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Abstract 

Several norms for how people should assess a question's usefulness have been proposed, notably 

Bayesian diagnosticity, information gain (mutual information), Kullback-Liebler distance, 

probability gain (error minimization), and impact (absolute change). Several probabilistic models 

of previous experiments on categorization, covariation assessment, medical diagnosis and the 

selection task are shown to not discriminate between these norms as descriptive models of 

human intuitions and behavior. Computational optimization found situations in which 

information gain, probability gain, and impact strongly contradict Bayesian diagnosticity. In 

these situations, diagnosticity’s claims are normatively inferior. Results of a new experiment 

strongly contradict the predictions of Bayesian diagnosticity. Normative theoretical concerns 

also argue against use of diagnosticity. It is concluded that Bayesian diagnosticity is normatively 

flawed and empirically unjustified. 
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Finding useful questions:  
 

on Bayesian diagnosticity, probability, impact, and information gain 

When learning the meaning of a new word, diagnosing a patient’s illness, interviewing job 

candidates, or testing scientific hypotheses, choice of questions (experiments, tests, queries) is 

critical. Whether people can identify useful questions, and what exactly constitutes a useful 

question, are central problems in theories of human cognition. Popper’s (1959) falsificationist 

philosophy of science and Piaget and Inhelder's (1955/1958) experimental research inspired 

Wason's (1960, 1966) 2-4-6 task, which was designed to be a miniature scientific problem. 

Wason suggested that success on that task required "a willingness to attempt to falsify 

hypotheses” (p. 139). However, many subjects had difficulty devising tests to falsify their 

working hypotheses, a pattern sometimes called "confirmation bias" (Wason & Johnson-Laird, 

1972, cited in Mynatt, Doherty, & Tweney, 1977; reviewed by Klayman, 1995). Many recent 

researchers have distanced themselves from the falsificationist view, and suggested that 

differentiation of plausible hypotheses is normatively a better goal than falsification of the 

working hypothesis. Several of these researchers have described evidence-acquisition situations 

in a probabilistic framework (Trope & Bassok, 1982, 1983; Fischoff & Beyth-Marom, 1983; 

Baron, 1981, cited in Baron, 1985, pp. 130-167; Skov & Sherman, 1986; Oaksford & Chater 

1994, 2003). 

An advantage of the probabilistic approach is the ability to differentiate the following 

components: 

1. A probabilistic belief model with a set of hypotheses, a prior probability of each, and 

a set of possible questions (or experiments, queries, or tests) to differentiate between 

them; 

2. A sampling norm to quantify the expected usefulness of each possible question, 
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relative to a probabilistic belief model; 

3. A method to update beliefs according to a test’s outcome. 

In models of sequential tasks, in which the first question’s answer is known before the second 

question is asked, an additional component, to check whether a stopping criterion has been 

reached, is also needed. (Similar accounts appear in Box & Hill, 1967; Fischoff & Beyth-Marom, 

1983; Over & Jessop, 1998; and Zimmerman, 2000.) Most experimental research in this area 

(Table 1) assesses the adaptiveness of information-gathering behavior by considering whether 

people choose highly useful queries, as identified by a particular sampling norm. The goal of the 

present paper is to illuminate differences between sampling norms (component 2) by holding 

constant both probability belief models (component 1) and the method of belief updating 

(component 3). 

In this paper, the intuitive scientist metaphor as outlined above is used as a descriptive 

model of human cognition, and Bayes’ (1763) theorem is used to update beliefs. Use of 

normative models as descriptive models, or to facilitate development of descriptive models, is a 

familiar research strategy (Anderson's 1990, 1991, rational analysis; Brunswik’s, 1952, molar 

analysis; Peterson & Beach, 1967; Marr, 1982; Viswanathan, et al., 1999; Oaksford & Chater, 

2001; McKenzie, 2003; Baron, 2004). However, Kuhn (1989, 2000) discusses both the 

usefulness and limitations of the normative intuitive scientist metaphor as a descriptive model of 

human cognition. It has also been suggested that humans change their beliefs to a lesser extent 

than predicted by Bayes’ (1763) theorem, perhaps by using a conservative Bayesian form of 

belief revision (Edwards, 1968). Setting these issues aside enables the present paper to focus on 

the relative normative and descriptive justification of several sampling norms in the 

psychological literature, each of which explicitly describes what makes a question (experiment, 
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query, or test) useful. 

From a mathematical standpoint, method of belief revision (Bayesian or other) and choice of 

sampling norm (to assess possible questions’ expected usefulness) are completely independent of 

each other. This notwithstanding, some researchers have implied that Bayesian diagnosticity is 

the only theoretically (normatively) defensible, or the only Bayesian, sampling norm. For 

instance, Slowiaczek et al. (1992) stated “according to Bayes’ theorem, the diagnosticity 

[usefulness] of an answer or datum, D, depends on the likelihood ratio,” (p. 393), e.g. on that 

answer’s Bayesian diagnosticity. (Similar statements appear in Beyth-Marom & Fischoff, 1983, 

p. 1193; Fischoff & Beyth-Marom, 1983, pp. 240-241; Bassok & Trope, 1983-1984, p. 200; and 

Doherty, et al., 1996, p. 644.) Evans and Over (1996) stated log diagnosticity would be “much 

more satisfactory as a normative standard” than information gain (p. 358). Good (1975) simply 

said diagnosticity “was central to my first book (1947/50) and also occurred in at least 32 other 

publications … . What I say thirty-three times is true” (pp. 52-53). 

Yet several norms have been proposed for evaluating the usefulness of a question (or test or 

experiment) in probabilistic evidence-gathering situations. Prominent proposals include 

information gain, Kullback-Liebler distance, impact (absolute change), probability gain (minimal 

error), Bayesian diagnosticity, and log diagnosticity (Table 1). The literature to date, however, 

does not make clear (1) what norms best describe human behavior, (2) when the norms disagree, 

or (3) whether some norms are theoretically (normatively) better motivated than others. 

The rest of this paper is structured as follows. Each sampling norm is explicitly defined 

below. (Appendix 1 provides a more intuitive scenario and example calculations.) Prior 

experimental evidence-acquisition research is reanalyzed to examine the extent to which earlier 

researchers’ conclusions depend on the sampling norm used. New simulations demonstrate that 
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the sampling norms can disagree with each other, and that this disagreement occurs in a variety 

of statistical environments. Further simulations identify particularly strong cases of disagreement 

between norms. Those limiting cases are used to design a definitive experiment, to address 

whether diagnosticity and log diagnosticity are plausible descriptive psychological models of 

human intuitions. Finally, theoretical objections to diagnosticity and log diagnosticity are 

discussed, and important issues for future research are outlined. 

[insert Table 1 about here] 

The sampling norms 

There is a conceptual distinction between disinterested utility functions for evidence 

acquisition, and situation-specific utility functions, for situations with unique reward structures 

(Lindley, 1956; Box & Hill, 1967; Baron & Hershey, 1988; Kirby, 1994; Chater, Crocker, & 

Pickering, 1998; Chater & Oaksford, 1999). Disinterested utility functions are useful for 

information gathering, where no immediate action is required; Chater, Crocker, and Pickering 

liken them to pure scientific research. Situation-specific utility functions are appropriate when 

making the best decision is more important than believing the correct hypothesis. However, the 

same mathematical framework can be used in both cases (Savage, 1954, pp. 105-119; Raiffa, 

1968). Each norm discussed in this paper—diagnosticity, log diagnosticity, information gain, KL 

distance, probability gain, and impact—can be thought of as a subjective utility function for 

evidence acquisition. The norms give different definitions of an individual answer's usefulness. 

However, all of the norms define a question's usefulness as the expected usefulness of its 

possible answers, averaged according to the probability of each possible answer occurring. 

A technical definition of each norm is given below. Appendix A provides a more intuitive 

treatment, in the context of the Vuma probability model, with example calculations and further 
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discussion. In this paper's notation capital letters represent random variables; lowercase letters 

represent specific values that those random variables can take. Q is a question, query, test, or 

experiment, whose results are unknown; qj are specific answers, or experiment results; C is the 

unknown category, or hypothesis; and ci are particular categories, or hypotheses. 

Bayesian diagnosticity 

Good (1950, 1975, 1983) introduced the concept of diagnosticity. He called an answer’s 

diagnosticity the “weight of evidence” and a question’s diagnosticity the “expected weight of 

evidence.” Explicit use of the term diagnosticity in this context appeared at least as early as 

Edwards (1968, pp. 25-27).1 Diagnosticity relates to the likelihood ratio of particular data given 

two categories: 
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(Max(a,b) denotes the larger of a and b. If equal pick randomly.) 

Log10 diagnosticity 

The set of researchers using log diagnosticity is virtually the same as the set of researchers 

using diagnosticity. Some researchers first introduce diagnosticity, then use log diagnosticity for 

their calculations, without addressing whether those sampling norms may disagree, or giving a 

rationale for preferring one or the other (Evans & Over, 1996; McKenzie & Mikkelsen, in press). 

But their expectations are not equivalent: a question's diagnosticity cannot be derived from its 

log diagnosticity, or vice versa. Base 10 (“log10 diagnosticity”) will be used in this paper; 

constant positive multiples convert between bases. Specifically: 
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It should be emphasized that the two above formulations of an answer qj's log10 diagnosticity, 

one taking the maximum likelihood ratio, the other taking an absolute log likelihood ratio, are 

identical. Diagnosticity and log diagnosticity are both infinite for an answer qj that eliminates a 

category (hypothesis) by setting its posterior probability to 0. The descriptive psychological 

claim is that such an answer, or a question Q with some probability of it, is infinitely useful. 

Information gain 

One way to measure a question's usefulness is by quantifying its expected reduction in 

uncertainty, or information gain, with respect to the true hypothesis, or category. Lindley (1956), 

Box (1967), and Fedorov (1972) quantified this idea explicitly, using Shannon's (1948) entropy 

to measure uncertainty. Good (1950, pp. 74-75) also alluded to the possibility of using a 

sampling norm based on Shannon entropy. Baron (1985, pp. 150-151; citing Marschak, 1974) 

suggested that using information gain would be appropriate in rare situations only, such as when 

maximizing data transmitted through a telephone line. Outside the realm of cognitive tasks, 

information gain has been employed to model development of visual neurons (Ruderman, 1994; 

Ullman, Vidal-Naquet, & Sali, 2002) and auditory neurons (Lewicki, 2002), and to set camera 

parameters in computer vision (Denzler & Brown, 2002). This paper measures information with 

base 2 logarithms (bits); one bit equals loge 2 = 0.6931 nats of information. The information gain 

in Q is the mutual information between C and Q (Cover & Thomas, 1991): 

( ) ( ) ( )QCHCHQCI |, −= , where 
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Kullback-Liebler distance   

A question’s usefulness could also be quantified as the amount that its answer is expected to 

change one’s beliefs. Kullback-Liebler distance (Kullback & Liebler, 1951; Cover & Thomas, 

1991) provides one means to measure the change from prior beliefs about the true category, C, to 

posterior beliefs after a particular question is answered:  
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In this paper, KL distance and information gain are equivalent, because they give identical 

measures of a question’s usefulness (Oaksford & Chater, 1996). (Table A1 illustrates that they 

give different statements of particular answers' usefulness.)   

Probability gain 

Baron (1981, cited in Baron, 1985) suggested this norm as a special case of Savage's (1954, 

chap. 6, pp. 105-119) analysis of the value of observations, in which the inquirer assigns the 

same utility to any correct guess, and lower, equal utility to any incorrect guess. Assuming that 

the most probable category is chosen after a question’s answer is obtained, it’s possible to 

calculate how much asking a particular question improves the expected probability of making a 
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correct guess, the question’s probability gain. Maximizing probability gain is equivalent to 

minimizing probability of error, a common criterion in computer science, as well as to 

maximizing probability of making a correct decision. Specifically: 
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Impact (absolute change) 

Impact is based on the idea that answers qj that change beliefs are useful. In this respect 

impact is similar to KL distance; however, it is based on a different measure of belief change. 

Klayman and Ha (1987, pp. 219-220) and Nickerson (1996), discussing belief models with two 

hypotheses, suggested measuring a particular answer's impact on an individual hypothesis as 

abs( P(hypothesis | answer) – P(hypothesis) ); or, in present notation, abs( P(c1 | qj) – P(c1) ). If a 

belief model contains exactly two hypotheses, as Nickerson noted, then a particular answer has 

the same impact on each hypothesis. The present paper generalizes impact to situations with 

multiple categories or hypotheses: 
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Slowiaczek et al. (1992, p. 402) reported that many subjects used the heuristic strategy of asking 

about the feature with the maximal difference in feature probabilities, abs( P(feature | c1)-

P(feature | c2) ). It is presently shown that this strategy is not merely heuristic, but exactly 

implements impact.2 If prior probabilities of two hypotheses are equal, impact and probability 
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gain are identical. Several models in the literature meet this condition (Slowiaczek et al., 1986; 

Skov & Sherman, 1992; Oaksford & Chater, 1994, 1998, 2003; Nickerson, 1996). (After an 

answer has been obtained, posterior probabilities of two hypotheses—which become priors for 

purposes of evaluating successive questions—will in general no longer be equal.) 

Properties of the sampling norms 

The psychological plausibility of claiming that subjective utility is infinite is questionable, 

so it is of interest to note whether each norm is finite. Similarly, it has been argued (Evans & 

Over, 1996) that it is psychologically implausible that an answer that changes beliefs can have 

negative utility. It is thus useful to note which norms are nonnegative. Finally, is the usefulness 

of obtaining two pieces of data (answers q1 and q2) simultaneously the sum of the usefulness of 

obtaining each datum separately? Intuitively, it seems that if two data in effect cancel each other 

out, such that posterior beliefs after obtaining both of them are the same as prior beliefs, those 

data were useless.3 Under which sampling norms is this the case? Table 2 lists which of these 

properties each sampling norm satisfies. 

[insert Table 2 about here] 

Prior research and the descriptive plausibility of each norm 

Most research that assesses people’s faculties at identifying useful questions has used a 

single sampling norm to calculate each question’s usefulness. This raises the possibility that 

using other normative models would result in different conclusions. To what degree do earlier 

researchers' conclusions about people’s sensitivity to questions’ usefulness depend on the 

specific sampling norm used? This section considers several belief models, each with specific 

hypotheses, prior probabilities, and available questions. For each belief model, the usefulness of 

each question is computed using diagnosticity, information gain-KL distance, probability gain, 
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and impact. Because "the complexity of any real decision problem defies complete explicit 

description" (Savage, 1954, p. 107), the probability models below reflect simplified experimental 

tasks. For instance, although Baron, Beattie, and Hershey (1988) studied a simple case of 

medical diagnosis, extension of that analysis to actual medical decision making is not 

straightforward (Cohen, 1996; Baron, 1996). Nor is it straightforward to predict how subjects 

will interpret an experimental task (McKenzie, Wixted, & Noelle, 2004). On Wason’s selection 

task, there are several proposed probability models. An evenhanded approach, for the present 

paper, is to exactly implement the original researchers' belief model, in each experiment 

considered. 

Two-category, binary-feature tasks. Skov and Sherman (1986) and Slowiaczek et al. 

(1992, experiments 3a and 3b) designed a task to be a case of miniature scientific inference, but 

in which appropriateness of a particular belief model was clear. Subjects were told the 

distribution of gloms and fizos, the two creatures on planet Vuma, and the distribution of various 

binary features within gloms and fizos. Subjects were asked to indicate which features they 

would ask about, to determine whether a novel creature were a glom or fizo. Skov and Sherman 

and Slowiaczek et al. used diagnosticity or log diagnosticity to measure the usefulness of 

questions. In Skov and Sherman's experiment, as many as 5 high diagnosticity questions could 

be chosen: 68% of the 66 subjects chose 5 high diagnosticity questions; an additional 18% chose 

4 high diagnosticity questions. In Slowiaczek et al.'s experiment 3a, a single question was 

selected; 98% of subjects (196 of 199) chose a high diagnosticity question.  

Do Skov and Sherman’s (1986) or Slowiaczek et al.’s (1992, experiment 3a) results depend 

on using diagnosticity or log diagnosticity to measure the usefulness of questions? In the present 

analysis, each question’s usefulness was calculated using information gain-KL distance, 
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probability gain, impact, diagnosticity and log diagnosticity. All norms agree with Skov and 

Sherman’s high>medium>low ordering, and with Slowiaczek et al’s high>low ordering, of the 

usefulness of each question (Table 3). This corroborates the earlier findings that people tend to 

select reasonable questions. But neither experiment's behavioral results differentiate the relative 

plausibility of the sampling norms under consideration as descriptive models. 

[insert Table 3 about here] 

Slowiaczek et al. (1992, experiment 3b) also sought to address whether people prefer 

questions with extreme feature probabilities; e.g. wearing a hula hoop (Hula), present in 90% of 

gloms and 55% of fizos; versus drinking iced tea (Drink), found in 65% of gloms and 30% of 

fizos. The intent was to hold usefulness constant while modifying the extremity of feature 

probabilities (Table 4) in a pair of questions. Unfortunately, the stimuli confounded extremity 

with several sampling norms, such that the questions with more extreme feature probabilities 

also had higher diagnosticity, log diagnosticity, and information gain-KL distance. Impact and 

probability gain were indifferent between the two questions in each pair. Slowiaczek et al.’s 

behavioral results were that on average, the feature with higher diagnosticity, log diagnosticity, 

and information gain-KL distance was chosen around 60% of the time (chance would be 50%). It 

is difficult to make strong inferences about the sampling norms from this result. 

[insert Table 4 about here] 

Medical diagnosis. Baron, Beattie, and Hershey (1988), experiments 4, 5, and 6, asked 

subjects to rate the usefulness of several medical tests. The task instructions described a situation 

in which probability gain would be the most obviously justifiable measure.4  Only one test could 

be conducted before diagnosing and treating the disease. Diseases were described abstractly, as 

diseases A, B, and C; their prior probabilities were 0.64, 0.24, and 0.12, respectively. Thus the 
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diseases were presumably equally problematic, if untreated, and equally treatable. Subjects were 

given the conditional probabilities that each of several tests would come out positive or negative, 

given each disease.5   

Subjects rated each test’s usefulness on a 0-100 scale “where 0 means the test is worthless 

and should not be done and 100 means the test would remove all doubt about which disease the 

patient has” (p. 101). Baron et al. found that subjects were generally sensitive to the relative 

usefulness of each test, as measured with probability gain. However, subjects consistently gave 

positive ratings to some tests that were useless, as calculated by probability gain. Baron et al. 

referred to this tendency as information bias. 

Could the idea that subjects were making use of a sampling norm besides probability gain 

better explain Baron et al.’s (1988) data? To address this, the probability gain, impact, and 

information gain-KL distance of each test were computed (Table 5 and Table 6). Impact and 

information gain-KL distance agree with subjects that some zero probability gain tests are useful 

(tests 3-8 in experiment 4). In other words, if impact or information gain were to be deemed 

appropriate normative models of this task, information bias would largely disappear. Overall, 

however, while subjects’ ratings correlate highly with each sampling norm, there is no clear 

pattern wherein a particular sampling norm best accounts for responses (Table 7). 

[insert Table 5 about here] 

[insert Table 6 about here] 

[insert Table 7 about here] 

The abstract selection task. In a typical version of this task, introduced by Wason (1966, 

1968), a subject is shown the top faces of four cards, showing A, 2, K, and 3. The subject is 

asked what cards would need to be flipped to falsify the rule that if a card has an A on one side, 
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it has a 2 on the other side. Wason intended the selection task to be a deductive logical task, in 

which the 2 card and the K card would be useless. But very few subjects (seldom 10%) select 

just the A and 3 card (Stanovich & West, 1998); most subjects do select the 2 card, which Wason 

took to be a mistake. Over several decades of subsequent study involving around 1000 

experimental subjects, the ordering of the most frequently selected cards has been A>2>3>K 

(Oaksford & Chater, 1994). 

Oaksford and Chater (1994, 1998, 2003) introduced probabilistic, rather than logical, models 

of the selection task and proposed that subjects choose cards to maximize information gain6 with 

respect to their beliefs, rather than to falsify a particular hypothesis. There has been extensive 

debate about this approach (Evans & Over, 1996; Laming, 1996; Almor & Sloman, 1996; 

Oaksford & Chater, 1996, 1998, 1999; Over & Jessop, 1998), and other probabilistic models 

have also been proposed (e.g. Kirby, 1994; Klauer, 1999; Hattori, 2002). However, novel 

predictions have been tested behaviorally (e.g. Oaksford, Chater, & Grainger, 1999), in turn 

improving the model. Oaksford & Chater’s (2003) belief model includes two hypotheses: a 

dependence hypothesis, that every card with an A on one side does have a 2 on the other side; 

and an independence hypothesis, that A, K, 2, and 3 are assigned independently, with the 

constraint that each card has a letter on one side and a number on the other side. The model 

requires four parameters: probability of the dependence hypothesis, overall P(A), overall P(2), 

and probability of an error under the dependence hypothesis, under which A is paired with 3. The 

general constraints specified by Oaksford & Chater are that A’s and 2’s are rare and that the 

combination of parameters lead to a valid probability distribution under the dependence 

hypothesis (Over & Jessop, 1998, explicitly specify these constraints). Among other results, 

Oaksford and Chater found that the ordering of the information gain of each card, A>2>3>K, 
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matched card selection frequencies. 

Would sampling norms other than information gain provide similar results? Oaksford and 

Chater’s (2003) model was implemented here, fixing P(dependence hypothesis)=0.5, 

P(error)=0.1, P(A)=0.22 and P(2)=0.27. Each norm gave the same ordering (Table 8), suggesting 

that at this level of analysis, the model does not differentiate the sampling norms under 

consideration.7 Would other parameter settings strongly differentiate the norms? If P(error)=0, 

both diagnosticity and log diagnosticity rate the A and 3 cards as infinitely useful. This is 

because if P(error)=0, each of these cards offers a chance of eliminating the dependence 

hypothesis, which diagnosticity and log diagnosticity consider infinitely useful. Diagnosticity 

and log diagnosticity are indifferent to the relative probability of eliminating a hypothesis when 

selecting the A or 3 card in this case. If P(error)=0.01, diagnosticity rates the A and 3 cards as 

most useful; log diagnosticity rates the A and 2 cards as most useful. To summarize: if subjects 

believe P(error) is very low, diagnosticity and/or log diagnosticity contradict abstract selection 

task data. Information gain and impact-probability gain maintain the A>2>3>K ordering when 

P(error)=0.01 or 0. A further note is that Evans and Over (1996) objected to information gain per 

se, but not to Oaksford and Chater's probability model. Present results show that a sampling 

norm as intuitive as probability gain or impact could be used. 

[insert Table 8 about here] 

Covariation assessment. How are variables related to each other? Inhelder and Piaget's 

studies (1955/1958) set a foundation for research in several areas.8 This section focuses on 

covariation assessment (Inhelder & Piaget, 1955/1958; Smedslund, 1963; Peterson & Beach, 

1967; McKenzie, 1994). A typical task involves two binary variables: X (e.g., glom or not) and Y 

(hulaWorn or not). Each individual observation falls in one cell of a matrix with four cells: cell 
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A, glom wearing a hula hoop; B, glom not wearing a hula hoop; C, fizo wearing a hula hoop; or 

D, fizo not wearing a hula hoop. Subjects frequently are shown a matrix with counts of the 

number of individuals in each of those four cells. Which cell’s observations are the most 

informative with respect to the goal of determining whether the variables X and Y covary? Most 

normative models treat the four cells as equally useful. Yet over several experimental 

manipulations (reviewed in McKenzie & Mikkelsen, in press), subjects treat A as most useful, 

and D as least useful, with B and C in between: A>B≈C>D. This differential evaluation has been 

considered suboptimal. 

McKenzie and Mikkelsen (in press) proposed that subjects may be approaching covariation 

assessment tasks as inferential tasks, and using their prior beliefs to interpret the tasks. For 

instance, subjects may have the goal of finding out which of two hypotheses is true: h1, that there 

is a moderate correlation between X and Y, or h0, that X and Y are independent. Each hypothesis 

specifies the probability that an observation will fall in each of the cells A through D. Presence 

of X (glom) and Y (hulaWorn) are each rare (10% probability under both h1 and h0) in the model, 

corresponding to several researchers’ findings that subjects usually assume rarity in related tasks 

(Anderson & Sheu, 1995; McKenzie & Mikkelsen, 2000; McKenzie, Ferreira, Mikkelsen, 

McDermott, & Skrable, 2001; Oaksford & Chater, 2003). McKenzie and Mikkelsen calculated 

the log2 diagnosticity of an observation in each cell, relative to their probability model. 

McKenzie and Mikkelsen's model gave the ordering A>B=C>D, providing a rational explanation 

of one of the main covariation assessment research findings. In the present analysis, McKenzie 

and Mikkelsen’s probability model was implemented,9 and each cell’s usefulness was calculated, 

relative to information gain, KL distance, probability gain, impact, diagnosticity, and 

log diagnosticity. All sampling norms agree on the A>B=C>D ordering. This result bolsters 
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McKenzie and Mikkelsen’s conclusion that subjects’ behavior is justifiable, but does not provide 

evidence against any sampling norm as a descriptive model of subjects’ behavior. 

[insert Table 9 about here] 

Do the sampling norms ever disagree? 

The previous section showed that the sampling norms under consideration behave similarly 

with respect to several probability belief models. This result corroborates previous researchers’ 

frequent finding that participants are sensitive to questions' and answers' usefulness. However, 

this result does not directly address when the sampling norms make contradictory claims. 

Simulations were therefore conducted to address the frequency, and pervasiveness in different 

environments, of disagreements between the sampling norms. 

Simulation 1.0, Multiple features. How often do any of the norms disagree with each 

other, and does the number of features relate to the frequency of disagreement? To address this, 

the Vuma scenario (described in the above review of Skov & Sherman, 1986, and Slowiaczek et 

al., 1992, and in Appendix A) was simulated, with P(glom)=P(fizo)=0.5, and random feature 

probabilities, such as P(hulaWorn | glom). (“Random probabilities” denotes pseudorandom 

numbers independently sampled from a uniform distribution between [0,1].) Ten thousand 

random trials were run for each number of features between 2 and 20. Each trial was analyzed to 

determine whether there was disagreement between diagnosticity, log diagnosticity, information 

gain-KL distance, and probability gain-impact on the relative usefulness of each feature. Number 

of disagreements increased monotonically with the number of features. Disagreements occurred 

in 7% of 2 feature trials, a majority of 6 feature trials, and more than 99% of 15 feature trials. 

Simulations 1.1-1.3, Several environments.10 Is the existence of disagreements between 

sampling norms restricted to a particular environment? In each simulation, 1,000,000 random 
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trials were generated. Simulation 1.1 used random feature probabilities and random prior 

probabilities. Simulation 1.2 used equal prior probabilities, and random feature probabilities. 

Simulation 1.3 considered an environment where both features were “rare” (feature probabilities 

between 0 and 0.5), as subjects in hypothesis-testing tasks usually assume (Anderson & Sheu, 

1995; McKenzie & Mikkelsen, 2000; McKenzie et al., 2001; Oaksford & Chater, 2003), but was 

otherwise identical to Simulation 1.1. Results showed that in each simulation, every possible 

type of pairwise disagreement (where one norm prefers Hula and another norm prefers Drink) 

occurred. Likewise, each simulation produced cases of disagreement with and without extreme 

feature values: having a feature probability close to 0 or 1 is not necessary for a disagreement to 

occur. In simulations 1.1 and 1.3, where P(glom) was random, sometimes both questions had 

zero probability gain. Simulation 1.3, with rare features, had results similar to Simulation 1.1. 

Together, these simulations show that in a variety of environments, using one norm leads to 

asking different questions than using another norm. Some cases of disagreement were 

qualitatively stronger than others, an issue addressed below. 

Simulation 2: Cases of strongest disagreement 

Could identification of cases of strong disagreement elucidate the differences between the 

sampling norms? This section describes a simulation to search for limiting cases. 

Methods. A simulation automatically searched for cases of high pairwise disagreement 

strength (DStr, defined in Appendix B) between diagnosticity, log diagnosticity, information 

gain-KL distance, probability gain, and impact. Each optimization used fixed prior probabilities, 

specified by P(glom), and began with random feature probabilities, in which the two norms being 

compared disagreed about which feature was more useful. Optimizations to maximize the 

disagreement between all ten pairs (5 choose 2 = 10) of norms were run, for each P(glom) 
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between 0.50, 0.505, 0.51, … 0.995. The optimization procedure was allowed to find feature 

probabilities of 0, any number between 0.0001 and 0.9999, or 1. Each trial was repeated 10 

times; feature probabilities in the trial with the highest DStr were recorded. 

Results and discussion. Figure 1 shows the maximum obtained DStr as a function of 

P(glom), for each pair of norms. A surprising result, considering that some researchers have used 

diagnosticity and log diagnosticity interchangeably, is the consistently high disagreement 

between diagnosticity and log diagnosticity (dashed line at top of figure). In each of the trials in 

this particular optimization, diagnosticity's claims were strongly suboptimal with respect to all 

other sampling norms; log diagnosticity agreed with information gain-KL distance, probability 

gain, and impact. In all other optimizations where very high disagreement (DStr near 100) was 

observed, diagnosticity and log diagnosticity agreed with each other in each trial, but were 

suboptimal with respect to all other norms. In these trials diagnosticity and log diagnosticity 

were unduly influenced by the occasional presence of a certainty-inducing answer, which 

occurred because a feature probability was 1 or 0. Information gain-KL distance, probability 

gain, and impact had only moderate degrees of disagreement with each other, suggesting that 

they may be more closely related to each other (three lines in middle and bottom of figure). 

Representative cases of disagreement are discussed below; Appendix B shows how patterns 

change as a function of P(glom). (Additional results are included in the supplementary material 

posted online.) In most of the individual cases discussed below, P(glom)=0.70; this prior led to 

high DStr in most optimizations (Figure 1, Appendix B). Where multiple optimizations, for 

example probability gain vs. diagnosticity, and probability gain vs. log diagnosticity, produced 

essentially identical feature probabilities, those optimizations are discussed simultaneously. 

[insert Figure 1 about here] 
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Log10 diagnosticity vs. diagnosticity (Table B1). Illustrative trial where P(glom)=0.70: 

P(hulaWorn | glom)=0.9987, P(hulaWorn | fizo)=0.0013, P(drinksTea | glom)=0.0001, and 

P(drinksTea | fizo)=0.6202; DStr=99.68. Diagnosticity rates the Drink feature as much more 

useful than Hula; log10 diagnosticity rates Hula as much more useful than Drink. Testing the 

Hula feature leads to probability 0.9987 of correct guess (remaining uncertainty 0.0137 bit); 

testing the Drink feature leads to probability 0.8860 of correct guess (remaining uncertainty 

0.4763 bit). Similar examples were observed in other limiting cases of disagreement between 

diagnosticity and log10 diagnosticity. In all of these cases, using diagnosticity to select questions 

is strongly suboptimal with respect to probability of correct guess (probability gain), reduction in 

uncertainty (information gain), and absolute change in beliefs (impact). 

Information gain vs. diagnosticity; information gain vs. log10 diagnosticity; impact 

vs. diagnosticity; impact vs. log10 diagnosticity (Table B2). If a question has any 

possibility of completely eliminating a hypothesis, then even if that possibility is extremely 

remote, diagnosticity and log diagnosticity regard that question as infinitely useful. Illustrative 

trial for information gain vs. diagnosticity: P(glom)=0.70, P(hulaWorn | glom)=0.0001, 

P(hulaWorn | fizo)=0.9999, P(drinksTea | glom)=0.0001, and P(drinksTea | fizo)=0.0000. Hula 

leads to 99.99% probability of correct guess (probability gain 0.2999), and to uncertainty 0.0014 

bit (information gain 0.8799 bit). Drink gives no improvement in probability of correct guess 

(probability gain 0), and almost no reduction in uncertainty (information gain 0.00004 bit). Yet 

the Drink question, with probability 7 in 100,000, results in the drinksTea answer, which 

provides conclusive evidence that the creature is a glom. Diagnosticity and log diagnosticity 

therefore consider the Drink question to be infinitely11 useful. Probability gain, information gain-

KL distance, and impact all strongly prefer the Hula question. Essentially identical results 
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occurred throughout the optimizations in which information gain or impact was contrasted with 

diagnosticity or log diagnosticity. 

Probability gain vs. diagnosticity; probability gain vs. log10 diagnosticity (Table 

B3). Illustrative trial for probability gain vs. diagnosticity: P(glom)=0.70, 

P(hulaWorn | glom)=0.0001, P(hulaWorn | fizo)=0.9999, P(drinksTea | glom)=0.0914, and 

P(drinksTea | fizo)=0.0000; DStr= 97.48. Hula has probability gain 0.2999; Drink, 0. Hula has 

information gain 0.8799; Drink, 0.0343. Yet the Drink feature has infinite diagnosticity and log10 

diagnosticity. In all cases of these optimizations, diagnosticity and log diagnosticity agreed with 

each other, and were suboptimal with respect to information gain, impact, and probability gain. 

These optimizations’ results are similar in some respects to the previous example comparing 

information gain and diagnosticity. However, probability gain is zero for a wider range of feature 

probabilities than information gain and impact. In the present optimization that tends to result in 

more variable feature probabilities in the question that diagnosticity and log10 diagnosticity 

prefer. (Had the present example contrasted information gain with diagnosticity, 

P(drinksTea | glom) would have been expected to be 0.0001, rather than 0.0914.) 

Information gain vs. probability gain (Table B4). Recall that information gain 

generally prefers features with an extreme feature probability, especially features with an 

extreme feature probability given the working hypothesis. By contrast, probability gain prefers 

features with an extreme feature probability given the working hypothesis, but not extreme 

feature probabilities in general. In this optimization, information gain preferred a feature with an 

extreme feature probability given the alternate hypothesis, e.g. P(hulaWorn | fizo)≈0 or 1. 

Probability gain preferred a feature in which the more extreme of the two feature probabilities 

was paired with the working hypothesis (glom). Illustrative example where P(glom)=0.70, 
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P(hulaWorn | glom)=0.5714, P(hulaWorn | fizo)=0.0000, P(drinksTea | glom)=0.9525, and 

P(drinksTea | fizo)=0.5587; DStr=58.04. Hula had probability gain zero; Drink had probability 

gain 0.0991. Information gain, however, was greater for Hula (0.2813 bit) than for Drink (0.1577 

bit). Impact agreed with probability gain when P(glom) was between 0.50 and 0.58, and with 

information gain for more extreme values of P(glom). In most cases the feature preferred by 

information gain offered the possibility of a certain result, and was favored by diagnosticity and 

log diagnosticity. 

Information gain vs. impact (Table B5). Information gain has a preference for extreme 

feature probabilities, especially extreme feature probabilities given the working hypothesis (glom 

where P(glom)>0.50). If feature difference is held constant, then impact has no preference 

between features with extreme feature probabilities given the working or alternate hypothesis, or 

without extreme feature probabilities altogether. This optimization gave each feature preferred 

by information gain (Hula) probability of 1 or 0 given the working hypothesis. Compared with 

the Hula features, the Drink features were given less extreme feature probabilities overall. To 

further minimize their information gain, the Drink features are asymmetric in the sense that the 

relatively extreme feature probability was paired with the alternate hypothesis (fizo). Illustrative 

example, where P(glom)=0.70: P(hulaWorn | glom)=1, P(hulaWorn | fizo)=0.6247, 

P(drinksTea | glom)=0.2770, and P(drinksTea | fizo)=0.7791; DStr=39.57. Information gain was 

0.2213 for Hula, and 0.1604 for Drink; impact was 0.1576 for Hula, and 0.2109 for Drink. 

Probability gain was 0.1126 for Hula, and 0.0398 for Drink. In this optimization probability gain 

agreed with impact when P(glom) was between 0.5 and 0.58, and with information gain for more 

extreme P(glom) values. 

Probability gain vs. impact (Table B6). Probability gain and impact are identical if 
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P(glom)=P(fizo)=0.5, but otherwise can disagree. Impact is a constant multiple of feature 

difference, for fixed P(glom), and always prefers the question with maximal difference in feature 

probabilities. For impact’s preferred feature (Hula), the optimization appears to have maximized 

feature difference, subject to the constraint that the feature have probability gain approximately 

zero. This was achieved by making the most extreme feature probability conditional on the 

alternate hypothesis, e.g. P(hulaWorn | fizo)≈0 or 1. For the feature that probability gain prefers, 

the optimization found features with lower feature difference than the corresponding feature 

preferred by impact, but in which an extreme feature probability was conditioned on the working 

hypothesis, e.g. P(drinksTea | glom)≈0 or 1, so as to maximize probability gain. Illustrative 

example where P(glom)=0.70: P(hulaWorn | glom)=0.5714, P(hulaWorn | fizo)=0, 

P(drinksTea | glom)=1, P(drinksTea | fizo)=0.6966; DStr=55.25. Hula has impact 0.2400; Drink, 

0.1274. Hula has probability gain 0; Drink, 0.0910. In each trial of this optimization, information 

gain agreed with impact. 

An experiment to separate sampling norms 

Given that people may choose queries in a noisy manner (Hattori, 2002), an experiment to 

identify what norms best predict human queries should use cases of strong disagreement between 

norms. This section reports an experiment whose design was based on cases of maximal possible 

disagreement between norms, given equal priors, as identified by Simulation 2 (Appendix B). 

Method. Subjects were undergraduate students in an introduction to cognitive science class 

at UCSD (N=151), who participated as part of class requirements. All subjects gave informed 

consent. A planet Vuma scenario was used; subjects were asked to rate the possible questions 

from most to least useful for determining whether a novel Vumian was a glom or fizo. Prior 

probabilities of glom and fizo were equal.12  Table 10 gives the feature probabilities of each 
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question, and each norm’s calculation of each question’s usefulness. A sample stimulus is given 

in Appendix C. The order of features with particular feature probabilities, and the order of 

features’ labels (Drink, Gurgle, etc.), both varied across subjects.  

[insert Table 10 about here] 

Results and discussion. Three subjects were excluded for not ranking all features. One 

subject gave all queries equal rank. Correlations between that subject’s data and each sampling 

norm are set to 0 in the analyses. The most common pattern (32% of subjects) was an exact 

match to information gain-KL distance. The next most common pattern (27%) was an exact 

match to probability gain-impact. No responses matched diagnosticity or log diagnosticity. Table 

11 summarizes frequent ordering patterns, along with each pattern’s Spearman rank correlation 

with information gain, probability gain, diagnosticity, and log diagnosticity.  

[insert Table 11 about here] 

Two analyses were conducted. The first analysis addressed whether the number of responses 

consistent with each norm was consistent with assigning rank orders 1 through 4 at random. The 

probability of exactly matching a particular norm by chance, under this null hypothesis, is 1/4!= 

1/16. The number of subjects matching a particular norm, under this null hypothesis, is 

approximately normally distributed with mean 9.25, standard deviation 2.94. (Standard deviation 

is derived from the binomial variable with parameter 1/16, and n=148.)  Significantly more 

subjects gave rankings in accord with information gain (t(147)=13.2, p<0.0001) and probability 

gain (t(147)=10.4, p<0.0001) than expected under the null hypothesis. No subjects responded 

according to diagnosticity or log diagnosticity, less than expected under the null hypothesis (each 

t(147)= -3.1, p<0.01). (All stated p values are two tailed, and have been multiplied by 4 to 

correct for multiple tests.)  The second analysis consisted of all 148 responses’ Spearman rank 
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correlations with each sampling norm (bottom row, Table 11). Average correlation with 

information gain-KL distance was 0.78; probability gain-impact, 0.69; log diagnosticity, -0.22; 

and diagnosticity, -0.41. These results strongly contradict claims that people choose queries 

according to diagnosticity or log diagnosticity.  

The other norms make relatively similar predictions, and are not strongly differentiated from 

each other here. However, some points may be noted. Information gain-KL distance had the 

largest number of exact matches. Probability gain and impact, which made the same predictions 

(due to equal priors), were second. Subjects were not asked to explain their choices in this 

experiment. However, several pilot subjects reported using the feature difference strategy, in a 

scenario with unequal priors, which corresponds to impact. (Slowiaczek et al., 1992 found a 

similar result in a scenario with equal priors.) If the feature difference strategy is consistently 

used, then impact is a necessary component of a descriptive theory of human questions. 

Theoretical problems with Bayesian diagnosticity and log diagnosticity 

It is possible that an inquirer's subjective sense of queries' usefulness might correspond to 

diagnosticity or log diagnosticity. But that seems unlikely and normatively ill-advised, in part for 

the following reasons. 

Disregard for priors if features are symmetric. Intuitively, it seems that if the inquirer 

already knows the true category or hypothesis, for instance because all creatures are known to be 

gloms, no question is useful (Lindley, 1956, p. 987), but if the inquirer is highly uncertain, many 

questions are useful. Consider the symmetric feature probability case, where 

P(hulaWorn | glom) = 1-P(hulaWorn | fizo). Diagnosticity and log10 diagnosticity rate the Hula 

question as equally useful, irrespective of whether gloms comprise 1%, 20%, 50%, or 99.9999% 

of the creatures on Vuma. The other sampling norms recognize that if the true category is known 
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in advance, every question is useless. This disregard for prior knowledge, in cases with 

symmetric feature probabilities, is an undesirable yet unavoidable consequence of using 

diagnosticity or log diagnosticity. 

Oversensitivity to occasional certainty: Features with multiple values. This paper 

focused on a situation with binary features. What if answers (features) could take three or more 

values qj? Perhaps a single fizo has a hard time hearing “Do you drink iced tea?” because of an 

injury to its auditory system, and answers “maybe” if a question is not clear. If occurrence of the 

maybe answer makes it certain that the creature is a fizo, then diagnosticity and log diagnosticity 

rate the question as infinitely useful. This holds even if the maybe answer is rare, occurring with 

probability 1/1,000,000. The other norms are not unduly influenced by a certainty-inducing 

answer with rare occurrence.13 

Log diagnosticity can be normatively inferior to diagnosticity. Let P(glom)=0.99, 

P(hulaWorn | glom)=0.99, P(hulaWorn | fizo)=0.50, P(drinksTea | glom)=0.97, and 

P(drinksTea | fizo)=0.50. Probability gain is zero for both questions. Log diagnosticity prefers 

Drink, which is suboptimal with respect to diagnosticity, information gain-KL distance, and 

impact. There are a range of cases like this in which diagnosticity and log diagnosticity 

contradict each other, and in which log diagnosticity makes the normatively inferior (as judged 

by information gain-KL distance, impact, and diagnosticity) claim. 

Multiple hypotheses/categories. Fischoff and Beyth-Marom (1983, p. 243) stated that 

diagnosticity was defined in situations with multiple hypotheses, although they did not provide 

an operational definition; Oaksford and Chater (2003, p. 309) stated the contrary. A literature 

review conducted for the present paper failed to produce a single example calculation of a 

query’s diagnosticity, in a situation with more than two hypotheses. However, for the sake of 
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argument, an operational definition is provided here. (Generalization to cases with more than 

three categories, and definition of log10 diagnosticity++, are straightforward.) Note that what has 

been called the diagnosticity of a question, Hula, could just as easily be called the pairwise 

diagnosticity of Hula with respect to whether a creature is a glom or fizo, and denoted 

diagnosticityglom&fizo(Hula). Now suppose that jevas, in addition to gloms and fizos, reside on 

Vuma. Define diagnosticity++ as the average of each pairwise diagnosticity: 

diagnosticity++ (Hula) =  1/3 * (  diagnosticityglom&fizo(Hula) +  
                                                   diagnosticityglom&jeva(Hula) + diagnosticityfizo&jeva(Hula)  ).  

How would diagnosticity++ perform? To explore this, the diagnosticity++ of the medical tests 

from experiments 4-6 in Baron et al. (1988) was computed. Results showed that with the 

exception of those tests that can never change beliefs, irrespective of their outcome (and that all 

norms agree are useless), every test has infinite diagnosticity++. Diagnosticity++ is useless in this 

case, and in every case where each test has non-zero probability of eliminating a hypothesis. 

Does it matter? In the real world, would using diagnosticity or log diagnosticity actually 

be problematic? Suppose one’s task were to identify the gender of a passerby, by inquiring about 

one of several features of interest: whether they have a beard, are wearing a dress, are wearing 

earrings, etc. Statistics were gathered from one natural environment, the UCSD campus in the 

afternoon, with each of about 500 passersby classified according to their gender (51% were 

male; 49% female) and several features (Table 12). What features are most useful, according to 

each sampling norm? The Hair length feature has maximal information gain-KL distance, 

probability gain, and impact. Asking about Hair length leads to 93% probability of correctly 

categorizing gender. The Skirt and Beard features have infinite diagnosticity and 

log diagnosticity, because 0% of males wore skirts and 0% of females had beards. Asking about 

Skirt or Beard leads, respectively, to only 52% or 59% probability of correct guess. Although the 
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wearsSkirt and hasBeard answers provide 100% certainty of the person’s gender in this 

population, those answers are infrequent. For a person, or seeing robot, to use diagnosticity or 

log diagnosticity to select queries in this natural environment would be exceptionally inefficient, 

with respect to all the other sampling norms. The other norms make reasonable claims, and differ 

from each other only slightly. 

[insert Table 12 about here] 

General discussion 

Diagnosticity and log diagnosticity lack several useful properties that the other norms each 

possess, including (1) sensitivity to prior probabilities: if there is minimal uncertainty, no 

question has high usefulness; (2) being finite; and (3) equal applicability in situations with 2, 3, 

or 1,000,000 hypotheses or categories. Because diagnosticity and log diagnosticity lack these 

important properties, contradict this paper's experimental results, and appear unnecessary to 

explain other empirical data, there appears to be no further purpose for them in normative or 

descriptive theories of evidence acquisition. 

In many evidence-gathering situations, where there is no particular external coercion 

shaping behavior, more than one sampling norm might reasonably apply. Several researchers 

explicitly make this point (Baron, 1985; Klayman & Ha, 1987; Klayman, 1987; Slowiaczek et 

al., 1992; Over & Jessop, 1998; Oaksford & Chater, 2003). Theoretical claims that human 

evidence seeking is adaptive (or that it is biased) would be bolstered by showing that multiple 

sampling norms agree on what questions are most useful. 

A further issue is whether people actually use normative, versus heuristic, utilities. Various 

heuristic confirmatory or positive test strategies have been proposed (Skov & Sherman, 1986; 

Klayman & Ha, 1987, 1989; Gorman, Stafford & Gorman, 1987; Devine, Hirt, & Gehrke, 1990; 
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Slowiaczek et al., 1992; reviewed in Klayman, 1995). In some situations, strategies that reduce 

memory load (Costa-Gomes, Crawford, & Broseta, 2001) might also be used. These and other 

possibilities, including the sampling norms of the present paper, could be combined to form very 

flexible heuristic models. Most empirical data might then appear to be better fit by a heuristic 

model than by a sampling norm, because of the heuristic model's greater complexity. To avoid 

overfitting, future research comparing simple sampling norms with flexible heuristic models 

could explicitly balance model complexity with descriptive accuracy (Pitt, Myung, & Zhang, 

2002). 

Geman and Jedynak (2001) describe situations in which looking only one step into the 

future, as done in this paper, results in having to ask more questions on average than would be 

required if an optimal sequence of questions were planned in advance (also see Chernoff, 1959, 

1972; Klauer, 1999). Unfortunately, planning an optimal series of questions requires knowledge 

of the individual features’ conditional dependence on each other, given the true category. For 

example, if a particular glom drinks gasoline, is he more likely to breathe fire than the average 

glom? Most tasks have not specified this information, or have not obtained sequences of 

questions, and are therefore unable to address whether subjects’ queries are sensitive to class-

conditional dependencies. In a review of work on perceptual information integration (not 

involving active sampling), Movellan and McClelland (2002) found that people made 

appropriate use of features' level of class-conditional dependence. Whether people's queries 

make use of these intricate statistical relationships is an important issue for future research. 
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Appendix A: Example calculations of each sampling norm 

Each sampling norm will be discussed in the context of the planet Vuma scenario (Skov & 

Sherman, 1986; Slowiaczek et al., 1992). The task is to discover whether a novel creature is a 

glom or fizo, by asking whether it possesses a particular binary feature, such as wearing a hula 

hoop or not, or drinking iced tea or not. The probability belief model is specified with five 

parameters. These parameters are listed here, together with specific example values: the prior 

probability that an individual creature is a glom, P(glom)=0.70, and four feature probabilities, 

P(hulaWorn | glom)=0.1, P(hulaWorn | fizo)=0.9, P(drinksTea | glom)=0.3, and 

P(drinksTea | fizo)=0.5. Questions are answered truthfully; Bayes' theorem is used to update 

beliefs. For instance, if a hula hoop is worn: 

( ) ( ) ( )
( ) 21.0

34.0
7.0*1.0*|| ≈==

hulaWornP
glomPglomhulaWornPhulaWornglomP , where 

( ) ( ) ( ) ( ) ( )fizoPfizohulaWornPglomPglomhulaWornPhulaWornP *|*| +=  

                       =  0.1*0.7  +  0.9*0.3  =  0.34,  by the Law of Total Probability. 

(All knowledge to date becomes prior knowledge when calculating the usefulness of subsequent 

questions; for instance, if features have class-conditional dependencies, obtained answers may 

change feature probabilities in addition to P(glom) and P(fizo), as the General Discussion 

considers.) Is the Drink or Hula question more useful in this example? Each sampling norm gives 

its own means of calculating an individual answer's usefulness. However, all norms discussed in 

this paper define a question's usefulness as the expected usefulness of the individual answers: 

( ) ( ) )(*)()(* nhulaNotWorusefulnessnhulaNotWorPhulaWornusefulnesshulaWornPHulausefulness +=  

Equations for the hulaWorn answer and the Hula question follow; specific values for the sample 

questions are given in Table A1. 
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Diagnosticity 

( ) ( )
( )

( )
( )






=

glomhulaWornP
fizohulaWornP

fizohulaWornP
glomhulaWornP

hulaWornitydiagnostic
|
|

,
|
|

max , and 

( )
( ) ( ) ( ) ( ).** nhulaNotWoritydiagnosticnhulaNotWorPhulaWornitydiagnostichulaWornP

Hulaitydiagnostic
+

=

 

Log10 diagnosticity 

( ) ( )
( )

( )
( )



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
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glomhulaWornP
fizohulaWornP
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loghulaWornitydiagnosticlog
|
|
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( ) ( )
.)(*)(

)(*
nhulaNotWoritydiagnosticlognhulaNotWorP

hulaWornitydiagnosticloghulaWornPHulaitydiagnosticlog

10

1010

+
=

 

Information gain 

The information gain of the answer hulaWorn, 

information gain(hulaWorn) = H(Species) – H(Species | hulaWorn), where 

( ) ( )
)(

1log*
)(

1log*)( 22 fizoP
fizoP

glomP
glomPSpeciesH +=  , and 

( ) ( ) ( )
( ) ( ).

|
1*|

|
1*||

hulaWornfizoP
loghulaWornfizoP

hulaWornglomP
loghulaWornglomPhulaWornSpeciesH

2

2

+

=
 

The information gain of the Hula question, the mutual information between Hula and Species, 

( ) ( ) ( )HulaSpeciesHSpeciesHSpeciesHulaI |, −= , where the conditional entropy, 

H(Species | Hula)=    P(hulaWorn)*H(Species | hulaWorn)    
                             + P(hulaNotWorn)*H(Species | hulaNotWorn). 

Kullback Liebler (KL) distance 
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( ) ( )
( )

( ) ( )
( ) and,|log|

|log|)(

2

2

fizoP
hulaWornfizoPhulaWornfizoP

glomP
hulaWornglomPhulaWornglomPhulaWorndistanceKL

+

=

 

( ) ( ) ( )
( ) ( ).*

*
nhulaNotWordistanceKLnhulaNotWorP

hulaWorndistanceKLhulaWornPHuladistanceKL
+

=
 

Probability gain 

probabilityGain(hulaWorn) =  

max( P(fizo|hulaWorn), P(glom|hulaWorn) )  -  max( P(glom), P(fizo) ). 

( ) ( ) ( )ssCorrectGuePHulassCorrectGuePHulayGainprobabilit −= | , where  

( ) ( ) ( )( )fizoPglomPssCorrectGueP ,max= , and 

( ) ( ) ( )( ))
( ) ( ) ( )( )nhulaNotWorfizoPnhulaNotWorglomPnhulaNotWorP

hulaWornfizoPhulaWornglomPhulaWornPHulassCorrectGueP
|,|max*

|(,|max*|
+

=
 

Impact 

From the definition in the text, 

impact(hulaWorn) =     0.5 * abs(P(glom | hulaWorn) - P(glom)) 
                                 +  0.5 * abs(P(fizo | hulaWorn) - P(fizo)). 

Because P(fizo | hulaWorn)=1-P(glom | hulaWorn), and P(fizo)=1-P(glom),  

impact(hulaWorn) =  abs(P(glom | hulaWorn) - P(glom)). 

If a probability model has two categories, the impact of a question is a constant multiple of the 

difference in feature probabilities (see the footnote in the introduction of impact, in the text): 

impact(Hula) =  2*P(glom)*P(fizo)*abs(P(hulaWorn | glom) – P(hulaWorn | fizo)). 

[insert Table A1 about here] 
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Appendix B: limiting cases of disagreement between norms 

This appendix gives several limiting cases of disputes between each pair of norms, as 

obtained in Simulation 2. Each optimization shows results for several prior probabilities, to 

illustrate the systematic relationship of feature probabilities to the prior P(glom). Each table (B1-

B6) gives results for an optimization comparing one pair of norms. Tables are organized such 

that one norm prefers the "Hula" question, and the other norm prefers the "Drink" question, as 

noted.  

Precise definition of DStr and Preference Strength. Disagreement Strength (DStr) is 

defined to be high when one norm strongly prefers one particular question, and another norm 

strongly prefers the other question. DStr, therefore, requires a measure of each individual norm’s 

strength of preference between Drink and Hula. The absolute value of the difference in 

usefulness of Hula and Drink, as measured by each norm, was computed in each of 100,000 

random trials, in which P(glom), P(wearsHula | glom), etc., were all random probabilities. For 

probability gain, cases where both features had probability gain zero, and were therefore tied, 

were excluded; no other ties occurred. Endpoints to the distributions underlying each norm’s 

strength of preference were added where they exist. In a novel trial, a particular norm’s degree of 

preference is quantified as a percentile of the set of 100,000 previously observed differences in 

the usefulness of Hula and Drink. Linear interpolation was used so that DStr would be 

continuously valued. DStr is the geometric mean (the square root of the product) of two norms’ 

strengths of (contrary) preferences.  

[insert tables B1-B6 about here] 
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Appendix C: sample stimulus from Vuma experiment 

 
Imagine you are visiting the planet Vuma.  There are 1 million creatures on Vuma; 50 % of them 
are Gloms, and 50 % are Fizos.  All creatures are invisible to the human eye, so you cannot learn 
about them by looking at them, but only by asking them questions.   
 
Suppose you have just met a creature from Vuma.  Your job is to tell which of the two kinds of 
creatures it is.  The table below gives information about the percent of Gloms, and the percent of 
Fizos, with certain characteristics.  (The characteristics are listed in a random order.)   
 

Characteristic 
 drinks tea wears a hula hoop plays harmonica gurgles a lot 
proportion of Gloms  30 %    99 %   1 % 70 % 
proportion of Fizos        0.01 %  100 % 99 % 30 % 
 
Imagine that to help you find out the identity of the creature, you could ask it one yes or no 
question, about one of its characteristics.  For instance, if “swims fast” were a characteristic, you 
could ask “Do you swim fast?”  The creature answers truthfully.   
 
Considering the information given, which of the possible questions would be most useful to help 
you learn whether the creature is a Glom or Fizo?  Please rank the questions below, putting a “1” 
in the box beside the most useful question, a “2” in the box beside the next-most-useful question, 
and so on.  If two questions are equally useful, give them the same rank.   
 
Question Rank 
Do you drink tea?  
Do you wear a hula hoop?  
Do you play harmonica?  
Do you gurgle a lot?  
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Footnotes 

 
                                                

1 Pseudodiagnosticity papers (Doherty,  Mynatt, Tweney, & Schiavo, 1979; Doherty, 

Schiavo, Tweney, & Mynatt, 1981; Beyth-Marom & Fischoff, 1983; Doherty, Chadwick, 

Garavan, Barr, & Mynatt, 1996; Maggi, Butera, Legrenzi, & Mugny, 1998) also use 

diagnosticity as a sampling norm. In a typical experiment subjects are given d1 (datum1) and d2 

and are trying to determine whether h1 or h2 is the correct hypothesis. They may select two of 

four possible pieces of information:  P(d1|h1), P(d1|h2), P(d2|h1), or P(d2|h2). The normatively 

correct behavior, which makes it possible to calculate posterior probabilities, is to select P(d1|h1) 

and P(d1|h2), or P(d2|h1) and P(d2|h2). Subjects frequently make other selections, which is 

nonnormative irrespective of the sampling norm used. Unfortunately, these empirical data do not 

discriminate the relative plausibility of different sampling norms as descriptive models. 

2 Proof of equivalence of heuristic feature difference maximization strategy and impact 

sampling norm, where there are two categories c1 and c0, and a question Q with possible answers 

q1 and q2. If P(q1 |c1)>P(q1 |c0), then impact(Q) 

= P(q1)*impact(q1) + P(q2)*impact(q2) 

= P(q1)*abs[ P(c1|q1) - P(c1) ] + P(q2)*abs[ P(c1|q2) - P(c1) ], because there are two ci, 

= P(q1)*[ P(c1|q1) - P(c1) ] + P(q2)*[ P(c1) - P(c1|q2) ], because P(q1|c1)>P(q1|c0), 

= P(q1)*P(c1|q1) - P(c1)*P(q1) + P(c1)*P(q2) - P(q2)*P(c1|q2) 

= P(c1)*P(q1|c1) - P(c1)*P(q1) + P(c1)*P(q2) - P(c1)*P(q2|c1) 

= P(c1)*[P(q1|c1) - P(q1) + P(q2) - P(q2|c1) ] 

= P(c1)*[P(q1|c1) - P(q1) + (1-P(q1)) - (1-P(q1|c1)) ],  
because P(q1) = 1-P(q2); P(q2|c1) = 1-P(q1|c1), 

= 2*P(c1)*[ P(q1|c1) - P(q1) ] 

= 2*P(c1)*[P(q1|c1) - P(c1)*P(q1|c1) - P(c0)*P(q1|c0)], by Law of Total Probability, 
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= 2*P(c1)*[ (1 - P(c1))*P(q1|c1) - P(c0)*P(q1|c0) ] 

= 2*P(c1)*[ P(c0)*P(q1|c1) - P(c0)*P(q1|c0) ], because P(c0) = 1 - P(c1) 

= 2*P(c1)*P(c0)*[ P(q1|c1) - P(q1|c0) ] 

By a similar derivation, if P(q1|c1)>P(q1|c0), then  

impact(Q) = 2*P(c1)*P(c0)*[ P(q1|c0) - P(q1|c1) ]. 

In both cases,  

impact(Q) = 2*P(c1)*P(c0)*abs[ P(q1|c0) - P(q1|c1) ].  

3 Nick Chater (personal communication, 2005) raised this final issue. 

4 If reducing the number of possible diseases improves treatment, irrespective of the true 

disease, probability gain might not be uniquely justified. Shanks, Tunney, and McCarthy (2002), 

on a two arm bandit task that did not involve active sampling, found that some subjects did seek 

to maximize average winnings. One could imagine a modified task that includes asking 

questions, where probability gain is uniquely compatible with the goal of maximizing average 

winnings. 

5 In experiment 5 joint probabilities of each disease and each test, for instance that 32% of 

patients have disease 1 and a positive result from test A, were given. A set of conditional 

probabilities uniquely implies a set of joint probabilities, and vice versa. 

6 Some research on the abstract selection task (Oaksford & Chater, 1998, 2003; Hattori, 

2002) has reported information gain values scaled to sum to 1. The present paper reports non-

normalized values; normalized values give the same ordering. 

7 The present analysis fixed P(dependence hypothesis)=0.5 and P(error)=0.1, like Oaksford 

and Chater (2003, henceforth “OC2003”). But whereas OC2003 optimized P(A) and P(2) to fit 

data from each of several dozen experiments in the literature, the present analysis fixed 
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P(A)=0.22 and P(2)=0.27, to match the mean best fit parameters reported by OC2003. For each 

experiment, OC2003 used a logistic function to transform the information gain of each card into 

a probability of selection, as proposed by Hattori (2002). A further step in analysis of the 

selection task would be to replicate OC2003’s optimizations, finding the best fit parameters of 

P(A) and P(2) for each sampling norm, for each of the several dozen experiments OC2003 fit. 

Those results, for instance goodness of fit in each experiment, and number of experiments in 

which a model is rejected, could potentially speak to the relative descriptive plausibility of each 

sampling norm, even without overt disagreements on the ordering of the cards' usefulness. 

8 In one of Inhelder and Piaget’s (1955/1958) studies subjects experimented with string 

length, weight on the string, etc., to learn what variables control the movement of a pendulum. 

Scientific reasoning research (Wason, 1960; Klahr, 2000; Kuhn, Amsel, & O'Loughlin, 1988, pp. 

161-183; Kuhn, 1989, 2002; Zimmerman, 2000) frequently uses similarly rich tasks. Another 

related area is contingency, the degree to which one variable predicts another variable's 

occurrence later in time (Jenkins & Ward, 1965; Allan, 1993; Anderson & Sheu, 1995). 

9 McKenzie and Mikkelsen (in press) did not specify prior probabilities of h1 and h0. The 

diagnosticity and log diagnosticity of an observation (answer qj) is independent of priors; e.g. 

log2 diagnosticity(A)=2.46, irrespective of whether P(h1)=P(h2)=0.5, or P(h1)=0.9999 and 

P(h2)=0.0001. As the other norms are sensitive to priors, equal priors of h1 and h0 were used. 

10 Methods and results are briefly described here; complete details on the design of the 

simulations and results are included in the supplementary material posted online, and at 

http://www.jonathandnelson.com. 

11 Strict formalists may state that diagnosticity(Drink) is undefined. But clearly, 

∞=
+→

)(lim
0)|(

Drinkitydiagnostic
fizodrinkP

. This difficulty stems from the definition of diagnosticity 
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and log diagnosticity. Features, like P(hasDNA | human), can have probability 0 or 1.  

12 A pilot experiment with unequal prior probabilities of glom and fizo was conducted. 

Several subjects indicated that they had forgotten that priors were not equal when rating the 

questions. Because of this possible confound, and because of the default assumption that priors 

are equal (Fox & Rottenstreich, 2003), equal prior probabilities were used. Impact and 

probability gain are identical in this two category, equal prior probability case. 

13 A further note is that reinforcement learning researchers (Kearns & Singh, 2002, p. 211) 

have found that learning an unknown probability model within a finite time is not possible if 

rewards can be infinite. 
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Figure caption 

Figure 1 

Simulation 2 results. Strength of limiting cases of disagreement between pairs of sampling 
norms, for different prior probabilities 

[Note: please use the included REV.Nelson105.fig1.eps file for figure 1.  This tiff file is 
embedded here as a reference only.] 
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Tables and captions 

Table 1 

Sampling norms and probabilistic information-gathering tasks 

Sampling Norm  Task # Hyps. Reference Paper Type 

Covariation assessment 2 McKenzie & Mikkelsen (in press) Review, 
experimemt 

Medical diagnosis 2 Good & Card (1971) 
Card & Good (1974) 

Theory 

Hypothesis testing 2 Klayman & Ha (1987) Theory 

Introvert vs. extravert 2 Trope & Bassok (1982, 1983)  
Bassok & Trope (1983-1984) 

Experiment 

Planet Vuma 2 Skov & Sherman (1986); Slowiaczek, 
Klayman, Sherman, & Skov (1992) 

Experiment 

Diagnosticity or 
log diagnosticity 

Selection task, 
Causal conditionals 

2 Evans & Over (1996); 
Over & Jessop (1998) 

Theory 

2 Oaksford & Chater (1994, 2003) Review, theory

2 Oaksford, Chater & Grainger (1999) Experiment 

Selection task 

2, 3 Hattori (2002) Theory 

Reduced array 
selection task 

2 Oaksford, Chater, Grainger, & Larkin 
(1997); Oaksford & Chater (1998) 

Experiment 

2-4-6 task 2 Ginzburg & Sejnowski (1996) Experiment 

Number concept task millions Nelson, Tenenbaum, & Movellan (2001) Experiment 

Alien mind-reading 2, 18 Steyvers, Tenenbaum, Wagenmakers,  
& Blum (2003) 

Experiment 

Hypothesis testing 2 Klayman (1987) Theory 

Information gain, 
KL distance 

Selection task,  
Causal conditionals 

2 Over & Jessop (1998) Theory 

2-4-6 task 3 Baron (1985) Theory 

Urns and poker chips 5 Baron (1985) Theory 

Probability gain 

Medical diagnosis 3 Baron, Beattie, & Hershey (1988) Experiment 

Hypothesis testing 2 Klayman & Ha (1987) Theory Impact (absolute 
change) 

Selection task,  
Hempel’s paradox 

2 Nickerson (1996) Theory 



Tables in finding useful questions     53   

Table 2 

Properties of several sampling norms 

Property Diag. Log d. Info. gain KL dist. Prob. gain Impact

Usefulness(qj) finite    Yes Yes Yes Yes 

Usefulness(qj) ≥ 0 Yes Yes  Yes  Yes 

Usefulness(qj&qk)= 
  Usefulness(qj)+Usefulness(qk) 

  Yes  Yes  

Note. Usefulness(qj) denotes the usefulness (utility) of the answer qj.  Blank cells indicate 

absence of the corresponding property. 
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Table 3 

Features used by Skov and Sherman (1986). Slowiaczek et al. (1992) used features C-F and M-P 

Usefulness Feature % of gloms, fizos  
with each feature 

Info. gain-
KL dist. 

Prob. gain, 
impact 

Diagn. Log10 
diag. 

A, B 48, 52;  52, 48 0.001 0.020 1.083 0.035 Low  

C, D, E, F 28, 32;  32, 28;  68, 72;  72, 68 0.001 0.020 1.084 0.035 

G, H, I, J 15, 45;  45, 15;  55, 85;  85, 55 0.080 0.150 1.982 0.276 Medium  

K, L 34, 66;  66, 34 0.075 0.160 1.941 0.288 

M, N, O, P 10, 50;  50, 10;  50, 90;  90, 50 0.147 0.200 2.760 0.388 High  

Q, R 26, 74;  74, 26 0.173 0.240 2.846 0.454 

Note. Multiple features, for example the features A and B, appear on the same line if all sampling 

norms agree that those features are equally useful. Semicolons separate features. For example: 

48% of gloms and 52% of fizos have feature A; 52% of gloms and 48% of fizos have feature B. 
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Table 4 

Features used by Slowiaczek et al. (1992, experiment 3b), and each feature's usefulness 

 % of gloms, fizos
with each feature 

Info. gain-
KL dist. 

Prob. gain, 
impact 

Diagn. Log10  
diag. 

extreme features 90, 55;  45, 10 0.11766 0.175 2.4239 0.3347 

non-extreme features 65, 30;  30, 65 0.09052 0.175 2.0792 0.31754 

Note. Semicolons separate features. For example, 95% of gloms and 55% of fizos have one of 

the extreme features; 45% of gloms and 10% of fizos have the other extreme feature. Both Planet 

Vuma and medical diagnosis scenarios were used. 

 

  



Tables in finding useful questions     56   

Table 5 

Re-analysis of experiment 4 in Baron et al. (1988) 

Test: 1 2 3 4 5 6 7 8 9 10 

P(positive | disease):           

Disease A 0.75 0 0.75 0.50 0.50 0.50 0.50 0.25 1.00 0.50

Disease B 0.75 1.00 1.00 1.00 0 0 1.00 0 0 0.50

Disease C 0.75 0 1.00 0 0 1.00 1.00 0 0 0.50

Subjects’ ratings 21 61 40 34 26 26 48 25 75 9 

Usefulness:           

Probability gain 0 0.200 0 0 0 0 0 0 0.240 0 

Information gain 0 0.795 0.115 0.350 0.264 0.350 0.264 0.115 0.943 0 

Impact 0 0.243 0.077 0.141 0.154 0.141 0.154 0.077 0.307 0 

Note. Prior probabilities of diseases A, B, and C, were 0.64, 0.24, and 0.12, respectively. 

Subjects’ ratings, and the conditional probabilities of a positive test given each disease, are 

adapted from Table 4 in “Heuristics and biases in diagnostic reasoning: II. Congruence, 

information, and certainty,”  by J. Baron, J. Beattie, and J. C. Hershey, 1988, Organizational 

Behavior and Human Decision Processes, 42(1), p. 102. Copyright Elsevier; adapted with 

permission.  
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Table 6 

Re-analysis of experiments 5 and 6 in Baron et al. (1988) 

Test: 1 2 3 4 5 6 7 8 9 10 11 

P(positive | disease):           

Disease A 0.50 1.00 0.81 0 1.00 0 0 1.00 0 1.00 1.00

Disease B 0.50 1.00 0 1.00 0.50 1.00 0.50 0 0 0 1.00

Disease C 0.50 0 0 0 0 1.00 0 1.00 1.00 0 1.00

Subjects’ ratings:           

Expt. 5 - 42 56 64 41 69 44 65 42 64 - 

Expt. 6 - 64 62 75 52 75 41 69 56 79 - 

Usefulness:            

Probability gain 0 0.120 0.118 0.240 0.120 0.240 0.120 0.240 0.120 0.240 0 

Information gain 0 0.529 0.550 0.795 0.555 0.942 0.289 0.795 0.529 0.943 0 

Impact 0 0.141 0.245 0.243 0.205 0.307 0.122 0.243 0.141 0.307 0 

Note. Prior probabilities of diseases A, B, and C, were 0.64, 0.24, and 0.12, respectively. Baron 

et al. stated that most subjects rated tests 1 and 11 zero, but did not report subjects’ ratings of 

those tests. Subjects’ ratings, and the conditional probabilities of a positive test given each 

disease, are adapted from Table 5 in “Heuristics and biases in diagnostic reasoning: II. 

Congruence, information, and certainty,”  by J. Baron, J. Beattie, and J. C. Hershey, 1988, 

Organizational Behavior and Human Decision Processes, 42(1), p. 106. Copyright Elsevier; 

adapted with permission. 
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Table 7 

Correlation between three sampling norms and subjects' average ratings in Baron et al.’s (1988) 

study 

Experiment  

4 5 6 

Probability gain 0.84 0.91 0.83 

Information gain 0.89 0.86 0.94 

Impact 0.89 0.88 0.81 

Note. Correlations exclude tests 1 and 11, in experiments 5 and 6, for which Baron et al. (1988) 

did not report subjects’ ratings. Correlations use Pearson's r. A similar pattern, with slightly 

lower correlation values, results if Spearman's rank correlation is used. 
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Table 8 

Cards' usefulness on the selection task 

 A (P) 2 (Q) 3 (not-Q) K (not-P) 

Information gain-KL distance 0.324 0.200 0.066 0.040 

Probability gain-impact 0.315 0.257 0.095 0.089 

Diagnosticity 4.980 3.120 2.001 1.548 

Log10 diagnosticity 0.664 0.493 0.191 0.162 

Note. Each card’s usefulness was calculated with respect to Oaksford and Chater’s (2003) belief 

model, with P(dependence hypothesis)=0.5, P(error)=0.1, P(A)=0.22, and P(2)=0.27. 
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Table 9 

Usefulness of each cell, relative to McKenzie and Mikkelsen’s (in press) belief model 

Observation Info. gain,  
KL dist. 

Prob. Gain, 
Impact 

Diagnosticity Log10 diag. Log2 diag. 

A 0.38  0.35 5.50 0.74 2.46 

B 0.08 0.17 2.00 0.30 1.00 

C 0.08 0.17 2.00 0.30 1.00 

D 0.0005 0.01 1.06 0.02 0.08 

 

Note.  McKenzie and Mikkelsen's model describes answers' (qj), rather than questions' (Q), 

usefulness, illustrating the variety of tasks in which explicit sampling norms may be calculated. 

Particular answers’ information gain and KL distance are not necessarily the same, although they 

are in this case. 
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Table 10 

Feature probabilities, and usefulness of each question, as calculated by each norm 

 Drink   Gurgle Harmonica Hula 

Proportion of Gloms  30%   70%       1%   99% 

Proportion of Fizos   0.01%   30%     99% 100% 

Diagnosticity 451.36 2.33 99.00 infinite 

Log10 diagnosticity 0.65 0.37 2.00 infinite 

Information gain-KL distance 0.17 0.12 0.92 0.01 

Probability gain-impact 0.15 0.20 0.49 0.01 
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Table 11 

Experiment results 

Pattern correlation with:   %      (#) 

of SS 

Pattern      Description 

Info. gain- 
KL dist. 

Prob. gain- 
impact 

Diag. Log diag.

32 (48) Harmonica > Drink > Gurgle > Hula Info. gain-KL dist. 1.00 0.80 -0.40 -0.20 

27 (40) Harmonica > Gurgle > Drink > Hula Prob. gain-impact 0.80 1.00 -0.80 -0.40 

18 (26) Drink > Harmonica > Gurgle > Hula Close to info. gain 0.80 0.40 -0.20 -0.40 

5 (8) Harmonica > Drink = Gurgle > Hula Avg. info., prob. gain 0.95 0.95 -0.63 -0.32 

18 (26) Other patterns, 1-3 responses each (Various patterns) 0.26 0.20  0.04  0.21 

0 (0) Hula > Drink > Harmonica > Gurgle Diagnosticity -0.40 -0.80 1.00 0.80 

0 (0) Hula > Harmonica > Drink > Gurgle Log diagnosticity -0.20 -0.40 0.80 1.00 

100 (148) Aggregate results (Various patterns) 0.78 0.69 -0.41 -0.22 

Note. Spearman’s rank correlation coefficient, with correction for ties, was used. Mean 

correlations are given for rows that aggregate multiple patterns of response rankings. 
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Table 12 

Natural environment feature distribution and usefulness values 

 Skirt  
(or dress)

Glasses Beard  Earrings Hair 

Feature values and distribution: no yes none  sun-  yes yes  no yes no short long

% of males 100 0 67      6      27 16   84 2 98 93   7 

% of females 98 2 83      3      14 0 100 47 53 7 93 

Usefulness of each feature:      

Information gain-KL distance 0.010 0.025 0.084 0.235  0.634 

Probability gain 0.010 0.065 0.062 0.220  0.420 

Impact 0.010 0.080 0.080 0.225  0.430 

Diagnosticity infinite 1.412 infinite 7.056 13.296 

Log10 diagnosticity infinite 0.093 infinite 0.532  1.123 

Note. About 51% of individuals were male. When hair completely obscured the ears, the ears 

were classified as not having earrings. 
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Table A1 

Example questions’ and answers’ usefulness, as calculated by each sampling norm 

 Diagn. Log10 diag. Info. gain KL dist. Prob. gain Impact 

Hula 9.000 0.954 0.456 0.456 0.200 0.336 

   hulaWorn (p=0.34) 9.000 0.954 0.148 0.752 0.094 0.494 

   hulaNotWorn (p=0.66) 9.000 0.954 0.615 0.303 0.255 0.255 

Drink 1.496 0.173 0.026 0.026 0.000 0.084 

   drinksTea (p=0.36) 1.667 0.222 -0.099 0.044 -0.117 0.117 

   doesn’tDrink (p=0.64) 1.400 0.146 0.096 0.016 0.066 0.066 

Note. P(glom)=0.70, P(wearsHula | glom)=0.1, P(wearsHula | fizo)=0.9, 

P(drinksTea | glom)=0.3, and P(drinksTea | fizo)=0.5. Individual answers can have negative 

information gain or probability gain, as drinksTea illustrates. Questions’ usefulness is 

nonnegative irrespective of which sampling norm is used. The Drink question has probability 

gain zero because it does not improve probability of correct guess. Information gain and KL 

distance are equivalent when evaluating questions, but not individual answers, as shown.  
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Table B1 

Log diagnosticity (prefers Hula) vs. diagnosticity (prefers Drink) 

wearsHula: drinksTea: Strength of each norm’s preference: P(glom) 

% gloms % fizos % gloms % fizos

DStr 

Diagn. Log diag. Info. gain Prob. gain Impact

50% 99.90 0.10 53.66 0.01 99.66 -99.70 99.62 99.16 87.06 88.50 

60 99.90 0.10 0.01 62.76 99.68 -99.78 99.58 97.45 69.45 79.14 

70 99.87 0.13 0.01 62.03 99.68 -99.65 99.70 95.87 58.12 74.63 

80 0.17 99.82 0.01 76.77 99.61 -99.80 99.41 82.60 27.90 45.30 

90 99.85 0.21 29.73 0.01 99.51 -99.56 99.47 93.94 52.86 65.41 

99.5 99.86 0.16 68.27 99.99 99.50 -99.64 99.33 33.17 2.62 5.58 
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Table B2 

Information gain (prefers Hula) vs. diagnosticity (prefers Drink) 

wearsHula: drinksTea: Strength of each norm’s preference: P(glom) 

% gloms % fizos % gloms % fizos

DStr 

Diagn. Log diag. Info. gain Prob. gain Impact 

50% 99.99 0.01 100.00 99.99 100.00 -100.00 -100.00 100.00 100.00 100.00 

60 99.99 0.01 0.01 0.00 100.00 -100.00 -100.00 100.00 99.43 100.00 

70 0.01 99.99 0.01 0.00 99.99 -100.00 -100.00 99.98 95.02 99.77 

80 99.99 0.01 99.99 100.00 99.83 -100.00 -100.00 99.67 81.74 96.98 

90 0.01 99.99 0.01 0.00 97.98 -100.00 -100.00 96.01 53.42 79.56 

99.5 99.99 0.01 99.99 100.00 60.64 -100.00 -100.00 36.77 3.53 8.08 

 

Note. Results for impact vs. diagnosticity, information gain vs. log diagnosticity, and impact vs. 

log diagnosticity are not presented separately, because each of those optimizations produced 

feature probabilities that were virtually identical to the results for information gain vs. 

diagnosticity. DStr values for information gain vs. log diagnosticity were essentially identical to 

those for information gain vs. diagnosticity. DStr values for impact vs. diagnosticity, and impact 

vs. log diagnosticity, follow a qualitatively similar pattern; those values can be approximated 

from the strengths of each norm’s preference in Table B2.
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Table B3 

Probability gain (prefers Hula) vs. diagnosticity (prefers Drink) 

wearsHula: drinksTea: Strength of each norm’s preference: P(glom) 

% gloms % fizos % gloms % fizos

DStr 

Diagn. Log diag. Info. gain Prob. gain Impact 

50% 0.01 99.99 0.00 0.01 100.00 -100.00 -100.00 100.00 100.00 100.00 

60 0.01 99.99 86.87 100.00 99.72 -100.00 -100.00 99.99 99.43 99.75 

70 0.01 99.99 9.14 0.00 97.48 -100.00 -100.00 99.95 95.02 99.19 

80 0.01 99.99 49.48 100.00 90.41 -100.00 -100.00 97.86 81.74 74.60 

90 0.01 99.99 87.77 100.00 73.09 -100.00 -100.00 95.42 53.42 74.51 

99.5 0.01 99.99 16.43 0.00 18.78 -100.00 -100.00 36.15 3.53 6.81 

Note. Results for probability gain vs. log diagnosticity are not given separately because they 

were indistinguishable from results for probability gain vs. diagnosticity. 
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Table B4 

Information gain (prefers Hula) vs. probability gain (prefers Drink) 

wearsHula: drinksTea: Strength of each norm’s preference: P(glom) 

% gloms % fizos % gloms % fizos

DStr 

Diagn. Log diag. Info. gain Prob. gain Impact 

50% 0.00 31.44 28.91 71.09 34.94 100.00 100.00 37.42 -32.61 -35.75 

60 66.67 100.00 87.51 56.42 52.55 100.00 100.00 51.87 -53.24 8.71 

70 57.14 0.00 95.25 55.87 58.04 100.00 100.00 63.38 -53.15 45.89 

80 75.00 0.00 1.58 46.12 54.07 100.00 100.00 64.94 -45.02 55.54 

90 11.11 100.00 99.69 51.39 40.80 100.00 100.00 58.39 -28.50 45.21 

99.5 0.50 100.00 0.00 50.21 5.81 0.00 0.00 18.27 -1.82 4.07 
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Table B5 

Information gain (prefers Hula) vs. impact (prefers Drink) 

wearsHula: drinksTea: Strength of each norm’s preference: P(glom) 

% gloms % fizos % gloms % fizos

DStr 

Diagn. Log diag. Info. gain Prob. gain Impact 

50% 67.72 100.00 28.80 71.26 36.64 100.00 100.00 39.16 -31.13 -34.28 

60 100.00 65.60 71.53 25.70 38.98 100.00 100.00 41.76 7.81 -36.39 

70 100.00 62.47 27.70 77.91 39.57 100.00 100.00 44.08 41.96 -35.52 

80 100.00 58.88 73.13 17.29 37.66 100.00 100.00 44.03 46.14 -32.21 

90 100.00 53.76 75.23 11.06 30.92 100.00 100.00 40.42 28.70 -23.65 

99.5 0.00 54.84 15.95 98.86 5.59 100.00 100.00 13.30 1.98 -2.35 
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Table B6 

Impact (prefers Hula) vs. probability gain (prefers Drink) 

wearsHula: drinksTea: Strength of each norm’s preference: P(glom) 

% gloms % fizos % gloms % fizos 

DStr 

Diagn. Log diag. Info. gain Prob. gain Impact 

50.5% 1.98 0.00 0.07 1.19 3.78 100.00 100.00 8.81 -3.97 3.60 

60 33.33 0.00 0.00 17.27 43.49 0.00 0.00 49.13 -40.20 47.03 

70 57.14 0.00 100.00 69.66 55.25 0.00 0.00 59.21 -49.93 61.12 

80 25.00 100.00 0.00 40.66 52.48 0.00 0.00 59.99 -45.77 60.18 

90 88.89 0.00 0.00 47.59 36.71 0.00 0.00 55.25 -29.44 45.78 

99.5 0.50 100.00 0.00 45.82 2.75 0.00 0.00 19.70 -1.68 4.44 

Note. Impact and probability gain are identical when there are two equiprobable hypotheses. 

There is therefore no case of disagreement between those norms in the Vuma scenario when 

P(glom)=0.50. Cases of slight disagreement are observed when P(glom)=0.505, included here. 

 

 


