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Abstract
Central nervous system (CNS) tumors are the second most common type of cancer among children. Depending 
on histopathology, anatomic location, and genomic factors, specific subgroups of brain tumors have some of the 
highest cancer-related mortality rates or result in considerable lifelong morbidity. Pediatric CNS tumors often occur 
in patients with genetic predisposition, at times revealing underlying cancer predisposition syndromes. Advances 
in next-generation sequencing (NGS) have resulted in the identification of an increasing number of cancer predis-
position genes. In this review, the literature on genetic predisposition to pediatric CNS tumors is evaluated with 
a discussion of potential future targets for NGS and clinical implications. Furthermore, we explore potential strat-
egies for enhancing the understanding of genetic predisposition of pediatric CNS tumors, including evaluation of 
non-European populations, pan-genomic approaches, and large collaborative studies.
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Germline genetic landscape of pediatric central nervous 
system tumors

  

Pediatric central nervous system (CNS) tumors are the second 
most common pediatric malignancy after leukemia and form 
a heterogeneous group of tumors (eg, medulloblastoma, 
astrocytoma, ependymoma, atypical teratoid/rhabdoid tumor 
[AT/RT]; Fig. 1).1,2 Pediatric CNS tumors are responsible for the 
highest number of cancer-related deaths in children and are 
generally associated with poor survival and high morbidity 
due to their surgically challenging intracranial location.2,3

Although some advances have been made over the years in 
our understanding of pediatric CNS tumor etiology, the role 
of environmental causes is obscure and characterization of 
genetic predisposition is incomplete.4 Indeed, beyond cranial 
radiation exposure and a limited number of highly penetrant 
cancer predisposition syndromes, virtually no additional fac-
tors have been robustly associated with risk of pediatric CNS 
tumor development.4,5 Inter-ethnic differences in incidence 
of pediatric CNS tumors have previously been described,6–8 

including lower rates among black, Asian, and Hispanic children 
compared with white children,6 which may have a genetic 
basis. Recent developments in next-generation sequencing 
(NGS) provide new opportunities for studying CNS tumor risk 
at the genomic level.9,10 NGS approaches that identify causa-
tive gene variants may have potential translational relevance 
in prognostication and rational therapy design, in addition to 
determining risk assessment for genetic counseling. The aim 
of this review is to summarize the current state of knowledge 
regarding genetic predisposition to pediatric CNS tumors to 
highlight areas in greatest need for future investigation.

Germline Genetics in Pediatric CNS Tumors

Germline mutations will be discussed by histologic tumor type 
below. An overview of genes associated with predisposition 
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to a pediatric CNS tumor when altered in the germline, to-
gether with the associated syndrome, appears in Table 1. 
The prevalence of germline mutations by tumor histology 
is depicted in Fig. 2.

Embryonal Tumors

Medulloblastoma

Medulloblastoma is currently defined by 4 major sub-
groups: sonic hedgehog (SHH) activated (either tumor 
protein p53 [TP53] mutant or wildtype), wingless (WNT) ac-
tivated, and the consensus Groups 3 and 4.11 The subgroups 
were determined by a combination of age at diagnosis, 
patient sex, tumor factors, histology, immunophenotype, 
and associated molecular and cytogenetic alterations.11,12 
For example, SHH-activated pathway tumors are most 
common in adolescent males, WNT-activated tumors typ-
ically demonstrate catenin beta-1 (CTNNB1) mutations 
and monosomy 6, Group 3 or 4 tumors may demonstrate 
amplification of MYC/MYCN and a high frequency of 
isodicentric 17q chromosomes.11,12

Certain syndromes with characteristic germline mu-
tations have been suggested to be risk factors for 
medulloblastoma and tend to associate with specific sub-
groups. In particular, Gorlin syndrome (also known as 

nevoid basal cell carcinoma syndrome) increases the risk 
of SHH-activated medulloblastoma, and mutations associ-
ated with familial adenomatous polyposis (FAP) increase 
the risk of  WNT-activated medulloblastoma.13–15

Waszak et al recently compared the prevalence of puta-
tive causal germline mutations in their medulloblastoma 
cohort with data from the Exome Aggregation Consortium 
(ExAC).13,16 They found that germline suppressor of fused 
homolog (SUFU), Patched 1 (PTCH1), partner and localizer 
of BRCA2 (PALB2), breast cancer 2 (BRCA2), and TP53 mu-
tations were associated with increased risk of SHH-activated 
medulloblastoma, with SUFU mutations in particular con-
ferring an extremely high risk of disease (relative risk > 
1000).13 Several other studies have identified mutations in 
the same genes among SHH-activated medulloblastoma 
patients.13,17–22 In one recent large-scale sequencing 
study of pediatric cancers, among 42 SHH-activated 
medulloblastoma patients, 1 harbored a germline SUFU 
mutation, while another harbored a PTCH1 mutation.17 
This suggests that germline SUFU and PTCH1 mutations 
are responsible for only a small portion of SHH-activated 
medulloblastoma cases. Germline TP53 mutations have 
been associated with chromothripsis (ie, chromosomal shat-
tering and subsequent rearrangement), which is thought to 
result in SHH-activated TP53-mutant medulloblastoma.23 
Germline mutations in PALB2, which are associated with 
several adult cancers and Fanconi anemia, also contribute 
to the risk of SHH-activated medulloblastoma.13,21,24

  
Nerve sheath tumors

(5.0%)
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tumors (5.1%)

Neuronal and mixed
neuronal glial tumor

(7.0%)

Other
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Other
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Fig. 1 Distribution of tumor histology for pediatric CNS tumors, adapted from the 2017 CBTRUS statistical report.2 Relative distribution of pediatric 
CNS tumors by histology. Embryonal tumors are formed by medulloblastoma (63.6%), AT/RT (14.6%), ETMR (12.6%), and other embryonal tumors 
(8.9%). A license was obtained for reuse of this figure from Oxford University Press.
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Loss-of-function germline mutations, including dele-
tions, in PTCH1 and SUFU cause Gorlin syndrome.25–27 In 
family studies, germline SUFU mutations have also been 
associated with a 20-fold higher chance of developing 
medulloblastoma compared with patients with PTCH1 
mutations, as well as earlier presentation and worse out-
comes.26,28 However, limitations of these smaller studies 
with potential ascertainment bias due to recruitment of 
family members of probands are noted and warrant cau-
tious interpretation.

Combined, germline alterations of PTCH1 or SUFU are 
present in approximately 2% of medulloblastoma patients 
overall.13,15 PTCH1 and SUFU proteins are both vital com-
ponents of the SHH signaling pathway,29 which plays an 
important role in embryonic CNS development and the 
genesis of various malignancies.30 In the absence of the 
SHH molecule, PTCH1 inhibits Smoothened (SMO) and 
permits SUFU and GLI to form a complex that prevents 
GLI from activating the hedgehog target genes,29 including 
PTCH1, CCND2, JUP, PAX6, NKX2-2, and BMI1, effec-
tively creating a negative feedback loop.30 Germline mu-
tations in GLI3, a negative regulator in the SHH pathway, 
causes Greig syndrome, which may also co-occur with 
medulloblastoma.31,32

Waszak et al also found that germline adenomatous pol-
yposis coli (APC) mutations, which cause FAP, were asso-
ciated with a relative risk greater than 100 for developing 
WNT-activated medulloblastoma.13 However, germline 
APC mutations were identified in only 1 out of 21 sporadic 
WNT-activated medulloblastoma patients, and not among 
other subtypes of medulloblastoma, in a recent NGS 
study,17 suggesting that FAP does not underlie a large pro-
portion of overall medulloblastoma diagnoses.13 Another 
patient with WNT-activated medulloblastoma was found 

to have a mutation in VHL,17 which causes another cancer 
predisposition syndrome known as von Hippel–Lindau 
disease.

Bourdeaut et al suggested that cAMP response element 
binding protein (CREBBP) germline mutations may predis-
pose to Group 3 medulloblastoma based on a case report 
in a child with Rubinstein–Taybi syndrome.33 Germline mu-
tations in the chromatin modifying gene CREBBP cause 
Rubinstein–Taybi syndrome, which manifests in motor 
organ dysfunction, craniofacial dysmorphism, and psy-
chomotor retardation in addition to increased cancer 
risk.33,34 In another study, 1 patient out of 60 with Group 3 
medulloblastoma carried a germline BRCA2 mutation, but 
no potentially pathogenic CREBBP germline mutations 
were identified.17 With regard to Group 4 medulloblastoma, 
among 107 patients, 3 germline mutations were identified 
in SUFU, 1 in neurofibromatosis (NF) type 2, and 1 in succi-
nate dehydrogenase A (SDHA).17 Heterozygous mutations 
in nibrin (NBN), a DNA repair gene that underlies Nijmegen 
breakage syndrome, have been identified in 7 out of 104 
Group  3 and Group  4 medulloblastoma patients.35 It is 
clear, therefore, that a diverse set of genes may underlie 
the germline risk for predisposition to the various subtypes 
of medulloblastoma.

Atypical Teratoid/Rhabdoid Tumor 

The vast majority of AT/RTs arise as a result of homozy-
gous inactivation of SMARCB136,37 or SMARCA4,38 which 
are both members of the SWItch/sucrose nonfermentable 
(SWI/SNF) chromatin remodeling complex. The median 
age at diagnosis for patients with germline mutations 
in SMARCB1 is 6  months compared with 1–2  years for 
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patients with sporadic AT/RT.39,40 Patients may present 
with synchronous tumors in the brain and kidney or other 
soft tissue sites due to the presence of a germline mu-
tation in SMARCB1.40 Germline SMARCB1 mutations are 
also associated with significantly poorer survival (2-year 
overall survival: 0% versus 48% for germline mutation 
and wildtype, respectively),40 although a more recent 
report suggests that survival rates are not different be-
tween these groups with intensive therapy.41 While in-
herited SMARCB1 and SMARCA4 mutations have been 
described,36,38 a large portion of germline mutations and 
deletions in the SMARCB1 locus appear de novo with no 
family history of disease.36,40

Germline mutations in SMARCB1 are also associated 
with familial schwannomatosis.42 Genotype-phenotype 
studies have demonstrated that deletions or truncating 
mutations of SMARCB1 are more often seen in AT/RT, 
whereas loss-of-function mutations in exon 1 and splice 
site mutations are more often seen in schwannomatosis.42 
Interestingly, several families have been reported in whom 
the index cases presented with AT/RT, whereas the parents 
or grandparents developed schwannomas later in life.42 
This led to the hypothesis of an early developmental 
window in which AT/RTs were more likely to occur, which is 
now supported by genetically engineered murine models 
of AT/RT.43 Although a small number of patients with 
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germline SMARCA4 mutations have been reported, it has 
been suggested that patients with SMARCA4-mutated AT/
RT carry a germline mutation more often than SMARCB1-
mutated tumors.38,44,45

Embryonal Tumors with Multilayered Rosettes 

ETMRs are a group of tumors that are suggested to de-
velop from primitive or undeveloped nerve cells in the 
CNS with a distinction made between those with amplifi-
cation of the miRNA cluster C19MC and non-amplified tu-
mors.12,46 Germline mutations in TP53 have been identified 
in 3 pediatric CNS ETMRs.47,48 Recent evaluations with tar-
geted sequencing of oncogenes in 13 ETMR patients iden-
tified no germline alterations that were deemed likely to be 
pathogenic.17,21

Glioma

Low-Grade Gliomas

The most common low-grade glioma in pediatric patients 
is pilocytic astrocytoma (PA), which makes up 15.6% of all 
pediatric CNS tumors.2 Patients with PA rarely harbor puta-
tive pathogenic germline mutations.17 It has been reported 
that PA may occur in patients with germline mutations in 
Ras/mitogen-activated protein kinase (MAPK) pathway 
genes NF1 and PTPN11, the latter of which is associated 
with Noonan syndrome.49–51 NBN germline mutations 
have also been identified among PA patients, though at a 
lower frequency than among medulloblastoma patients.52 
Additional germline mutations that are likely to be path-
ogenic in pediatric PA patients have been identified in 
BRCA2 and TSC2.17,53

A specific group of pediatric low-grade glioma patients 
develop optic pathway gliomas (OPGs), which occur in 
15‒20% of NF1 patients and tend to present in the first 
decade of life.54–57 These patients harbor loss-of-function 
germline mutations in the NF1 gene, which is a negative 
regulator of the Ras-MAPK pathway.56 It has been sug-
gested that germline mutational heterogeneity in the NF1 
gene influences optic glioma tumor characteristics and be-
havior in both mice and humans.58 Indeed, Xu et al showed 
that among 215 NF1 patients, mutations in the cysteine/
serine rich domain of NF1 were associated with higher risk 
of developing OPG, whereas mutations in the HEAT-like 
region were associated with decreased risk compared with 
patients with mutations in other NF1 domains.59 Similarly, 
mutations in the 5′ region of NF1 have been associated 
with increased OPG risk.59–61 However, Hutter et al found 
no genotype-phenotype correlation among NF1 patients 
with regard to optic glioma development based on whole 
exome sequencing among 77 unrelated NF1 patients.62 
Ethnically, data also suggest that black and Asian pediatric 
NF1 patients have reduced odds of brain tumor diagnoses 
compared with white patients, although the underlying 
mechanism remains unexplored.7

NF2 patients, harboring germline NF2 mutations, 
may present with ependymoma in childhood, but may 
also present with schwannomas and meningiomas.63 

Case reports have also described the occurrence of mul-
tiple ependymomas in patients with germline APC muta-
tions.64,65 Zhang et al identified germline mutations in NF1, 
NF2, and TP53 that were deemed pathogenic among 67 
ependymoma cases based on a panel decision.53 However, 
another study that sequenced a selection of oncogenes in 
59 ependymoma patients identified no germline mutations 
that were likely to be pathogenic.17

One study that evaluated low-grade gliomas that were 
not further specified found mutations in NF1, RUNX1, and 
PMS2.53

High-Grade Gliomas

Pedigree analyses of families with Li–Fraumeni syndrome, 
caused by germline TP53 mutations, found that gliomas, 
including glioblastomas (GBMs), were the most common 
CNS tumors arising in their study population, followed by 
choroid plexus carcinoma (CPC), medulloblastoma, and 
ependymoma.18,66 The majority (81%) of the brain tumors 
in this unique population occurred in childhood.18,66

Pediatric GBM has also been associated with constitu-
tional mismatch repair deficiency (cMMRD), which is sug-
gested to result in a tumor with the highest mutational 
load of any CNS tumor, especially when co-occurring 
with somatic mutations in the polymerase epsilon gene 
(POLE).67,68 CMMRD is caused by homozygous or com-
pound heterozygous germline mutations in postmeiotic 
segregation increased 2 (PMS2), mutL homolog 1 (MLH1), 
mutS homolog 2 (MSH2), and MSH6.67 Biallelic mutations 
occurring in these genes confer a near fully penetrant CNS 
tumor predisposition phenotype.67 Germline mutations in 
pediatric high-grade glioma patients have also been identi-
fied in ATM, MUTYH, NF1, NBN, LZTR1, BRCA2, TSC2, and 
VHL.17,21,52,53,69,70

Other Tumors

Meningioma

Two studies have identified germline SMARCE1 mutations 
in pediatric and adult clear cell meningioma patients.71,72 
Patients with NF2 may also develop meningiomas during 
childhood.63 It has also been suggested that spinal 
meningiomas occur more often in NF2 patients.73

Choroid Plexus Carcinoma 

The prevalence of TP53 mutations appears to be particu-
larly high in CPC, which has been suggested to be as high 
as 36.4%, and patients with TP53-mutated CPCs show sig-
nificantly poorer survival.74,75 As mentioned above, CPCs 
are a common tumor among Li–Fraumeni families.18,66

Retinoblastoma

Retinoblastoma is generally classified as non-heritable or 
heritable, the latter of which is typically caused by germline 
RB1 mutations, and is generally believed to follow the 
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“two-hit” tumor model.76 Retinoblastoma may present uni-
laterally or bilaterally, and germline RB1 mutations occur 
in ~10% and ~90% of cases, respectively.77,78 Bilateral ret-
inoblastoma comprises approximately one quarter of all 
cases and presents at a relatively earlier age.77–80 Patients 
harboring an RB1 mutation and successfully treated for 
retinoblastoma are also at considerable risk of devel-
oping secondary cancers later in life, especially soft-tissue 
sarcomas.53,81–83

Extremely Rare Pediatric CNS Tumor Types

Germline mutations in predisposition genes have also 
been identified in pediatric CNS tumor types that are ex-
tremely rare in the population. For example, malignant pe-
ripheral nerve sheath tumors have been found in pediatric 
NF1 patients.84 Pathogenic germline DICER1 mutations 
have been identified among pineoblastoma patients, with a 
mutation being present in approximately 17% of cases.85,86 
Pineoblastoma patients may also harbor germline RB1 
mutations, which also form a predisposition for retinoblas-
toma.87 Dysplastic cerebellar gangliocytoma, also known 
as Lhermitte–Duclos disease, is an extremely rare CNS 
tumor that may also present in childhood and is pathog-
nomonic for Cowden syndrome, caused by germline muta-
tions in phosphatase and tensin homolog (PTEN).88,89

Implications of a Germline Genetic 
Diagnosis

Although varying by tumor type, approximately 10% of 
children with apparently sporadic CNS tumors harbor a 
germline mutation in a predisposition gene, based on anal-
ysis of known cancer predisposition genes.17 In children 
with a known cancer predisposition syndrome, the chances 
of developing a CNS tumor may be extremely high, as 
seen with cMMRD (48%) or NF1 (20%).54–56,67,90,91

For some tumor types, germline mutations may result 
in earlier presentation, worse survival, multifocal disease, 
and higher chance of recurrence, as seen, for example, with 
medulloblastoma and AT/RT.26,28,39,40 Pediatric CNS tumors 
may also be the first presentation of oncologic predispo-
sition syndromes, such as Li–Fraumeni.18,66 It may, there-
fore, be advisable to screen primary pediatric CNS tumor 
patients for potentially pathogenic germline mutations and 
provide enhanced surveillance for disease relapse or de-
velopment of secondary cancers. Identification of patho-
genic germline mutations, especially when accompanied 
by somatic copy-neutral loss of heterozygosity, may also 
provide targets for personalized medicine in rare scenarios 
where a drug targeting the altered pathway is available, as 
seen with immune checkpoint inhibition in patients with 
cMMRD.67 However, as patients with germline mutations 
are more likely to get a secondary cancer, radiation therapy 
is preferably not applied.92 An important caveat to consider 
is that not all institutions may have the financial capacities 
to provide all patients with genetic screening, or they may 
lack access to advanced sequencing technologies. Urgency 
regarding the potential clinical consequences and the 

preferences of patients and their families may also play a 
key role when genetic screening is being considered.

Family members of pediatric cancer patients who harbor 
a putative pathogenic germline mutation may also be 
prime candidates for genetic screening for the presence 
of the same mutation (ie, cascade screening), which would 
indicate a cancer predisposition syndrome. Similarly, pe-
diatric cancer survivors who harbor germline mutations, 
whether inherited or de novo, may be counseled regarding 
the potential transmission of that mutation to their future 
offspring. Many genes described earlier may also predis-
pose to a range of other adult-onset malignancies, which 
may have clinical consequences.14,39,40,44 This has been best 
studied in the context of Li–Fraumeni syndrome, which ne-
cessitates long-term screening (eg, routine whole-body 
MRI) for early cancer detection.93 The clinical management 
of childhood cancer survivors with other germline muta-
tions is less well developed and merits future research.

Future Approaches to the Study of 
Pediatric CNS Predisposition

Much remains to be discovered regarding the germline 
genetics of pediatric CNS tumors. Most previous studies 
included only small numbers of patients and mixed his-
tologic groupings, whereas recent larger studies have fo-
cused on pediatric tumors in general and have evaluated 
predominantly known cancer predisposition genes, which 
likely underestimates the true contribution of germline 
predisposition to cancer risk. Additionally, these studies 
have all been limited in their assessment of the role of 
germline genetics in contributing to variation in patient 
outcomes.17,53 Future studies that aim to evaluate germline 
genetics using NGS or other methods of evaluating 
germline genetics for specific pediatric CNS tumors are, 
therefore, likely to be of value. Efforts to provide access 
and standardize such genetic screening should be facili-
tated via national and international oncology groups, par-
ticularly important for rare subtypes.

Highly penetrant germline mutations have been as-
sessed in many pediatric CNS tumors, but low penetrance 
genetic variants that may be discovered by genome-wide 
association studies have not been identified for any pedi-
atric CNS tumor. A  more targeted approach along these 
lines may be evaluation of low penetrance alleles that 
are known to be associated with CNS tumors in adults, 
as common variants associated with adult glioma risk 
showed some evidence of association with pediatric brain 
tumors in a small case-control study.94 Thus, larger studies 
are warranted to investigate the shared genetic basis of pe-
diatric and adult CNS tumors.94 Genetic research for new 
genome-wide association study discovery in pediatric CNS 
tumors will need to overcome the challenges of many dis-
parate histopathologic subtypes, which reduces power for 
genome-wide analysis. These studies may be improved 
through linkage of biobanks and cancer registries as well 
as creation of dedicated (international) networks that can 
capture enough of each rare subtype to have sufficient sta-
tistical power. One example of this is the Gabriella Miller 
Kids First Pediatric Research Program, which collects DNA 
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and RNA samples from children with cancer or structural 
birth defects.95 Other international consortia for child-
hood cancers, including the International Childhood 
Cancer Cohort Consortium96 and the Childhood Leukemia 
International Consortium,97 may help facilitate collabora-
tion and the collection of sufficient subjects for study.

An intriguing clue and area ripe for discovery is the 
varied incidence of pediatric CNS tumors among different 
ethnicities.6–8,98 For instance, the incidence of PA and em-
bryonal tumors appears considerably higher among non-
Hispanic whites (Surveillance, Epidemiology, and End 
Results [SEER] registry data; Fig. 3). This is similar to adult 
glioma, as the incidence of adult glioma is also highest 
among non-Hispanic whites in the US.2 The variation in in-
cidence may be the result of both environmental and ge-
netic factors, resulting from different allele frequencies of 
risk alleles between groups and interactions between race/
ethnicity-related exposures and underlying genetic suscep-
tibilities.99 A  few studies have investigated links between 
environmental exposures and childhood brain tumors, 
including the role of pesticides, diet, and vitamin supple-
ments, although, aside from ionizing radiation, evidence 
is inconsistent and limited.4 Apart from studies showing 
sensitivity to ionizing radiation from subjects carrying high 
penetrance mutations, there is a dearth of information on 
genetic modifiers of environmental exposures, including 
those involved in metabolism, DNA repair, or other factors 
that may influence tumor initiation or progression.

In addition to their potential important contributions to 
disease etiology, gene–environment interactions may in 
part explain the heterogeneity in findings from previous 
assessments on the link between environmental expos-
ures and childhood brain tumors. Exposures during early 
life may be particularly impactful, as children have a dis-
proportionately greater exposure due to their smaller 
body mass and less efficient ability to metabolize toxi-
cants. Children experience rapid development of the 
CNS, including greater rates of cell proliferation and dif-
ferentiation that may leave them more vulnerable to the 
mutagenic and epigenetic alterations induced by environ-
mental toxicants and stressors.100 Genes involved in DNA 
repair pathways, including mismatch repair, have been 
previously associated with pediatric brain tumor suscep-
tibility,35,51–53,67,70,101 consistent with the hypothesis that in-
dividuals already susceptible to carcinogenesis may be at 
even greater risk when exposed to environmental factors 
that cause chromosomal aberrations, DNA breaks, DNA 
adducts, and other damage that requires repair. Interaction 
effects that have been suggested to contribute to greater 
risk of childhood brain tumors to date include: pesticide ex-
posure and genes involved in toxin metabolism and detox-
ification,102,103 air pollutant exposure and genes involved 
in DNA repair,104 cured meat consumption and genes in-
volved in the inactivation of N-nitroso compounds,105 and 
folic acid supplementation and genes involved in the folate 
pathway.106 However, these studies are limited in sample 
size and lack replication. Additional efforts with integra-
tive approaches from multiple disciplines are necessary 
to further clarify the multifactorial etiology of childhood 
brain tumors involving the potential interaction of environ-
mental factors and germline susceptibility. These may in-
clude employing a comprehensive bioinformatics method 

prioritizing previously identified environmentally respon-
sive genes or those associated with biological functions 
involving xenobiotic metabolism, DNA repair, and immune 
and inflammatory responses107; verification of suspected 
interaction effects with model systems and functional 
studies to complement population-based epidemiologic 
findings108,109; and, most importantly, collection of high-
quality comprehensive exposure data alongside germline 
genetic data.

Common genetic variation that naturally differs by an-
cestral populations may also partially explain varying inci-
dence rates for pediatric brain tumors by ethnicity as seen 
in adult brain tumors,110–112 but this has not been evaluated 
to date. Therefore, genetic association studies of pediatric 
CNS tumors may also be improved by inclusion of individ-
uals from diverse genetic/ancestral backgrounds, thereby 
leveraging differences in linkage disequilibrium across 
multi-ethnic groups and fine-mapping candidate causal 
or functional variants.113 Future studies may benefit from 
improved power by meta-analysis of variants across mul-
tiple ethnicities, particularly among subjects of African an-
cestry who harbor greater genetic diversity,113 and from 
admixture mapping, which involves screening individuals 
of mixed ancestry for chromosomal regions with greater 
frequency of alleles from parental populations with higher 
CNS risk compared with the parental population with 
lower risk.113

With regard to rare variants, rare founder mutations may 
yield insight, as seen with elevated colorectal cancer risk 
in whites from Kentucky harboring a common MSH2 mu-
tation.114 Indeed, the p.R337H founder mutation in TP53 is 
observed in about 1 out of 375 Brazilian children115 and is 
responsible for the elevated CPC incidence observed in 
this population.116 That additional CNS tumors are associ-
ated with low-penetrance founder mutations in cosmopol-
itan populations is entirely possible and warrants further 
exploration.

We also believe it is of great importance to evaluate the 
penetrance of putative pathogenic mutations, as high-
lighted by the recently reported higher-than-expected 
frequency of pathogenic or likely pathogenic TP53 muta-
tions in the general population.117 Other ways of further 
improving NGS analysis may be through utilization of pub-
licly available datasets such as the Genome Aggregation 
Database (gnomAD)—for example, as controls for gene-
burden testing to pinpoint novel predisposition genes for 
CNS tumors and other childhood cancers, although this is 
still controversial.13,16,118,119 Utilizing and combining other 
data sources such as organ-specific gene expression data 
(eg, the Genotype-Tissue Expression, GTEx project) may 
result in further identification of genes or noncoding re-
gions of interest.120 NGS data may also be studied to iden-
tify genotype–phenotype interactions as seen with OPG in 
NF1 patients.59–61 Other genotype–phenotype interactions 
that may warrant future studies are age of presentation as 
seen in AT/RT,39,40 tumor location as seen in meningioma,73 
co-occurrence of mutations, response to therapy, and pa-
tient outcomes as seen in CPC.74

In conclusion, the current state of knowledge regarding 
genetic predisposition to pediatric CNS tumors highlights 
the need for collaboration to identify sufficient numbers of 
cases and to study rare variants across the genome among 
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multiple ethnicities. This review can serve as a guide and 
starting point for candidate-gene, gene-pathway, and risk 
variant analyses for targeting in future sequencing studies.
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