and 8GB RAM,

running Python 3.7.3 and TensorFlow lite 2.3.0. The speed depends on various factors such as

the machine learning platform, batch sizes of input, etc, but generally, the responding time for

both designing (with the designer) and evaluation (with the designer + predictor) are on the order

of milliseconds per sequence, which can be considered as real-time. The time listed in Table is

the average on a dataset with 6000 samples for cases A and B or 6500 samples for cases C and

D, processing with a batch size of 500.
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Figure 4.10. Performance of the conformal surfaces inverse design with increasing com-
plexity. (a) and (b) Flat and curved surface, under normal incidence, at constant frequency
(c) curved surface, under varying incident angle and frequency, and (d) with scattering object
presented. (e)-(h) The root mean square error (RMSE) distribution on designs in the test set.
(i)-(l) Visual examples of pattern design with 1 to 5 design targets, with typical error value in
its category, excerpted from Fig. 4.12-4.15 where more random-selected visual examples and
error distribution in different categories are given. Red arrows in case C and case D indicate the
incident direction.
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Table 4.4. Time consumption summary of tasks in the workflow.

Case A Case B Case C Case D

Data gathering 5h26min 5h27min 14h37min 14h32min

Network training
Predictor 5min 18min 27min 26min
Designer 46min 1h1min 2h5min 3h44min

Network prediction
Inv. design 5.3ms 5.5ms 7.7ms 7.7ms
Inv. + evaluation 5.9ms 6.0ms 10.3ms 9.8ms

4.3 Discussion

Being able to specify target directivities in multiple directions makes the surface suitable

for numerous applications. One simple example is to reduce the back-scatter of a surface for

manipulating RCS in a dynamic environment - by specifying a null at the direction of the

incoming wave, the surface can be constantly optimized to reduce the mono-static RCS to a

single station, as shown in Fig. 4.11 (a). A more intriguing task is to instruct the surface to cancel

out the scattering from an object in front of the surface, keeping it from being detected in certain

directions, as in Fig. 4.11 (b). It can also be utilized for intelligent communication applications,

performing tasks ranging from creating a single pencil beam, as in Fig. 4.11 (c), to arranging

multiple peaks and nulls, completely redistributing the incoming energy as in Fig. 4.11 (d).

The design presented here works over a relatively narrow bandwidth but this is not

limited by the model itself: design parameters like substrate thickness can be increased to

increase the bandwidth. The efficiency can be improved as the semiconductor technology

for varactors develops. Modifications can also be made to the network input to achieve even

higher versatility, for example by expending the target pairs with operators to form tokens

like (θi,Di,≤) representing design goal D(θi)≤ Di. Other types of tasks, such as polarization

conversion or holographic pattern, can also be achieved with proper types of surface coating

design, by including polarization or near-field data in the input and output of the network.

Considering the versatility of the proposed workflow, we believe this work paves the

way for the next generation of tunable EM devices working under extremely complex and
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Figure 4.11. Exemplary applications of the free-form design capability. (a) Creating minimal
back-scatter for a 30◦ incident. (b) Creating nulls in 50◦, 100◦ and 150◦ directions to stealth
a scatterer in front of the surface. (c) Creating a pencil beam at 65◦ direction under a normal
incident. (d) Creating beams at 75◦ and 150◦ direction and nulls at 30◦ and 100◦, under 15◦

incident. The operating frequency is 4.6 GHz for these four examples. (e)-(h) Bias voltages on
channels 0-23, designed by the designer. (i)-(j) The corresponding patterns.

dynamic environments. In addition, the proposed sequential tandem architecture can potentially

be accommodated to any real-time inverse design problem in different science/engineering fields.

4.4 Extended Data Figures

In this section, we include more error analysis and visual examples of the Designer

network performance, readers may find the RMSE distribution for the input sequences with

different target numbers and random-selected visual examples for case A to case D in Fig. 4.12

-4.15.

In order to ensure generality and reproductivity, we use random seeds 1,2,3,4 when

sampling for cases A,B,C and D, respectively.
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Figure 4.12. Performance of the designer for case A. (a) RMSE distribution on sequence
with different target number nt . (b) Random-selected visual examples, sampling from 6,000 test
samples with random seed = 1.
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Figure 4.13. Performance of the designer for case B. (a) RMSE distribution on sequence
with different target number nt . (b) Random-selected visual examples, sampling from 6,000 test
samples with random seed = 2.
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Figure 4.14. Performance of the designer for case C. (a) RMSE distribution on sequence
with different target number nt . (b) Random-selected visual examples, sampling from 6,500 test
samples with random seed = 3.
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Figure 4.15. Performance of the designer for case D. (a) RMSE distribution on sequence
with different target number nt . (b) Random-selected visual examples, sampling from 6,500 test
samples with random seed = 4.
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This chapter is based on material in a manuscript to be published: Wen, E., Yang, X., &

Sievenpiper, D. F. (2023). “Real-data-driven Real-time Reconfigurable Microwave Reflective

Surface”. arXiv preprint arXiv:2305.11899. The dissertation author was the primary investigator

and author of this paper.
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Chapter 5

Conclusion and Possibilities

In the previous chapters, we demonstrate a universal real-data-driven approach of using

sequential tandem neural network for the dynamic design of reconfigurable EM metastructure.

The workflow, in summary, is as follows:

1. Preparing the neural network:

• Determining the design variable and observing values;

• Determining the environment variables;

• Choosing an appropriate architecture for the predictor based on physical knowledge.

2. Setup the measurement and gathering data needed for training the predictor.

3. Training the predictor and then the designer, adjusting the scale based on the performance

requirement and the computing resource limitation.

4. Deploy this pre-trained design network for on-site tasks on the microcontroller.

It can be noticed that this workflow does not limit itself to any particular type of system,

thus by involving different types of data in step 1, possibilities are endless. In this chapter, we

give several examples of complicated EM problem that is significant but very challenging to

handle with conventional optimization methods.
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5.1 Controlling Field Distribution in Cavity

One possible accommodation of the model is to manipulate field distribution, such

as creating peaks and nulls, at target locations in a closed cavity: the multi-channel phase-

tunable metasurface can be attached on one or several sides of cavity walls, disturbing the field

distribution.

Considering the chaotic manner of the field distribution in the cavity and the field

disturbance effect of the metasurface, it would be extremely difficult for any conventional

method to analyze/synthesize the system in a non-statistical way. However, this can be done with

the same architecture in Chapter 4 by simply changing the output vector to the field intensity:

The intensity data in a cavity can be collected with experiment at locations of interest, under

random bias voltage combinations and be used to train a sequential tandem neural network,

aiming at inverse design the bias voltages given target field intensity at specified locations.

5.1.1 Disturbing Field in a Cavity

As a proof of concept, imagine a 2-D electrically large cavity shown in Fig. 5.1 with

a point source inside, exciting TMz mode (constant E field in the z-direction with vertical

polarization). As a rough estimation, we can calculate the field distribution in this quad-literal

cavity using the ray launching method. Each ray emitted by the excitation can be represented by

a vector Ri, a starting point (xi
0,y

i
0) and its intensity and phase at its starting point Ai,φi. As the

ray bounces on the boundary of the cavity, the normal vector noted as n, at (xb,yb), a reflection

ray is generated:

R′i = Ri−2n(Ri ·n), (5.1)

(xi
0
′
,yi

0
′
) = (xb,yb), (5.2)

A′i = αAi, (5.3)

φ
′
i = φi + kli +β , (5.4)
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where α is the reflection rate, β is the reflection phase (π for a PEC wall that is not covered with

metasurface), and li =
∣∣(xi

0,y
i
0)− (xb,yb)

∣∣.
To calculate the field of a given point, consider a receiving sphere with a radius of rr

around the position of interest, the intensity is the summation of all rays passing through it:

I(xobs,yobs) = ∑
dobs

i <=rr

Aie jk(φi+lobs
i ), (5.5)

where dobs
i is the distance between the observation point and the ray, and lobs

i is the distance

between the observation point and the starting point of the ray.

In Fig. 5.1 we calculate the field distribution inside the cavity. In this configuration, we

generate 2880 initial rays from the source (0.125◦ resolution). The reflection rate of the wall and

metasurface is set to 0.7. The threshold of intensity for generating the reflection ray is set to 0.1.

For field calculation, the radius of the receiving sphere is 0.07λ . We compare the field with or

without a 24-channel metasurface attached to one wall, with a random phase coding in this case.

It can be observed that the field is strongly disturbed especially near the metasurface.

5.1.2 Possible Setup for Experiment

The metasurface design in Chapter 3 can be easily adjusted to be attached to the 2-D

cavity side wall. Since the top and bottom PEC wall of the cavity resembles a pair of periodic

boundaries for TMz mode. We implement one row of units as shown in Fig. 5.2, which is realized

with a double-layer PCB. The top layer is made with a center patch fed with bias voltages, and

the patches on the sides are connected to the ground with a row of vias. The width of the units

(height of the cavity) is 2.4 cm, which is small enough to prevent higher-order TM mode for

frequencies below 4 GHz. Again, by changing the of each unit, the reflection phase can be freely

tuned near its resonant frequency range. The bottom layer of the PCB consists of the feeding

network to provide the reverse bias voltage for each patch.

Cavities can be built and used to collect the field destruction data needed for the data-
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Figure 5.1. Field distribution in a metallic cavity. Excitation is a TMz mode point source in
the center of the cavity. (a) and (b) A metallic cavity as a baseline. (c) and (d) a cavity with a
phase-tunable metasurface attached on one wall. The phase of each element is represented by
different colors.

driven model. The above metasurface design can be attached to one or two of the walls. Fig.5.3

shows two cavities setup with different electrical sizes, consequently different degrees of chaotic

character, that can be used for this study. Vertical probes can be used on the top wall of the cavity

to excite TMz mode inside the cavity or to observe the field intensity at the locations of interest.

5.2 Including Sensitivity in Inverse Design

When a neural network is used to design the geometry of EM structures, the sensitivity

of the performance with respect to design parameters (dimensions) can be high. This may create

problems especially when the design involves very fine structures like small pixels, thin arms, or
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Figure 5.2. TM mode metasurface design (a) Unit-cell design. (b) Simulated reflection phase
response. (c) Stack-up of the prototype. (d) Circuit board drawing. Patches are plotted in orange,
and Feeding lines are plotted in pink.

Figure 5.3. Exemplary cavities to be tested. Red lines indicate where the metasurface can be
attached. (a) A cavity with 2 walls attaching the metasurface. (c) A relatively small cavity with
one wall attaching the metasurface.

slots. It is obvious that certain requirements can usually be realized with different combinations

of design parameters, but some of them are less sensitive than others. Thus it can be useful to

not only include the performance itself but also the sensitivity of the performance in the network.

One possible realization is illustrated in Fig.5.4.
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Figure 5.4. Sequential tandem network with sensitivity reduction.

The sensitivity S j
i represent how sensitive Pi is with respect to Vj, and can be obtained

with:

S j
i =
|Pi(Vi +∆V )−Pi(Vi)|

∆V
, (5.6)

by setting ∆V to a small value.

When training the designer, the loss function should also be designed to reduce the

sensitivity, such as:

L = Lmask +λs ∥S∥ (5.7)

where weight λs determines the priority of reducing sensitivity.

By including the sensitivity information in both the predictor and the designer, we

can hopefully set up the network with a preference to avoid using sensitive design parameter

combinations when possible.
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