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Abstract 

Non-Abelian induced bremsstrahlung associated with multiple scattering of high­
energy parton in a quark gluon plasma (QGP) is investigated in the context of semi­
classical gauge-covariant kinetic theory. New collisions terms are derived involving the 
scattering of virtual gluons by the self-charge of the high-energy parton (Compton 
bremsstrahlung) as well as by dynamical polarization (no~linear bremsstrahlung). 

lThis work was supported by the Director, Office of Energy Research, Division of Nuclear Physics 
of t.he Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract 
No. DE-AC03-76SF00098. 
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1 Introduction 

The estimation of energy loss of a high-energy parton traversing a quark-gluon plasma (QGP) 
is essential in connection with hadron jets signature of QGP production in ultrarelativis­
tic heavy-ion collisions [1] Parton moving through QGP loses its energy due to interac­
tion with collective modes [2, 3, 4], due to hard elastic collisions [3], and due to induced 
bremsstrahlung[l]. Perturbative QCD estimates [1] indicate that the dominant contribution 
to the energy loss of a parton moving through a QGP is likely to be induced radiation. 
For a better estimation of the energy loss in the framework of kinetic theory it is therefore 
necessary to derive collision terms taking into account bremsstrahlung of gluons. In the case 
of QED plasmas this has been done in refs. [5, 6]. In this paper, the non-Abelian radiative 
kinetic terms are derived. 

Bremsstrahlung in the QGP is a very complicated process. One has to take into account 
the effect of multiple scattering (Landau-Pomeranchuk effect [7] and of polarization of 
the medium (density effect [8] and nonlinear or transitional bremsstrahlung [5, 6, 9]) on 
bremsstrahlung in the medium with non-Abelian interactions. 

In this paper, which has a formal character, we develop a gauge-covariant semi-classical ki­
netic approach to the description of QGP which can be a base for derivation of bremsstrahlung 
collision terms in QGP taking into account effect of multiple scattering and of polarization 
of the medium on bremsstrahlung. 

In our previous works [10, 11] with the help of method based on unification of the gauge­
covariant self-consistent kinetic approach [12] and of fluctuation theory [13] the collision 
terms of the Lenard-Balescu type taking account of the dynamics of color degrees of freedom 
and effect of dynamical screening of interactions in QGP have been obtained in semi-classical 
limit and with neglect of spin effects. In this work which continues and develops works [10, 11] 
we generalize this formalism in order to take into account higher order corrections in powers 
of 9 (g is the QCD coupling constant) which describe bremsstrahlung process. 

This paper is organized as follows: In Sec.2 we obtain kinetic equations for mean quanti­
ties (Wigner function of (anti) quarks, gluons and mean gluon field), equations for quantum 
fluctuations and study the self-consistency of these equations which in this approach ensure 
the gauge-covariance. 

In Sec.3 by using kinetic equations for fluctuations we obtain matrix elements of scattering 
of gluons (transversal and longitudinal) by the self-charge of parton (Compton bremsstrahlung) 
as well as by dynamical polarization (nonlinear bremsstrahlung). We choose units such that 
n=c=l. 

2 Kinetic Equations for Averages and Fluctuations 

We will consider covariant quark (Q+(p,x)) and antiquark (Q-(p,x)) \Vigner operators 
which are N x N matrices in color space (for SU(N) color group). Q±(p, x) =O(±PO)8(p2 -
m 2

) W(p, x), where lV(p, x) is full covariant quark Wigner operator [14J 

(1) 
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where biJ- = aiJ- + zgAiJ-, AiJ- = A~ta; A~ is the operator of gluon field and ta are hermitian 
generators of SU(N) color group in fundumental representation. 

Covariant gluon Wigner operator G(p, x) is (N2 
- 1) x (N 2 

- 1) matrix in color space. 
G(p, x) = G~(p, x), where 

(2) 

~ ~ ~ 

where jj = aiJ- + zgAiJ-, AiJ- = A~Ta; Ta are hermitian generators of SU(N) color group in 

adjoint representation. The fluctuation of gluon field 8A~ = A~ - A~, where A~ = (A~) 
(( ... ) = Tr(fJ ... ) and fJ is the density matrix of the system). 

We will neglect spin effects and use averaged over spin indices Wigner operators. Wigner 
functions are defined as quantum-statistical averages of the corresponding operators: Q± (p, x) = 
(Q±(p, x)), G(p, x) = (G(p, x)). The quantum fluctuations about mean values of correspond-
ing operator quantities are defined by the relations 8Q± = Q± - Q±, 8G = G - G. 

We denote the trace over color indices in the fundumental representation by Sp and do 
in adjoint representation by Tr. So Sp(tatb) = ~8ab, Tr(TaTb) = N8ab ((Ta)bc = -zrbc ). 
Covariant derivatives act on color matrices as follows DiJ- = aiJ- + zg[AiJ-, ... ]. The gluon field 
strength tensor is given by F;vta = FiJ-v = aiJ-Av - avAiJ- + zg[AiJ-, Av], FiJ-v = F;vTa. 

It has been shown in [10] that in the semiclassical limit and with neglect spin effects 
operator quantities obey dynamical equations which follows from the Dirac and Yang-Mills 
equations 

~ ~ 1 ~ ~ b 
(piJ-DiJ-G(p,x) + gpiJ-a;"2{FvM G(p,x)})a = 

_~84(p)( (.0 
2 
8Av(x) )a8Abv(x) _ 8Aav(x )(.0 

2 
8Av(x) )b) , 

gta J dppVTr(TaG) = zg[8AiJ-, b v 8AiJ-] 

zg[8AiJ-,DV8AiJ-] - (zg)2[8AiJ-, [8AiJ-,8AV]] . 
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(4) 

(5) 

(6) 

(7) 

(8) 



As it follows from eqs. (2,8) 

(9) 

Eq. (9) is the first type of self consistency conditions which play an important role in this 
formalism since they ensure the gauge-covariance. 

As the result of averaging of dynamical equations we get (see [10]) the system of kinetic 
equations for mean quantities (Wigner functions and mean gluon field) 

(10) 

(11) 

(12) 

(13) 

Here we set 

(14) 

in accordance with neglect spin effects. Otherwise we have to use gluon Wigner function 
G I-'V instead of G = G~ in order to obtain self-consistent system of equations. This case is 
much more complicated since equation for GJtv is gauge dependent and also it is nesessary 
to consider Wigner functions for ghost fields (see [12]). The essential feature of spinless 
approximation is that we deal with gauge-covariant equation (11) for gluon Wigner function. 
In accordance with neglect spin effects we restrict the full equation for fluctuation of gluon 
field 

where covariant background gauge [12] is assumed, to equation 

iJ28Av = 8jV , 

when we substitute it in equation for gluon Wigner function (operator). 
Eq. (15) can be obtained from equation for fluctuation of gluon field 

which, in a turn, is obtained under subtraction eq. (12) from eq. (5). 
That way we obtain the expressions for collision terms in the r.h.s. of eqs. (10,11) 

CQ± = -zgpl-' ([8AJt, 8Q±]) - gpl-'a;!({8Fvl-" 8Q±}} 

-zg2pl-'a;!({[8Av,8AI-'], (Q± + 8Q±)}} , 
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(15) 

(16) 

(17) 

(18) 



Gab = -zgpIL([8AIL' 8G])ab - gpILo; ~({ 8FI/IL , 8G} )ab 

_zg2pILO; ~({[8AI/, 8AIL ], (G + 8G)} )ab - ~84(p)(8j~8Abl/ - 8A~8ll/) . (19) 

Here 8AIL = 8A~Ta, 8FI/ IL = 8F:ILTa. In derivation of eq. (19) we have used eq. (16). 
The forth term in the r.h.s. of eq. (19) ensures the self-consistency of the system of 

eqs. (10-13). The conservation of mean color current (13) follows from eq. (12): 

(20) 

Substituting eq. (13) into eq. (20) and using kinetic equations (10,11) with collision terms 
given by eqs. (18,19), one convinces of the validity of eq. (20). 

Note that we hold the third terms in expressions for collision terms (18,19) which have 
been omitted in [10]. They are essential for derivation of bremsstrahlung collision terms [15]. 

The kinetic equations for fluctuations are obtained under subtraction the kinetic equa­
tions for mean quantities (10-14) from the dynamical ones (3-7) and can be written as 
follows 

pILo1L8Q± + zgpIL[8AIL' Q±] + gpILo; ~{8FI/IL, Q±} = 

-zgpIL([8AIL' 8Q±] - ([8AIL , 8Q±])) 

-gpILo; ~({ 8FI/IL , 8Q±} - ({ 8FI/IL , 8Q±})) 

_Zg2pILO;~({[8AI/,8AIL]'Q±} - {([8AI/,8AIL ]),Q±}), 

pILoIL8G + zgpIL[8AIL' G] + gpILO;~{8FI/IL' G} = 

-zgpIL([8AIL,8G] - ([8AIL , 8G])) 
1 - -

-gpILo; '2( {8FI/IL , 8G} - ({ 8FI/IL , 8G})) 

2 1 - - ---zg pILo;'2({[8AI/,8AIL ],G} - {([8AI/,8AIL]),G}), 

~ cFILI/ _ C'I/ "'1/ 
UlLu - uJ + JCOTT , 

(21) 

(22) 

(23) 

(24) 

In eqs.(21-23) we have omitted the terms of higher orders and also terms containing mean 
gluon field (here and below 8FILI/ = 0IL8AI/ - oI/8AIL ). Vie assume that mean gluon field is 
weak and doesn't act on the collision process. 

~~) We now study the self-consistency of the system (21-24). The 3~OTT current obey the 
equation: 

(25) 
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LFrom eq. (17) we get 

(26) 

As it follows from dynamical equations (see eq. (9)) 

(27) 

Taking into account eq. (12), rewrite eq. (27) as follows 

(28) 

Eq. (25) follows from eqs. (26,28). 
Due to our restriction of neglect spin effects (14,16) we get from eq.(25) 

(29) 

or in the case of neglect of influence of mean gluon field, as in the case of system (21-24), 

(30) 

Considering Fourier transform of 3~orr 

(31) 

we obtain that in accordance with our assumption of neglect spin effects, we have to set 

where 3~orr defined by eq. (33) obeys the condition 

kv3~orr(k) = 0 

in agreement with eq. (30). 

(32) 

(33) 

(34) 

That way the kinetic equations for fluctuations (21-24) with neglect mean gluon field, 
where 3~orr is defined byeq. (33) satisfy the self-consistency condition 

(35) 
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3 Matrix Elements of Conversion of Gluons in QGP 

We now consider equations for fluctuations which are nesessary for derivation bremsstrah­
lung collision terms in QGP. Collision terms for QGP without taking account of radiation 
have been derived earlier (see [10, 11]). 

We determine induced fluctuations 8Q~d' 8Gind as solutions of equations 

By using Fourier transform, we get 

where 

and poles in eqs. (38,39) are by-passed according to Landau rule [16] 

1 l' 1 1 ( ) 
(p. k) = i~ ((p. k) + ZEpO) = V.p. (p. k) - Z6 Po)7ro(p. k , 

where 6(Po) = 8(po) - 8( -Po). 
Now we split following [13] 

± ± -8Q = 8Qind + 8Q± , 

8G = 8Gind + 8G . 

Substituting eqs. (42,43) into the linearized Yang-Mills equation (23), we get 

_(k2gl/J-L - IIl/J-L)oAJ-L(k) = 0/ (k) + 3~orr(k) , 

where 

.. ) and singlet polarization tensor IIJ-Ll/ is given by [11] 
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(36) 

(37) 

(40) 

( 41) 

(42) 

(43) 

(44) 

(45) 

(46) 



where 

(47) 

( 48) 

Here Q~ = ~SpQ±, Geq = NLITrG. We assume that QGP is in colorless and thermal 
equilibrium state and Q± = Q~ . 1, G = Geq . 1, where Q~q, Geq are Fermi- Dirac and 
Bose-Einstein distribution functions correspondingly. 

U sing the spectral decomposition of polarization tensor [17J 

( 49) 

where 

(50) 

(51) 

II II Q~ II _III P~ 
L = I-'V , T - '2 I-'V , (52) 

(u/L is the four velocity of QGP) we can invert equation (44) 

(53) 

where [17] 

D (k) _ QI-'V PI-'ll kl-'kll 
/LII 

- k2 _ IlL + k2 _ IIT + a k4 . (54) 

The currents in eqs. (44,53) are given by 

(55) 

J"all = ~2gfabc J dk kl-'8Ab (k )8ACV(k - k ) corr I I-' I I , (56) 

-± -
where fluctuations 8Q , 8G are determined by eqs. (42,43). 

Substituting decompositions (42,43) into eqs. (21,22), making Fourier transform and 
taking account of eqs. (38,39), we get 

-± ± ( ) J gpl-' -± 8Q (p,k) 8Qo p,k + dkI(p. k)([8A/L(kd ,8Q (p,k - kI)J - ( ... )) 

+ J dkI2(P~ k) hCX(p, kI )( {8A cx (kI ),8Q±(p, k - kI )} - ( ... )) 

+ J dkIS~±(3,Jp, k, kd(8Ab(3(kI)8AC'Y(k - kd - ( ... )) , (57) 
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where 8Q~(p, k) obey free equations (p. k)8Q~(p, k) = 0 and 

(58) 

Analogously we get for 8G 

8G
de

(p, k) _ 8Gge(p, k) + J dk1 (:~:) ([8A tL (k1), 8G(p, k - k1)]- ( ... ) )de 

+ J dk12(pg. k)bOC(p,kl)({8AclC(kl),8G(p,k - kd} - ( . .. ))de 

+ J dk12~:(~i) ((8j~(kl)8Aev(k - k1) - 8j:(k1)8Adv (k - k1)) - ( ... )) 

+ J dkl(S~f3"Y)de(p, k, k1)(8Abf3(k1)8AC"Y(k - k1) - ( ... )) , (59) 

where 

- g2[Tb, Tc]de (PP~k) ((p. (k
1
_ k

1
)) b"Y(p, k - k1) + a;)Geq(p) 

+ ~2 {Tb, Tc}de (p ~ k) bf3(p, k1) (p. (k
1
_ k

1
)) b"Y(p, k - k1)Geq(p) 

+ g2(CdbCeC cebcdc) 8
4
(p) Jd pi lB( k) Ar( ) "2 u u - u u (p . k) Pl (Pl . k1) u- Pl, l'/V Pl . (60) 

Here 8Go(p, k) obeys free equation (p. k)8Go(p, k) = 0 and N(Pl) is given by eq. (47). 
Substituting eqs. (57-60) into eqs. (55,56), we get 

8/
oc

(k) + ]aoc(k) = 8j~OC(k) + 
J dp1dk1R ocf3(Pl, k)(8A~(kd8N[abl(pl, k - k1) - ( ... )) + 

J dp1dk1Jf3 OC (pl, k, kl)(8A~(kl)8N{ab} (Pl, k - kd - ( ... )) + 

J dk1 ~(S~~~(k, kl, k - k1) + S~~~(k, k - kh k1))(8Abf3(k1)8AC"Y(k - k1) - ( ... )), (61) 

where 8jo is defined by the eq. (55) with the substitution 8Q~, 8Go instead of 8Q±, 8G and 

(62) 

v 

(63) 

(64) 
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S~~'Y(k, kI , k - kI ) = -zgrbC kf3gOl'Y + 

3fabcfd p~ (( kOlkU) pr b'Y( k k)+ Ol[]''I)N( )+ 
zg PI (Pl. k) gOlU - Ji2 (Pl. (k _ kI )) PI, - 1 PI Pl PI 

3 f pOl 1 
~ dabc 

dPI (PI ~ k) bf3 (pl, kI) (Pl. (k _ k
I
)) b'Y(pl, k - kI)n(PI) , (65) 

Here dabc is symmetric constant of SU(N) group and n(PI) = !(Qdq(pd + Q;q(PI)). 
In derivation of eqs. (61-65) we have used identity 

(66) 

The terms in which eq. (66) appeares ensure the conservation of color current 

(67) 

One can convince in the validity of eq. (67) by using explicit expressions (61-65). 
Eqs. (53,61-65) describe the conversion of gluons in the quark-gluon plasma in the semi­

classical limit and with neglect of spin effects. The scattering of gluons by self-charge of 
parton (Compton scattering) are given by the second and the third terms in the r.h.s. of 
eq. (61), where amplitudes Rand J are given by the eqs. (63,64) correspondingly. The terms 

bQ± in eq. (62) correspond to parton-(anti) quark while bG does parton- gIuon. The third 
term in the r.h.s. of eq. (61) is non-Abelian generalization of QED Compton amplitude [5,6] 
while the second one has pure non-Abelian origin and is absent in QED case. 

The scattering of gluons by dynamic polarization (nonlinear bremsstrahlung) is given by 
the forth term in the r .h.s. of eq. (61), where effective three-gluon vertex is given by eq. (65). 
We note that the third term in eq. (65) has a QED analog which describes the transitional 
bremsstrahlung [5, 6]. The first and the second ones have pure non-Abelian character. Note 
that the first term in eq. (65) appeares due to nonlinearity of the Yang-Mills equation. 

The physical sense of matrix elements and their use for derivation bremsstrahlung collision 
terms in QGP will be consider in [15]. 

4 Conclusion 

In this paper we have developed a semiclassical gauge-covariant approach to the description 
of a QGP which can be a base for derivation of bremsstrahlung collision terms in QGP. 
The neglect of spin effects with the use of semiclassical approximation allow us to avoid the 
ambiguity connected with gauge dependence. 

The investigation of bremsstrahlung process is of interest from the point of view of esti­
mation of energy loss of high-energy parton in QGP in connection with hadron jets signature 
of QGP production in ultrarelativistic nucleus-nucleus collisions. 

The matrix elements of scattering of gluons by the self-charge of parton (Compton 
bremsstrahlung) as well as by dynamic polarization (nonlinear bremsstrahlung) obtained 
in this paper contain the terms which have pure non-Abelian origin and are absent in the 
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case of QED plasma. They can essentially change the picture of bremsstrahlung in a medium 
which has been developed in the case of electromagnetic interaction. 

The derivation of bremsstrahlung collision terms for the quark-gluon plasma and the 
study of effect of multiple scattering (Landau- Pomeranchuk efffect) and of polarization 
of the medium (density effect) on bremsstrahlung in QGP will be given in the forthcoming 
publication [15]. . 
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